The present disclosure is directed at a system and method for accessing an articular joint surface. The present disclosure is further directed at a method and system for replacing at least a portion of an articular surface.
Articular cartilage, found at the ends of articulating bone in the body, is typically composed of hyaline cartilage, which has many unique properties that allow it to function effectively as a smooth and lubricious load bearing surface. Hyaline cartilage problems, particularly in knee, hip joints, and should joints, are generally caused by disease such as occurs with rheumatoid arthritis or wear and tear (osteoarthritis), or secondary to an injury, either acute (sudden), or recurrent and chronic (ongoing). Such cartilage disease or deterioration can compromise the articular surface causing pain and eventually, loss of joint movement. As a result, various methods have been developed to treat and repair damaged or destroyed articular cartilage.
For smaller defects, traditional options for this type of problem include leaving the lesions or injury alone and living with it, or performing a procedure called abrasion arthroplasty or abrasion chondralplasty. The principle behind this procedure is to attempt to stimulate natural healing. The bone surface is drilled using a high speed rotary burr or shaving device and the surgeon removes about 1 mm of bone from the surface of the lesion. This creates an exposed subchondral bone bed that will bleed and will initiate a fibrocartilage healing response. One problem with this procedure is that the exposed bone is not as smooth as it originally was following the drilling and burring which tends to leave a series of ridges and valleys, affecting the durability of the fibrocartilage response. Further, although this procedure can provide good short term results, (1-3 years), fibrocartilage is seldom able to support long-term weight bearing and is prone to wear, soften and deteriorate.
Another procedure, called Microfracture incorporates some of the principles of drilling, abrasion and chondralplasty. During the procedure, the calcified cartilage layer of the chondral defect is removed. Several pathways or “microfractures” are created to the subchondral bleeding bone bed by impacting a metal pick or surgical awl at a minimum number of locations within the lesion. By establishing bleeding in the lesion and by creating a pathway to the subchondral bone, a fibrocartilage healing response is initiated, forming a replacement surface. Results for this technique may be expected to be similar to abrasion chondralplasty.
Another means used to treat damaged articular cartilage is a cartilage transplant. Essentially, this procedure involves moving cartilage from an outside source or other knee or from within the same knee into the defect. Typically, this is done by transferring a peg of cartilage with underlying bone and fixing it in place with a screw or pin or by a press fit. Although useful for smaller defects, large defects present a problem, as this procedure requires donor pegs proportionate to the recipient bed. Large diameter lesions may exceed the capacity to borrow from within the same knee joint and rule out borrowing from another source.
Larger defects, however, generally require a more aggressive intervention. Typically treatment requires replacing the articular surface with an implant or prosthetic having an outer layer that that is polished or composed of a material that provides a lubricious load bearing surface in approximation of an undamaged cartilage surface. Replacement of the articular surface requires first cutting, boring, or reaming the damaged area to remove the damaged cartilage. A recess to receive an implant or prosthetic is formed at the damaged site. The implant or prosthetic is then secured to the bone in an appropriate position in the recess.
The subject matter of the present disclosure is set forth by description of embodiments consistent therewith, which description should be considered in combination with the accompanying drawings, wherein:
By way of overview, the present disclosure may provide an implant for replacing at least a portion of an articular surface. Furthermore, the present disclosure is also directed at a general design methodology for developing and producing a surface contour of an implant for replacing at least a portion of an articular surface. An implant consistent with the present disclosure may be provided having a load-bearing surface that is adapted to interact with a cooperating articulating feature. The cooperating articulating feature may include, for example, a cooperating articular surface, a cooperating surface of an implant replacing at least a portion of a cooperating articular surface, etc. In one embodiment, a portion of an articular surface to be replaced by an articular surface implant herein may be identified and replaced using a minimally invasive surgical procedure, for example, using diagnostic and/or surgical arthroscopy procedures. Generally, an implant according to the present disclosure may have a load bearing surface that may be based on an original geometry of an articular surface to be replaced by the implant.
Referring to
The articular surface implant 102 may generally include an implant body 106. The implant body 106 may have a load bearing surface 108 and a bone contacting region 110. The load bearing surface 108 may generally be configured to interact with a cooperating articulating feature, such as a cooperating articular surface, a cooperating articular surface implant, etc. In one embodiment, the implant body 106 may be at least partially received in an implant site provided by excising at least a portion of the articular surface and underlying bone. In such an embodiment, the load bearing surface 108 may be disposed generally replacing at least a portion of the excised articular surface. In an embodiment herein, the bone contacting region 110 may engage and/or contact subchondral within and/or forming at least a portion of a bottom of the implant site.
