All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be so incorporated by reference.
The technology relates to medical devices for use during laparoscopic procedures. More particularly, the technology relates to an electrosurgical instrument with an articulable joint operable to articulate an end effector.
Biopolar electrosurgical instruments apply radiofrequency (RF) energy to a surgical site to cut, ablate, or coagulate tissue. A particular application of these electrosurgical effects is to seal blood vessels or tissue sheets. A typical instrument takes the form of a pair of opposing jaws or forceps, with one or more electrodes on each jaw tip. In an electrosurgical procedure, the electrodes are placed in close proximity to each other as the jaws are closed on a target site such that the path of alternating current between the two electrodes passes through tissue within the target site. The mechanical force exerted by the jaws and the electrical current combine to create the desired surgical effect. By controlling the level of mechanical and electrical parameters, such as the pressure applied by the jaws, the gap distance between electrodes, and the voltage, current, frequency, and duration of the electrosurgical energy applied to the tissue, the surgeon can coagulate, cauterize, or seal tissue toward a therapeutic end.
Electrosurgical procedures can be performed in an open environment, through conventional incisions, or they may be performed laparoscopically, through small incisions, typically 0.5 cm-1.5 cm in length. A laparoscopic procedure may include the use of a telescopic rod lens system that is connected to a video camera and to a fiber optic cable system that conveys light from a cold light source to illuminate the operative field. The laparoscope is typically inserted into a port in the body through a 5 mm or 10 mm cannula to view the operative field. Surgery is performed during a laparoscopic procedure with any of various tools that are typically arranged at the distal end of a shaft and are operable by manipulation of a handle or other actuator positioned at the proximal end of the shaft.
The laparoscopic operating environment is very constrained spatially; improvements with regard to the manipulatability of laparoscopic devices by surgeons, or more particularly, improvements in the range of motion that end effectors for electrosurgical device can achieve would be advantageous in the field.
Embodiments of the technology provided herein include an articulable electrosurgical instrument and methods of performing electrosurgery with an instrument having an articulating capability. Embodiments of the electrosurgical instrument include an elongated shaft having an end effector associated with a distal end thereof and a handle associated with a proximal end thereof, the end effector being able to deliver radiofrequency energy to a target tissue site. In typical embodiments of the instrument, the end effector may take the form of forceps or a set of jaws, including a first jaw (a lower jaw, for example) and a second jaw (a lower jaw, for example). The set of jaws is configured to grasp target tissue and to deliver energy, such as radiofrequency energy. In some of these instruments, the set of jaws is particularly adapted to seal tissue by the application of radiofrequency energy, and then to cut through the sealed tissue portion with a blade.
Embodiments of the instrument may further include an articulable joint positioned between the shaft and the end effector; the joint is configured to articulate the end effector angularly within an arc of articulation, the articulable joint including at least one pivotable link or flexible element, or alternatively, a set of one of more interconnected pivotable links, disks, or flexing elements. The instrument may further include a stabilizable articulation actuator disposed proximal to the articulable joint. Some embodiments of the instrument may include a shaft rotator or shaft rotating actuator. The shaft rotator may be disposed proximal to the articulable joint, may be disposed generally at a position along a proximal portion of the shaft, and may be associated with the handle portion of the device. In particular embodiments, the stabilizable articulation actuator may be included within or in association with a shaft rotator. The shaft rotator, itself, is configured to rotate the shaft with respect to the handle, and by virtue of rotation of the shaft, the end effector is also rotated. Advantages of the stabilizable articulation actuator include permitting a surgeon to put lateral forces on the end effector, such as when using the end effector to retract tissue, without having to manually operate a knob or other device to lock and later unlock the angular orientation of the end effector. The stabilizable articulation actuator can allow the surgeon to easily move between different articulation angles without a separate locking action, yet the angular orientation of the end effector may be advantageously stabilized in the chosen articulation angle.
The instrument may further include at least two force transfer members or member portions for translating rotational movement of the actuator mechanism into articulating movement of the end effector. The force transfer member are operably connected at their proximal end to the articulation actuator, and operably connected at their distal end through the articulable joint to a proximal portion of the end effector, thereby allowing rotational movement of the articulation actuator to be translated into articulating movement of the end effector. Force transfer members may be of any suitable form, such as wires, cables, rods, strips, or portions thereof that can transfer tension and/or compression forces. Embodiments of the instrument described herein, and examples of embodiments shown in figures will refer to or depict cables, but it should be understood that any suitable force transfer member is included within the scope of the disclosure. The stabilizable articulation actuator may be configured to stabilize the articulable joint at an angle by stabilizing the force transfer cables, the stabilized angle of the articulable joint being one of a set of angles spaced apart at intervals within the arc of joint articulation.
In some embodiments of the instrument, a stabilizable articulation actuator includes a rotationally stabilizable disk seated in a well, and a finger-operable lever configured to rotate a rotationally stabilizable disk to stable position. The finger-operable lever stabilizes the articulable joint in an articulated position by way of transferring force from the actuator through the force transfer cables to the articulable joint. In some embodiments, the stabilizable articulation actuator is mounted orthogonally or transverse to a central longitudinal axis of the instrument, as represented, for example, by the shaft. Thus, in these embodiments, the planes within the rotationally stabilizable disk and the finger operable lever rotate are orthogonal or transverse to the central longitudinal axis of the instrument. Typical embodiments of the finger-operable lever include two opposing arms, each arm of the lever being connected to a force transfer cable, the lever is configured such that its rotation moves a first transfer cable in a distal direction, thereby applying tension to the first transfer cable, and a second cable in a proximal direction, the second cable thereby being relieved of tension.
In some embodiments of the instrument, the rotationally stabilizable disk includes at least one spring portion biased circumferentially outwardly against a wall of the circular well, a circumferentially peripheral edge of the spring comprising one or more teeth, the wall of the circular well comprising one or more detents, the one or more teeth and the one or more detents configured to be mutually engageable. A rotational configuration in which teeth and detents are so engaged represents a stable position of the articulation actuator. In some embodiments, the rotationally stabilizable disk comprises two or more spring portions biased circumferentially outwardly against a wall of the circular well, the spring portions being distributed at equidistant intervals on the circumferential periphery. In some embodiments, the distribution of spring portions provides a circumferentially balanced distribution of forces impinging on the stabilizable disk. This balance of impinging centripetal forces advantageously supports a smooth rotation of the disc about its center.
In some embodiments, the rotationally stabilizable disk and the well in which it sits are adapted to stabilize rotation of the disk at any one position of a set of stable positions spaced apart at intervals within an arc of disk rotation. In some of these embodiments, the arc of rotation of the rotationally stabilizable disk encompasses about 90 degrees, including about 45 degrees in either direction from a neutral position wherein the finger operable lever is orthogonal to the shaft. The set of stable positions are typically spaced apart at regular intervals within the arc of rotation, such as set positions spaced apart at about 15 degrees. Typically, one of the stable positions is a neutral position, wherein the finger operable lever is orthogonal to the shaft. In general, articulating aspects of the articulable joint correspond to rotational aspects of the rotationally stabilizable disk. Thus, in some embodiments, the arc of articulation of the articulable joint substantially corresponds to the arc of rotation of the rotationally stabilizable disk. And, in some embodiments, the articulable joint is adapted to stabilize at a set of stable positions spaced apart at intervals that substantially correspond to the stable positions of the rotationally stabilizable disk.
In some embodiments, the rotationally stabilizable disk and the well in which it sits are configured such that the disk can be stabilized at a position by a level of resistance to rotation of the disk that can be overcome by application of torque to the finger operable lever. In another aspect, the rotationally stabilizable disk and the well in which it sits are configured such that rotation of the disk through a stable position requires applying a torque to the mechanism via the finger operable lever that is greater than the torque required to rotate the disk through portions of the arc between the stable angle positions. For example, the torque required to rotate the rotationally stabilizable disk with the finger operable lever through a stable position may be in the range of about 2 to about 10 lbs. And for example, the torque required to rotate the rotationally stabilizable disk with the finger operable lever through portions of the arc of rotation between the stable positions may be less than about 2 lbs.
