Articles and structures prepared by three-dimensional printing method

Information

  • Patent Grant
  • 10226919
  • Patent Number
    10,226,919
  • Date Filed
    Tuesday, November 8, 2016
    8 years ago
  • Date Issued
    Tuesday, March 12, 2019
    5 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Johnson; Christina A
    • Liu; Xue H
    Agents
    • The Dobrusin Law Firm, P.C.
Abstract
The present invention relates to articles prepared using a three-dimensional printing method, an auxiliary structure being additionally formed beyond an extension of the one or more components during the construction of components. The invention also relates to an auxiliary structure for components produced by means of three-dimensional printing methods, the auxiliary structure being constructed along with the component and extending beyond a dimension of the one or more components.
Description
FIELD

The present invention relates to a method for producing three-dimensional components, using a three-dimensional printing method.


BACKGROUND

Methods for producing three-dimensional components have been known for some time.


For example, a method for producing three-dimensional objects from computer data is described in the European patent specification EP 0 431 924 B1. In this method, a particulate material is deposited in a thin layer onto a platform, and a binder material is selectively printed on the particulate material, using a print head. The particle area onto which the binder is printed sticks together and solidifies under the influence of the binder and, if necessary, an additional hardener. The platform is then lowered by a distance of one layer thickness into a build cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a certain, desired height of the object is achieved. A three-dimensional object is thereby produced from the printed and solidified areas.


After it is completed, this object produced from solidified particulate material is embedded in loose particulate material and is subsequently removed therefrom. This is done, for example, using an extractor. This leaves the desired objects, from which the remaining power is removed, for example by brushing.


Other powder-supported rapid prototyping processes work in a similar manner, for example selective laser sintering or electron beam sintering, in which a loose particulate material is also deposited in layers and selectively solidified with the aid of a controlled physical radiation source.


All these methods are referred to collectively below as “three-dimensional printing method” or “3D printing method”.


In all of these three-dimensional printing methods, the loose, unsolidified particulate material supports the structural body during and after construction of the structural body. However, additional support structures, which are necessary, for example, in a different layering method (the so-called stereolithographic method), are usually not required in the 3D printing method.


This characteristic has so far been regarded as a great advantage of the 3D printing method, since manual post-processing of the components is not required in order to remove any support structures.


However, if a method such as powder-supported rapid prototyping is used in order to produce a larger number of objects, a variety of problems may potentially arise.


After they are completed, the parts are entirely covered by loose particulate material and are therefore initially not visible to the operator. If the operator uses an extractor to remove the loose particulate material, the produced objects are in danger of being damaged by the suction nozzle. In the case of small parts, in particular, the parts are also in danger of being unintentionally drawn into the suction nozzle.


Large, filigree structures may also be damaged after production when they are removed from the powder bed, if parts of the object are still located in the powder bed and are somewhat more difficult to remove.


It is also possible for components to become dislodged and slip or collapse under their own weight if the loose particulate material beneath the component is carelessly removed.


For all of these reasons, it has not yet been possible to automate the removal of the components from the powder bed.


SUMMARY

An object of the present invention is therefore to provide a method and a device which make it possible to easily and safely remove any 3D-printed object from the loose particulate material.


According to the invention, this object is achieved by a method for producing three-dimensional components using a three-dimensional printing method, an auxiliary structure additionally being formed beyond the extension of the one or more components during the construction of components.


The object is also achieved by an auxiliary structure according to the invention for components produced by means of three-dimensional printing methods, the auxiliary structure being constructed along with the component and extending beyond a dimension of the one or more components.


By additionally constructing an auxiliary structure of this type, it is a great deal easier to handle potentially small and filigree-structured components.


According to a preferred embodiment of the method according to the invention, the auxiliary structure is additionally constructed in such a way that two simultaneously constructed components are interconnected directly or indirectly by the auxiliary structure.


In such an embodiment of the present invention, it potentially become even easier to handle the produced components, since multiple components may be removed at the same time. This may be advantageous, in particular, if the components are relatively small.


In a method according to the invention, the auxiliary structure may advantageously include materials of the component.


Such an embodiment of the method according to the invention makes it easy to construct the auxiliary structure and also requires only a reasonable amount of additional time to construct the auxiliary structure.


According to a particularly preferred embodiment of the present method, the auxiliary structure is largely formed from the same material as the one or more components. This potentially makes it particularly easy to additionally build the auxiliary structure.


According to a particularly preferred embodiment of the method according to the invention, multiple layers of components are formed on top of each other. This means that, during a single build process, multiple components may be formed not only next to each other, but also on top of each other. In the event that particularly small or even only particularly flat components are to be constructed, this is a possible embodiment of the method.


The auxiliary structure may have any conceivable shape. However, it may be advantageous if, in the event that multiple components are produced on top of each other, a separate auxiliary structure containing all components on a layer is formed on each layer of components.


In the method, as described according to the invention, it is possible according to an embodiment of the present invention to form the component and the auxiliary structure with the aid of particulate materials deposited in layers and by adding a further material or by selectively applying energy.


According to the method, the auxiliary structure is preferably formed in such a way that it is connected to at least one component. It is therefore also conceivable that in some embodiments it is advantageous to interconnect all components of a manufacturing process.


It may also be advantageous to form predetermined break points at junctions between the component and auxiliary structure in the method according to the invention.


According to an embodiment of the invention, it has also proven to be helpful if the auxiliary structure further forms a holder or coupling device, since this makes it particularly easy to handle the formed components. A holding device of this type may be a holder for a handling tool.


