The present invention relates to a method for producing three-dimensional components, using a three-dimensional printing method.
Methods for producing three-dimensional components have been known for some time.
For example, a method for producing three-dimensional objects from computer data is described in the European patent specification EP 0 431 924 B1. In this method, a particulate material is deposited in a thin layer onto a platform, and a binder material is selectively printed on the particulate material, using a print head. The particle area onto which the binder is printed sticks together and solidifies under the influence of the binder and, if necessary, an additional hardener. The platform is then lowered by a distance of one layer thickness into a build cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a certain, desired height of the object is achieved. A three-dimensional object is thereby produced from the printed and solidified areas.
After it is completed, this object produced from solidified particulate material is embedded in loose particulate material and is subsequently removed therefrom. This is done, for example, using an extractor. This leaves the desired objects, from which the remaining power is removed, for example by brushing.
Other powder-supported rapid prototyping processes work in a similar manner, for example selective laser sintering or electron beam sintering, in which a loose particulate material is also deposited in layers and selectively solidified with the aid of a controlled physical radiation source.
All these methods are referred to collectively below as “three-dimensional printing method” or “3D printing method”.
In all of these three-dimensional printing methods, the loose, unsolidified particulate material supports the structural body during and after construction of the structural body. However, additional support structures, which are necessary, for example, in a different layering method (the so-called stereolithographic method), are usually not required in the 3D printing method.
This characteristic has so far been regarded as a great advantage of the 3D printing method, since manual post-processing of the components is not required in order to remove any support structures.
However, if a method such as powder-supported rapid prototyping is used in order to produce a larger number of objects, a variety of problems may potentially arise.
After they are completed, the parts are entirely covered by loose particulate material and are therefore initially not visible to the operator. If the operator uses an extractor to remove the loose particulate material, the produced objects are in danger of being damaged by the suction nozzle. In the case of small parts, in particular, the parts are also in danger of being unintentionally drawn into the suction nozzle.
Large, filigree structures may also be damaged after production when they are removed from the powder bed, if parts of the object are still located in the powder bed and are somewhat more difficult to remove.
It is also possible for components to become dislodged and slip or collapse under their own weight if the loose particulate material beneath the component is carelessly removed.
For all of these reasons, it has not yet been possible to automate the removal of the components from the powder bed.
An object of the present invention is therefore to provide a method and a device which make it possible to easily and safely remove any 3D-printed object from the loose particulate material.
According to the invention, this object is achieved by a method for producing three-dimensional components using a three-dimensional printing method, an auxiliary structure additionally being formed beyond the extension of the one or more components during the construction of components.
The object is also achieved by an auxiliary structure according to the invention for components produced by means of three-dimensional printing methods, the auxiliary structure being constructed along with the component and extending beyond a dimension of the one or more components.
By additionally constructing an auxiliary structure of this type, it is a great deal easier to handle potentially small and filigree-structured components.
According to a preferred embodiment of the method according to the invention, the auxiliary structure is additionally constructed in such a way that two simultaneously constructed components are interconnected directly or indirectly by the auxiliary structure.
In such an embodiment of the present invention, it potentially become even easier to handle the produced components, since multiple components may be removed at the same time. This may be advantageous, in particular, if the components are relatively small.
In a method according to the invention, the auxiliary structure may advantageously include materials of the component.
Such an embodiment of the method according to the invention makes it easy to construct the auxiliary structure and also requires only a reasonable amount of additional time to construct the auxiliary structure.
According to a particularly preferred embodiment of the present method, the auxiliary structure is largely formed from the same material as the one or more components. This potentially makes it particularly easy to additionally build the auxiliary structure.
According to a particularly preferred embodiment of the method according to the invention, multiple layers of components are formed on top of each other. This means that, during a single build process, multiple components may be formed not only next to each other, but also on top of each other. In the event that particularly small or even only particularly flat components are to be constructed, this is a possible embodiment of the method.
The auxiliary structure may have any conceivable shape. However, it may be advantageous if, in the event that multiple components are produced on top of each other, a separate auxiliary structure containing all components on a layer is formed on each layer of components.
In the method, as described according to the invention, it is possible according to an embodiment of the present invention to form the component and the auxiliary structure with the aid of particulate materials deposited in layers and by adding a further material or by selectively applying energy.
According to the method, the auxiliary structure is preferably formed in such a way that it is connected to at least one component. It is therefore also conceivable that in some embodiments it is advantageous to interconnect all components of a manufacturing process.
It may also be advantageous to form predetermined break points at junctions between the component and auxiliary structure in the method according to the invention.
According to an embodiment of the invention, it has also proven to be helpful if the auxiliary structure further forms a holder or coupling device, since this makes it particularly easy to handle the formed components. A holding device of this type may be a holder for a handling tool.
A further improvement achievable by an auxiliary structure according to the present invention is that the auxiliary structure may enable the handling of components to be automated.
To make the components particularly easy to handle, the auxiliary structure, according to one embodiment, connects at least two component on a component layer.
It may also prove to be particularly advantageous if the auxiliary structure interconnects all constructed components. This makes it particularly easy to remove the components after they have been completed, and this may be done in a single operation.
According to an embodiment of the invention, it may be useful to always orient the auxiliary structure on one side of the build cylinder in order to have a uniform starting point for any removal devices and then to group the desired components on this side, which saves space. Due to known build time considerations, it would then be possible for the rest of the auxiliary structure to follow the contours of the components as closely as possible.