In some of these embodiments of the instrument, the stabilizable articulation actuator may further include a cable tensioning mechanism proximal to the rotatable finger-operable lever. One example of a cable tensioning mechanism includes a spring plate as described further below and depicted herein. Embodiments of the spring plate include two opposing arms, one of the at least two force transfer cables is threaded through each aim of the rotatable finger-operable lever, through the spring plate, and then terminating proximal to the spring plate. As noted above, the force cables or cables move in opposite longitudinal directions as they drive articulating movement of the end effector, one moving distally and the other proximally. The spring plate is configured to maintain tension on the force transfer cable that is moved in a distal direction; absent the force provided by the spring, the distal-moving force cable could accumulate a problematic degree of slack. In some embodiments of the spring plate, each arm of the spring plate includes a circumferentially outward-facing open slot through which one of the force transfer cables is threaded. Further, each arm of the spring plate may include a circumferentially inward-facing open slot configured to engage a spring plate retention tab.
In some of these embodiments of the instrument, each arm of the finger operable lever includes a spring plate retention tab on a distal facing surface of the lever, and the spring plate comprises two opposing circumferentially inward facing slots. The tabs and the inward facing slots are configured to mutually engage in such a way so as to stabilize the spring plate against lateral slippage when the finger operable lever is in a rotated position.
In some embodiments, the articulation actuator is further configured to stabilize the end effector at a stable angle, the stable angle of the end effector being any one of a set of angles spaced apart at intervals within the arc of end effector articulation. In some embodiments of the electrosurgical instrument, the end effector is a set of forceps or jaws comprising a first jaw and a second jaw. The first and second jaw may also be referenced by terms such as an upper jaw and a lower jaw. Typically, the set of jaws includes a plurality of bipolar electrodes configured to receive energy from an energy source and to deliver the energy to the target site.
In some embodiments of the electrosurgical instrument, the articulable joint includes one or more pivotable links intervening between a distal end of the elongated shaft and a proximal end and the end effector. Some embodiments of the articulable joint include two or more interconnected pivotable links. The property of having, for example, one or more intervening pivotable links may also be understood as the articulable joint as whole having two or more intervertebral spaces within which pivoting may occur, or as the articulable joint as whole having two or more interconnected sites of pivoting articulation. In a typical configuration, interconnected links of the articulable joint, as well as the distal end of the shaft and the proximal end of the end effector, include ball-like or cylindrical projections engageable in complementary grooves.
In various embodiments, the articulable joint is configured to pivot the end effector within an arc of about 90 degrees, the arc including about 45 degrees in either direction from a neutral position. In general, the angle of articulation is considered to be the angle of a line tangent to the distal end of the articulable joint with respect to a line corresponding to the central longitudinal axis of the shaft. By virtue of the rotational stabilizing mechanism and by way of the operation of the force transfer cables, the articulable joint is stabilizable at a set of angles spaced apart at intervals within the arc of about 90 degrees. The set of angles that are spaced apart at intervals within the arc of rotation includes set angles spaced apart at about 15 degrees. Typically, one of the stabilized angles is a neutral angle, set at zero degrees with respect to the central longitudinal axis of the shaft. Finally, in some embodiments of the instrument, the articulable joint is adapted to be stabilizable at a desired angle of articulation.
Embodiments of the articulable joint and its distal connection with the end effector and its proximal connection to the shaft are configured such that various operational aspects of the end effector of the instrument are unaffected by the articulated position of the end effector. Thus, for example, the operation of opening and closing of the jaws, and the force that can be applied by through the jaws when closing, are both independent of the articulated position of the jaws. Similarly, movement of the blade occurs and all electrosurgical performance capabilities are unaffected by the articulated position of the jaws.
In some embodiments, an instrument with a set of jaws may further include a blade and a blade drive member collectively configured to be able to separate tissue at a target site into two portions when the tissue is being grasped by the set of jaws. The blade may be configured to reside in a home position distal to the articulable joint, and to be able to move distally within the set of jaws. The blade-driving member is typically disposed through the articulable joint, and operable through the joint in any position of articulation. The blade driving member may be configured as a push and pull mechanism; and an actuator configured to control the distal advancement of the blade and the proximal retreat for the blade may reside in the handle of the instrument.
Some embodiments of the electrosurgical instrument take a form that does not necessarily include a handle or a shaft; instead, for example, the jaws may be mounted on any suitable base. Embodiments such as these, could, for example, be incorporated into a robotic apparatus. These embodiments include a set of jaws associated with a base, the set of jaws enabled to deliver radiofrequency energy to a target site, an articulable joint positioned distal to the base, a stabilizable articulation actuator disposed in association with the base, an articulable joint positioned between the base and the set of jaws; and at least two force transfer cables for translating rotational movement of the articulation actuator into articulating movement of the set of jaws. In these embodiments, the articulable joint is configured to articulate the set of jaws angularly within an arc of articulation, and the articulable joint has least one pivotable link positioned between a distal end of the shaft and a proximal end of the set of jaws. In typical embodiments, the force transfer cables are operably connected at their proximal end to the articulation actuator, and operably connected at their distal end through the articulable joint to a proximal portion of the set of jaws. In some of these embodiments, the stabilizable articulation actuator is configured to stabilize the articulable joint at a stable angle by stabilizing the force transfer cables. The stable angle of the articulable joint may be any one of a set of angles spaced apart at intervals within the arc of joint articulation.
Embodiments of the provided technology also include a method of electrosurgical tissue sealing that includes moving a set of electrosurgical jaws into the proximity of a target tissue site. The jaws are positioned on a distal end of an articulable joint; the articulable joint is positioned distal to a shaft of an electrosurgical device. Embodiments of the method may include rotating a stabilizable articulation actuator with a finger operable lever. The method may further include articulating the jaw set with the articulable joint in order to position a distal end of the jaws into a desired angle or position of articulation such that when the jaws are closed they grasp the target tissue site. The method may then further include grasping the target tissue site with the jaws. The method may then further include delivering radiofrequency energy to the target tissue site from the jaws to seal the target tissue site. The method may still further include cutting through the newly sealed tissue site.
Embodiments of the method may include moving a set of jaws of an electrosurgical instrument into proximity of a target tissue site, the set of jaws being positioned on the instrument distal to an articulable joint. The method may further include rotating a stabilizable articulation actuator with a finger operable lever to a desired rotational position, and thereby articulating the articulable joint to a desired angle of articulation. The method may further include stabilizing the stabilizable articulation actuator in the desired rotational position, and thereby stabilizing the articulable joint in the desired angle of articulation.
The angular articulation of the articulable joint at an angle may be understood to refer to an angle associated with a line tangent to the distal end of the articulable joint with respect to the central longitudinal axis of the shaft of the instrument. Similarly, the angle of articulation associated with an end effector, such as a set of jaws, refers to an angle of a line associated with the common longitudinal axis of the jaws (as taken when the jaws are closed) with as compared to a line corresponding to the central longitudinal axis of a the shaft of the instrument. In general, a desired angle of articulation of either the articulable joint or an end effector distal to the joint refers to an angle such that the jaws are closed, they will close around and grasp the tissue targeted for electrosurgical engagement.
In some embodiments, rotating the stabilizable articulation actuator occurs by way of rotating a rotationally stabilizable disk, and, wherein stabilizing the stabilizable articulation actuator occurs by way of stabilizing a rotationally stabilizable disk.
Some embodiments of the method may further include articulating the set of jaws in accordance with rotating the stabilizable articulation actuator. And in some embodiments, the method may further include stabilizing the set of jaws in a desired angle of articulation in accordance with stabilizing the articulable joint in the desired angle of articulation.
