The present invention relates to the field of footwear. More specifically, aspects of the present invention pertain to articles of athletic footwear that include cleat structures, strapping systems, and/or improved natural motion characteristics, as well as to methods of making such articles of footwear.
Conventional articles of athletic footwear include two primary elements, an upper and a sole structure. The upper provides a covering for the foot that securely receives and positions the foot with respect to the sole structure. In addition, the upper may have a configuration that protects the foot and provides ventilation, thereby cooling the foot and removing perspiration. The sole structure is secured to a lower surface of the upper and generally is positioned between the foot and any contact surface. In addition to attenuating ground reaction forces and absorbing energy, the sole structure may provide traction and control potentially harmful foot motion, such as over pronation. The general features and configuration of the upper and the sole structure are discussed in greater detail below.
The upper forms a void on the interior of the footwear for receiving the foot. The void has the general shape of the foot, and access to the void is provided at an ankle opening. Accordingly, the upper extends over the instep and toe areas of the foot, along the medial and lateral sides of the foot, and around the heel area of the foot. A lacing system often is incorporated into the upper to selectively change the size of the ankle opening and to permit the wearer to modify certain dimensions of the upper, particularly girth, to accommodate feet with varying proportions. In addition, the upper may include a tongue that extends under the lacing system to enhance the comfort of the footwear (e.g., to modulate pressure applied to the foot by the laces), and the upper also may include a heel counter to limit or control movement of the heel.
Various materials may be utilized in manufacturing the upper. The upper of an article of athletic footwear, for example, may be formed from multiple material layers that may include, for example, an exterior layer, a middle layer, and an interior layer (and these layers may fully or partially overlap). The materials forming the exterior layer (or other layers) of the upper may be selected based upon the properties of wear-resistance, abrasion resistance, durability, flexibility, stretchability, and air-permeability, for example. With regard to the exterior layer, the toe area and the heel area may be formed of leather, synthetic leather, or a rubber material to impart a relatively high degree of wear-resistance and abrasion resistance. Leather, synthetic leather, and rubber materials, however, may not exhibit the desired degree of flexibility and/or air-permeability for all areas of the upper. Accordingly, various other areas of the exterior layer of the upper may be formed from a synthetic textile. The exterior layer of the upper may be formed, therefore, from numerous material elements that each imparts different properties to specific areas of the upper.
A middle (or other) layer of the upper may be formed from a lightweight polymer foam material that improves overall comfort and protects the foot from objects that may contact the upper. Similarly, an interior layer of the upper may be formed of a moisture-wicking textile that removes perspiration from the area immediately surrounding the foot. In some articles of athletic footwear, the various layers may be joined with an adhesive, and stitching may be utilized to join elements within a single layer or to reinforce specific areas of the upper.
The sole structure generally incorporates multiple layers that are conventionally referred to as an insole, a midsole, and an outsole. The insole (which also may constitute a sock liner) is a thin member located within the upper and adjacent the plantar (lower) surface of the foot to enhance footwear comfort, e.g., to wick away moisture and provide a soft, comfortable feel. The midsole, which is traditionally attached to the upper along the entire length of the upper, forms the middle layer of the sole structure and serves a variety of purposes that include controlling foot motions and attenuating impact forces. The outsole forms the ground-contacting element of footwear and is usually fashioned from a durable, wear-resistant material that includes texturing or other features to improve traction.
The primary element of a conventional midsole is a resilient, polymer foam material, such as polyurethane or ethylvinylacetate (“EVA”), that extends throughout the length of the footwear. The properties of the polymer foam material in the midsole are primarily dependent upon factors that include the dimensional configuration of the midsole and the specific characteristics of the material selected for the polymer foam, including the density of the polymer foam material. By varying these factors throughout the midsole, the relative stiffness, degree of ground reaction force attenuation, and energy absorption properties may be altered to meet the specific demands of the activity for which the footwear is intended to be used.
Despite the various available footwear models and characteristics, new footwear models and constructions continue to develop and are a welcome advance in the art.
This Summary is provided to introduce some general concepts relating to this invention in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the invention.
While useful for any desired types or styles of shoes, aspects of this invention may be of particular interest for articles of athletic footwear that include cleat structures, strapping systems, sole structures, and/or improved natural motion characteristics. Still additional aspects of this invention relate to methods for making articles of footwear and particularly sole structures for articles of footwear. More specific aspects of this invention will be described in more detail below.
The foregoing Summary of the Invention, as well as the following Detailed Description of the Invention, will be better understood when considered in conjunction with the accompanying drawings in which like reference numerals refer to the same or similar elements in all of the various views in which that reference number appears.
In the following description of various examples of footwear structures and components according to the present invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example structures and environments in which aspects of the invention may be practiced. It is to be understood that other structures and environments may be utilized and that structural and functional modifications may be made from the specifically described structures and methods without departing from the scope of the present invention.
Aspects of this invention relate to articles of footwear (e.g., athletic footwear) that include cleat structures, strapping systems, and/or improved natural motion characteristics. More specific features and aspects of this invention will be described in more detail below.