A further improvement achievable by an auxiliary structure according to the present invention is that the auxiliary structure may enable the handling of components to be automated.


To make the components particularly easy to handle, the auxiliary structure, according to one embodiment, connects at least two component on a component layer.


It may also prove to be particularly advantageous if the auxiliary structure interconnects all constructed components. This makes it particularly easy to remove the components after they have been completed, and this may be done in a single operation.


According to an embodiment of the invention, it may be useful to always orient the auxiliary structure on one side of the build cylinder in order to have a uniform starting point for any removal devices and then to group the desired components on this side, which saves space. Due to known build time considerations, it would then be possible for the rest of the auxiliary structure to follow the contours of the components as closely as possible.


It would be possible to connect the auxiliary structure directly to the one or more components.


A further possibility would be to connect the auxiliary structure indirectly to the one or more components, for the auxiliary structure does not necessary have to be integrally connected to the component. Embodiments are also conceivable in which the auxiliary structure holds the component in a positive fit or is even positioned a short distance away from the component, permitting slight movements of the component.


It may also be possible to design the auxiliary structure as a kind of lattice box surrounding the component, which has only thin strips for separating the space segments.


According to a particularly preferred embodiment of the present invention, the determination of the suitable auxiliary structure should be automated as much as possible in process-preparing software.


For example, a possible workflow would be to place the parts to be built in the virtual build space, using a computing program. In a subsequent step, the operator marks the positions on the components for connecting the auxiliary structure. The process software subsequently computes the optimized auxiliary structure and also dimensions it on the basis of the available data relating to component volume and therefore weight.


Next, the entire build space, including the auxiliary structure, is divided into the desired layers, and this data is then transferred to the layering process, which enables the component and the auxiliary structure to be constructed by means of the desired 3D printing method.


The auxiliary structure may also be used to facilitate component identification, for example by applying component numbers or component codes to the strips for the corresponding components. These codes may be provided, for example, in machine-readable form so that they may be supplied to an automated evaluation system.


According to a further embodiment of the invention, a method for producing three-dimensional components from a particulate base material is provided. The base material is deposited in layers and subsequently connected selectively along a contour of the component predetermined by a controller by adding a further material or applying energy. The component is completed by repeating this operation multiple times. In the present case, an auxiliary structure is preferably constructed along with the component, and this auxiliary structure holds the one or more components to be constructed in the desired position within the build space even without the supporting effect of the surrounding powder material.


If, according to a particularly preferred embodiment of the present invention, the auxiliary structure has a different color than the component, it may be, for one thing, particularly easy to handle the components, since it is very easy even for a machine to determine what the auxiliary structure represents and where it should be possible to grip the formed structure.


For the purpose of more detailed explanation, the invention is described in further detail below on the basis of preferred embodiments with reference to the drawing.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an auxiliary structure designed as a frame according to a first preferred embodiment of the present invention.



FIG. 2 shows a possible shape of an auxiliary structure for connection to the components, according to a further embodiment of the present invention.



FIG. 3 shows a system of multiple components in a build cylinder according to a third preferred embodiment of the method according to the invention.



FIG. 4 shows an automated means of removing components provided with auxiliary structures.





DETAILED DESCRIPTION


FIG. 1 shows a top view of a connection of multiple components 1 having an auxiliary structure 2, auxiliary structure 2 including a frame 4 surrounding components 1. Components 1 are connected to frame 4 by strips 3.


According to the embodiment of the invention illustrated in FIG. 1, auxiliary structure 2 includes frame 4, which surrounds components 1 on a plane and is connected to the individual components by strips 3. Frame 4 is dimensioned in such a way that all components 1 connected thereto are held on this frame 4 by the force of their own weight without damaging the frame.


To limit the amount of powder consumed, it is possible to provide at least part of auxiliary structure 2 with a non-solid design. For example, it would be possible to produce at least part of frame 4 from hollow or open profiles whose interiors may be accessible to cleaning agents via corresponding openings.


For example, frame 4 may have a rectangular cross section; however other cross sections, such as round or oval ones, are also conceivable without further limitation.


To shorten the build time for auxiliary structure 2, it may be advantageous, according to a preferred embodiment of the invention, to position auxiliary structure 2 as closely as possible to components 1 and thereby give it a minimal dimension.



FIG. 2 shows a possible means of connecting an auxiliary structure 2 to a component 1 according to a further embodiment of the present invention.


To limit post-processing work for removing strips 3 or the contact points of strips 3 on component 1, it may be advantageous to provide auxiliary structure 2 with a minimal number of connecting points 10 to components 1.


Strips 3, along with their connecting points 10, may be designed with so-called predetermined break points 9 to facilitate removal, these predetermined break points being provided with a geometrically defined constriction 9, as illustrated by way of example in FIG. 2.


Alternatively or in addition, it would also be possible to produce predetermined break point 9 by reducing the solidity, for example by reducing the binder deposit.


Connecting points 10 are also preferably located at points on components 1 which do not require an exact surface. It is thus undesirable for a poorly placed connecting point to mar the visual appearance.


Preferred locations for connecting points 10 may be, for example, on the rear or inside surfaces of component 1. However, when selecting connecting points 10, it is also important to ensure that accessibility is maintained and that the connections may be removed without residue. For this reason, outwardly curved surfaces are potentially more suitable, since they are more easily accessible than inwardly curved surfaces.


The number of connecting points 10 should preferably also be selected in such a way that they are sufficient to hold connected component 1 in any position by the force of its own weight and, if possible, also under the influence of weaker or stronger additional forces following post-processing work.