As mentioned previously, and consistent with the illustrated embodiment, the fixation element 104 maybe provided as a separate component from the implant 102. Providing the fixation element 104 as a separate component from the implant 102 may facilitate installation of the implant system 100. The fixation element 104 may first be coupled to bone and/or other tissue in and/or around the implant site. The implant 102 may then be positioned relative to the surrounding articular surface and the implant 102 may be coupled to the fixation element 104. In such a manner, the implant 102 may be secured in position relative to the articular surface.
In the illustrated embodiment, the fixation element 104 is depicted as a screw-type feature. Consistent with this illustrated embodiment, the fixation element 104 may be threadably engaged with bone and/or other tissue in and/or around the implant site. In addition to engaging bone and/or other tissue, a screw-type fixation element 104 may also facilitate depth positioning of the fixation element 104, and thereby depth positioning of the implant 102, relative to the articular surface. Suitable screw-type fixation elements are known in the art, for example, from U.S. Pat. No. 6,520,964, issued on Feb. 18, 2003. Consistent with various alternative embodiments, the fixation element may be configured having a barbed member or other similar features capable of engaging bone and/or other tissue in and/or around the implant site. In still other embodiments, the fixation element may include features that may be adhesively coupled to bone and/or other tissue in and/or around the implant site.
As illustrated, in an embodiment consistent with the present disclosure, the implant 102 and the fixation element 104 may be provided as separate components. The implant 102 may be coupled to the fixation element 104 to, at least in part, secure the implant 102 in position in the implant site. The implant 102 and the fixation element 104 may, accordingly, include interacting features wherein the implant 102 and fixation element 104 are capable of being coupled to one another. An embodiment of an implant 102 may be provided including a post 112 extending from the implant body 106. The fixation element 104 may include an opening 114 capable of receiving at least a portion of the post 112. In one such embodiment, the post 112 and the opening 114 may be provided having complimentary precision tapers. The implant 102 and the fixation element 104 may be coupled to one another by inserting the post 112 into the opening 114 and pressing the features together, e.g., as by applying an impact force. The precision taper of the post 112 and the opening 114 may achieve a secure frictional interaction between the implant 102 and the fixation element 104.
Various additional and/or alternative features and/or arrangements may be utilized for coupling the implant and the fixation element within the context of the present disclosure. Furthermore, in various embodiments in which the implant and the fixation element are provided as separate components, the implant and the fixation element may be assembled to one another prior to installation into an implant site. Consistent with some such embodiments, the fixation element may be configured to engage and/or to be coupled to bone and/or tissue in and/or around the implant site during installation. In one such embodiment, the fixation element may include a barbed post or similar feature. According to still further embodiments, the implant and the fixation element may be provided as a unitary structure.
The illustrated implant system 100 depicted in
Consistent with the foregoing, an implant may include a load bearing surface having a contour and/or geometry that may be capable of cooperating with an interacting articulating surface. In one embodiment, the load bearing surface may have a contour and/or geometry that may generally approximate and/or be based on a contour and/or geometry of the portion of the articular surface being replaced by the implant. In an embodiment, the portion of the articular surface being replaced may be mapped using various know techniques to quantitatively and/or qualitatively assess the contour and/or geometry of the portion of the articular surface that may be replaced by the implant. An implant may be constructed and/or selected from a set of implants having various contours and/or geometries. Consistent with such an embodiment, the load bearing surface of the implant may be based on the contour and/or geometry of the portion of the articular surface to be replaced by the implant. In an alternative embodiment, an implant may be fabricated or selected from a set of standard size and/or shape implants to provide a general approximation of the articular surface being replaced. Selection and/or fabrication of an implant may rely on various degrees of quantitative reference to the articular surface being replaced, including no quantitative reference to the articular surface.