As used in this specification, “longitudinal” generally means extending in a front-to-rear (or heel-to-toe) direction of an article of footwear or component thereof, and “longitudinal” elements or components may be straight or curved. “Transverse” generally means extending in a side-to-side (or medial side-to-lateral side) direction of an article of footwear or component thereof, and “transverse” elements or components may be straight or curved.
The “longitudinal direction,” as used in this specification, is determined by a line connecting a rearmost heel (or other) point of an item (e.g., see point P1 of the sole structure of
A. Cleat Features
Some aspects of this invention relate to cleats that may be included in or on sole structures and articles of footwear. Such cleats may be useful, e.g., in athletic footwear for football, soccer, baseball, softball, or the like, and such cleats may be designed for use on natural grass, synthetic turf, or other contact surfaces.
As some more specific examples, cleats for articles of footwear in accordance with at least some examples of this invention may include: (a) a cleat base, wherein an outer perimeter of the cleat base constitutes a closed geometric shape having from three to five inwardly curved sides and three to five corner regions joining adjacent sides (four sides and corner regions in some example cleat structures); (b) a cleat end surface, wherein an outer perimeter of the cleat end surface constitutes a closed geometric shape having from three to five inwardly curved sides and three to five corner regions joining adjacent sides, wherein the closed geometric shape of the cleat base has the same number of sides and corner regions as the closed geometric shape of the cleat end surface, and wherein the closed geometric shape of the cleat end surface encloses a smaller area than the closed geometric shape of the cleat base; and (c) a cleat body extending between the cleat base and the cleat end surface, wherein the cleat body includes a plurality of edges, wherein each edge of the plurality of edges extends between a corner region of the cleat base and a corresponding corner region of the cleat end surface.
If desired, the edges of the cleat body may be curved, optionally curved inward (toward an interior of the overall cleat structure). The cleat body further may include side walls extending between adjacent edges of the cleat body, and these side walls likewise may be curved (optionally inwardly curved).
B. Upper/Strapping System Features
Some aspects of this invention relate to uppers and/or strapping systems included as part of or on uppers for articles of footwear. One aspect of this invention relates to upper members and/or strapping systems that need not include conventional shoe laces for securing the upper to the wearer's foot. Such uppers/strapping systems may include one or more of: (a) an upper member (optionally including a bootie element) defining a medial side, a lateral side, a rear heel area, and an ankle opening; (b) a rear heel strap member engaged with or integrally formed with the rear heel area of the upper member, wherein the rear heel strap member includes: (i) a rear heel element, (ii) a lateral side strap element that extends from the rear heel element and along the lateral side of the ankle opening and the upper member, and (iii) a medial side strap element that extends from the rear heel element and along the medial side of the ankle opening and the upper member; (c) a first strap member extending from the medial side of the ankle opening, across a front of the ankle opening, to at least one of a lateral midfoot or lateral forefoot area of the upper member; (d) a second strap member extending from the lateral side of the ankle opening, across the front of the ankle opening, to a medial midfoot area of the upper member; (e) a first tensioning system for engaging the medial side strap element with the first strap member; (f) a second tensioning system for engaging the lateral side strap element with the second strap member; (g) a medial heel strap extending from the first tensioning system toward a plantar support surface at a central, medial heel location of the upper member; and/or (h) a lateral heel strap extending from the second tensioning system toward the plantar support surface at a central, lateral heel location of the upper member. While such uppers and/or strapping systems need not be used with conventional shoe laces or other shoe securing systems, these uppers and/or strapping systems could be used along with laces or other shoe securing systems, if desired.
The lateral heel strap and the medial heel strap may constitute opposite ends of a single strap member that extends beneath and across the plantar support surface, or they may be separate parts (e.g., that terminate beneath the plantar support surface of the article of footwear, optionally between sole components or between the upper and a sole component). Similarly, the first strap member and the second strap member may constitute opposite ends of a single strap element that extends beneath and across a plantar support surface of the article of footwear, or they may be separate parts (e.g., that terminate beneath the plantar support surface of the article of footwear, optionally between sole components or between the upper and a sole component). The first strap member (i.e., the one that extends to at least one of a lateral midfoot or lateral forefoot area of the upper) may be split into separate straps or bands at a location proximate to the lateral midfoot or lateral forefoot area, if desired.
Other aspects of this invention relate to upper members and/or strapping systems that include conventional shoe laces to help secure the upper to the wearer's foot. Such uppers/strapping systems may include one or more of: (a) an upper member (optionally including a bootie element) defining a medial side, a lateral side, a rear heel area, and an ankle opening; (b) a rear heel strap member engaged with or integrally formed with the rear heel area of the upper member, wherein the rear heel strap member includes: (i) a rear heel element, (ii) a lateral side strap element that extends from the rear heel element and along the lateral side of the ankle opening and the upper member, and (iii) a medial side strap element that extends from the rear heel element and along the medial side of the ankle opening and the upper member; (c) a first strap member extending along the medial side of the upper member and to a medial midfoot area of the upper member, wherein the first strap member includes at least one structure for engaging a lace; (d) a second strap member extending along the lateral side of the upper member, along a lateral midfoot area of the upper member, and to a lateral forefoot area of the upper member, wherein the second strap member includes at least two structures for engaging the lace; (e) a first tensioning system for engaging the medial side strap element with the first strap member; (f) a second tensioning system for engaging the lateral side strap element with the second strap member; and/or (g) a lace engaged with the upper member, engaged with the structure or structures for engaging the lace provided with the first strap member, and engaged with the structures for engaging the lace provided with the second strap member.