FIG. 3 shows a system of multiple components 1 in a build cylinder 4 after components 1 have been constructed, according to a further preferred embodiment of the method according to the invention.


In 3D printing as well as in other RP methods, it is possible to produce components in multiple layers on top of each other, depending on the component size and component shape. Access to the individual layers is usually only from one side, ordinarily from the side on which the particulate material is introduced.


In order to reach the underlying components, the top components must first be removed.


As shown in FIG. 3, it may therefore be advantageous to divide components 1 and associated auxiliary structures 2 into different planes which, if necessary, run parallel to the layering plane. This enables the individual “component planes” to be removed easily and successively.


Auxiliary structures 2 of the individual planes should preferably be easily separated from each other and nevertheless be fixable in place without supporting powder material.


Depending on the component size and component weight, it would also be conceivable to interconnect the components on different component planes via the auxiliary structure.


It may also be advantageous if the auxiliary structure interconnects the component additionally or exclusively in a direction perpendicular to the layering direction, instead of in a direction parallel to the layering direction.


Connecting the components to an auxiliary structure makes it possible to use automated removal and cleaning methods. This is currently made difficult by the fact that the components are usually designed individually and have no holding means, for example for robot grippers. The use of simple gripping mechanisms would quickly cause damage to the components.



FIG. 4 shows an automated means of removing components 1 provided with auxiliary structures 2, which is made possible through the use of the auxiliary structures.


By using auxiliary structure 2, it is possible, according to an embodiment of the present invention, to define a uniform holding means for automatic removal or cleaning or post-processing.


A robot 7 would be able to successively remove an auxiliary structure 2 provided with a frame and including components 1 and to supply them to a post-processing process such as cleaning.


Loose particle material 6 may also be more easily removed, for example by removing at least a portion of base 5 of the vessel where the layering process took place, or if the base has closable openings which are opened at the end of the process, and if the loose particulate material, which has a sufficient fluidity, flows out through the base openings.


According to this technique, components 1 are held in the predetermined position by auxiliary structure 2 and are not carried along by outflowing particulate material 6.


However, it would also be possible to remove loose particulate material 6 via the upper opening in the build container, for example by tilting the entire build container in order to pour out loose particulate material 6. If auxiliary structure 2 is held in place on the build cylinder, for example by clamps, components 1, including auxiliary structure 2, remain in the predefined position is not impaired by this operation and are therefore also not damaged.


It would also be possible to extract loose particulate material 6, as is known from the prior art. A suction lance may be positioned over the powder feedstock from above, or the suction lance is inserted directly into the powder feedstock, and the loose particulate material then flows to the suction nozzle. In both cases, components 1 remain in a desired position due to auxiliary structure 2, and they are therefore not unintentionally extracted or damaged.


After a large part of loose particulate material 6 has been removed, components 1, including auxiliary structure 2, may be removed from the build container and supplied to a further cleaning process. This may be done using compressed air or compressed air combined with blasting media. In this case, auxiliary structure 2 again enables components 1 to remain in a desired position and the cleaning agents to be passed over components 1. This operation may be carried out manually or automatically. For example, it would be conceivable to use an automatic cleaning system into which multiple standardized auxiliary structure frames 4, including components 1, are introduced, and by means of which components 1 may be cleaned of remaining residual particulate material 6 in a closed process chamber, using a fluid medium such as compressed air.


Particulate material 6 separated from component 1 may then be supplied to a separator via a process chamber extraction system and fed back into the build process.


The strong flow rates needed in an automatic cleaning system of this type require components 1 to be sufficiently fixed in place, which may be accomplished with the aid of auxiliary structure 2.


After cleaning, components 1 may have to be infiltrated in order to achieve certain material properties. This may be accomplished by immersing the components into a tank filled with fluid infiltration medium 8.


This operation may be greatly facilitated by auxiliary structure 2, since multiple components 1 may be easily held at once and thus also safely immersed at once. In this case, it is also possible to easily automate the operation by introducing one or more frames, for example into a lattice box, and then immersing them together with the lattice box into infiltration tank 8, as shown, for example, in FIG. 4. Of course, it is also conceivable to automate the immersion of individual “component layers”.


Finally, components 1 must be separated from auxiliary structure 2.


It is helpful to distinguish the auxiliary structure from the component with the aid of colors, which may be accomplished, for example, by applying additional dye during the 3D printing process or by means of a modified chemical reaction via overhardening or underhardening. A distinction may also conceivably be made by means of a particular surface structure which is used only in the auxiliary structure.