Referring to
A design methodology capable of achieving a load bearing surface of an implant herein may include providing a curve string defining a contour and/or geometry of the load bearing surface and sweeping the curve string along another curve string defining an intersecting contour and/or geometry of the load bearing surface. As alluded to above, curve strings defining the contour and/or geometry of the load bearing surface may be derived based on mapped curves and/or approximations of curves of a portion of an articular surface to be replace, a portion of a cooperating articulating feature, etc. In one such embodiment, measurements of the contour and/or geometry of the portion of the articular surface to be replaced may be taken. Measurement of the contour and/or geometry of the portion of the articular surface to be replaced by the implant may be achieved using direct contact contour mapping of the articular surface, e.g., measuring relative heights of various regions of the articular surface, and/or using various imaging techniques, such as radiological imaging techniques.
According to one embodiment, the load bearing surface 108 may have a contour and/or geometry corresponding to the second curve string 118 lofted over the first curve string 116. In one such embodiment, the contour and/or geometry of the load bearing surface 108 may be achieved by sweeping the second curve string 118 along the first curve 116 while maintaining the second curve 118 normal to the first curve 116. In such an embodiment, the first curve 116 may be provided in a first plane, e.g. a plane defined by the X and Z axis. The second curve 118 may be provided in a perpendicular plane. The angular pitch of the perpendicular plane relative to the first plane may vary along the first curve 116 to maintain the second curve 118 normal to the first curve 116 along the sweep of the first curve 116. According to another embodiment, the second curve 118 may be swept along the first curve 116 with the first curve 116 and the second curve 118 in orthogonal planes. For example, the first curve 116 may be provided in a first plane, e.g., a plane defined by the Y and Z axis and the second curve may be provided in an orthogonal plane, e.g., a plane defined by the X and Z axis. As shown in
In another embodiment the load bearing surface 108 may have a contour and/or geometry resulting from a faired transition between the first curve string 116 and the second curve string 118. That is, the contour and/or geometry of the load bearing surface 108 may be provided by a smooth transition between the first curve string 116 and the second curve string 118 at each quadrant between the first curve string 116 and the second curve string 118. In similar embodiments, providing a faired transition between the first curve string and the second curve string may be achieved using various averaging techniques known for surface generation. Various such averaging techniques are commonly employed in commercial surfacing design and solid modeling computer assisted drafting software packages.
The implant 102 may include a relieved edge 120 around the perimeter of the load bearing surface 108. The relieved edge 120 may include a rounded over, e.g., radiused, edge, a chamfer edge, etc. According to one aspect, when the implant 102 is installed in an articular surface and replacing at least a portion of the articular surface, the relieved edge 120 around the load bearing surface 108 may reduce the presence of a hard edge at a transition between the implant and surrounding articular surface. A reduction and/or elimination of a hard edge at the transition between the load bearing surface of the implant and the surrounding articular surface may reduce and/or eliminate scraping of an interacting articular surface during articulation of the joint. Additionally, the relieved edge 120 may accommodate manufacturing and/or installation tolerances. The relieved edge 120 may permit smooth operation of the joint in a situation in which the implant 102 sits slightly proud above and/or slightly recessed below the surrounding articular surface.
With particular reference to
The location of the fixation element and the orientation of the load bearing surface to the fixation element may be selected to provide secure and stable anchoring of the implant relative to the articular surface. In an embodiment, the implant system may have a configuration wherein the fixation element may extend into the talus at an angle to, and/or spaced from, the lateral ridge. Such a configuration may provide secure anchoring of the implant and/or may reduce the occurrence of tear-out and/or crumbling of the talus resulting from weakening of the talus caused by extension of the fixation element along the lateral face adjacent the trochlear surface. Various additional and/or alternative configurations may also be employed.
Turning to
Similar to the preceding embodiment, the load bearing surface 204 of the implant 200 may be defined by a first curve string 208 and a second curve string 210. The contour and/or geometry of the load bearing surface 204 may be provided as the first curve string 208 lofted over the second curve string 210, and/or vice-versa. As previously described, the lofted load bearing surface 204 may be achieved by sweeping the first curve string 208 along the second curve string 210. In another embodiment, the load bearing surface of the implant may be provided using averaging algorithms to provide a faired surface in between the first curve string and the second curve string.
Yet another embodiment of an implant 300 is depicted with reference to
Referring to
In summary, according to one aspect, an implant may be provided for replacing a portion of an articular surface. The implant may include a load bearing surface having a contour defined by a first curve string based on a contour of the articular surface in a first plane and by a second curve string based on a contour of the articular surface in a second plane. The first and second planes may be planes which intersect one another. The implant may further include a bone contacting surface.