Some embodiments of the method including rotating a finger-operable lever associated with the articulation actuator, thereby rotating the rotationally stabilizable disk within the actuator. Some of these embodiments may further include tensioning the force transfer cables with a tensioning mechanism associated with the finger-operable lever. The method may further include driving the movement of at least two force transfer cables in accordance with rotating the rotationally stabilizable disk. In such embodiments, driving the movement of the at least two force transfer cables includes applying tension from the proximal end of one of the force transfer cables and relieving tension from the other force transfer cable, the proximal ends of the force cables being operably engaged to the stabilizable articulation actuator.
In typical embodiments of the method, articulating either the articulable joint or the end effector refers to a capability of pivoting within an arc of about 45 degrees in either direction from a centerline within a plane, thereby providing a total pivotable range of about 90 degrees. In some embodiments of the instrument, the articulable joint includes one or more pivotable links positioned between a distal end of a shaft of the instrument and a proximal end of the jaws. In these embodiments, articulating the articulable joint may include pivoting the one or more pivotable links with respect to each other or with respect to the distal end of the shaft or the proximal end of the jaws.
Moving the set of jaws into proximity of a target tissue site may occur in several aspects, including a step of advancing the set of jaws the jaws through a trocar into a laparoscopic operating space, and a step of rotating the jaws. Rotation, in this context refers to rotating the jaws about their central common longitudinal axis, such axis defined by the jaws when they are in a closed position, or as represented by a common base portion of the jaws.
In some embodiments, rotating the set of jaws around their central longitudinal axis includes rotating from a neutral position within a range of up to about 180 degrees on either side of the neutral position. In various embodiments, wherein rotating the set of jaws around their central longitudinal axis of the set of jaws occurs by way of rotating a shaft of the electrosurgical instrument, which in turn, may occur by rotating a shaft rotating actuator of the instrument.
In various embodiments of the method, stabilizing the set of jaws in the desired angle of articulation is a step performed in conjunction with or simultaneously with articulating the articulable joint to its desired angle of articulation. Stabilizing the jaws at a particular angle of articulation, such as a desirable angle for grasping target tissue, may occur in close or causal relation to stabilizing the articulable joint, stabilizing force transfer members that control the angle of the articulable joint, and stabilizing a rotationally stabilizable disk with the stabilizable articulation actuator.
More particularly, stabilizing the stabilizable articulation actuator in the desired position may include engaging teeth on the periphery of a rotationally stabilizable disk with complementary detents on an inner aspect of a well in which the rotatable disc is housed. In another aspect, stabilizing the stabilizable articulation actuator may include rotating a lever of a stabilizable articulation actuator through a portion of an arc of relatively low rotational resistance until the lever encounters a position of relatively high rotational resistance, such position being a position of articulated stability. In yet another aspect, wherein stabilizing the stabilizable articulation actuator may include rotating a lever of a stabilizable actuator through a portion of an arc that may include one or more regions of moderate rotational resistance and one or more regions of high rotational resistance, until the lever encounters a particular position of high rotational resistance wherein the jaws are in a desired position of articulation. In the context of this latter embodiment, rotating the lever through a region a low rotational resistance may include applying a torque to the lever in the range of less than about 2 lb. inches, and rotating the lever through a region a high rotational resistance may include applying a torque to the lever in the range of about 2 to about 15 lb. inches.
Embodiments of the method may include further steps, such as grasping the target tissue with the set of jaws, and such as opening the set of jaws prior to the grasping step. The method may further specifically include delivering radiofrequency energy to the target tissue site from the set of jaws after the jaws have grasped the target tissue site. Some embodiments of the method may include multiple electrosurgical treatments once the jaws have entered the laparoscopic operating space. As such, the method may further include moving the set of jaws to proximity of a second site while maintaining the set of jaws at the previous angle of articulation, and repeating the grasping step and the delivering energy step, these steps being directed toward the second target site.
In another aspect, the disclosed method of articulating and stabilizing an end effector of an electrosurgical instrument may be understood as a series of articulating steps that can be combined with a series of stabilizing steps to achieve articulation and stabilization of an end effector at a desired articulated angle. Accordingly, articulating the end effector may include rotating a finger operable lever, rotating a stabilizable rotatable disk, moving force transfer cables translationally, articulating an articulable joint, and articulating the end effector. Stabilizing the end effector may include stabilizing the stabilizable rotatable disk at a desired rotational position, stabilizing the finger operable lever at the desired rotational position, stabilizing the translation of force transfer cables at a desired translational position, stabilizing the articulable joint at a desired angle of articulation, and stabilizing the end effector at the desired angle of articulation. By embodiments of this method, rotating the finger operable lever may result in rotating the stabilizable disk through one or more regions of relatively low rotational resistance and relatively high rotational resistance. Further by this method, stabilizing the end effector may include stopping rotation of the stabilizable disk at a position of relatively high rotational resistance.
Aspects of the technology provided herein include a method and apparatus for articulating the joint of an articulable electrosurgical instrument that would typically used in a laparoscopic environment, but is also suitable for use in an open operating environment. Examples of electrosurgical devices that could incorporate the articulable features as described herein, include devices as described in the following, all of which are incorporated herein, in their entirety: U.S. Pat. No. 7,862,565 entitled “METHOD FOR TISSUE CAUTERIZATION issued on Jan. 4, 2011; U.S. Pat. No. 7,803,156 entitled “METHOD AND APPARATUS FOR SURGICAL ELECTROCAUTERY” issued on Sep. 28, 2010; U.S. Pat. No. 7,794,461 entitled “METHOD AND APPARATUS FOR SURGICAL ELECTROCAUTERY” issued on Sep. 14, 2010; U.S. application Ser. No. 11/743,579 entitled “SURGICAL TOOL” filed on May 2, 2007, published on Jul. 17, 2008 as U.S. Publication No. 2008/0172052A1; U.S. application Ser. No. 11/382,652 entitled “APPARATUS FOR TISSUE CAUTERIZATION” filed on May 10, 2006, published on Nov. 16, 2006 as U.S. Publication No. 2006/0259034A1; U.S. application Ser. No. 11/671,891 entitled “ELECTROCAUTERY METHOD AND APPARATUS” filed on Feb. 6, 2007, published on Jun. 7, 2007 as U.S. Publication No. 2007/0129726A1; U.S. application Ser. No. 12/121,734 entitled “ELECTROCAUTERY METHOD AND APPARATUS” filed on May 15, 2008, published on Sep. 11, 2008 as U.S. Publication No. 2008/0221565A1; U.S. application Ser. No. 12/062,516 entitled “ELECTROCAUTERY METHOD AND APPARATUS” filed on Apr. 4, 2008, published on Sep. 18, 2008 as U.S. Publication No. 2008/0228179A1; U.S. application Ser. No. 12/410,322 entitled “ELECTROCAUTERY METHOD AND APPARATUS” filed on Mar. 24, 2009, published on Jul. 16, 2009 as U.S. Publication No. 2009/0182323A1; U.S. application Ser. No. 11/671,911 entitled “ELECTROCAUTERY METHOD AND APPARATUS” filed on Feb. 6, 2007, published on Aug. 9, 2007 as U.S. Publication No. 2007/0185482A1; U.S. application Ser. No. 12/748,229 entitled “IMPEDANCE MEDIATED POWER DELIVERY FOR ELECTROSURGERY” filed on Mar. 26, 2010, and U.S. application Ser. No. 12/907,646 entitled “IMPEDANCE MEDIATED CONTROL OF POWER DELIVERY FOR ELECTROSURGERY” filed on Oct. 19, 2010.
The presently described medical instrument, a bipolar electrosurgical device by way of example, may be configured to seal tissue and/or to cut tissue, and has an end effector that can be articulated through the operation of an articulable joint. Embodiments of the instrument typically have a set of opposing jaws that can be articulated up to an angle of about 45 degrees, both to the left and the right from a centerline defined by the central longitudinal axis of the shaft of the instrument, for a total articulation range of about 90 degrees. Aspects of the technology also provide a proper bend radius and support for a jaw actuation member and a cutter-driving member. In some embodiments, a bendable support for the drive includes tightly wound coil springs.