Claims
  • 1. An article comprising an auxiliary structure; and one or more components produced by means of a three-dimensional printing method, whereby the auxiliary structure is constructed along with the one or more component and extending beyond a dimension of the one or more components; wherein the auxiliary structure is connected directly to the one or more components; and the auxiliary structure and the one or more components are formed from a same powder material and a same binder material.
  • 2. The article of claim 1, wherein the auxiliary structure forms a holder or a coupling device for handling the component(s) after removing the auxiliary structure and the component(s) from loose powder.
  • 3. The article of claim 1, wherein the auxiliary structure enables an automated handling of the components after removing the auxiliary structure and the component(s) from a loose powder.
  • 4. The article of claim 1, wherein the auxiliary structure connects at least two components of a component layer.
  • 5. The article of claim 1, wherein all constructed components are connected to the auxiliary structure.
  • 6. The article of claim 1, wherein the one or more components includes a first component and a second component and the auxiliary structure is connected directly to the first and second components.
  • 7. The article of claim 1, wherein the auxiliary structure largely surrounds one or more of the components.
  • 8. The article of claim 1, wherein the auxiliary structure has a different color than the one or more components.
  • 9. An article comprising: an auxiliary structure connecting to one or more components, wherein the one or more components and the auxiliary structure are produced by means of a three-dimensional printing method, wherein the auxiliary structure extends beyond a dimension of the one or more components;the auxiliary structure is connected indirectly to the one or more components;the auxiliary structure and the one or more components include a same particulate material deposited in layers and connected selectively by a further material or by applying energy; andthe one or more components have a structure capable of being infiltrated by a fluid infiltration medium.
  • 10. An article comprising: an auxiliary structure connected directly by two or more components;the auxiliary structure and the two or more components produced by means of a three-dimensional printing method, whereby the auxiliary structure is constructed along with the two or more component and extending beyond a dimension of the two or more components;wherein the auxiliary structure and the components are formed from a same powder material and a same binder material.
  • 11. The article of claim 10, wherein the article includes multiple layers of components.
  • 12. The article of claim 11, wherein the article includes a separate auxiliary structure on each layer of components.
  • 13. The article of claim 10, wherein the article includes a predetermined break points formed at junctions between each of the components and the auxiliary structure.
  • 14. The article of claim 10, wherein the article includes loose powder material between two of the two or more components.
  • 15. The article of claim 11, wherein the article includes loose powder material between adjacent layers of components.
  • 16. The article of claim 14, wherein the auxiliary structure and the components are formed from the same powder material and the same binder material, and wherein the powder material of the auxiliary structure is the same as the powder material of the loose powder material.
  • 17. An article comprising: an auxiliary structure connected directly by two or more components;the auxiliary structure and the two or more components produced by means of a three-dimensional printing method, whereby the auxiliary structure is constructed along with the two or more components and extending beyond a dimension of the two or more components;wherein the two or more components includes a first component and a second component, the auxiliary structure and the first and second components include a same particulate material deposited in layers and connected selectively by a further material or by applying energy; and the first and second components have a structure capable of being infiltrated by a fluid infiltration medium.
  • 18. The article of claim 17, wherein the auxiliary structure is connected to the first component at a first predetermined break point and is connected to the second component at a second predetermined break point.
  • 19. The article of claim 18, wherein the auxiliary structure allows for automatic handling of components that are too small to be handled automatically.
  • 20. An article comprising: an auxiliary structure;a first component connected directly to the auxiliary structure; anda second component; connected directly to the auxiliary structure;wherein the auxiliary structure and the two or more components are produced by means of three-dimensional printing methods including a same particulate material deposited in layers and connected selectively by a further material or by applying energy;wherein the auxiliary structure extends beyond a dimension of the first component;and the first and second components have a structure capable of being infiltrated by a fluid infiltration medium.
  • 21. The article of claim 20, wherein the auxiliary structure is connected to the first component at a first predetermined break point and is connected to the second component at a second predetermined break point.
  • 22. The article of claim 20, wherein the first component is identical to the second component.
  • 23. The article of claim 20, wherein a horizontal plane passes through the first component, the second component, and the auxiliary structure.
Priority Claims (1)
Number Date Country Kind
10 2007 033 434 Jul 2007 DE national
CLAIM OF PRIORITY

The present invention is a divisional patent application of U.S. patent application Ser. No. 12/669,063 having a 371(c) date of May 16, 2011, which claims priority from German Patent Application No. DE 102007033434, filed on Jul. 18, 2007 and is the National Phase of PCT Patent Application PCT/DE2008/001073, filed on Jul. 1, 2008. The disclosure of U.S. patent application Ser. No. 12/669,063, German Patent Application DE 102007033434, and PCT Patent Application PCT/DE2008/001073 are each incorporated herein by reference in its entirety.