It would be possible to connect the auxiliary structure directly to the one or more components.
A further possibility would be to connect the auxiliary structure indirectly to the one or more components, for the auxiliary structure does not necessary have to be integrally connected to the component. Embodiments are also conceivable in which the auxiliary structure holds the component in a positive fit or is even positioned a short distance away from the component, permitting slight movements of the component.
It may also be possible to design the auxiliary structure as a kind of lattice box surrounding the component, which has only thin strips for separating the space segments.
According to a particularly preferred embodiment of the present invention, the determination of the suitable auxiliary structure should be automated as much as possible in process-preparing software.
For example, a possible workflow would be to place the parts to be built in the virtual build space, using a computing program. In a subsequent step, the operator marks the positions on the components for connecting the auxiliary structure. The process software subsequently computes the optimized auxiliary structure and also dimensions it on the basis of the available data relating to component volume and therefore weight.
Next, the entire build space, including the auxiliary structure, is divided into the desired layers, and this data is then transferred to the layering process, which enables the component and the auxiliary structure to be constructed by means of the desired 3D printing method.
The auxiliary structure may also be used to facilitate component identification, for example by applying component numbers or component codes to the strips for the corresponding components. These codes may be provided, for example, in machine-readable form so that they may be supplied to an automated evaluation system.
According to a further embodiment of the invention, a method for producing three-dimensional components from a particulate base material is provided. The base material is deposited in layers and subsequently connected selectively along a contour of the component predetermined by a controller by adding a further material or applying energy. The component is completed by repeating this operation multiple times. In the present case, an auxiliary structure is preferably constructed along with the component, and this auxiliary structure holds the one or more components to be constructed in the desired position within the build space even without the supporting effect of the surrounding powder material.
If, according to a particularly preferred embodiment of the present invention, the auxiliary structure has a different color than the component, it may be, for one thing, particularly easy to handle the components, since it is very easy even for a machine to determine what the auxiliary structure represents and where it should be possible to grip the formed structure.
For the purpose of more detailed explanation, the invention is described in further detail below on the basis of preferred embodiments with reference to the drawing.
According to the embodiment of the invention illustrated in
To limit the amount of powder consumed, it is possible to provide at least part of auxiliary structure 2 with a non-solid design. For example, it would be possible to produce at least part of frame 4 from hollow or open profiles whose interiors may be accessible to cleaning agents via corresponding openings.
For example, frame 4 may have a rectangular cross section; however other cross sections, such as round or oval ones, are also conceivable without further limitation.
To shorten the build time for auxiliary structure 2, it may be advantageous, according to a preferred embodiment of the invention, to position auxiliary structure 2 as closely as possible to components 1 and thereby give it a minimal dimension.
To limit post-processing work for removing strips 3 or the contact points of strips 3 on component 1, it may be advantageous to provide auxiliary structure 2 with a minimal number of connecting points 10 to components 1.
Strips 3, along with their connecting points 10, may be designed with so-called predetermined break points 9 to facilitate removal, these predetermined break points being provided with a geometrically defined constriction 9, as illustrated by way of example in
Alternatively or in addition, it would also be possible to produce predetermined break point 9 by reducing the solidity, for example by reducing the binder deposit.
Connecting points 10 are also preferably located at points on components 1 which do not require an exact surface. It is thus undesirable for a poorly placed connecting point to mar the visual appearance.
Preferred locations for connecting points 10 may be, for example, on the rear or inside surfaces of component 1. However, when selecting connecting points 10, it is also important to ensure that accessibility is maintained and that the connections may be removed without residue. For this reason, outwardly curved surfaces are potentially more suitable, since they are more easily accessible than inwardly curved surfaces.
The number of connecting points 10 should preferably also be selected in such a way that they are sufficient to hold connected component 1 in any position by the force of its own weight and, if possible, also under the influence of weaker or stronger additional forces following post-processing work.
In 3D printing as well as in other RP methods, it is possible to produce components in multiple layers on top of each other, depending on the component size and component shape. Access to the individual layers is usually only from one side, ordinarily from the side on which the particulate material is introduced.
In order to reach the underlying components, the top components must first be removed.
As shown in
Auxiliary structures 2 of the individual planes should preferably be easily separated from each other and nevertheless be fixable in place without supporting powder material.
Depending on the component size and component weight, it would also be conceivable to interconnect the components on different component planes via the auxiliary structure.
It may also be advantageous if the auxiliary structure interconnects the component additionally or exclusively in a direction perpendicular to the layering direction, instead of in a direction parallel to the layering direction.
Connecting the components to an auxiliary structure makes it possible to use automated removal and cleaning methods. This is currently made difficult by the fact that the components are usually designed individually and have no holding means, for example for robot grippers. The use of simple gripping mechanisms would quickly cause damage to the components.
By using auxiliary structure 2, it is possible, according to an embodiment of the present invention, to define a uniform holding means for automatic removal or cleaning or post-processing.
A robot 7 would be able to successively remove an auxiliary structure 2 provided with a frame and including components 1 and to supply them to a post-processing process such as cleaning.
Loose particle material 6 may also be more easily removed, for example by removing at least a portion of base 5 of the vessel where the layering process took place, or if the base has closable openings which are opened at the end of the process, and if the loose particulate material, which has a sufficient fluidity, flows out through the base openings.