Some embodiments of the technology further include a mechanism and a method to control the degree of articulation with an actuator disposed at the handle of the articulable electrosurgical instrument. Embodiments of the technology may further include a locking mechanism, or more generally, a stabilizable articulation actuator, to prevent motion of the articulable joint while an operator, typically a surgeon, performs electrosurgical procedures with the device. Embodiments of the locking mechanism also include an indexing feature with which a surgeon operator can index and choose the necessary amount of angle between preset angles.
Some embodiments of the technology include, in the form of a distally positioned articulable joint or wrist, a set of pivotal vertebra, links, hinges, or flexible elements that are interconnected by pins, or by a snap fit, or by tension applied by a force transfer member. Each vertebra is adapted to pivot in relation to the longitudinal axis of the shaft and jaw set, thus allowing left and right articulation. The angle of articulation is controlled by connecting or force-transfer members, such as wires or cables, which are disposed along both sides of the articulable joint. The connecting wires are proximally routed up the shaft and connected with tension to a control mechanism at a device handle, and function by transferring force from the handle to the joint.
Embodiments of the links or vertebrae collectively form a proper bend radius in embodiments of the distal articulable joint, a bend radius that is sufficiently large that it allows for a force transfer wire or cable to pass through the joint without kinking. Further, in some embodiments, a tightly wound coil spring is housed within the joint to route the wire. The tightly wound coil spring provides additional support to the wire, such that when the wire is moved back and forth, proximally or distally, it does not buckle or kink.
Embodiments of the control mechanism at the handle include an indexing disk and finger operable lever that receives the force transfer cables or wires from the joint. The indexing disk is pivotally mounted at the handle of the instrument, and the shape of the control mechanism allows for concentric rotation about the pivot so that the length-wise motion of the wires or cables along the shaft can be controlled, based upon the distance from the pivot to the attachment point of the wires or cables. The distances that the force transfer cables move controls the articulation position or angle; these distances are available as preset options according to the geometry of the joint and the indexing disk and its lever.
Several embodiments of the technology have a stabilizable articulation actuator include indexing or locking features. This mechanism, in its various embodiments can specify particular angles of articulation, and can stabilize the end effector distal to the joint at particular angles. The stabilized or lockable angles are located at spaced apart intervals within the arc of articulating rotation. In a first embodiment, a spring steel member is formed into a geometry that deflects when a force is applied, as with a leaf spring. An example of this embodiment, with a spring steel member is shown in
In a second embodiment of a stabilizable articulation actuator with indexing or locking features, a spring plunger is mounted within a circular carrier opposite a step ball. The spring plunger mates with the indents created by the tooth pattern. Examples of this particular embodiment of a stabilizable articulation actuator are shown in
In a third embodiment of a stabilizable articulation actuator with indexing or locking features, the rotating member described above does not have arms extending from its center body. A wing is mounted on top of the rotating member. The wing is then manipulated to control the rotation around the circular carrier.
In a fourth embodiment of a stabilizable articulation actuator with indexing or locking features, a flexible plastic hinge, also known as a living hinge, is mounted near the handle. The living plastic hinge uses a V-shape that fits within a slot of an external housing that surrounds the living hinge. The tip of the V-shape protrudes from each slot. There is a series of slots along the length of the external housing. The housing engages with the cable and wires that control articulation of the joint. The operator can adjust and lock the joint articulation by first pressing down on the living hinge to disengage the current locked position, then moving the external housing from a proximal to a distal position or vice versa, which then locks by re-engaging with the living hinge at any various predetermined distances set by the slots. These distances determine the angle at which the joint is articulated.
In a fifth embodiment of a stabilizable articulation actuator with indexing or locking features, the rotating mechanism described above rotates freely around the pivot. When an operator or surgeon has determined the angle of articulation, an indexing pin mounted on top of the pivot is depressed, which locks the joint angle and the rotating mechanism, thus preventing any further movement of both the rotating mechanism and joint. This can be accomplished using a wedge-like design that is anchored within the pivot pin, which in this embodiment is a tube. A minimum of a single slot is designed into the pivot pin. When the button is depressed, the inherent spring properties of the button flare from the slot. The flaring material uses friction to prevent movement of the rotating mechanism. The button itself remains in place due to a wedge design at the top. An example of this particular embodiment of a locking and indexing mechanism is shown in
In a sixth embodiment of the disclosed technology, a stabilizable articulation actuator of the electrosurgical instrument includes an indexing or rotational position stabilizing disk with spring piece arms that have teeth that can engage complementary detents in a receptacle or well within which the disk is rotatably seated. This particular embodiment of an articulation actuator includes a non-locking mechanism. Articulation angles of an articulation joint are not locked into place, but are, instead stabilized by a relatively high level of rotational resistance in the actuator that can nevertheless be overridden by a level of torque easily applied to a finger operable lever. Examples and views of this sixth embodiment are shown in
In the description of the disclosed technology and as shown in
Further to the foregoing description, a more detailed explanation is now provided in connection with examples of the technology as depicted
During laparoscopic electrosurgical procedures, it is desirable to be able to position the jaws of the device from left to right within an arc of a plane of articulating freedom to achieve the best angle of approach to a target tissue site; this capability is provided by an articulable joint or joints 22 that includes one or more articulation disks, links, or vertebrae 21. In this particular embodiment of articulable joint 22, two pivotable links 21 are shown intervening between the distal end of shaft 24 and the proximal end of jaw assembly 25. Articulation is accomplished by tensioning a pair of cables (described further below) that terminate distally where they are soldered or crimped in a groove at a cable termination point 20.
Embodiments of an articulable joint as provided herein include one or more pivotable links intervening between the distal end of the shaft and the proximal end of the end effector. An advantage associated with a plurality of links, e.g., two or more intervening articulable links, is that the plurality may provide an enhanced articulation angle range, and enhanced resolution and stability of articulated angles. An advantage of relatively few intervening links, such as one link, relates to ease of manufacturing assembly and lower cost. Examples of articulable joints that include one intervening link are shown in
The drive members may be made of a round wire (stainless steel or Nitinol), using tightly wound coil springs for support. The drive members may also be flat stainless steel bands 150, as shown in
An embodiment of an articulable joint 22 is also shown in
The stabilizable articulation actuator includes a cable tensioning mechanism 170 associated with the cross bar of a finger-operable lever that enhances the articulating performance of the distal articulable joint. The cable tensioning mechanism maintains a tension on cables 34a/34b, and allows greater tolerance in dimensions or manufacturing specification ranges of both proximal and distal elements of the articulable mechanism, as well as the length of cables, and further serves generally to retain or stabilize these elements in a functional configuration. In some embodiments, the cable tensioning mechanism 170 may comprise a spring plate, as shown in
The angles of articulation of the jaws with respect to the shaft are controlled by the stabilizable articulation actuator, and reflect or approximate the angles determined by operation of a lever of the stabilizable articulation actuator. Accordingly, the set of jaws may pivot to either side of a neutral position within a range of about 45 degrees, for a total pivotable range or arc of rotation of about 90 degrees. Further, in a manner determined by the stabilizable articulation actuator, the pivoting angles assumed by the set of jaws are stabilizable at spaced apart angle intervals. In some embodiments, these spaced apart angles occur at 15-degree intervals.
This particular embodiment of a stabilizable articulation actuator has two teeth 165 on each arm or spring piece of the indexing disk. There are two series of corresponding detents 152 on the inner aspect of the receptacle; each series has eight detents. This arrangement of teeth and corresponding detents supports a total of seven stable rotatable positions, a central neutral position, and three positions on either side of the neutral position. Embodiments of the stabilizable articulation actuator may have fewer or more teeth and fewer or more detents. Typically, however, the arrangement results in an uneven number of stable rotatable positions, i.e., a central neutral position (at zero degrees, such that the lever is at an orthogonal position with respect to the shaft) and an equal number of stable rotated positions on either side of neutral. It can be seen that the two spring piece arms are arranged circumferentially opposite each other. This arrangement creates a stable centering of inwardly directed forces, which contributes to a balanced rotational movement around central lever engagement post 168. Embodiments of the stabilizable articulation actuator include arrangements of the rotational stabilizing disk with more than two outwardly biased arms that support detent-engaging teeth, such arms generally distributed at equidistant intervals.