US Referenced Citations (378)
Number Name Date Kind
3913503 Becker Oct 1975 A
4247508 Housholder Jan 1981 A
4369025 Von Der Weid Jan 1983 A
4575330 Hull Mar 1986 A
4591402 Evans et al. May 1986 A
4600733 Ohashi et al. Jul 1986 A
4665492 Masters May 1987 A
4669634 Leroux Jun 1987 A
4711669 Paul et al. Dec 1987 A
4752352 Feygin Jun 1988 A
4752498 Fudim Jun 1988 A
4863538 Deckard Sep 1989 A
4938816 Beaman et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
5017753 Deckard May 1991 A
5031120 Pomerantz et al. Jul 1991 A
5047182 Sundback et al. Sep 1991 A
5053090 Beaman et al. Oct 1991 A
5059266 Yamane et al. Oct 1991 A
5076869 Bourell et al. Dec 1991 A
5120476 Scholz Jun 1992 A
5126529 Weiss et al. Jun 1992 A
5127037 Bynum Jun 1992 A
5132143 Deckard Jul 1992 A
5134569 Masters Jul 1992 A
5136515 Helinski Aug 1992 A
5140937 Yamane et al. Aug 1992 A
5147587 Marcus et al. Sep 1992 A
5149548 Yamane et al. Sep 1992 A
5155324 Deckard et al. Oct 1992 A
5156697 Bourell et al. Oct 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs et al. Apr 1993 A
5216616 Masters Jun 1993 A
5229209 Gharapetian et al. Jul 1993 A
5248456 Evans, Jr. et al. Sep 1993 A
5252264 Forderhase et al. Oct 1993 A
5263130 Pomerantz et al. Nov 1993 A
5263310 Pomerantz et al. Nov 1993 A
5269982 Brotz Dec 1993 A
5284695 Barlow et al. Feb 1994 A
5296062 Bourell et al. Mar 1994 A
5316580 Deckard May 1994 A
5324617 Majima et al. Jun 1994 A
5340656 Sachs et al. Aug 1994 A
5342919 Dickens, Jr. et al. Aug 1994 A
5352405 Beaman et al. Oct 1994 A
5354414 Feygin Oct 1994 A
5382308 Bourell et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5398193 deAngelis Mar 1995 A
5418112 Mirle et al. May 1995 A
5427722 Fouts et al. Jun 1995 A
5431967 Manthiram et al. Jul 1995 A
5433261 Hinton Jul 1995 A
5482659 Sauerhoefer Jan 1996 A
5490962 Cima et al. Feb 1996 A
5503785 Crump Apr 1996 A
5506607 Sanders, Jr. et al. Apr 1996 A
5518060 Cleary et al. May 1996 A
5518680 Cima et al. May 1996 A
5555176 Menhennett et al. Sep 1996 A
5573055 Melling et al. Nov 1996 A
5573721 Gillette Nov 1996 A
5589222 Thometzek et al. Dec 1996 A
5597589 Deckard Jan 1997 A
5616294 Deckard Apr 1997 A
5616631 Kiuchi et al. Apr 1997 A
5637175 Feygin et al. Jun 1997 A
5639070 Deckard Jun 1997 A
5639402 Barlow et al. Jun 1997 A
5647931 Retallick et al. Jul 1997 A
5658412 Retallick et al. Aug 1997 A
5665401 Serbin et al. Sep 1997 A
5717599 Menhennett et al. Feb 1998 A
5730925 Mattes et al. Mar 1998 A
5740051 Sanders, Jr. et al. Apr 1998 A
5747105 Haubert May 1998 A
5749041 Lakshminarayan et al. May 1998 A
5753274 Wilkening et al. May 1998 A
5807437 Sachs et al. Sep 1998 A
5837960 Lewis et al. Nov 1998 A
5851465 Bredt Dec 1998 A
5884688 Hinton et al. Mar 1999 A
5902441 Bredt et al. May 1999 A
5902537 Almquist et al. May 1999 A
5904889 Serbin et al. May 1999 A
5934343 Gaylo et al. Aug 1999 A
5940674 Sachs et al. Aug 1999 A
5943235 Earl et al. Aug 1999 A
5989476 Lockard et al. Nov 1999 A
5997795 Danforth Dec 1999 A
6007318 Russell et al. Dec 1999 A
6036777 Sachs Mar 2000 A
6042774 Wilkening et al. Mar 2000 A
6048188 Hull et al. Apr 2000 A
6048954 Barlow et al. Apr 2000 A
6116517 Heinzl et al. Sep 2000 A
6133353 Bui et al. Oct 2000 A
6146567 Sachs et al. Nov 2000 A
6147138 Hochsmann et al. Nov 2000 A
6155331 Langer et al. Dec 2000 A
6164850 Speakman Dec 2000 A
6165406 Jang et al. Dec 2000 A
6169605 Penn et al. Jan 2001 B1
6175422 Penn et al. Jan 2001 B1
6193922 Ederer Feb 2001 B1
6210625 Matsushita Apr 2001 B1
6216508 Matsubara et al. Apr 2001 B1
6217816 Tang Apr 2001 B1
6259962 Gothait Jul 2001 B1
6270335 Leyden et al. Aug 2001 B2
6305769 Thayer et al. Oct 2001 B1
6316060 Elvidge et al. Nov 2001 B1
6318418 Grossmann et al. Nov 2001 B1
6322728 Brodkin et al. Nov 2001 B1
6335052 Suzuki et al. Jan 2002 B1
6335097 Otsuka et al. Jan 2002 B1
6350495 Schriener et al. Feb 2002 B1
6355196 Kotnis et al. Mar 2002 B1
6375874 Russell et al. Apr 2002 B1
6395811 Nguyen et al. May 2002 B1
6401001 Jang et al. Jun 2002 B1
6403002 Van Der Geest Jun 2002 B1
6405095 Jang et al. Jun 2002 B1
6416850 Bredt et al. Jul 2002 B1
6423255 Hoechsmann et al. Jul 2002 B1
6436334 Hattori et al. Aug 2002 B1
6460979 Heinzl et al. Oct 2002 B1
6467525 Herreid et al. Oct 2002 B2
6476122 Leyden Nov 2002 B1