According to another aspect, the present disclosure may provide an implant system for replacing a portion of an articular surface. The implant system may include an implant having a load bearing surface which is defined by a first and a second curve string. The first curve string may be based on a contour of the articular surface in a first plane and the second curve string may be based on a contour of the articular surface in a second plane. The first and second planes may intersect one another. The implant system may also include a fixation element capable of engaging bone and capable of being coupled to the implant.
According to yet another aspect, the present disclosure may provide a method of forming an implant. The method may include measuring a contour of an articular surface in a first plane and measuring a contour of the articular surface in a second plane, in which the first and second planes are intersecting planes. The method may further include providing an implant body having a load bearing surface. The load bearing surface of the implant body may have a contour defined by the contour of the articular surface in the first plane and the contour of the articular surface in the second plane.
While the embodiments of the implant system illustrated and described above are provided in the context of an implant configured to replace at least a portion of the talus, patella, and humerus trochlea, an implant consistent with the present disclosure may be sized and shaped for replacing at least a portion of various other articular surfaces of the body. Accordingly, consistent with the present disclosure, an implant system may be provided to replace at least a portion of various articular surfaces in addition to a portion of an articular surface of a talus. For example, an implant herein may suitably be employed to replace a portion of an articular surface of a knee joint, a hip joint, a shoulder joint, etc. Accordingly, the foregoing example should not be construed as limiting on the application of an implant consistent with the present disclosure.
This application claims the benefit of U.S. provisional patent application Ser. No. 60/654,989, filed Feb. 22, 2005. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/373,463, filed Feb. 24, 2003 which is a continuation-in-part application of application Ser. No. 10/162,533, filed Jun. 4, 2002, now U.S. Pat. No. 6,679,917 which is itself a continuation-in-part application of application Ser. No. 10/024,077, filed Dec. 17, 2001, now U.S. Pat. No. 6,610,067 which is itself a continuation-in-part application of application Ser. No. 09/846,657, filed May 1, 2001, now U.S. Pat. No. 6,520,964 which claims priority from U.S. provisional application Ser. No. 60/201,049, filed May 1, 2000, all of which are incorporated herein for reference. The entire disclosures of all of the above-identified applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
992819 | Springer | May 1911 | A |
1451610 | Gestas | Apr 1923 | A |
2267925 | Johnston | Dec 1941 | A |
3176395 | Warner et al. | Apr 1965 | A |
3840905 | Deane | Oct 1974 | A |
4016651 | Kawahara et al. | Apr 1977 | A |
4034418 | Jackson et al. | Jul 1977 | A |
4044464 | Schiess et al. | Aug 1977 | A |
4158894 | Worrell | Jun 1979 | A |
4344192 | Imbert | Aug 1982 | A |