According to this technique, components 1 are held in the predetermined position by auxiliary structure 2 and are not carried along by outflowing particulate material 6.
However, it would also be possible to remove loose particulate material 6 via the upper opening in the build container, for example by tilting the entire build container in order to pour out loose particulate material 6. If auxiliary structure 2 is held in place on the build cylinder, for example by clamps, components 1, including auxiliary structure 2, remain in the predefined position is not impaired by this operation and are therefore also not damaged.
It would also be possible to extract loose particulate material 6, as is known from the prior art. A suction lance may be positioned over the powder feedstock from above, or the suction lance is inserted directly into the powder feedstock, and the loose particulate material then flows to the suction nozzle. In both cases, components 1 remain in a desired position due to auxiliary structure 2, and they are therefore not unintentionally extracted or damaged.
After a large part of loose particulate material 6 has been removed, components 1, including auxiliary structure 2, may be removed from the build container and supplied to a further cleaning process. This may be done using compressed air or compressed air combined with blasting media. In this case, auxiliary structure 2 again enables components 1 to remain in a desired position and the cleaning agents to be passed over components 1. This operation may be carried out manually or automatically. For example, it would be conceivable to use an automatic cleaning system into which multiple standardized auxiliary structure frames 4, including components 1, are introduced, and by means of which components 1 may be cleaned of remaining residual particulate material 6 in a closed process chamber, using a fluid medium such as compressed air.
Particulate material 6 separated from component 1 may then be supplied to a separator via a process chamber extraction system and fed back into the build process.
The strong flow rates needed in an automatic cleaning system of this type require components 1 to be sufficiently fixed in place, which may be accomplished with the aid of auxiliary structure 2.
After cleaning, components 1 may have to be infiltrated in order to achieve certain material properties. This may be accomplished by immersing the components into a tank filled with fluid infiltration medium 8.
This operation may be greatly facilitated by auxiliary structure 2, since multiple components 1 may be easily held at once and thus also safely immersed at once. In this case, it is also possible to easily automate the operation by introducing one or more frames, for example into a lattice box, and then immersing them together with the lattice box into infiltration tank 8, as shown, for example, in
Finally, components 1 must be separated from auxiliary structure 2.
It is helpful to distinguish the auxiliary structure from the component with the aid of colors, which may be accomplished, for example, by applying additional dye during the 3D printing process or by means of a modified chemical reaction via overhardening or underhardening. A distinction may also conceivably be made by means of a particular surface structure which is used only in the auxiliary structure.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 033 434 | Jul 2007 | DE | national |
The present invention is a divisional patent application of U.S. patent application Ser. No. 12/669,063 having a 371(c) date of May 16, 2011, which claims priority from German Patent Application No. DE 102007033434, filed on Jul. 18, 2007 and is the National Phase of PCT Patent Application PCT/DE2008/001073, filed on Jul. 1, 2008. The disclosure of U.S. patent application Ser. No. 12/669,063, German Patent Application DE 102007033434, and PCT Patent Application PCT/DE2008/001073 are each incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3913503 | Becker | Oct 1975 | A |
4247508 | Housholder | Jan 1981 | A |