6485831 Fukushima et al. Nov 2002 B1
6500378 Smith Dec 2002 B1
6554600 Hofmann et al. Apr 2003 B1
6596224 Sachs et al. Jul 2003 B1
6610429 Bredt et al. Aug 2003 B2
6616030 Miller Sep 2003 B2
6658314 Gothait Dec 2003 B1
6672343 Perret et al. Jan 2004 B1
6713125 Sherwood et al. Mar 2004 B1
6722872 Swanson et al. Apr 2004 B1
6733528 Abe et al. May 2004 B2
6742456 Kasperchik et al. Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6827988 Krause et al. Dec 2004 B2
6830643 Hayes Dec 2004 B1
6838035 Ederer et al. Jan 2005 B1
6855205 McQuate et al. Feb 2005 B2
6896839 Kubo et al. May 2005 B2
6972115 Ballard Dec 2005 B1
6989115 Russell et al. Jan 2006 B2
7004222 Ederer et al. Feb 2006 B2
7037382 Davidson et al. May 2006 B2
7048530 Gaillard et al. May 2006 B2
7049363 Shen May 2006 B2
7087109 Bredt et al. Aug 2006 B2
7120512 Kramer et al. Oct 2006 B2
7137431 Ederer et al. Nov 2006 B2
7153463 Leuterer et al. Dec 2006 B2
7204684 Ederer Apr 2007 B2
7220380 Farr et al. May 2007 B2
7291002 Russell et al. Nov 2007 B2
7296990 Devos et al. Nov 2007 B2
7332537 Bredt et al. Feb 2008 B2
7348075 Farr et al. Mar 2008 B2
7378052 Harryson May 2008 B2
7381360 Oriakhi et al. Jun 2008 B2
7387359 Hernandez et al. Jun 2008 B2
7402330 Pfeiffer et al. Jul 2008 B2
7431987 Pfeiffer et al. Oct 2008 B2
7435072 Collins et al. Oct 2008 B2
7435368 Davidson et al. Oct 2008 B2
7455804 Patel et al. Nov 2008 B2
7455805 Oriakhi et al. Nov 2008 B2
7497977 Nielsen et al. Mar 2009 B2
7531117 Ederer May 2009 B2
7550518 Bredt et al. Jun 2009 B2
7578958 Patel et al. Aug 2009 B2
7597835 Marsac Oct 2009 B2
7641461 Khoshnevis Jan 2010 B2
7665636 Ederer Feb 2010 B2
7722802 Pfeiffer et al. May 2010 B2
7807077 Ederer et al. May 2010 B2
7736578 Ederer Jun 2010 B2
7748971 Hochsmann Jul 2010 B2
7767130 Elsner Aug 2010 B2
7795349 Bredt et al. Sep 2010 B2
7799253 Höschmann et al. Sep 2010 B2
7879393 Ederer et al. Feb 2011 B2
7887264 Naunheimer et al. Feb 2011 B2
7927539 Ederer Apr 2011 B2
8020604 Hochsmann et al. Sep 2011 B2
8096262 Ederer et al. Jan 2012 B2
8186415 Marutani et al. May 2012 B2
8349233 Ederer et al. Jan 2013 B2
8506870 Hochsmann et al. Aug 2013 B2
8524142 Unkelmann et al. Sep 2013 B2
8574485 Kramer Nov 2013 B2
8715832 Ederer et al. May 2014 B2
8727672 Ederer et al. May 2014 B2
8741194 Ederer et al. Jun 2014 B1
8911226 Gunther et al. Dec 2014 B2
8951033 Höchsmann et al. Feb 2015 B2
8956140 Hartmann Feb 2015 B2
8956144 Grasegger et al. Feb 2015 B2
8992205 Ederer et al. Mar 2015 B2
9174391 Hartmann et al. Nov 2015 B2
9174392 Hartmann Nov 2015 B2
9242413 Hartmann et al. Jan 2016 B2
9321934 Mögele et al. Apr 2016 B2
9327450 Hein et al. May 2016 B2
9333709 Hartmann May 2016 B2
9358701 Gnuchtel et al. Jun 2016 B2
20010045678 Kubo et al. Nov 2001 A1
20010050031 Bredt et al. Dec 2001 A1
20020015783 Harvey Feb 2002 A1
20020016387 Shen Feb 2002 A1
20020026982 Bredt et al. Mar 2002 A1
20020079601 Russell et al. Jun 2002 A1
20020090410 Tochimoto et al. Jul 2002 A1
20020111707 Li et al. Aug 2002 A1
20020155254 McQuate et al. Oct 2002 A1
20020167100 Moszner et al. Nov 2002 A1
20030004599 Herbak Jan 2003 A1
20030065400 Beam et al. Apr 2003 A1
20030069638 Barlow et al. Apr 2003 A1
20030083771 Schmidt May 2003 A1
20030113729 DaQuino et al. Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20040003738 Imiolek et al. Jan 2004 A1
20040012112 Davidson et al. Jan 2004 A1
20040025905 Ederer et al. Feb 2004 A1
20040026418 Ederer et al. Feb 2004 A1
20040035542 Ederer et al. Feb 2004 A1
20040036200 Patel et al. Feb 2004 A1
20040038009 Leyden et al. Feb 2004 A1
20040045941 Herzog et al. Mar 2004 A1
20040056378 Bredt et al. Mar 2004 A1
20040084814 Boyd et al. May 2004 A1
20040094058 Kasperchik et al. May 2004 A1
20040104515 Swanson et al. Jun 2004 A1
20040112523 Crom Jun 2004 A1
20040138336 Bredt et al. Jul 2004 A1
20040145088 Patel et al. Jul 2004 A1
20040170765 Ederer et al. Sep 2004 A1
20040187714 Napadensky et al. Sep 2004 A1
20040207123 Patel et al. Oct 2004 A1
20040239009 Collins Dec 2004 A1
20050003189 Bredt et al. Jan 2005 A1
20050017386 Harrysson Jan 2005 A1
20050017394 Hochsmann et al. Jan 2005 A1
20050074511 Oriakhi et al. Apr 2005 A1
20050093194 Oriakhi et al. May 2005 A1
20050167872 Ederer et al. Aug 2005 A1
20050174407 Johnson et al. Aug 2005 A1