4433687 | Burke et al. | Feb 1984 | A |
4462120 | Rambert et al. | Jul 1984 | A |
4474177 | Whiteside | Oct 1984 | A |
4484570 | Sutter et al. | Nov 1984 | A |
4531517 | Forte et al. | Jul 1985 | A |
4535768 | Hourahane et al. | Aug 1985 | A |
4634720 | Dorman et al. | Jan 1987 | A |
4655752 | Honkanen et al. | Apr 1987 | A |
4661536 | Dorman et al. | Apr 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4664669 | Ohyabu et al. | May 1987 | A |
4673407 | Martin | Jun 1987 | A |
4693986 | Vit et al. | Sep 1987 | A |
4712545 | Honkanen | Dec 1987 | A |
4714478 | Fischer | Dec 1987 | A |
4719908 | Averill et al. | Jan 1988 | A |
4729761 | White | Mar 1988 | A |
4823780 | Odensten et al. | Apr 1989 | A |
4842604 | Dorman et al. | Jun 1989 | A |
4896663 | Vandewalls | Jan 1990 | A |
4911153 | Border | Mar 1990 | A |
4927421 | Goble et al. | May 1990 | A |
4938778 | Ohyabu et al. | Jul 1990 | A |
4940467 | Tronzo | Jul 1990 | A |
4976037 | Hines | Dec 1990 | A |
4979957 | Hodorek | Dec 1990 | A |
4989110 | Zevin et al. | Jan 1991 | A |
4990163 | Ducheyne et al. | Feb 1991 | A |
4997434 | Seedhom et al. | Mar 1991 | A |
4998938 | Ghajar et al. | Mar 1991 | A |
5007930 | Dorman et al. | Apr 1991 | A |
5019104 | Whiteside et al. | May 1991 | A |
5053049 | Campbell | Oct 1991 | A |
5100405 | McLaren | Mar 1992 | A |
5127920 | MacArthur | Jul 1992 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5201881 | Evans | Apr 1993 | A |
5211647 | Schmieding | May 1993 | A |
5224945 | Pannek, Jr. | Jul 1993 | A |
5255838 | Gladdish, Jr. et al. | Oct 1993 | A |
5263498 | Caspari et al. | Nov 1993 | A |
5263987 | Shah | Nov 1993 | A |
5282863 | Burton | Feb 1994 | A |
5290313 | Heldreth | Mar 1994 | A |
5312411 | Steele | May 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5314482 | Goodfellow et al. | May 1994 | A |
5336224 | Selman | Aug 1994 | A |
5354300 | Goble et al. | Oct 1994 | A |
5358525 | Fox et al. | Oct 1994 | A |
5360446 | Kennedy | Nov 1994 | A |
5374270 | McGuire et al. | Dec 1994 | A |
5383937 | Mikhail | Jan 1995 | A |
5387218 | Meswania | Feb 1995 | A |
5395401 | Bahler | Mar 1995 | A |
5409494 | Morgan | Apr 1995 | A |
5413608 | Keller | May 1995 | A |
5423822 | Hershberger | Jun 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5480443 | Elias | Jan 1996 | A |
5486178 | Hodge | Jan 1996 | A |
5509918 | Romano | Apr 1996 | A |
5520695 | Luckman | May 1996 | A |
5522900 | Hollister | Jun 1996 | A |
5534031 | Matsuzaki et al. | Jul 1996 | A |
5540696 | Booth, Jr. et al. | Jul 1996 | A |
5580353 | Mendes et al. | Dec 1996 | A |
5593450 | Scott et al. | Jan 1997 | A |
5595193 | Walus et al. | Jan 1997 | A |
5601550 | Esser | Feb 1997 | A |
5616146 | Murray | Apr 1997 | A |
5620055 | Javerlhac | Apr 1997 | A |
5624463 | Stone et al. | Apr 1997 | A |
5632745 | Schwartz | May 1997 | A |
5645598 | Brosnahan, III | Jul 1997 | A |
5681311 | Foley et al. | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5683400 | McGuire | Nov 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5683466 | Viatle | Nov 1997 | A |
5700264 | Zucherman et al. | Dec 1997 | A |
5700265 | Romano | Dec 1997 | A |
5702401 | Shaffer | Dec 1997 | A |
5702465 | Burkinshaw | Dec 1997 | A |
5702467 | Gabriel et al. | Dec 1997 | A |
5741266 | Moran et al. | Apr 1998 | A |
5769855 | Bertin et al. | Jun 1998 | A |