Embodiments of the stabilizable articulation actuator make use of a variable resistance to rotation within the available arc of rotation. Positions in an arc of rotation that require a relatively high degree of force to move through represent positions where the degree of rotation is stable, and such positions of stabilizable articulation actuator stability translate into positions of articulation angle stability at the end effector. In contrast, positions or portions of the rotational arc that provide relatively small resistance to rotation are not rotationally stable, and generally represent a rotational zone intervening between the positions of rotational stability.
In general, the arc of the rotation of the stabilizable articulation actuator is about the same as the arc of articulation of the articulable joint, and, by extension, the arc of articulation of the end effector. For example, in some of the embodiments described here, the stabilizable articulation actuator and the articulable joint/end effector all exercise movement within an arc of about 90 degrees, i.e., arcs of about 45 degrees on either side of a neutral position.
Rotation of the indexing disk 162 by the finger operable lever 235 requires a relatively large force, for example about 2 lb. pound-inches to about 15 pound-inches, in order to rotate the indexing disk out of a stable position which occurs when teeth of the indexing disk are engaged in complementary detents. Relatively little force, for example less than about 2 lb. pound-inches is required to rotate the indexing disk when teeth of the disk are in positions between detents. Even the relatively large force required to move the disk out of a stable angle position can be provided by normal levels of finger pressure, as applied to the finger operable lever. Note that the relatively large force is a characterization of the force required to rotate the indexing disk out of a stable position as being less than that required to rotate the indexing disk when its teeth are positioned between the indented aspect of the detents. Nevertheless, the relatively large force is within the range of easy operability of the finger operable lever in a manual way. Inasmuch as the mechanism can be easily pushed through a stable angle position, and inasmuch as such movement is included in normal operation of the mechanism, the stabilizable articulation actuator can be understood as a substantially non-locking system.
The spring plate shown in
Unless defined otherwise, all technical terms used herein have the same meanings as commonly understood by one of ordinary skill in the art of surgery, including electrosurgery. Specific methods, devices, and materials are described in this application, but any methods and materials similar or equivalent to those described herein can be used in the practice of the present technology. While embodiments of the technology have been described in some detail and by way of illustrations, such illustration is for purposes of clarity of understanding only, and is not intended to be limiting. Various terms have been used in the description to convey an understanding of the technology; it will be understood that the meaning of these various terms extends to common linguistic or grammatical variations or forms thereof. It will also be understood that when terminology referring to devices or equipment, that these terms or names are provided as contemporary examples, and the technology is not limited by such literal scope. Terminology that is introduced at a later date that may be reasonably understood as a derivative of a contemporary term or designating of a hierarchal subset embraced by a contemporary term will be understood as having been described by the now contemporary terminology. Further, while some theoretical considerations may have been advanced in furtherance of providing an understanding of the technology, the appended claims to the technology are not bound by such theory. Moreover, any one or more features of any embodiment of the technology can be combined with any one or more other features of any other embodiment of the technology, or with any technology described in the patent applications or issued patents that have been incorporated by reference, without departing from the scope of the technology. Still further, it should be understood that the technology is not limited to the embodiments that have been set forth for purposes of exemplification, but is to be defined only by a fair reading of claims appended to the patent application, including the full range of equivalency to which each element thereof is entitled.
This application is a continuation in part of U.S. patent application Ser. No. 12/027,231 of Kerver et al., entitled “METHOD AND APPARATUS FOR ARTICULATING THE WRIST OF A LAPAROSCOPIC GRASPING INSTRUMENT”, filed on Feb. 6, 2008. The present application further claims priority to U.S. Provisional Patent Application No. 61/382,868 of Walberg et al., entitled “ARTICULABLE ELECTROSURGICAL INSTRUMENT”, filed on Sep. 14, 2010.
Number | Name | Date | Kind |
---|---|---|---|
3356408 | Stutz | Dec 1967 | A |
3527224 | Rabinowitz | Sep 1970 | A |
3709215 | Richmond | Jan 1973 | A |
3742955 | Battista et al. | Jul 1973 | A |
3845771 | Vise | Nov 1974 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3970088 | Morrison | Jul 1976 | A |
4018230 | Ochiai et al. | Apr 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4072153 | Swartz | Feb 1978 | A |
4094320 | Newton et al. | Jun 1978 | A |
4231372 | Newton | Nov 1980 | A |
4492231 | Auth | Jan 1985 | A |
4532924 | Auth et al. | Aug 1985 | A |
4590934 | Malis et al. | May 1986 | A |
4671274 | Sorochenko | Jun 1987 | A |
4972846 | Owens et al. | Nov 1990 | A |
4976717 | Boyle | Dec 1990 | A |
4979948 | Geddes et al. | Dec 1990 | A |
4998527 | Meyer | Mar 1991 | A |
5037379 | Clayman et al. | Aug 1991 | A |
5041101 | Seder et al. | Aug 1991 | A |
5059782 | Fukuyama | Oct 1991 | A |
5078736 | Behl | Jan 1992 | A |
5108408 | Lally | Apr 1992 | A |
5133713 | Huang et al. | Jul 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5156613 | Sawyer | Oct 1992 | A |
5178618 | Kandarpa | Jan 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5207691 | Nardella | May 1993 | A |
5217030 | Yoon | Jun 1993 | A |
5234425 | Fogarty et al. | Aug 1993 | A |
5250074 | Wilk et al. | Oct 1993 | A |
5267998 | Hagen | Dec 1993 | A |
5269780 | Roos | Dec 1993 | A |
5269782 | Sutter | Dec 1993 | A |
5273524 | Fox et al. | Dec 1993 | A |
5277201 | Stern | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5290287 | Boebel et al. | Mar 1994 | A |
5295990 | Levin | Mar 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5300087 | Knoepfler | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336237 | Chin et al. | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5352223 | McBrayer et al. | Oct 1994 | A |
5352235 | Koros et al. | Oct 1994 | A |
5354336 | Kelman et al. | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5377415 | Gibson | Jan 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5395369 | McBrayer et al. | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397320 | Essig et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5423814 | Zhu et al. | Jun 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5438302 | Goble | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5449355 | Rhum et al. | Sep 1995 | A |
5456684 | Schmidt | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5480399 | Hebborn | Jan 1996 | A |