20050179167 Hachikian Aug 2005 A1
20050212163 Bausinger et al. Sep 2005 A1
20050218549 Farr et al. Oct 2005 A1
20050219942 Wallgren Oct 2005 A1
20050280185 Russell et al. Dec 2005 A1
20050283136 Skarda Dec 2005 A1
20060013659 Pfeiffer et al. Jan 2006 A1
20060105102 Hochsmann et al. May 2006 A1
20060108090 Ederer et al. May 2006 A1
20060159896 Pfeifer et al. Jul 2006 A1
20060175346 Ederer et al. Aug 2006 A1
20060176346 Ederer et al. Aug 2006 A1
20060237159 Hochsmann Oct 2006 A1
20060251535 Pfeifer et al. Nov 2006 A1
20060254467 Farr et al. Nov 2006 A1
20060257579 Farr et al. Nov 2006 A1
20070045891 Martinoni Mar 2007 A1
20070054143 Otoshi Mar 2007 A1
20070057412 Weiskopf et al. Mar 2007 A1
20070065397 Ito et al. Mar 2007 A1
20070126157 Bredt Jun 2007 A1
20070215020 Miller Sep 2007 A1
20070238056 Baumann et al. Oct 2007 A1
20080001331 Ederer Jan 2008 A1
20080018018 Nielsen et al. Jan 2008 A1
20080047628 Davidson et al. Feb 2008 A1
20080138515 Williams Jun 2008 A1
20080187711 Alam et al. Aug 2008 A1
20080233302 Elsner Sep 2008 A1
20080237933 Hochsmann et al. Oct 2008 A1
20080241404 Allaman et al. Oct 2008 A1
20080260945 Ederer et al. Oct 2008 A1
20080299321 Ishihara Dec 2008 A1
20090011066 Davidson et al. Jan 2009 A1
20090068376 Philippi et al. Mar 2009 A1
20090261497 Ederer et al. Oct 2009 A1
20100007062 Larsson et al. Jan 2010 A1
20100026743 Van Thillo et al. Feb 2010 A1
20100152865 Jonsson et al. Jun 2010 A1
20100212584 Ederer et al. Aug 2010 A1
20100207288 Enrico Sep 2010 A1
20100243123 Ederer et al. Sep 2010 A1
20100244301 Ederer et al. Sep 2010 A1
20100247742 Shi et al. Sep 2010 A1
20100272519 Ederer et al. Oct 2010 A1
20100279007 Briselden et al. Nov 2010 A1
20100291314 Kashani-Shirazi Nov 2010 A1
20100323301 Tang et al. Dec 2010 A1
20110049739 Uckelmann et al. Mar 2011 A1
20110059247 Kuzusako et al. Mar 2011 A1
20110177188 Bredt et al. Jul 2011 A1
20110223437 Ederer et al. Sep 2011 A1
20110308755 Hochsmann Dec 2011 A1
20120046779 Pax et al. Feb 2012 A1
20120094026 Ederer et al. Apr 2012 A1
20120097258 Hartmann Apr 2012 A1
20120113439 Ederer May 2012 A1
20120126457 Abe et al. May 2012 A1
20120189102 Maurer, Jr. et al. Jul 2012 A1
20120291701 Grasegger et al. Nov 2012 A1
20120329943 Hicks et al. Dec 2012 A1
20130000549 Hartmann et al. Jan 2013 A1
20130004610 Hartmann et al. Jan 2013 A1
20130026680 Ederer et al. Jan 2013 A1
20130029001 Gunther et al. Jan 2013 A1
20130092082 Ederer et al. Apr 2013 A1
20130157193 Moritani et al. Jun 2013 A1
20130189434 Randall et al. Jul 2013 A1
20130199444 Hartmann Aug 2013 A1
20130234355 Hartmann et al. Sep 2013 A1
20130302575 Mogele et al. Nov 2013 A1
20130313757 Kashani-Shirazi Nov 2013 A1
20140048980 Crump et al. Feb 2014 A1
20140202381 Ederer et al. Jul 2014 A1
20140202382 Ederer Jul 2014 A1
20140212677 Gnuchtel et al. Jul 2014 A1
20140227123 Gunster Aug 2014 A1
20140236339 Fagan Aug 2014 A1
20140271961 Khoshnevis Sep 2014 A1
20140306379 Hartmann et al. Oct 2014 A1
20140322501 Ederer et al. Oct 2014 A1
20150042018 Gunther et al. Feb 2015 A1
20150069659 Hartmann Mar 2015 A1
20150110910 Hartmann et al. Apr 2015 A1
20150165574 Ederer et al. Jun 2015 A1
20150210822 Ederer et al. Jul 2015 A1
20150224718 Ederer et al. Aug 2015 A1
20150266238 Ederer et al. Sep 2015 A1
20150273572 Ederer et al. Oct 2015 A1
20150290881 Ederer et al. Oct 2015 A1
20150321423 Gunther Nov 2015 A1
20150375418 Hartmann Dec 2015 A1
20150375419 Gunther et al. Dec 2015 A1
20160001507 Hartmann et al. Jan 2016 A1
20160052165 Hartmann Feb 2016 A1
20160052166 Hartmann Feb 2016 A1
20160257073 Mogele et al. Mar 2016 A1
20160107386 Hartmann et al. Apr 2016 A1
20160114533 Grasegger et al. Apr 2016 A1
20160263828 Ederer et al. Sep 2016 A1
20160303762 Gunther Oct 2016 A1
20160311167 Gunther et al. Oct 2016 A1
20160311210 Gunther et al. Oct 2016 A1
20160318251 Ederer et al. Nov 2016 A1
20170028630 Ederer et al. Feb 2017 A1
20170050378 Ederer Feb 2017 A1
20170106595 Gunther et al. Apr 2017 A1
20170136524 Ederer et al. May 2017 A1
20170151727 Ederer et al. Jun 2017 A1
20170157852 Ederer et al. Jun 2017 A1
20170182711 Gunther et al. Jun 2017 A1
20170197367 Ederer et al. Jul 2017 A1
20170210037 Ederer et al. Jul 2017 A1
20170217098 Hartmann et al. Aug 2017 A1
20170305139 Hartmann Oct 2017 A1