If desired, the two (or more) structures for engaging the lace provided with the second strap member (and optionally all of these structures) may be located closer to a forward-most location of the article of footwear than the structure(s) for engaging the lace provided with the first strap member. The upper member or other portions of the article of footwear further may include structures for engaging the lace that are not included as part of the first strap member or the second strap member.
C. Sole Structure Features
Additional aspects of this invention relate to sole structures for articles of footwear. In one example, sole structures according to this aspect of the invention may include: (a) a base member; and (b) a plurality of cleats engaged with or integrally formed with the base member. At least some of the cleats in such structures may have the cleat structures or configurations described above. While the sole structure may have plural cleats of the types described above, not all of these cleats have to be of the same size and/or have the same curvatures or specifications.
Such sole structures may have additional features as well. For example, the sole structures described in the preceding paragraph further may include a midsole member engaged with the base member. The midsole member may be made from rubber (natural or synthetic) and/or a polymer material, such as polyurethane foam materials, thermoplastic polyurethane materials, ethylvinylacetate foam materials, phylon, phylite, injection phylon, etc. The midsole member may be sized and shaped so as to support an entire plantar surface of a wearer's foot.
Sole structures for articles of footwear in accordance with another aspect of this invention may include: (a) a midsole member including at least: a first transverse groove in a midfoot or forefoot area and a second transverse groove located forward of the first transverse groove; (b) a first cleat bearing member engaged with the midsole member and located rearward of the first transverse groove; and (c) a second cleat bearing member engaged with the midsole member located between the first transverse groove and the second transverse groove. The cleat bearing members do not extend into the transverse grooves and are completely separated from one another by the transverse grooves. Such articles of footwear further may include a third transverse groove in the midsole member located forward of the second transverse groove and a third cleat bearing member engaged with the midsole member located between the second and third transverse grooves. Additional grooves and/or cleat bearing members also may be provided in such sole structures.
The base members and/or other cleat bearing members of the sole structures described above may include additional features to enhance or improve the natural motion feel and capabilities of the sole structure. For example, the transverse grooves described above (grooves that generally extend in the medial-to-lateral direction of an article of footwear) may be deep enough and/or located at appropriate positions so as to enhance the natural motion properties of the sole structure. As potential features, the base members and/or other cleat bearing members according to at least some examples of this invention may include longitudinal sipes (e.g., cuts or grooves) that extend generally in the longitudinal direction of the sole structure. As some more specific examples, in the structure described above, the first cleat bearing member and the second cleat bearing member may have one or more continuous longitudinal sipes cut through them that extend generally in a longitudinal direction of the sole structure and optionally into a material of the midsole member underlying the cleat bearing members.
As another example, sole structures for articles of footwear according to at least some examples of this invention may include: (a) a heel area surface member having: (i) a lateral forward edge extending at an oblique angle from a longitudinal direction of the sole structure (and/or the heel area surface member), wherein the lateral forward edge extends from a central heel area of the heel area surface member to a location proximate a lateral side of the heel area surface member and (ii) a medial forward edge extending at an oblique angle from the longitudinal direction, wherein the medial forward edge extends from the central heel area of the heel area surface member to a location proximate a medial side of the heel area surface member; (b) an arch area surface member having: (i) a lateral rearward edge extending at an acute angle from the longitudinal direction, wherein the lateral rearward edge extends from a central rear location of the arch area surface member to a location proximate a lateral side of arch area surface member and (ii) a medial rearward edge extending at an acute angle from the longitudinal direction, wherein the medial rearward edge extends from the central rear location of the arch area surface member to a location proximate a medial side of arch area surface member; (c) a first side wall extending between the lateral forward edge of the heel area surface member and the lateral rearward edge of the arch area surface member, wherein the first side wall is angled in a forward/top-to-rear/bottom direction; and (d) a second side wall extending between the medial forward edge of the heel area surface member and the medial rearward edge of the arch area surface member, wherein the second side wall is angled in the forward/top-to-rear/bottom direction. The heel area surface member, the arch area surface member, the first side wall, and the second side wall may be made (e.g., molded) as a unitary, one piece construction or they may be formed from multiple parts (that are optionally engaged together). These components may be made from any desired materials without departing from this invention, including conventional midsole materials, such as a polyurethane foam material, a thermoplastic polyurethane material, an ethylvinylacetate foam material, phylon, injection phylon, phylite, etc.