5482054 | Slater et al. | Jan 1996 | A |
5484435 | Fleenor et al. | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5520698 | Koh | May 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5556397 | Long et al. | Sep 1996 | A |
5558100 | Cox | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562700 | Huitema et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5603700 | Daneshvar | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5611803 | Heaven et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5637111 | Sutcu et al. | Jun 1997 | A |
5653692 | Masterson et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662676 | Koninckx | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5674184 | Hassler, Jr. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5675184 | Matsubayashi et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5683385 | Kortenbach et al. | Nov 1997 | A |
5683388 | Slater | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5697949 | Giurtino et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715832 | Koblish et al. | Feb 1998 | A |
5718703 | Chin | Feb 1998 | A |
5720719 | Edwards et al. | Feb 1998 | A |
5728143 | Gough et al. | Mar 1998 | A |
5733283 | Malis et al. | Mar 1998 | A |
5735289 | Pfeffer et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5741285 | McBrayer et al. | Apr 1998 | A |
5746750 | Prestel et al. | May 1998 | A |
5749895 | Sawyer et al. | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5766196 | Griffiths | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5788662 | Antanavich et al. | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5817091 | Nardella et al. | Oct 1998 | A |
5817092 | Behl | Oct 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5833689 | Long | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5840077 | Rowden et al. | Nov 1998 | A |
5855576 | LeVeen et al. | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893874 | Bourque et al. | Apr 1999 | A |
5931835 | Mackey | Aug 1999 | A |
5931836 | Hatta et al. | Aug 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5976128 | Schilling et al. | Nov 1999 | A |
5979453 | Savage et al. | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6030384 | Nezhat | Feb 2000 | A |
6050993 | Tu et al. | Apr 2000 | A |
6050995 | Durgin | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6059766 | Greff | May 2000 | A |
6059782 | Novak et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6068626 | Harrington et al. | May 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6077287 | Taylor | Jun 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6142992 | Cheng et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6152932 | Ternstrom | Nov 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179832 | Jones et al. | Jan 2001 | B1 |
6203541 | Keppel | Mar 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6210406 | Webster | Apr 2001 | B1 |
6212426 | Swanson | Apr 2001 | B1 |
6217894 | Sawhney et al. | Apr 2001 | B1 |
6228084 | Kirwan, Jr. | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6245069 | Gminder | Jun 2001 | B1 |
6254601 | Burbank et al. | Jul 2001 | B1 |
6258085 | Eggleston | Jul 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6283963 | Regula | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6290715 | Sharkey et al. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6293946 | Thorne | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6312430 | Wilson et al. | Nov 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6350274 | Li | Feb 2002 | B1 |
6361559 | Houser et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
6371956 | Wilson et al. | Apr 2002 | B1 |
6391024 | Sun et al. | May 2002 | B1 |
6391029 | Hooven et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6398781 | Goble et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6416509 | Goble et al. | Jul 2002 | B1 |
6428550 | Vargas et al. | Aug 2002 | B1 |
6436096 | Hareyama | Aug 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6485486 | Trembly et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6494881 | Bales et al. | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517530 | Kleven | Feb 2003 | B1 |
6520185 | Bommannan et al. | Feb 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6546933 | Yoon | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6564806 | Fogarty et al. | May 2003 | B1 |
6565560 | Goble et al. | May 2003 | B1 |
6565561 | Goble et al. | May 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6610074 | Santilli | Aug 2003 | B2 |
6616654 | Mollenauer | Sep 2003 | B2 |
6616659 | de la Torre et al. | Sep 2003 | B1 |
6619529 | Green et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6645198 | Bommannan et al. | Nov 2003 | B1 |
6645201 | Utley et al. | Nov 2003 | B1 |
6648839 | Manna et al. | Nov 2003 | B2 |
6652518 | Wellman et al. | Nov 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6666859 | Fleenor et al. | Dec 2003 | B1 |
6673085 | Berg | Jan 2004 | B1 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6682526 | Jones et al. | Jan 2004 | B1 |
6682527 | Strul | Jan 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6699245 | Dinger et al. | Mar 2004 | B2 |
6719754 | Underwood et al. | Apr 2004 | B2 |
6722371 | Fogarty et al. | Apr 2004 | B1 |
6736814 | Manna et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6746488 | Bales | Jun 2004 | B1 |
6752154 | Fogarty et al. | Jun 2004 | B2 |
6752803 | Goldman et al. | Jun 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6843789 | Goble | Jan 2005 | B2 |
6852108 | Barry et al. | Feb 2005 | B2 |
6889089 | Behl et al. | May 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6896672 | Eggers et al. | May 2005 | B1 |
6896673 | Hooven | May 2005 | B2 |
6905506 | Burbank et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6918907 | Kelly et al. | Jul 2005 | B2 |
6918909 | Ohyama et al. | Jul 2005 | B2 |
6923803 | Goble | Aug 2005 | B2 |
6926712 | Phan | Aug 2005 | B2 |
6929642 | Xiao et al. | Aug 2005 | B2 |
6936048 | Hurst | Aug 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090685 | Kortenbach et al. | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7166102 | Fleenor et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7195627 | Amoah et al. | Mar 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7220260 | Fleming et al. | May 2007 | B2 |
7238195 | Viola | Jul 2007 | B2 |
7250048 | Francischelli et al. | Jul 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7278991 | Morris et al. | Oct 2007 | B2 |
7291143 | Swanson | Nov 2007 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367972 | Francischelli et al. | May 2008 | B2 |
7410483 | Danitz et al. | Aug 2008 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7506790 | Shelton, IV et al. | Mar 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7641651 | Nezhat et al. | Jan 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7794461 | Eder et al. | Sep 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7862565 | Eder et al. | Jan 2011 | B2 |
7942874 | Eder et al. | May 2011 | B2 |
20010029367 | Fleenor et al. | Oct 2001 | A1 |
20020062123 | McClurken et al. | May 2002 | A1 |
20020062136 | Hillstead et al. | May 2002 | A1 |
20020107514 | Hooven | Aug 2002 | A1 |
20020124853 | Burbank et al. | Sep 2002 | A1 |
20020128643 | Simpson et al. | Sep 2002 | A1 |
20020151882 | Marko et al. | Oct 2002 | A1 |
20020177848 | Truckai et al. | Nov 2002 | A1 |
20020183738 | Chee et al. | Dec 2002 | A1 |
20030078577 | Truckai et al. | Apr 2003 | A1 |