5769899 | Schwartz et al. | Jun 1998 | A |
5771310 | Vannah | Jun 1998 | A |
5776137 | Katz | Jul 1998 | A |
5782835 | Hart et al. | Jul 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5817095 | Smith | Oct 1998 | A |
5824105 | Ries et al. | Oct 1998 | A |
RE36020 | Moore et al. | Dec 1998 | E |
5882350 | Ralph et al. | Mar 1999 | A |
5885297 | Matsen, III | Mar 1999 | A |
5885298 | Herrington et al. | Mar 1999 | A |
5888210 | Draenert | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5895390 | Moran et al. | Apr 1999 | A |
5911126 | Massen | Jun 1999 | A |
5918604 | Whelan | Jul 1999 | A |
5919196 | Bobic et al. | Jul 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5928286 | Ashby et al. | Jul 1999 | A |
5964752 | Stone | Oct 1999 | A |
5964768 | Huebner | Oct 1999 | A |
5964808 | Blaha et al. | Oct 1999 | A |
5968050 | Torrie | Oct 1999 | A |
5989269 | Vibe-Hansen et al. | Nov 1999 | A |
5990382 | Fox | Nov 1999 | A |
5997543 | Truscott | Dec 1999 | A |
5997582 | Weiss | Dec 1999 | A |
6004323 | Park et al. | Dec 1999 | A |
6010502 | Bagby | Jan 2000 | A |
6015411 | Ohkoshi et al. | Jan 2000 | A |
6017348 | Hart et al. | Jan 2000 | A |
6019767 | Howell | Feb 2000 | A |
6045564 | Walen | Apr 2000 | A |
6052909 | Gardner | Apr 2000 | A |
6059831 | Braslow | May 2000 | A |
6071310 | Picha et al. | Jun 2000 | A |
6081741 | Hollis | Jun 2000 | A |
6086593 | Bonutti | Jul 2000 | A |
6102948 | Brosnahan, III | Aug 2000 | A |
6120542 | Camino et al. | Sep 2000 | A |
6132433 | Whelan | Oct 2000 | A |
6146385 | Torrie et al. | Nov 2000 | A |
6149654 | Johnson | Nov 2000 | A |
6159216 | Burkinshaw et al. | Dec 2000 | A |
6165223 | Metzger et al. | Dec 2000 | A |
6168626 | Hyon et al. | Jan 2001 | B1 |
6171340 | McDowell | Jan 2001 | B1 |
6193724 | Chan | Feb 2001 | B1 |
6206885 | Ghahremani et al. | Mar 2001 | B1 |
6217549 | Selmon et al. | Apr 2001 | B1 |
6217619 | Keller | Apr 2001 | B1 |
6235060 | Kubein-Meesenburg | May 2001 | B1 |
6251143 | Schwartz et al. | Jun 2001 | B1 |
6280474 | Cassidy et al. | Aug 2001 | B1 |
6299645 | Ogden | Oct 2001 | B1 |
6299648 | Doubler et al. | Oct 2001 | B1 |
6306142 | Johanson et al. | Oct 2001 | B1 |
6315798 | Ashby et al. | Nov 2001 | B1 |
6322500 | Sikora et al. | Nov 2001 | B1 |
6328752 | Sjostrom et al. | Dec 2001 | B1 |
6342075 | MacArthur | Jan 2002 | B1 |
6358251 | Mirza | Mar 2002 | B1 |
6358253 | Torrie et al. | Mar 2002 | B1 |
6375658 | Hangody et al. | Apr 2002 | B1 |
6383188 | Kuslich | May 2002 | B2 |
6415516 | Tirado et al. | Jul 2002 | B1 |
6443954 | Bramlet et al. | Sep 2002 | B1 |
6461373 | Wyman et al. | Oct 2002 | B2 |
6468309 | Lieberman | Oct 2002 | B1 |
6478178 | Ralph et al. | Nov 2002 | B2 |
6478801 | Ralph et al. | Nov 2002 | B1 |
6482210 | Skiba et al. | Nov 2002 | B1 |
6494914 | Brown | Dec 2002 | B2 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6527754 | Tallarida et al. | Mar 2003 | B1 |
6530956 | Mansmann | Mar 2003 | B1 |
6537274 | Chibrac et al. | Apr 2003 | B1 |
6540786 | Chibrac et al. | Apr 2003 | B2 |
6551322 | Lieberman | Apr 2003 | B1 |
6575982 | Bonutti | Jun 2003 | B1 |
6585666 | Suh et al. | Jul 2003 | B2 |
6591581 | Schmieding | Jul 2003 | B2 |
6599321 | Hyde et al. | Jul 2003 | B2 |
6607561 | Brannon | Aug 2003 | B2 |
6610067 | Tallarida | Aug 2003 | B2 |