4369025 | Von Der Weid | Jan 1983 | A |
4575330 | Hull | Mar 1986 | A |
4591402 | Evans et al. | May 1986 | A |
4600733 | Ohashi et al. | Jul 1986 | A |
4665492 | Masters | May 1987 | A |
4669634 | Leroux | Jun 1987 | A |
4711669 | Paul et al. | Dec 1987 | A |
4752352 | Feygin | Jun 1988 | A |
4752498 | Fudim | Jun 1988 | A |
4863538 | Deckard | Sep 1989 | A |
4938816 | Beaman et al. | Jul 1990 | A |
4944817 | Bourell et al. | Jul 1990 | A |
5017753 | Deckard | May 1991 | A |
5031120 | Pomerantz et al. | Jul 1991 | A |
5047182 | Sundback et al. | Sep 1991 | A |
5053090 | Beaman et al. | Oct 1991 | A |
5059266 | Yamane et al. | Oct 1991 | A |
5076869 | Bourell et al. | Dec 1991 | A |
5120476 | Scholz | Jun 1992 | A |
5126529 | Weiss et al. | Jun 1992 | A |
5127037 | Bynum | Jun 1992 | A |
5132143 | Deckard | Jul 1992 | A |
5134569 | Masters | Jul 1992 | A |
5136515 | Helinski | Aug 1992 | A |
5140937 | Yamane et al. | Aug 1992 | A |
5147587 | Marcus et al. | Sep 1992 | A |
5149548 | Yamane et al. | Sep 1992 | A |
5155324 | Deckard et al. | Oct 1992 | A |
5156697 | Bourell et al. | Oct 1992 | A |
5182170 | Marcus et al. | Jan 1993 | A |
5204055 | Sachs et al. | Apr 1993 | A |
5216616 | Masters | Jun 1993 | A |
5229209 | Gharapetian et al. | Jul 1993 | A |
5248456 | Evans, Jr. et al. | Sep 1993 | A |
5252264 | Forderhase et al. | Oct 1993 | A |
5263130 | Pomerantz et al. | Nov 1993 | A |
5263310 | Pomerantz et al. | Nov 1993 | A |
5269982 | Brotz | Dec 1993 | A |
5284695 | Barlow et al. | Feb 1994 | A |
5296062 | Bourell et al. | Mar 1994 | A |
5316580 | Deckard | May 1994 | A |
5324617 | Majima et al. | Jun 1994 | A |
5340656 | Sachs et al. | Aug 1994 | A |
5342919 | Dickens, Jr. et al. | Aug 1994 | A |
5352405 | Beaman et al. | Oct 1994 | A |
5354414 | Feygin | Oct 1994 | A |
5382308 | Bourell et al. | Jan 1995 | A |
5387380 | Cima et al. | Feb 1995 | A |
5398193 | deAngelis | Mar 1995 | A |
5418112 | Mirle et al. | May 1995 | A |
5427722 | Fouts et al. | Jun 1995 | A |
5431967 | Manthiram et al. | Jul 1995 | A |
5433261 | Hinton | Jul 1995 | A |
5482659 | Sauerhoefer | Jan 1996 | A |
5490962 | Cima et al. | Feb 1996 | A |
5503785 | Crump | Apr 1996 | A |
5506607 | Sanders, Jr. et al. | Apr 1996 | A |
5518060 | Cleary et al. | May 1996 | A |
5518680 | Cima et al. | May 1996 | A |
5555176 | Menhennett et al. | Sep 1996 | A |
5573055 | Melling et al. | Nov 1996 | A |
5573721 | Gillette | Nov 1996 | A |
5589222 | Thometzek et al. | Dec 1996 | A |
5597589 | Deckard | Jan 1997 | A |
5616294 | Deckard | Apr 1997 | A |
5616631 | Kiuchi et al. | Apr 1997 | A |
5637175 | Feygin et al. | Jun 1997 | A |
5639070 | Deckard | Jun 1997 | A |
5639402 | Barlow et al. | Jun 1997 | A |
5647931 | Retallick et al. | Jul 1997 | A |
5658412 | Retallick et al. | Aug 1997 | A |
5665401 | Serbin et al. | Sep 1997 | A |
5717599 | Menhennett et al. | Feb 1998 | A |
5730925 | Mattes et al. | Mar 1998 | A |
5740051 | Sanders, Jr. et al. | Apr 1998 | A |
5747105 | Haubert | May 1998 | A |
5749041 | Lakshminarayan et al. | May 1998 | A |
5753274 | Wilkening et al. | May 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5837960 | Lewis et al. | Nov 1998 | A |
5851465 | Bredt | Dec 1998 | A |
5884688 | Hinton et al. | Mar 1999 | A |
5902441 | Bredt et al. | May 1999 | A |
5902537 | Almquist et al. | May 1999 | A |
5904889 | Serbin et al. | May 1999 | A |
5934343 | Gaylo et al. | Aug 1999 | A |
5940674 | Sachs et al. | Aug 1999 | A |
5943235 | Earl et al. | Aug 1999 | A |
5989476 | Lockard et al. | Nov 1999 | A |
5997795 | Danforth | Dec 1999 | A |
6007318 | Russell et al. | Dec 1999 | A |
6036777 | Sachs | Mar 2000 | A |
6042774 | Wilkening et al. | Mar 2000 | A |
6048188 | Hull et al. | Apr 2000 | A |
6048954 | Barlow et al. | Apr 2000 | A |
6116517 | Heinzl et al. | Sep 2000 | A |
6133353 | Bui et al. | Oct 2000 | A |
6146567 | Sachs et al. | Nov 2000 | A |
6147138 | Hochsmann et al. | Nov 2000 | A |
6155331 | Langer et al. | Dec 2000 | A |
6164850 | Speakman | Dec 2000 | A |
6165406 | Jang et al. | Dec 2000 | A |
6169605 | Penn et al. | Jan 2001 | B1 |