20030144652 | Baker et al. | Jul 2003 | A1 |
20030144653 | Francischelli et al. | Jul 2003 | A1 |
20030158547 | Phan | Aug 2003 | A1 |
20030171745 | Francischelli et al. | Sep 2003 | A1 |
20030216726 | Eggers et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040006339 | Underwood et al. | Jan 2004 | A1 |
20040010245 | Cerier et al. | Jan 2004 | A1 |
20040068274 | Hooven | Apr 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040143263 | Schechter et al. | Jul 2004 | A1 |
20040199226 | Shadduck | Oct 2004 | A1 |
20040236320 | Protsenko et al. | Nov 2004 | A1 |
20050010212 | McClurken et al. | Jan 2005 | A1 |
20050015085 | McClurken et al. | Jan 2005 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20050021027 | Shields et al. | Jan 2005 | A1 |
20050033276 | Adachi | Feb 2005 | A1 |
20050033277 | Clague et al. | Feb 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050070895 | Ryan et al. | Mar 2005 | A1 |
20050070978 | Bek et al. | Mar 2005 | A1 |
20050090819 | Goble | Apr 2005 | A1 |
20050096645 | Wellman et al. | May 2005 | A1 |
20050096694 | Lee | May 2005 | A1 |
20050107781 | Ostrovsky et al. | May 2005 | A1 |
20050107784 | Moses et al. | May 2005 | A1 |
20050113817 | Isaacson et al. | May 2005 | A1 |
20050113820 | Goble et al. | May 2005 | A1 |
20050119654 | Swanson et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050171533 | Latterell et al. | Aug 2005 | A1 |
20050187561 | Lee-Sepsick et al. | Aug 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050196421 | Hunter et al. | Sep 2005 | A1 |
20050203500 | Saadat et al. | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050209664 | Hunter et al. | Sep 2005 | A1 |
20050226682 | Chersky et al. | Oct 2005 | A1 |
20050256522 | Francischelli et al. | Nov 2005 | A1 |
20050256524 | Long et al. | Nov 2005 | A1 |
20050261676 | Hall et al. | Nov 2005 | A1 |
20060011699 | Olson et al. | Jan 2006 | A1 |
20060025765 | Landman et al. | Feb 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060041254 | Francischelli et al. | Feb 2006 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060052779 | Hammill | Mar 2006 | A1 |
20060064084 | Haemmerich et al. | Mar 2006 | A1 |
20060079872 | Eggleston | Apr 2006 | A1 |
20060167451 | Cropper | Jul 2006 | A1 |
20060190029 | Wales | Aug 2006 | A1 |
20060199999 | Ikeda et al. | Sep 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20060226196 | Hueil et al. | Oct 2006 | A1 |
20060229665 | Wales et al. | Oct 2006 | A1 |
20060253117 | Hovda et al. | Nov 2006 | A1 |
20060258954 | Timberlake et al. | Nov 2006 | A1 |
20060259035 | Nezhat et al. | Nov 2006 | A1 |
20060271037 | Maroney et al. | Nov 2006 | A1 |
20060271042 | Latterell et al. | Nov 2006 | A1 |
20060287674 | Ginn et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20060293655 | Sartor | Dec 2006 | A1 |
20070005061 | Eder et al. | Jan 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070073340 | Shelton, IV et al. | Mar 2007 | A1 |
20070128174 | Kleinsek et al. | Jun 2007 | A1 |
20070129726 | Eder et al. | Jun 2007 | A1 |
20070173804 | Wham et al. | Jul 2007 | A1 |
20070173805 | Weinberg et al. | Jul 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070179497 | Eggers et al. | Aug 2007 | A1 |
20070185482 | Eder et al. | Aug 2007 | A1 |
20070185518 | Hassier, Jr. | Aug 2007 | A1 |
20070244538 | Eder et al. | Oct 2007 | A1 |
20070250113 | Hegeman et al. | Oct 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070282318 | Spooner et al. | Dec 2007 | A1 |
20070282320 | Buysse et al. | Dec 2007 | A1 |
20080172052 | Eder et al. | Jul 2008 | A1 |
20080188844 | McGreevy et al. | Aug 2008 | A1 |
20080195093 | Couture et al. | Aug 2008 | A1 |
20080221565 | Eder et al. | Sep 2008 | A1 |
20080228179 | Eder et al. | Sep 2008 | A1 |
20080275446 | Messerly | Nov 2008 | A1 |
20080308607 | Timm et al. | Dec 2008 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090157071 | Wham et al. | Jun 2009 | A1 |
20090157072 | Wham et al. | Jun 2009 | A1 |
20090157075 | Wham et al. | Jun 2009 | A1 |
20090182323 | Eder et al. | Jul 2009 | A1 |
20090198272 | Kerver et al. | Aug 2009 | A1 |
20090209953 | Schoenman | Aug 2009 | A1 |
20090240245 | Deville et al. | Sep 2009 | A1 |
20090299367 | Ginnebaugh et al. | Dec 2009 | A1 |
20100042093 | Wham et al. | Feb 2010 | A9 |
20100076427 | Heard | Mar 2010 | A1 |
20100094282 | Kabaya et al. | Apr 2010 | A1 |
20100280508 | Eder | Nov 2010 | A1 |
20100298823 | Cao et al. | Nov 2010 | A1 |
20110202058 | Eder | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
2061215 | Aug 1992 | CA |
1826083 | Aug 2006 | CN |
0440385 | Aug 1991 | EP |
0487269 | May 1992 | EP |
0502268 | Sep 1992 | EP |
0562195 | Sep 1993 | EP |
0658333 | Jun 1995 | EP |
0923907 | Jun 1999 | EP |
0833593 | Feb 2001 | EP |
0737446 | Dec 2002 | EP |
0717960 | Feb 2003 | EP |
0869742 | May 2003 | EP |
0873089 | Oct 2003 | EP |
0742696 | Nov 2003 | EP |
1041933 | Mar 2004 | EP |
1004277 | Jul 2004 | EP |
0959786 | Sep 2004 | EP |
0913126 | Oct 2004 | EP |
0956827 | Oct 2004 | EP |
1472984 | Nov 2004 | EP |
1621146 | Feb 2006 | EP |
1645237 | Apr 2006 | EP |
0875209 | May 2006 | EP |
1293170 | Jun 2006 | EP |
1293169 | Jul 2006 | EP |
1064886 | Aug 2006 | EP |
1767164 | Mar 2007 | EP |
1518498 | Dec 2007 | EP |
1862138 | Dec 2007 | EP |
1039862 | May 2008 | EP |
1532933 | May 2008 | EP |
1707143 | Jun 2008 | EP |
1518499 | Aug 2008 | EP |
1632192 | Mar 2009 | EP |
1486177 | Aug 2009 | EP |
1852081 | Aug 2009 | EP |
1747761 | Oct 2009 | EP |
2106764 | Oct 2009 | EP |
2003088534 | Mar 2003 | JP |
2004049566 | Feb 2004 | JP |
2005144193 | Jun 2005 | JP |
WO9222257 | Dec 1992 | WO |
WO9308754 | May 1993 | WO |
WO9400060 | Jan 1994 | WO |
WO9426179 | Nov 1994 | WO |
WO9502371 | Jan 1995 | WO |
WO9605776 | Feb 1996 | WO |
WO9616605 | Jun 1996 | WO |
WO9623449 | Aug 1996 | WO |
WO9724073 | Jul 1997 | WO |
WO9724074 | Jul 1997 | WO |
WO9812999 | Apr 1998 | WO |
WO9843548 | Oct 1998 | WO |
WO9853750 | Dec 1998 | WO |
WO9923933 | May 1999 | WO |
WO9952459 | Oct 1999 | WO |
WO9956646 | Nov 1999 | WO |
WO0013192 | Mar 2000 | WO |
WO0013193 | Mar 2000 | WO |
WO0112090 | Feb 2001 | WO |
WO0135846 | May 2001 | WO |
WO0154602 | Aug 2001 | WO |
WO0158372 | Aug 2001 | WO |
WO0158373 | Aug 2001 | WO |
WO0182812 | Nov 2001 | WO |
WO0224092 | Mar 2002 | WO |
WO02058542 | Aug 2002 | WO |
WO02067798 | Sep 2002 | WO |
WO-02080783 | Oct 2002 | WO |
WO03088806 | Oct 2003 | WO |
WO03103522 | Dec 2003 | WO |
WO2004032596 | Apr 2004 | WO |
WO2004032776 | Apr 2004 | WO |
WO2004073490 | Sep 2004 | WO |
WO2004098383 | Nov 2004 | WO |
WO 2004105578 | Dec 2004 | WO |
WO2005009213 | Feb 2005 | WO |
WO2005034729 | Apr 2005 | WO |
WO2005079901 | Sep 2005 | WO |
WO2005115251 | Dec 2005 | WO |
WO2006060431 | Jun 2006 | WO |
WO2007002227 | Jan 2007 | WO |
WO2007082061 | Jul 2007 | WO |
WO-2007146842 | Dec 2007 | WO |
WO2008094554 | Aug 2008 | WO |
WO2008124112 | Oct 2008 | WO |
Entry |
---|
European Application Serial No. 09707446.2, Supplementary European Search Report mailed Oct. 9, 2012. |
First Office Action for Chinese Application No. CN 200980104230 Dated Jan. 18, 2012 (w/English Language Translation). |
(ArthroCare); ArthroCare receives clearance to market coblation-based devices for gynecology and laparoscopic surgery: clearance includes plasma forceps and 21 specific indications; Business Wire; p. 524; Oct. 25, 2001. |
(Business Wire); Radiofrequency energy proven effective against leading cause of obstructive sleep apnea; Business Wire; p09140175; Sep. 14, 1998. |