6679917 | Ek | Jan 2004 | B2 |
6746451 | Middleton et al. | Jun 2004 | B2 |
6755837 | Ebner | Jun 2004 | B2 |
6770078 | Bonutti | Aug 2004 | B2 |
6783550 | MacArthur | Aug 2004 | B2 |
6783551 | Metzger | Aug 2004 | B1 |
6802864 | Tornier | Oct 2004 | B2 |
6814735 | Zirngibl | Nov 2004 | B1 |
6827722 | Schoenefeld | Dec 2004 | B1 |
6860902 | Reiley | Mar 2005 | B2 |
6884246 | Sonnabend et al. | Apr 2005 | B1 |
6923813 | Phillips et al. | Aug 2005 | B2 |
6926739 | O'Connor et al. | Aug 2005 | B1 |
6962577 | Tallarida et al. | Nov 2005 | B2 |
6969393 | Pinczewski et al. | Nov 2005 | B2 |
6989016 | Tallarida et al. | Jan 2006 | B2 |
7029479 | Tallarida | Apr 2006 | B2 |
7063717 | St. Pierre et al. | Jun 2006 | B2 |
7115131 | Engh et al. | Oct 2006 | B2 |
7156880 | Evans et al. | Jan 2007 | B2 |
7160305 | Schmieding | Jan 2007 | B2 |
7163541 | Ek | Jan 2007 | B2 |
7166133 | Evans et al. | Jan 2007 | B2 |
7192431 | Hangody et al. | Mar 2007 | B2 |
7204839 | Dreyfuss et al. | Apr 2007 | B2 |
7204854 | Guederian et al. | Apr 2007 | B2 |
7235107 | Evans et al. | Jun 2007 | B2 |
7238189 | Schmieding et al. | Jul 2007 | B2 |
7241316 | Evans et al. | Jul 2007 | B2 |
7264634 | Schmieding | Sep 2007 | B2 |
7303577 | Dean | Dec 2007 | B1 |
7311702 | Tallarida et al. | Dec 2007 | B2 |
7510558 | Tallarida | Mar 2009 | B2 |
7569059 | Cerundolo | Aug 2009 | B2 |
20010012967 | Mosseri | Aug 2001 | A1 |
20010039455 | Simon et al. | Nov 2001 | A1 |
20010056266 | Tallarida et al. | Dec 2001 | A1 |
20020055783 | Tallarida et al. | May 2002 | A1 |
20020106393 | Bianchi et al. | Aug 2002 | A1 |
20020138150 | Leclercq | Sep 2002 | A1 |
20020147498 | Tallarida et al. | Oct 2002 | A1 |
20030028196 | Bonutti | Feb 2003 | A1 |
20030060887 | Ek | Mar 2003 | A1 |
20030065391 | Re et al. | Apr 2003 | A1 |
20030105465 | Schmieding et al. | Jun 2003 | A1 |
20030120276 | Tallarida et al. | Jun 2003 | A1 |
20030120278 | Morgan et al. | Jun 2003 | A1 |
20030130741 | McMinn | Jul 2003 | A1 |
20030171756 | Fallin et al. | Sep 2003 | A1 |
20030181878 | Tallarida et al. | Sep 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20030225456 | Ek | Dec 2003 | A1 |
20030225457 | Justin et al. | Dec 2003 | A1 |
20040015170 | Tallarida et al. | Jan 2004 | A1 |
20040034359 | Schmieding et al. | Feb 2004 | A1 |
20040034437 | Schmieding | Feb 2004 | A1 |
20040082906 | Tallarida et al. | Apr 2004 | A1 |
20040106928 | Ek | Jun 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040138758 | Evans et al. | Jul 2004 | A1 |
20040148030 | Ek | Jul 2004 | A1 |
20040153087 | Sanford et al. | Aug 2004 | A1 |
20040193281 | Grimes | Sep 2004 | A1 |
20040199166 | Schmieding et al. | Oct 2004 | A1 |
20040230315 | Ek | Nov 2004 | A1 |
20040260303 | Carrison | Dec 2004 | A1 |
20050015153 | Goble et al. | Jan 2005 | A1 |
20050038520 | Binette et al. | Feb 2005 | A1 |
20050043808 | Felt et al. | Feb 2005 | A1 |
20050065612 | Winslow | Mar 2005 | A1 |
20050075642 | Felt | Apr 2005 | A1 |
20050143731 | Justin et al. | Jun 2005 | A1 |
20050143745 | Hodorek et al. | Jun 2005 | A1 |
20050143831 | Justin et al. | Jun 2005 | A1 |
20050154398 | Miniaci et al. | Jul 2005 | A1 |
20050209705 | Niederauer et al. | Sep 2005 | A1 |
20050229323 | Mills et al. | Oct 2005 | A1 |
20050287187 | Mansmann | Dec 2005 | A1 |
20060004461 | Justin et al. | Jan 2006 | A1 |