Due to the side walls, the front of the heel area of the article of footwear forms a forward facing wall or walls (e.g., V-shaped or U-shaped) that can help provide traction to the wearer, particularly when moving rearward (e.g., backpedalling, etc.). To help provide the forward facing wall or walls, the height dimensions of either or both of the first and second side walls may taper from a greatest height at or near their interior-most locations to a smallest height or zero height at their end locations. In this manner, either or both of the side walls may have a generally triangular shaped exposed surface. The forward edges, rearward edges, and side walls may be straight or curved, and they may be oriented at an acute angle with respect to one another. Also, the interior-most location(s) of the forward edges (or the rearward edges) may be joined together directly or indirectly (e.g., by an intermediate wall).
Additionally, if desired, sole structures of this type may include a first cleat bearing member (e.g., of the types described above) engaged with the heel area surface member on a lateral side of a longitudinal central axis of the heel area surface member and a second cleat bearing member (e.g., of the types described above) engaged with the heel area surface member on a medial side of the longitudinal central axis. These cleat bearing members may be separated from one another by an exposed portion of the heel area surface member, and optionally, this exposed portion of the heel area surface member may include a flex groove or sipe formed in it (molded into it, cut into it, etc.).
D. Footwear Features
Additional aspects of this invention relate to articles of footwear including one or more of: (a) the cleats, (b) uppers, (c) strapping systems, (d) cleat bearing members, and/or (e) sole structures described above, and these components may be present individually or in any desired or possible combination in articles of footwear according to examples of this invention. The cleats, uppers, strapping systems, cleat bearing members, and/or sole structures may be combined or formed together in any desired manner, including through the use of cements or adhesives, mechanical connectors, fusing techniques, sewing or stitching, or the like.
E. Method Features
Additional aspects of this invention relate to methods of making articles of footwear or various components thereof. One more specific aspect of this invention relates to methods for making sole structures for articles of footwear that include one or more of: (a) forming a plurality of cleat bearing members including a base surface with a plurality of cleat elements extending from the base surface (e.g., by a molding step, in one or more molds); and (b) engaging a plurality of the cleat bearing members with a foamed polymer midsole element, optionally via a molding process (which may take place in the same mold as used to form the cleat bearing members or in a different mold). Alternatively, the cleat bearing members may be adhered to the midsole element via cements or adhesives. The cleat bearing members may be formed from any desired materials, including, for example, rubber (natural or synthetic) or thermoplastic polyurethane materials.
In methods according to this aspect of the invention, the shaping and molding of the foamed polymer material may include forming a plurality of flex grooves in the foamed polymer material, e.g., at a forefoot area, a midfoot area, and/or a heel area of the sole structure. These flex grooves can help provide the more natural “feel” or motion to the sole structure (e.g., more of a barefoot type “feel”). The cleat bearing members may be separated completely from one another by the flex grooves. As another example, if desired, the flex grooves may be formed into the cleat bearing member(s) and/or the foamed polymer material by a cutting action (e.g., laser cutting, hot knife cutting (pressing a hot blade or blades through the material(s)), mechanical cutting, localized melting, etc.).
Still additional aspects of this invention relate to sole structures and articles of footwear including sole structures made by the methods described above.
Given the general description of features, aspects, structures, processes, and arrangements according to the invention provided above, a more detailed description of specific example articles of footwear and methods in accordance with this invention follows.
Referring to the figures and following discussion, various articles of footwear and features thereof in accordance with the present invention are disclosed. The footwear depicted and discussed are athletic shoes, and the concepts disclosed with respect to various aspects of this footwear may be applied to a wide range of athletic footwear styles, including, but not limited to: walking shoes, tennis shoes, soccer shoes, football shoes, basketball shoes, running shoes, and cross-training shoes. In addition, at least some concepts and aspects of the present invention may be applied to a wide range of non-athletic footwear, including work boots, sandals, loafers, and dress shoes. Accordingly, the present invention is not limited to the precise embodiments disclosed herein, but applies to footwear generally.
In this illustrated example, the upper 102 includes multiple parts that are joined together or otherwise structured in the footwear 100 in an appropriate manner, e.g., by sewing or stitching, by cements or adhesives, by mechanical connectors, by fusing techniques, or the like. One major component of this example upper 102 is the bootie element 108 that defines the ankle opening 110 and at least a portion of the interior chamber for receiving the wearer's foot. The bootie element 108 of this illustrated example forms the entire interior foot-receiving chamber of the shoe, although this is not a requirement. For example, if desired, the bootie element 108 need not include a bottom plantar support surface, and thus, it could attach to or fit over and/or around an insole, sockliner, strobel member, or other conventional plantar support surface structure. As another example, if desired, an insole, sockliner, or other conventional plantar support surface could be fit within the interior chamber of the bootie element 108. As yet another example, if desired, the bootie element 108 need not extend all the way to the perimeter of the shoe (e.g., not to the front toe and/or to the side edges). The bootie element 108 may be made from any desired materials without departing from this invention, including, for example, soft comfortable fabrics or textiles, including felts, cotton, tufted fabrics, neoprene, elastomeric fabrics, etc.