6175422 | Penn et al. | Jan 2001 | B1 |
6193922 | Ederer | Feb 2001 | B1 |
6210625 | Matsushita | Apr 2001 | B1 |
6216508 | Matsubara et al. | Apr 2001 | B1 |
6217816 | Tang | Apr 2001 | B1 |
6259962 | Gothait | Jul 2001 | B1 |
6270335 | Leyden et al. | Aug 2001 | B2 |
6305769 | Thayer et al. | Oct 2001 | B1 |
6316060 | Elvidge et al. | Nov 2001 | B1 |
6318418 | Grossmann et al. | Nov 2001 | B1 |
6322728 | Brodkin et al. | Nov 2001 | B1 |
6335052 | Suzuki et al. | Jan 2002 | B1 |
6335097 | Otsuka et al. | Jan 2002 | B1 |
6350495 | Schriener et al. | Feb 2002 | B1 |
6355196 | Kotnis et al. | Mar 2002 | B1 |
6375874 | Russell et al. | Apr 2002 | B1 |
6395811 | Nguyen et al. | May 2002 | B1 |
6401001 | Jang et al. | Jun 2002 | B1 |
6403002 | Van Der Geest | Jun 2002 | B1 |
6405095 | Jang et al. | Jun 2002 | B1 |
6416850 | Bredt et al. | Jul 2002 | B1 |
6423255 | Hoechsmann et al. | Jul 2002 | B1 |
6436334 | Hattori et al. | Aug 2002 | B1 |
6460979 | Heinzl et al. | Oct 2002 | B1 |
6467525 | Herreid et al. | Oct 2002 | B2 |
6476122 | Leyden | Nov 2002 | B1 |
6485831 | Fukushima et al. | Nov 2002 | B1 |
6500378 | Smith | Dec 2002 | B1 |
6554600 | Hofmann et al. | Apr 2003 | B1 |
6596224 | Sachs et al. | Jul 2003 | B1 |
6610429 | Bredt et al. | Aug 2003 | B2 |
6616030 | Miller | Sep 2003 | B2 |
6658314 | Gothait | Dec 2003 | B1 |
6672343 | Perret et al. | Jan 2004 | B1 |
6713125 | Sherwood et al. | Mar 2004 | B1 |
6722872 | Swanson et al. | Apr 2004 | B1 |
6733528 | Abe et al. | May 2004 | B2 |
6742456 | Kasperchik et al. | Jun 2004 | B1 |
6764636 | Allanic et al. | Jul 2004 | B1 |
6827988 | Krause et al. | Dec 2004 | B2 |
6830643 | Hayes | Dec 2004 | B1 |
6838035 | Ederer et al. | Jan 2005 | B1 |
6855205 | McQuate et al. | Feb 2005 | B2 |
6896839 | Kubo et al. | May 2005 | B2 |
6972115 | Ballard | Dec 2005 | B1 |
6989115 | Russell et al. | Jan 2006 | B2 |
7004222 | Ederer et al. | Feb 2006 | B2 |
7037382 | Davidson et al. | May 2006 | B2 |
7048530 | Gaillard et al. | May 2006 | B2 |
7049363 | Shen | May 2006 | B2 |
7087109 | Bredt et al. | Aug 2006 | B2 |
7120512 | Kramer et al. | Oct 2006 | B2 |
7137431 | Ederer et al. | Nov 2006 | B2 |
7153463 | Leuterer et al. | Dec 2006 | B2 |
7204684 | Ederer | Apr 2007 | B2 |
7220380 | Farr et al. | May 2007 | B2 |
7291002 | Russell et al. | Nov 2007 | B2 |
7296990 | Devos et al. | Nov 2007 | B2 |
7332537 | Bredt et al. | Feb 2008 | B2 |
7348075 | Farr et al. | Mar 2008 | B2 |
7378052 | Harryson | May 2008 | B2 |
7381360 | Oriakhi et al. | Jun 2008 | B2 |
7387359 | Hernandez et al. | Jun 2008 | B2 |
7402330 | Pfeiffer et al. | Jul 2008 | B2 |
7431987 | Pfeiffer et al. | Oct 2008 | B2 |
7435072 | Collins et al. | Oct 2008 | B2 |
7435368 | Davidson et al. | Oct 2008 | B2 |
7455804 | Patel et al. | Nov 2008 | B2 |
7455805 | Oriakhi et al. | Nov 2008 | B2 |
7497977 | Nielsen et al. | Mar 2009 | B2 |
7531117 | Ederer | May 2009 | B2 |
7550518 | Bredt et al. | Jun 2009 | B2 |
7578958 | Patel et al. | Aug 2009 | B2 |
7597835 | Marsac | Oct 2009 | B2 |
7641461 | Khoshnevis | Jan 2010 | B2 |
7665636 | Ederer | Feb 2010 | B2 |
7722802 | Pfeiffer et al. | May 2010 | B2 |
7807077 | Ederer et al. | May 2010 | B2 |
7736578 | Ederer | Jun 2010 | B2 |
7748971 | Hochsmann | Jul 2010 | B2 |
7767130 | Elsner | Aug 2010 | B2 |
7795349 | Bredt et al. | Sep 2010 | B2 |
7799253 | Höschmann et al. | Sep 2010 | B2 |
7879393 | Ederer et al. | Feb 2011 | B2 |
7887264 | Naunheimer et al. | Feb 2011 | B2 |
7927539 | Ederer | Apr 2011 | B2 |
8020604 | Hochsmann et al. | Sep 2011 | B2 |
8096262 | Ederer et al. | Jan 2012 | B2 |
8186415 | Marutani et al. | May 2012 | B2 |
8349233 | Ederer et al. | Jan 2013 | B2 |
8506870 | Hochsmann et al. | Aug 2013 | B2 |
8524142 | Unkelmann et al. | Sep 2013 | B2 |
8574485 | Kramer | Nov 2013 | B2 |
8715832 | Ederer et al. | May 2014 | B2 |
8727672 | Ederer et al. | May 2014 | B2 |
8741194 | Ederer et al. | Jun 2014 | B1 |
8911226 | Gunther et al. | Dec 2014 | B2 |
8951033 | Höchsmann et al. | Feb 2015 | B2 |
8956140 | Hartmann | Feb 2015 | B2 |
8956144 | Grasegger et al. | Feb 2015 | B2 |