20060020343 | Ek | Jan 2006 | A1 |
20060052878 | Schmieding | Mar 2006 | A1 |
20060058744 | Tallarida et al. | Mar 2006 | A1 |
20060085006 | Ek | Apr 2006 | A1 |
20060149370 | Schmieding et al. | Jul 2006 | A1 |
20060190002 | Tallarida | Aug 2006 | A1 |
20060195112 | Ek | Aug 2006 | A1 |
20060229726 | Ek | Oct 2006 | A1 |
20070005143 | Ek | Jan 2007 | A1 |
20070073394 | Seedhom et al. | Mar 2007 | A1 |
20070093842 | Schmieding | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070118136 | Ek | May 2007 | A1 |
20070123921 | Ek | May 2007 | A1 |
20070179608 | Ek | Aug 2007 | A1 |
20070233128 | Schmieding et al. | Oct 2007 | A1 |
20070250067 | Schmieding et al. | Oct 2007 | A1 |
20070255399 | Eliasen et al. | Nov 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070288031 | Dreyfuss et al. | Dec 2007 | A1 |
20070299519 | Schmieding | Dec 2007 | A1 |
20080004659 | Burkhart et al. | Jan 2008 | A1 |
20080015709 | Evans et al. | Jan 2008 | A1 |
20080027430 | Montgomery et al. | Jan 2008 | A1 |
20080033443 | Sikora et al. | Feb 2008 | A1 |
20080086139 | Bourke et al. | Apr 2008 | A1 |
20080172125 | Ek | Jul 2008 | A1 |
20080183290 | Baird et al. | Jul 2008 | A1 |
20080188935 | Saylor et al. | Aug 2008 | A1 |
20080275512 | Albertirio et al. | Nov 2008 | A1 |
20080306483 | Iannarone | Dec 2008 | A1 |
20090198288 | Hoof et al. | Aug 2009 | A1 |
20090234452 | Steiner et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
2001262308 | Dec 2001 | AU |
2003262428 | Aug 2009 | AU |
2933174 | Apr 1980 | DE |
3516743 | Nov 1986 | DE |
0350780 | Jul 1989 | EP |
0350780 | Jan 1990 | EP |
0485678 | May 1992 | EP |
0327387 | Sep 1992 | EP |
0505634 | Sep 1992 | EP |
0903125 | Mar 1999 | EP |
0903127 | Mar 1999 | EP |
0661023 | Aug 2001 | EP |
1426013 | Sep 2004 | EP |
1278460 | Apr 2009 | EP |
2242068 | Mar 1975 | FR |
2642301 | Mar 1990 | FR |
2676917 | Dec 1992 | FR |
2718014 | Oct 1995 | FR |
2739151 | Mar 1997 | FR |
2372707 | Sep 2002 | GB |
61502029 | Sep 1986 | JP |
63300758 | Dec 1988 | JP |
3504932 | Oct 1991 | JP |
H03-092328 | Nov 1992 | JP |
518511 | Mar 1993 | JP |
06339490 | Dec 1994 | JP |
11244315 | Sep 1999 | JP |
2001525210 | Dec 2001 | JP |
2002291779 | Oct 2002 | JP |
2003534096 | Nov 2003 | JP |
WO8803781 | Jun 1988 | WO |
8909578 | Oct 1989 | WO |
9427507 | Dec 1994 | WO |
9624304 | Aug 1996 | WO |
WO9722306 | Jun 1997 | WO |
9920192 | Apr 1999 | WO |
0105336 | Jan 2001 | WO |
0166021 | Sep 2001 | WO |
0166022 | Sep 2001 | WO |
0182677 | Nov 2001 | WO |
0191648 | Dec 2001 | WO |
0191672 | Dec 2001 | WO |
02086180 | Oct 2002 | WO |
03047470 | Jun 2003 | WO |
03051210 | Jun 2003 | WO |
03051211 | Jun 2003 | WO |
03061516 | Jul 2003 | WO |
2004014261 | Feb 2004 | WO |
2004026170 | Apr 2004 | WO |
2004075777 | Sep 2004 | WO |
2005051231 | Jun 2005 | WO |
WO2005051231 | Jun 2005 | WO |
2006004885 | Jan 2006 | WO |
2006091686 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060229726 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60201049 | May 2000 | US | |
60654989 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10373463 | Feb 2003 | US |
Child | 11359891 | US | |
Parent | 10162533 | Jun 2002 | US |
Child | 10373463 | US | |
Parent | 10024077 | Dec 2001 | US |
Child | 10162533 | US | |
Parent | 09846657 | May 2001 | US |
Child | 10024077 | US |