At least the heel and/or midfoot areas of the bootie element 108 in this example footwear structure 100 include an overlying shell 112. While the shell 112 may take on many different sizes, styles, shapes, and configurations without departing from this invention, in this illustrated example, the shell 112 is a relatively lightweight fabric, textile, or polymer material, such as nylon, that overlies the bootie element 108 (which may be exposed through the triangular openings in the illustrated shell 112). The shell 112 of this example provides improved durability and wear resistance by covering a large portion of the relatively soft bootie element 108 while still providing ample breathability and a lightweight construction. As another example, the shell 112 may be made from a stiffer, harder, or sturdier polymeric material, such as thermoplastic polyurethane, rubber, polyamide, or the like, to provide improved durability, wear resistance, and a more defined structure to the shoe.
The forefoot portion of the upper 102 also may include one or more shell components 112a, either as a separate component from or a continuous structure with shell 112. Shell component 112a of this example closes in the forefoot portion of the bootie element 108 and may provide any desired properties, such as abrasion or wear resistance, improved durability, defined structure, etc., and/or to protect the wearer's foot from external elements. The toe area of this example footwear 100 further includes a toe cap 114, to protect the toe area of the shoe from wear, abrasion, etc., and to protect the wearer's foot from external elements.
One noticeable feature of the example shoe 100 shown in
A rear heel strap member 120 located in the rear heel area of the upper 102 constitutes one main component of the strapping system 104. This example rear heel strap member 120 includes: (a) a rear heel element 120a, (b) a lateral side strap element 120b that extends from the rear heel element 120a and along the lateral side of the upper 102 and the ankle opening 110, and (c) a medial side strap element 120c that extends from the rear heel element 120a and along the medial side of the upper 102 and the ankle opening 110. While shown as a single component in
While it may be made from any desired materials, in the illustrated example, the rear heel strap member 120 may be made from a fabric or textile component, such as nylon, rayon, or polyester fabric or the like. In such examples, the heel area may be very lightweight and flexible, perhaps even collapsing under its own weight when not secured to a wearer's foot. In other examples, if desired, the rear heel strap member 120 (or at least some portion of the rear heel element 120a thereof) may be made from a harder, stiffer, or more durable material, e.g., to function more as a conventional heel counter (e.g., to protect the foot, to provide wear and abrasion resistance, to provide a more defined structure to the shoe, etc.).
The strapping system 104 includes additional foot securing components that, in this example, at least partially wrap around and secure the foot. As shown in
This example article of footwear 100 further includes structures for applying tension to the strapping system 104 to secure the footwear 100 on a wearer's foot. The medial side of the shoe 100 includes a first tensioning system for engaging the medial side strap element 120c with a free end of the first strap member 122. As shown in
Other strap tensioning systems or arrangements may be made without departing from this invention. For example, if desired, the hook-and-loop fastening components 128 and 132 may be provided on first and second strap members 122 and 124 instead of (or in addition to) those provided on lateral side strap element 120b and medial side strap element 120c. The tensioning rings 126 and 130 (or other suitable components) may be provided at other locations along the overall strapping system 104. Additional tensioning systems may be provided at other locations along the overall strapping system 104. As another alternative, if desired, a single tensioning system may be provided, e.g., at the rear heel area, at the front instep area, etc.
As another potential feature, if desired, the securing portions of the lateral strap element 120b and the medial strap element 120c may overlap one another. More specifically, if desired, the lateral strap element 120b may be of substantially the length and structure illustrated in
Strapping systems 104 in accordance with some examples of this invention may include other features as well. As best shown in
Various other features of this example article of footwear are shown in
Also, as shown in these figures, some or all portions of the strapping system 104 (e.g., rear heel element 120a, lateral side strap element 120b, medial side strap element 120c, first strap member 122, second strap member 124, lateral heel strap 134, and/or medial heel strap 136) may include one or more support fibers or wires 138 attached to or embedded in the fabric or textile material to prevent excessive and/or undesired stretching of the straps and/or to provide support without adding excessive weight. These support fibers or wires 138 may extend generally along a length dimension or direction of the various strapping system 104 components and/or in the general direction in which a tensile or stretching force may be applied when the strapping system 104 is tightened. While these support fibers or wires 138 may be made from any desired materials, in accordance with at least some examples of this invention, the support fibers or wires 138 may be made from steel, copper, aluminum, other metals, carbon fibers, glass fibers, basalt fibers, threads composed of aromatic polyesters produced by the polycondensation of 4-hydroxybenzoic acid and 6-hydroxynaphthalene-2-carboxylic acid (e.g., threads composed of VECTRAN® available from Kuraray Co., Ltd. and/or used in NIKE FLYWIRE® type footwear products), etc.
As shown in these figures, this example sole structure 106 includes a midsole member 150 that may be made from any desired type of material, including materials conventionally known and used in the midsole art, such as polyurethane foam, thermoplastic polyurethanes, vinylethylacetate foams, phylon, phylite, other polymeric foam materials, and the like. The midsole member 150 further may be formed in a conventional manner, such as by injection molding, blow molding, etc. In the illustrated example, the midsole member 150 constitutes a full foam body that extends completely to support the entire foot, heel-to-toe and side-to-side.