20170326693 Ederer et al. Nov 2017 A1
20170355137 Ederer et al. Dec 2017 A1
20180079133 Ederer et al. Mar 2018 A1
20180141271 Gunther et al. May 2018 A1
20180141272 Hartmann et al. May 2018 A1
20180169758 Ederer et al. Jun 2018 A1
20180222082 Gunther et al. Aug 2018 A1
20180222174 Gunther et al. Aug 2018 A1
Foreign Referenced Citations (93)
Number Date Country
720255 May 2000 AU
101146666 Mar 2008 CN
3221357 Dec 1983 DE
3930750 Mar 1991 DE
4102260 Jul 1992 DE
4305201 Apr 1994 DE
4300478 Aug 1994 DE
29506204 Jun 1995 DE
4400523 Jul 1995 DE
4440397 Sep 1995 DE
19511772 Oct 1996 DE
19530295 Jan 1997 DE
19528215 Feb 1997 DE
29701279 May 1997 DE
19545167 Jun 1997 DE
69031808 Apr 1998 DE
19723892 Sep 1998 DE
19846478 Apr 2000 DE
19853834 May 2000 DE
10047614 Apr 2002 DE
69634921 Dec 2005 DE
201 22 639 Nov 2006 DE
10 2006 040 305 Mar 2007 DE
102006029298 Dec 2007 DE
102007040755 Mar 2009 DE
102007047326 Apr 2009 DE
102010015451 Oct 2011 DE
102011053205 Mar 2013 DE
102015006363 Dec 2016 DE
102015008860 Jan 2017 DE
102015011503 Mar 2017 DE
102015011790 Mar 2017 DE
0361847 Apr 1990 EP
0431924 Jun 1991 EP
0688262 Dec 1995 EP
0711213 May 1996 EP
0734842 Oct 1996 EP
0739666 Oct 1996 EP
0968776 Jan 2000 EP
1163999 Dec 2001 EP
1415792 May 2004 EP
1442870 Aug 2004 EP
1486318 Dec 2004 EP
1381504 Aug 2007 EP
2790418 Sep 2000 FR
2297516 Aug 1996 GB
2382798 Jun 2003 GB
S62275734 Nov 1987 JP
2003-136605 May 2003 JP
2004082206 Mar 2004 JP
2009202451 Sep 2009 JP
9518715 Jul 1995 WO
9605038 Feb 1996 WO
0021736 Apr 2000 WO
0051809 Sep 2000 WO
0126885 Apr 2001 WO
0172502 Apr 2001 WO
0134371 May 2001 WO
0140866 Jun 2001 WO
2001078969 Oct 2001 WO
0226419 Apr 2002 WO
0226420 Apr 2002 WO
0226478 Apr 2002 WO
02064353 Aug 2002 WO
02064354 Aug 2002 WO
03016030 Feb 2003 WO
03016067 Feb 2003 WO
03103932 Dec 2003 WO
2004010907 Feb 2004 WO
2004014637 Feb 2004 WO
2004110719 Dec 2004 WO
2004112988 Dec 2004 WO
2005113219 Dec 2005 WO
2006100166 Sep 2006 WO
2008049384 May 2008 WO
2008061520 May 2008 WO
2011063786 Jun 2011 WO
2013075696 May 2013 WO
2014090207 Jun 2014 WO
2014166469 Oct 2014 WO
2015078430 Jun 2015 WO
2015081926 Jun 2015 WO
2015085983 Jun 2015 WO
2015090265 Jun 2015 WO
2015090567 Jun 2015 WO
2015096826 Jul 2015 WO
2015149742 Oct 2015 WO
2015180703 Dec 2015 WO
2016019937 Feb 2016 WO
2016019942 Feb 2016 WO
2016058577 Apr 2016 WO
2016095888 Jun 2016 WO
2016101942 Jun 2016 WO
Non-Patent Literature Citations (25)
Entry
US 4,937,420, 06/1990, Deckard (withdrawn)
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994.
EOS Operating Manual for Laser Sintering Machine with Brief Summary.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 131-136.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151.
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”.
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal.
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Machanical Engineering, pp. 2-15.
International Search Report, WO 04/110719, dated Jan. 11, 2005.
Gephart, Rapid Prototyping, pp. 118-119.
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993.
Opposition of Patent No. DE10047614, Jun. 25, 2003.
Opposition to European Patent No. 1322458 B1, Jan. 19, 2005.
International Search Report, PCT/DE00/03324, (Published as WO2002/026419), dated Jun. 5, 2001.
International Search Report, PCT/DE01/03661, (Published as WO2002/026420), dated Feb. 28, 2002.
International Search Report, PCT/DE01/03662, (Published as WO2002/026478), dated Mar. 1, 2002.
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-133.
International Search Report, Application No. PCT/DE2008/0017073 dated Nov. 6, 2009.
Office Action from the European Patent Office, Application No. 08784270.4 dated Jul. 6, 2011.
Office Action from the European Patent Office, Application No. 08784270.4 dated Sep. 5, 2013.
Gebhart, Rapid Prototyping, pp. 118-119, 1996.
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012.
Voxeljet's VXconcept—Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013.
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015.
European Office Action, EP Application No. 08784270.4 dated Sep. 5, 2013.
Related Publications (1)
Number Date Country
20170050387 A1 Feb 2017 US
Divisions (1)
Number Date Country
Parent 12669063 US
Child 15345589 US