8992205 | Ederer et al. | Mar 2015 | B2 |
9174391 | Hartmann et al. | Nov 2015 | B2 |
9174392 | Hartmann | Nov 2015 | B2 |
9242413 | Hartmann et al. | Jan 2016 | B2 |
9321934 | Mögele et al. | Apr 2016 | B2 |
9327450 | Hein et al. | May 2016 | B2 |
9333709 | Hartmann | May 2016 | B2 |
9358701 | Gnuchtel et al. | Jun 2016 | B2 |
20010045678 | Kubo et al. | Nov 2001 | A1 |
20010050031 | Bredt et al. | Dec 2001 | A1 |
20020015783 | Harvey | Feb 2002 | A1 |
20020016387 | Shen | Feb 2002 | A1 |
20020026982 | Bredt et al. | Mar 2002 | A1 |
20020079601 | Russell et al. | Jun 2002 | A1 |
20020090410 | Tochimoto et al. | Jul 2002 | A1 |
20020111707 | Li et al. | Aug 2002 | A1 |
20020155254 | McQuate et al. | Oct 2002 | A1 |
20020167100 | Moszner et al. | Nov 2002 | A1 |
20030004599 | Herbak | Jan 2003 | A1 |
20030065400 | Beam et al. | Apr 2003 | A1 |
20030069638 | Barlow et al. | Apr 2003 | A1 |
20030083771 | Schmidt | May 2003 | A1 |
20030113729 | DaQuino et al. | Jun 2003 | A1 |
20030114936 | Sherwood et al. | Jun 2003 | A1 |
20040003738 | Imiolek et al. | Jan 2004 | A1 |
20040012112 | Davidson et al. | Jan 2004 | A1 |
20040025905 | Ederer et al. | Feb 2004 | A1 |
20040026418 | Ederer et al. | Feb 2004 | A1 |
20040035542 | Ederer et al. | Feb 2004 | A1 |
20040036200 | Patel et al. | Feb 2004 | A1 |
20040038009 | Leyden et al. | Feb 2004 | A1 |
20040045941 | Herzog et al. | Mar 2004 | A1 |
20040056378 | Bredt et al. | Mar 2004 | A1 |
20040084814 | Boyd et al. | May 2004 | A1 |
20040094058 | Kasperchik et al. | May 2004 | A1 |
20040104515 | Swanson et al. | Jun 2004 | A1 |
20040112523 | Crom | Jun 2004 | A1 |
20040138336 | Bredt et al. | Jul 2004 | A1 |
20040145088 | Patel et al. | Jul 2004 | A1 |
20040170765 | Ederer et al. | Sep 2004 | A1 |
20040187714 | Napadensky et al. | Sep 2004 | A1 |
20040207123 | Patel et al. | Oct 2004 | A1 |
20040239009 | Collins | Dec 2004 | A1 |
20050003189 | Bredt et al. | Jan 2005 | A1 |
20050017386 | Harrysson | Jan 2005 | A1 |
20050017394 | Hochsmann et al. | Jan 2005 | A1 |
20050074511 | Oriakhi et al. | Apr 2005 | A1 |
20050093194 | Oriakhi et al. | May 2005 | A1 |
20050167872 | Ederer et al. | Aug 2005 | A1 |
20050174407 | Johnson et al. | Aug 2005 | A1 |
20050179167 | Hachikian | Aug 2005 | A1 |
20050212163 | Bausinger et al. | Sep 2005 | A1 |
20050218549 | Farr et al. | Oct 2005 | A1 |
20050219942 | Wallgren | Oct 2005 | A1 |
20050280185 | Russell et al. | Dec 2005 | A1 |
20050283136 | Skarda | Dec 2005 | A1 |
20060013659 | Pfeiffer et al. | Jan 2006 | A1 |
20060105102 | Hochsmann et al. | May 2006 | A1 |
20060108090 | Ederer et al. | May 2006 | A1 |
20060159896 | Pfeifer et al. | Jul 2006 | A1 |
20060175346 | Ederer et al. | Aug 2006 | A1 |
20060176346 | Ederer et al. | Aug 2006 | A1 |
20060237159 | Hochsmann | Oct 2006 | A1 |
20060251535 | Pfeifer et al. | Nov 2006 | A1 |
20060254467 | Farr et al. | Nov 2006 | A1 |
20060257579 | Farr et al. | Nov 2006 | A1 |
20070045891 | Martinoni | Mar 2007 | A1 |
20070054143 | Otoshi | Mar 2007 | A1 |
20070057412 | Weiskopf et al. | Mar 2007 | A1 |
20070065397 | Ito et al. | Mar 2007 | A1 |
20070126157 | Bredt | Jun 2007 | A1 |
20070215020 | Miller | Sep 2007 | A1 |
20070238056 | Baumann et al. | Oct 2007 | A1 |
20080001331 | Ederer | Jan 2008 | A1 |
20080018018 | Nielsen et al. | Jan 2008 | A1 |
20080047628 | Davidson et al. | Feb 2008 | A1 |
20080138515 | Williams | Jun 2008 | A1 |
20080187711 | Alam et al. | Aug 2008 | A1 |
20080233302 | Elsner | Sep 2008 | A1 |
20080237933 | Hochsmann et al. | Oct 2008 | A1 |
20080241404 | Allaman et al. | Oct 2008 | A1 |
20080260945 | Ederer et al. | Oct 2008 | A1 |
20080299321 | Ishihara | Dec 2008 | A1 |
20090011066 | Davidson et al. | Jan 2009 | A1 |
20090068376 | Philippi et al. | Mar 2009 | A1 |
20090261497 | Ederer et al. | Oct 2009 | A1 |
20100007062 | Larsson et al. | Jan 2010 | A1 |
20100026743 | Van Thillo et al. | Feb 2010 | A1 |
20100152865 | Jonsson et al. | Jun 2010 | A1 |
20100212584 | Ederer et al. | Aug 2010 | A1 |
20100207288 | Enrico | Sep 2010 | A1 |
20100243123 | Ederer et al. | Sep 2010 | A1 |