The midsole member 150 may be molded (or otherwise formed) to include a plurality of generally transverse flexion grooves 152, particularly in the forefoot area, but even into the midfoot area, if desired. While any desired number of transverse flexion grooves 152 may be provided without departing from this invention, preferably the transverse flexion grooves 152 will be provided at suitable locations so as to support or enhance the natural flex of the foot during a step (running or walking) cycle. This illustrated example sole structure 106 includes four generally transverse flexion grooves 152 running in the footwear medial-to-lateral direction, across the entire midsole member 150. Variations in the flexion groove sizes, shapes, depth, angles, relative angles, and the like may be provided without departing from this invention.
Notably, as shown in
Other numbers of cleat bearing members 156 and/or other shapes, arrangements, or orientations of cleat bearing members 156 may be provided without departing from this invention, and other numbers of grooves 152 and 154 and/or shapes, arrangements, or orientations of grooves 152 and 154 may be provided without departing from this invention. The illustrated numbers and arrangements, however, are useful to enhance the natural motion feel of the footwear 100. Also, the depths of the grooves 152 and 154 and the thickness of midsole 150 material remaining above the grooves 152 and 154 may be appropriately selected so as to enhance the natural motion feel for the footwear. In some examples, the thickness of midsole 150 material remaining above grooves 152 and 154, over at least a majority of the overall lengths of these grooves 152 and 154, may be from about 2.5 to 6 mm thick, and in some examples, from about 2.5 to 4 mm thick. The grooves 152 and 154 may be made sufficiently deep to maintain this thickness of midsole 150 material above the grooves 152 and 154. This feature also is described above in conjunction with dimension “T” in
As described above, to enhance the natural motion characteristics of the sole 106, grooves 152 and 154 are molded into the midsole member 150 and the cleat bearing members 156 are arranged between and around these grooves 152 and 154. Natural motion may be achieved or enhanced in other manners as well. For example,
The sipes 162 of this example structure 106 extend through the cleat base members 158 and into the underlying midsole member 150 material (and thus, are shown in
The sipes 162 may be deep enough so as to maintain from about 2.5 to 6 mm thick uncut midsole 150 material above the sipes 162, and in some examples, from about 2.5 to 4 mm thick. Also, if desired, the heel oriented groove 154 may include an even deeper sipe cut into it (or this groove 154 could be omitted, if desired, optionally while still leaving midsole member 150 exposed between the heel orientated cleat bearing members 156). One or more sipes or molded-in flex grooves also could extend into the midsole member 150 in the exposed midfoot/arch area, if desired.
Various examples of producing the cleat bearing members 156 and this example plateless sole structure 106 will be described in more detail. First, the cleat bearing members 156 are formed including base surface 158 with a plurality of individual cleat elements 160 extending from the base surface 158. This structure can be formed in any desired manner without departing from this invention, and in this illustrated example, the cleat bearing members 156 may be formed by molding, such as injection molding. In that manner, the base surface 158 and the cleat elements 160 are formed as a unitary, one-piece construction. As other alternatives, if desired, the cleat elements 160 may be separate parts attached to the base surface 158, e.g., by a mechanical connector (e.g., a screw or turnbuckle), by cements or adhesives, etc. While any desired types of materials may be used, in some examples according to this invention, the cleat bearing members 156 are formed from a rubber or thermoplastic polyurethane material.
Once formed, if necessary, the cleat bearing members 156 may be transferred to a second mold, or if necessary, the mold in which the cleat bearing members 156 were formed may be modified to enable formation of the foamed polymer midsole member 150. For example, a plate may be removed from the mold after the cleat bearing members 156 are formed so as to provide a cavity for forming the foamed polymer midsole member 150. In either event, the cleat bearing members 156 are located in a suitable mold and at suitable locations therein so as to then be engaged with a midsole member 150 via a molding process. With the cleat bearing members 156 located in the mold, the polymer midsole material is injected or blown into the mold and thereby engaged with the cleat bearing members 156. The material of the midsole member 150 (e.g., polyurethane foam, thermoplastic polyurethane, ethylvinylacetate foam, phylon, injection phylon, phylite, etc.) and the material of the cleat bearing members 156 may be selected so that the material of the midsole member 150 will react with, bond to, or otherwise combine with the material of the cleat bearing member 156 under the conditions applied during the molding step (or during a post molding step), e.g., temperature, pressure, dwell time, etc.
At least the midsole material, and optionally both the midsole material and the cleat bearing members 156 may be shaped to their final desired shape(s) during this combined molding and/or pressing process. This may include, for example, shaping the foamed polymer material to include the transverse flex grooves 152 in the foamed polymer material at a forefoot area and/or a midfoot area of the sole structure and/or the longitudinal flex groove(s) 154 at the rear heel area. Thus, in the final sole structure 106, the cleat bearing members 156 may be separated from one another by the flex grooves 152, 154 molded into the midsole member 150.