(Curon); Curon announces the publication of data supporting durability and effectiveness of STRETTA® system—positive one year follow-up data of U.S. clinical trial published in gastrointestinal endoscopy; PR Newswire; pNYTH10307022002; Feb. 7, 2002. |
(Curon); Curon medical announces presentation of positive clinical study results of STRETTA® procedure for gastroesophageal reflux disease (GERD); PR Newswire; pNYW07920032002; Mar. 20, 2002. |
(Enable); Enable medical introduces second generation bipolar scissors; Health Industry Today; pNA; Dec. 1998. |
(Everest) Everest medical announces introduction of 3mm bipolar forceps; PR Newswire; p1002MNW021; Oct. 2, 1996. |
(Everest) Everest medical discusses patent status: forecasts $1 million revenue first quarter: introduces next generation bipolar scissors; PR Newswire; pN/A; Mar. 31, 1994. |
(Everest) Everest medical introduces new Quadripolar} cutting forceps at the global congress for gynecologic endoscopy meeting; PR Newswire; p. 8927; Nov. 8, 1999. |
(Everest) Everest medical reports record first quarter results: introduces next generation bipolar scissors; PR Newswire; pN/A; Apr. 19, 1994. |
(Everest) Quadripolar cutting forceps introduced by Everest Medical; Health Industry Today; vol. 63; No. 1; pNA; Jan. 2000. |
(Novare); U.S. patent issued for Novare Surgical Systems Cygnet® surgical clamp: Novare signs multi-year supply agreement with Boston Scientific; PR Newswire; pNA; Sep. 2, 2003. |
Aoki et al.; Thoracoscopic resection of the lung with the ultrasonic scalpel; Ann thorac Surg; vol. 67; No. 4; pp. 1181-1183; Apr. 1999. |
Bergamaschi et al.; Laparoscopic intracorporeal bowel resection with ultrasound versus electrosurgical dissection; JSLS; vol. 5; No. 1; pp. 17-20; Jan.-Mar. 2001. |
Eichfeld et al.; Evaluation of ultracision in lung metastatic surgery; Ann Thorac Surg; vol. 70; No. 4; pp. 1181-1184; Oct. 2000. |
ERBE Elektromedizin GmbH; ERBE BiClamp Brochure; http://www.erbe-med.com/erbe/media/Marketingmaterialien/85100-139—ERBE—EN—BiClamp—D024676.pdf; downloaded Jan. 24, 2011; 6 pgs. |
Gyrus ACMI (an Olympus Company); PKS Seal (product page); http://www.gyrusacmi.com/user/display.cfm?display=product&pid=9024; downloaded Jan. 24, 2011; 1 page. |
Gyrus Medical; Cutting Forceps (Product Information); downloaded Oct. 5, 2005. |
Gyrus Medical; LP Scissors (Product Information); downloaded Oct. 5, 2005. |
Gyrus Medical; Lyons} Dissecting Forceps (Product Information); downloaded Oct. 5, 2005. |
Gyrus Medical; Micro/Macro-Jaw Forceps (Product Information); downloaded Oct. 5, 2005. |
Gyrus Medical; Seal} Open Forceps (Product Information); downloaded Oct. 5, 2005. |
Hayashi et al.; Experimental and clinical evaluation of the harmonic scalpel in thoracic surgery; Kurume Med J; vol. 46; No. 1; pp. 25-29; 1999. |
Hefni et al.; Safety and efficacy of using the ligasure vessel sealing system for securing the pedicles in vaginal hysterectomy: randomized controlled trial; BJOG; vol. 112; No. 3; pp. 329-333; Mar. 2005. |
Heniford et al.; Initial results with an electrothermal bipolar vessel sealer; Surg Endosc; vol. 15; No. 8; pp. 799-801; Aug. 2001. |
Johnson & Johnson Gateway, LLC; The Gynecare Versapoint (Product Information); http://jnjgateway.com/home/jhtml?loc=USENG&page=viewContent&id=edea000100001747&parentid=fc0de00100000334; downloaded Oct. 20, 2005. |
Kamat et al.; Superiority of electrocautery over the suture method for achieving cervical cone bed hemostasis; Obstet Gynecol; vol. 102; No. 4; pp. 726-730; Oct. 2003. |
Kennedy et al.; High-burst-strength, feedback-controlled bipolar vessel sealing; Surg Endosc; vol. 12; No. 6; pp. 876-878; Jun. 1998. |
Kim et al.; Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs); IEEE/ASME Trans on Mechatronics; vol. 10; No. 1; pp. 77-86; Feb. 2005. |
Kovac; Transvaginal hysterectomy: rationale and surgical approach; Obstet. Gynecol.; vol. 103; pp. 1321-1325; 2004. |
Landman et al.; Evaluation of a vessel sealing system, bipolar electrosurgery, harmonic scalpel, . . . in a porcine model; J. urol; vol. 169; No. 2; pp. 697-700; Feb. 2003. |
Levy, et al.; Update on hysterectomy: new technology and techniques; A Supp. To OBG Maganagement; Feb. 2003. |
Levy, et al.; Use of a new vessel ligation device during vaginal hysterectomy (presentation abstract); presented at FIGO 2000; Washington, D.C.; 2000. |
Lin et al.; Application of ultrasonic scalpel in gynecologic operative laparoscopy; Chin Med J (Engl.); vol. 114; No. 12; pp. 1283-1285; Dec. 2001. |
Live Tissue Connect Technologies; company profile; (http://www.onemedplace.com/database/compdisplay—print.php?CompanyID=11508); 1 pg.; Oct. 19, 2010 (downloaded Feb. 7, 2011). |
Lyons et al.; An innovative bipolar instrument for laparoscopic surgery; JSLS; vol. 9; No. 1; pp. 39-41; Jan.-Mar. 2005. |
McClurken et al.; Collagen shrinkage and vessel sealing; Technical brief #300. Dover, NH: Tissue Link Medical; 2001. |
Nojarov et al.; High-energy scissors mode; Phys Rev C Nucl Phys; vol. 51; No. 5; pp. 2449-2456; 1995 (http://arxiv.org/abs/nucl-th/9502001v1). |
Parikh et al.; Three dimensional virtual reality model of the normal female pelvic floor; Annals of Bimedical Engineering; vol. 32; pp. 292-296; Feb. 2004. |
Refractec, Inc.; Medical use of radiofrequency (RF) energy; (http://www.locateadoc.com/Site—Tools/Print.cfm); 2 pgs.; Aug. 23, 2008 (downloaded Feb. 7, 2011). |
SAGES 2001 Hands-On Course I—Taking it the next level: advanced laparoscopic techniques; http://wvvw.sages.org/01program/syllabi/ho1/ho1.html#schirme; 24 pgs.; downloaded Oct. 5, 2005. |
SAGES 2001 Nurses Program, Session 1; http://sages.org/01program/syllabi/nurse/nurse.html; downloaded Jan. 24, 2011; 5 pgs. |
Srisombut et al.; Laparoscopic hysterectomy using laparoscopic coagulating shears: experience of 15 cases; J. Med Assoc Thai; vol. 83; No. 8; pp. 915-920; Aug. 2000. |
Surgrx 510(K) Summary (# K031133); Palo Alto, CA; 5 pgs.; Jul. 3, 2003. |
Treat; A new thermal device for sealing and dividing blood vessels; http://www.starioninstruments.com/PDFs/Treat.pdf; downloaded Jun. 29, 2005; 2 pgs. |
Tyco Healthcare; The LigaSure Vessel Sealing System (Brochure); Apr. 2002; 8 pgs. |
Valleylab Products; Valleylab Products—Electrosurgical Forceps: The surgeon's choice for quality and precision (product information); http://www.valleylab.com/product/es/accessories/forceps—over.html; downloaded Oct. 20, 2005. |
Valleylab Products; Valleylab Products—Ligasure} vessel sealing system (product information); http://www.valleylab.com/product/vessel—seal/index.html; downloaded Oct. 20, 2005. |
Nezhat et al.; U.S. Appl. No. 08/948,282 entitled “Method and systems for organ resection,” filed Oct. 9, 1997. |
Eder, Joseph C.; U.S. Appl. No. 12/200,798 entitled “Assisted systems and methods for performing transvaginal hysterectomies,” filed Aug. 28, 2008. |
Koss et al.; U.S. Appl. No. 12/748,229 entitled “Impedance mediated power delivery for electrosurgery,” filed Mar. 26, 2010. |
Koss et al.; U.S. Appl. No. 12/907,646 entitled “Impedance mediated control of power delivery for electrosurgery,” filed Oct. 19, 2010. |
Walberg, Erik; U.S. Appl. No. 13/021,633 entitled “Laparoscopic radiofrequency surgical device,” filed Feb. 4, 2011. |
Van Lue et al.; U.S. Appl. No. 13/110,848 entitled “Electrosurgical tissue sealing augmented with a seal-enhancing composition,” filed May 18, 2011. |
Number | Date | Country | |
---|---|---|---|
20110230875 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61382868 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12027231 | Feb 2008 | US |
Child | 13070391 | US |