20100244301 | Ederer et al. | Sep 2010 | A1 |
20100247742 | Shi et al. | Sep 2010 | A1 |
20100272519 | Ederer et al. | Oct 2010 | A1 |
20100279007 | Briselden et al. | Nov 2010 | A1 |
20100291314 | Kashani-Shirazi | Nov 2010 | A1 |
20100323301 | Tang et al. | Dec 2010 | A1 |
20110049739 | Uckelmann et al. | Mar 2011 | A1 |
20110059247 | Kuzusako et al. | Mar 2011 | A1 |
20110177188 | Bredt et al. | Jul 2011 | A1 |
20110223437 | Ederer et al. | Sep 2011 | A1 |
20110308755 | Hochsmann | Dec 2011 | A1 |
20120046779 | Pax et al. | Feb 2012 | A1 |
20120094026 | Ederer et al. | Apr 2012 | A1 |
20120097258 | Hartmann | Apr 2012 | A1 |
20120113439 | Ederer | May 2012 | A1 |
20120126457 | Abe et al. | May 2012 | A1 |
20120189102 | Maurer, Jr. et al. | Jul 2012 | A1 |
20120291701 | Grasegger et al. | Nov 2012 | A1 |
20120329943 | Hicks et al. | Dec 2012 | A1 |
20130000549 | Hartmann et al. | Jan 2013 | A1 |
20130004610 | Hartmann et al. | Jan 2013 | A1 |
20130026680 | Ederer et al. | Jan 2013 | A1 |
20130029001 | Gunther et al. | Jan 2013 | A1 |
20130092082 | Ederer et al. | Apr 2013 | A1 |
20130157193 | Moritani et al. | Jun 2013 | A1 |
20130189434 | Randall et al. | Jul 2013 | A1 |
20130199444 | Hartmann | Aug 2013 | A1 |
20130234355 | Hartmann et al. | Sep 2013 | A1 |
20130302575 | Mogele et al. | Nov 2013 | A1 |
20130313757 | Kashani-Shirazi | Nov 2013 | A1 |
20140048980 | Crump et al. | Feb 2014 | A1 |
20140202381 | Ederer et al. | Jul 2014 | A1 |
20140202382 | Ederer | Jul 2014 | A1 |
20140212677 | Gnuchtel et al. | Jul 2014 | A1 |
20140227123 | Gunster | Aug 2014 | A1 |
20140236339 | Fagan | Aug 2014 | A1 |
20140271961 | Khoshnevis | Sep 2014 | A1 |
20140306379 | Hartmann et al. | Oct 2014 | A1 |
20140322501 | Ederer et al. | Oct 2014 | A1 |
20150042018 | Gunther et al. | Feb 2015 | A1 |
20150069659 | Hartmann | Mar 2015 | A1 |
20150110910 | Hartmann et al. | Apr 2015 | A1 |
20150165574 | Ederer et al. | Jun 2015 | A1 |
20150210822 | Ederer et al. | Jul 2015 | A1 |
20150224718 | Ederer et al. | Aug 2015 | A1 |
20150266238 | Ederer et al. | Sep 2015 | A1 |
20150273572 | Ederer et al. | Oct 2015 | A1 |
20150290881 | Ederer et al. | Oct 2015 | A1 |
20150321423 | Gunther | Nov 2015 | A1 |
20150375418 | Hartmann | Dec 2015 | A1 |
20150375419 | Gunther et al. | Dec 2015 | A1 |
20160001507 | Hartmann et al. | Jan 2016 | A1 |
20160052165 | Hartmann | Feb 2016 | A1 |
20160052166 | Hartmann | Feb 2016 | A1 |
20160257073 | Mogele et al. | Mar 2016 | A1 |
20160107386 | Hartmann et al. | Apr 2016 | A1 |
20160114533 | Grasegger et al. | Apr 2016 | A1 |
20160263828 | Ederer et al. | Sep 2016 | A1 |
20160303762 | Gunther | Oct 2016 | A1 |
20160311167 | Gunther et al. | Oct 2016 | A1 |
20160311210 | Gunther et al. | Oct 2016 | A1 |
20160318251 | Ederer et al. | Nov 2016 | A1 |
20170028630 | Ederer et al. | Feb 2017 | A1 |
20170050378 | Ederer | Feb 2017 | A1 |
20170106595 | Gunther et al. | Apr 2017 | A1 |
20170136524 | Ederer et al. | May 2017 | A1 |
20170151727 | Ederer et al. | Jun 2017 | A1 |
20170157852 | Ederer et al. | Jun 2017 | A1 |
20170182711 | Gunther et al. | Jun 2017 | A1 |
20170197367 | Ederer et al. | Jul 2017 | A1 |
20170210037 | Ederer et al. | Jul 2017 | A1 |
20170217098 | Hartmann et al. | Aug 2017 | A1 |
20170305139 | Hartmann | Oct 2017 | A1 |
20170326693 | Ederer et al. | Nov 2017 | A1 |
20170355137 | Ederer et al. | Dec 2017 | A1 |
20180079133 | Ederer et al. | Mar 2018 | A1 |
20180141271 | Gunther et al. | May 2018 | A1 |
20180141272 | Hartmann et al. | May 2018 | A1 |
20180169758 | Ederer et al. | Jun 2018 | A1 |
20180222082 | Gunther et al. | Aug 2018 | A1 |
20180222174 | Gunther et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
720255 | May 2000 | AU |
101146666 | Mar 2008 | CN |
3221357 | Dec 1983 | DE |
3930750 | Mar 1991 | DE |
4102260 | Jul 1992 | DE |
4305201 | Apr 1994 | DE |
4300478 | Aug 1994 | DE |
29506204 | Jun 1995 | DE |
4400523 | Jul 1995 | DE |
4440397 | Sep 1995 | DE |
19511772 | Oct 1996 | DE |
19530295 | Jan 1997 | DE |
19528215 | Feb 1997 | DE |
29701279 | May 1997 | DE |
19545167 | Jun 1997 | DE |