While it may be possible to also mold the longitudinal sipes 162 into the cleat bearing members 156 and the midsole member 150, in accordance with at least some examples of this invention, these sipes 162 will be cut through the cleat bearing members 156 and/or the midsole member 150 after the molding step is completed and after the cleat bearing members 156 are engaged with the midsole member 150. This cutting can take place in various ways, such as using a hot knife or blade to cut in the sipes 162 (optionally a two or three dimensional blade to cut all sipes in a single process), laser cutting in the sipes 162, mechanical cutting (e.g., using a rotating blade saw), localized melting (e.g., RF welding), etc. Cutting may allow formation of a somewhat narrower groove than a typical molding process.
While any desired cleat construction may be used,
The cleat 160 further includes a cleat end surface 160d, i.e., the outermost surface of the cleat 160 that engages the contact surface in use. An outer perimeter of the cleat end surface 160d likewise constitutes a closed geometric shape having from three to five inwardly curved sides 160e and three to five corner regions 160f joining adjacent sides 160e, wherein the closed geometric shape of the cleat base 160a has the same number of sides and corner regions as the closed geometric shape of the cleat end surface 160d (four in this example). The closed geometric shape or outer perimeter of the cleat end surface 160d encloses a smaller area than the closed geometric shape or outer perimeter of the cleat base 160a.
A cleat body extends between the cleat base 160a and the cleat end surface 160d. This cleat body includes a plurality of edges 160g extending between corner region 160c of the cleat base 160a and corresponding corner regions 160f of the cleat end surface 160d. While they may be straight or outwardly curved, if desired, in this illustrated example, the edges 160g of the cleat body are curved inwardly (toward an interior of the cleat 160). The cleat body further defines side walls 160h extending between adjacent edges 160g of the cleat body. While they also may be straight or outwardly curved, if desired, in the illustrated example, these side walls 160h are inwardly curved. The inward curvatures of these various parts may help the cleats 160 better penetrate the ground and/or engage the material of other contact surfaces. The specific extent of these various curvatures and their overall shapes (e.g., as a radius, as a parabola, as another arch, as stepped line segments, etc.) may vary widely without departing from this invention.
The angles angle α1 and α2 may be the same or different, but in this illustrated example, α1>α2. Each of α1 and α2 may range from 110° to 170°, and in some examples from 120° to 165° or even from 130° to 165°.
The angles α3 and α4 may be the same or different, but in this illustrated example, α4>α3. Each of angles α3 and α4 may range from 25° to 75°, and in some examples from 30° to 70° or even from 35° to 65°. Furthermore, the lateral forward edge 172a and the medial forward edge 172b of the heel area surface member 172 of this illustrated example may define an acute angle, e.g., within the range of 40° to 85°, and in some examples, from 50° to 80° or even from 60° to 80°. The lateral rearward edge 174a and the medial rearward edge 174b of the arch area surface member 174 also may form an acute angle falling within the same general ranges described above for the lateral forward edge 172a and the medial forward edge 172b of the heel area surface member 172.
To make the elevation change between the heel area surface member 172 and the arch area surface member 174, at least in the central portion of the sole structure, the lateral forward edge 172a of the heel area surface member 172 and the lateral rearward edge 174a of the arch area surface member 174 are joined together by a first side wall 180a. Additionally, the medial forward edge 172b of the heel area surface member 172 and the medial rearward edge 174b of the arch area surface member 174 are joined together by a second side wall 180b. These side walls 180a and 180b may be angled in a forward/top-to-rear/bottom direction, as further shown in
In at least some sole structures in accordance with this invention, a height dimension H of the side walls 180a and 180b may taper from a greatest height at its interior-most location (e.g., at the central heel area) to a smallest height or zero height at its side end. This tapering may leave the side walls 180a and 180b to have a generally triangular exposed surface, as shown in
While they may be made from multiple parts that are bonded together or otherwise held together in a final sole or shoe structure, in this example of the invention, the heel area surface member 172, the arch area surface member 174, the lateral side wall 180a, and the medial side wall 180b are formed as a unitary, one piece construction, e.g., by a molding step, such as those described above. As noted above, these parts (and indeed the entire midsole member 150) may be made from any desired materials, such as polyurethane foam material, thermoplastic polyurethane material, or ethylvinylacetate foam material, including conventional midsole materials as are known in the art.
The angular arrangement and orientation of the edges 172a, 172b, 174a, and 174b, and the elevation changes introduced by the side walls 180a and 180b produce an edge or pocket-like structure in the rear heel area of this example sole structure 106. This pocket-like structure helps provide traction, particularly for an athlete backpedalling or running in a backward direction, by providing an elevated surface that can engage the ground or other contact surface and help push off against it. By tapering to a thin or zero thickness near the medial and lateral side edges of the sole, the sole structure still provides a solid and stable feel (and the athlete does not feel as if he or she is trying to run on high heeled shoes).
In the example structure shown in
The sole structure 106 of
The sole structure 400 of
Notably, as shown in
Not all cleat members on a given shoe sole need have the general structure or configuration shown in
As described above, the thickness of midsole member 150 remaining above the grooves 152 and/or 154 may be from 2.5 to 6 mm thick, and in some examples, from about 2.5 to 4 mm thick. This thickness is illustrated, for example, in
If desired, the sipes 162 can be cut into the sole structure 106, 400 as a post-manufacturing process, optionally in a customized manner to suit a particular wearer's preferences. For example, if a wearer wants a greater natural motion feel, deeper and/or more sipes 162 can be made, both in the generally longitudinal and transverse directions, as well as in other directions. The sole structure 106, 400 could be marked or scored with appropriate indicia (on base surfaces 158) to allow the wearer to cut in the desired sipes 162 at the appropriate locations on their own. Additionally, if desired, the footwear could be sold as a kit (or the kit could be sold separately), wherein the kit includes one or more knife elements with instructions as to how to cut in the desired sipes 162 (e.g., by a hot knifing method). As another alternative, a user could take his or her shoes to a retail or other location to have the sipes 162 cut in to their specifications.
As shown in
The upper 502 shown in
The rear heel strap member 512 may be engaged with or integrally formed with the rear heel area of the upper 502. This example rear heel strap member 512 includes: (a) a rear heel element 512a, (b) a lateral side strap element 512b that extends from the rear heel element 512a and along the lateral side of the upper 502 and/or the ankle opening 506, and (c) a medial side strap element 512c that extends from the rear heel element 512a and along the medial side of the upper 502 and/or the ankle opening 506. While they may be made from multiple pieces (e.g., joined together by stitching or sewing, etc.), in this illustrated example, the rear heel element 512a, the lateral side strap element 512b, and the medial side strap element 512c are formed as a unitary, one piece construction.
Additional details of the second (lateral side) strap member 516 are shown in
Strap members 514 and 516 may constitute independent and separate parts that are fastened between the plantar support surface of the shoe and a top surface of the midsole member 150. As a more specific example, the strap members 514 and 516 may wrap somewhat underneath the plantar support surface (e.g., at least 8 mm beneath the plantar support surface) and be fastened to the plantar support surface and/or the midsole member 150 at that location (e.g., by sewing or stitching, by adhesives or cements, etc.). Alternatively, if desired, strap members 514 and 516 may constitute opposite sides of a single strap member that extends beneath the plantar support surface completely from the medial side to the lateral side thereof.
Strapping system 510 further includes one or more tensioning systems for securing the article of footwear 500 with a wearer's foot. In this illustrated example, a first tensioning system 520 is provided for engaging the medial side strap element 512c of the rear heel strap member 512 with the first (medial side) strap member 514. This tensioning system 520 includes a tensioning ring 522 engaged with a free end of the first strap member 514 (e.g., by sewing or stitching). The free end of the medial side strap element 512c of the rear heel strap member 512 runs through the opening of the tensioning ring 522 and folds back over itself. In this condition, a hook-and-loop fastener 524 (or other securing mechanism) may be engaged (one portion of the hook-and-loop fastener 524 being provided at the free end of medial side strap element 512c and one portion of the hook-and-loop fastener 524 being provided on a surface of the rear heel strap member 512).
A second tensioning system 526 is provided for engaging the lateral side strap element 512b of the rear heel strap member 512 with the second (lateral side) strap member 516. This tensioning system 526 includes a tensioning ring 528 engaged with a free end of the second strap member 516 (e.g., by sewing or stitching). The free end of the lateral side strap element 512b of the rear heel strap member 512 runs through the opening of the tensioning ring 528 and folds back over itself. In this condition, a hook-and-loop fastener 530 (or other securing mechanism) may be engaged (one portion of the hook-and-loop fastener 530 being provided at the free end of lateral side strap element 512b and one portion of the hook-and-loop fastener 530 being provided on a surface of the rear heel strap member 512).
Other tensioning system(s) structures and constructions may be provided without departing from this invention. For example, if desired, the hook-and-loop fastening components 524 and 530 may be provided on first and second strap members 514 and 516 instead of (or in addition to) those provided on lateral side strap element 512b and medial side strap element 512c. The tensioning rings 522 and 528 (or other suitable components) may be provided at other locations along the overall strapping system 510. More tensioning systems may be provided at other locations along the overall strapping system 510. As another alternative, if desired, a single tensioning system may be provided, e.g., at the rear heel area, etc. The strapping system also may include downwardly oriented strap components, like components 134 and 136 shown in
The shell member(s) 532 also may provide structures 534 for engaging the lace 508, as shown in
Using tensioning systems 520 and 526 and lace 508 (extending through lace receiving elements 518 and 534), the wearer can securely fasten this article of footwear 500 to his/her foot.
Also, as shown in
The present invention is disclosed above and in the accompanying drawings with reference to a variety of embodiments. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the embodiments described above without departing from the scope of the present invention, as defined by the appended claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 13/693,311 filed Dec. 4, 2012, which application is a non-provisional of U.S. Provisional Patent Appln. No. 61/578,515, filed Dec. 21, 2011. Each of these priority applications is entirely incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61578515 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13693311 | Dec 2012 | US |
Child | 15050748 | US |