69031808 | Apr 1998 | DE |
19723892 | Sep 1998 | DE |
19846478 | Apr 2000 | DE |
19853834 | May 2000 | DE |
10047614 | Apr 2002 | DE |
69634921 | Dec 2005 | DE |
201 22 639 | Nov 2006 | DE |
10 2006 040 305 | Mar 2007 | DE |
102006029298 | Dec 2007 | DE |
102007040755 | Mar 2009 | DE |
102007047326 | Apr 2009 | DE |
102010015451 | Oct 2011 | DE |
102011053205 | Mar 2013 | DE |
102015006363 | Dec 2016 | DE |
102015008860 | Jan 2017 | DE |
102015011503 | Mar 2017 | DE |
102015011790 | Mar 2017 | DE |
0361847 | Apr 1990 | EP |
0431924 | Jun 1991 | EP |
0688262 | Dec 1995 | EP |
0711213 | May 1996 | EP |
0734842 | Oct 1996 | EP |
0739666 | Oct 1996 | EP |
0968776 | Jan 2000 | EP |
1163999 | Dec 2001 | EP |
1415792 | May 2004 | EP |
1442870 | Aug 2004 | EP |
1486318 | Dec 2004 | EP |
1381504 | Aug 2007 | EP |
2790418 | Sep 2000 | FR |
2297516 | Aug 1996 | GB |
2382798 | Jun 2003 | GB |
S62275734 | Nov 1987 | JP |
2003-136605 | May 2003 | JP |
2004082206 | Mar 2004 | JP |
2009202451 | Sep 2009 | JP |
9518715 | Jul 1995 | WO |
9605038 | Feb 1996 | WO |
0021736 | Apr 2000 | WO |
0051809 | Sep 2000 | WO |
0126885 | Apr 2001 | WO |
0172502 | Apr 2001 | WO |
0134371 | May 2001 | WO |
0140866 | Jun 2001 | WO |
2001078969 | Oct 2001 | WO |
0226419 | Apr 2002 | WO |
0226420 | Apr 2002 | WO |
0226478 | Apr 2002 | WO |
02064353 | Aug 2002 | WO |
02064354 | Aug 2002 | WO |
03016030 | Feb 2003 | WO |
03016067 | Feb 2003 | WO |
03103932 | Dec 2003 | WO |
2004010907 | Feb 2004 | WO |
2004014637 | Feb 2004 | WO |
2004110719 | Dec 2004 | WO |
2004112988 | Dec 2004 | WO |
2005113219 | Dec 2005 | WO |
2006100166 | Sep 2006 | WO |
2008049384 | May 2008 | WO |
2008061520 | May 2008 | WO |
2011063786 | Jun 2011 | WO |
2013075696 | May 2013 | WO |
2014090207 | Jun 2014 | WO |
2014166469 | Oct 2014 | WO |
2015078430 | Jun 2015 | WO |
2015081926 | Jun 2015 | WO |
2015085983 | Jun 2015 | WO |
2015090265 | Jun 2015 | WO |
2015090567 | Jun 2015 | WO |
2015096826 | Jul 2015 | WO |
2015149742 | Oct 2015 | WO |
2015180703 | Dec 2015 | WO |
2016019937 | Feb 2016 | WO |
2016019942 | Feb 2016 | WO |
2016058577 | Apr 2016 | WO |
2016095888 | Jun 2016 | WO |
2016101942 | Jun 2016 | WO |
Entry |
---|
US 4,937,420, 06/1990, Deckard (withdrawn) |
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994. |
EOS Operating Manual for Laser Sintering Machine with Brief Summary. |
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 131-136. |
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151. |
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”. |
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal. |
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Machanical Engineering, pp. 2-15. |
International Search Report, WO 04/110719, dated Jan. 11, 2005. |
Gephart, Rapid Prototyping, pp. 118-119. |
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993. |
Opposition of Patent No. DE10047614, Jun. 25, 2003. |
Opposition to European Patent No. 1322458 B1, Jan. 19, 2005. |
International Search Report, PCT/DE00/03324, (Published as WO2002/026419), dated Jun. 5, 2001. |
International Search Report, PCT/DE01/03661, (Published as WO2002/026420), dated Feb. 28, 2002. |
International Search Report, PCT/DE01/03662, (Published as WO2002/026478), dated Mar. 1, 2002. |
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-133. |
International Search Report, Application No. PCT/DE2008/0017073 dated Nov. 6, 2009. |
Office Action from the European Patent Office, Application No. 08784270.4 dated Jul. 6, 2011. |
Office Action from the European Patent Office, Application No. 08784270.4 dated Sep. 5, 2013. |
Gebhart, Rapid Prototyping, pp. 118-119, 1996. |
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012. |
Voxeljet's VXconcept—Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013. |
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015. |
European Office Action, EP Application No. 08784270.4 dated Sep. 5, 2013. |
Number | Date | Country | |
---|---|---|---|
20170050387 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12669063 | US | |
Child | 15345589 | US |