Articular surface implant

Information

  • Patent Grant
  • 7713305
  • Patent Number
    7,713,305
  • Date Filed
    Wednesday, February 22, 2006
    18 years ago
  • Date Issued
    Tuesday, May 11, 2010
    14 years ago
Abstract
An implant for replacing a portion of an articular surface including a load bearing surface and a bone contacting region. The load bearing surface had a contour defined by a first curve string which is based on a contour of the articular surface being replaced in a first plane. The load bearing surface of the implant is further defined by the contour of the articular surface being replaced in a second plane, in which the first and second planes are mutually intersection planes.
Description
FIELD

The present disclosure is directed at a system and method for accessing an articular joint surface. The present disclosure is further directed at a method and system for replacing at least a portion of an articular surface.


BACKGROUND

Articular cartilage, found at the ends of articulating bone in the body, is typically composed of hyaline cartilage, which has many unique properties that allow it to function effectively as a smooth and lubricious load bearing surface. Hyaline cartilage problems, particularly in knee, hip joints, and should joints, are generally caused by disease such as occurs with rheumatoid arthritis or wear and tear (osteoarthritis), or secondary to an injury, either acute (sudden), or recurrent and chronic (ongoing). Such cartilage disease or deterioration can compromise the articular surface causing pain and eventually, loss of joint movement. As a result, various methods have been developed to treat and repair damaged or destroyed articular cartilage.


For smaller defects, traditional options for this type of problem include leaving the lesions or injury alone and living with it, or performing a procedure called abrasion arthroplasty or abrasion chondralplasty. The principle behind this procedure is to attempt to stimulate natural healing. The bone surface is drilled using a high speed rotary burr or shaving device and the surgeon removes about 1 mm of bone from the surface of the lesion. This creates an exposed subchondral bone bed that will bleed and will initiate a fibrocartilage healing response. One problem with this procedure is that the exposed bone is not as smooth as it originally was following the drilling and burring which tends to leave a series of ridges and valleys, affecting the durability of the fibrocartilage response. Further, although this procedure can provide good short term results, (1-3 years), fibrocartilage is seldom able to support long-term weight bearing and is prone to wear, soften and deteriorate.


Another procedure, called Microfracture incorporates some of the principles of drilling, abrasion and chondralplasty. During the procedure, the calcified cartilage layer of the chondral defect is removed. Several pathways or “microfractures” are created to the subchondral bleeding bone bed by impacting a metal pick or surgical awl at a minimum number of locations within the lesion. By establishing bleeding in the lesion and by creating a pathway to the subchondral bone, a fibrocartilage healing response is initiated, forming a replacement surface. Results for this technique may be expected to be similar to abrasion chondralplasty.


Another means used to treat damaged articular cartilage is a cartilage transplant. Essentially, this procedure involves moving cartilage from an outside source or other knee or from within the same knee into the defect. Typically, this is done by transferring a peg of cartilage with underlying bone and fixing it in place with a screw or pin or by a press fit. Although useful for smaller defects, large defects present a problem, as this procedure requires donor pegs proportionate to the recipient bed. Large diameter lesions may exceed the capacity to borrow from within the same knee joint and rule out borrowing from another source.


Larger defects, however, generally require a more aggressive intervention. Typically treatment requires replacing the articular surface with an implant or prosthetic having an outer layer that that is polished or composed of a material that provides a lubricious load bearing surface in approximation of an undamaged cartilage surface. Replacement of the articular surface requires first cutting, boring, or reaming the damaged area to remove the damaged cartilage. A recess to receive an implant or prosthetic is formed at the damaged site. The implant or prosthetic is then secured to the bone in an appropriate position in the recess.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter of the present disclosure is set forth by description of embodiments consistent therewith, which description should be considered in combination with the accompanying drawings, wherein:



FIG. 1 is an exploded perspective view of an embodiment of an implant system including an implant consistent with the present disclosure and a fixation element that may be used in conjunction with the implant;



FIG. 2 is a perspective view of the embodiment of an implant system shown in FIG. 1 showing the implant assembled to the fixation element;



FIG. 3 is a perspective view of another embodiment of an implant system consistent with the present disclosure including an implant and a fixation element;



FIG. 4 illustrates the implant system shown in FIG. 3 from another perspective;



FIG. 5 shows an ankle including a talus implant consistent with the present disclosure;



FIG. 6 shows an ankle including a talus implant consistent with the present disclosure;



FIG. 7 shows an ankle including a talus implant consistent with the present disclosure;



FIG. 8 is a perspective view of another implant consistent with the present disclosure;



FIG. 9 shows the implant of FIG. 8 from another perspective;



FIG. 10 is a perspective view of yet another implant consistent with the present disclosure;



FIG. 11 shows the implant of FIG. 10 from another perspective; and



FIG. 12 shows of a trochlear implant consistent with the present disclosure.





DESCRIPTION

By way of overview, the present disclosure may provide an implant for replacing at least a portion of an articular surface. Furthermore, the present disclosure is also directed at a general design methodology for developing and producing a surface contour of an implant for replacing at least a portion of an articular surface. An implant consistent with the present disclosure may be provided having a load-bearing surface that is adapted to interact with a cooperating articulating feature. The cooperating articulating feature may include, for example, a cooperating articular surface, a cooperating surface of an implant replacing at least a portion of a cooperating articular surface, etc. In one embodiment, a portion of an articular surface to be replaced by an articular surface implant herein may be identified and replaced using a minimally invasive surgical procedure, for example, using diagnostic and/or surgical arthroscopy procedures. Generally, an implant according to the present disclosure may have a load bearing surface that may be based on an original geometry of an articular surface to be replaced by the implant.


Referring to FIGS. 1 through 4, an embodiment of an implant system 100 is schematically depicted in various views. The implant system 100 may be employed to replace at least a portion of an articular surface, e.g., at least a portion of an articular surface of a joint. As shown, the implant system 100 may generally include an articular surface implant 102 and a fixation element 104. The fixation element 104 may be capable of coupling the implant 102 to bone and/or other tissue in the region of the portion of the articular surface to be replaced by the implant 102. As shown in the illustrated embodiment of FIG. 1, the fixation element 104 may be provided as a separate component from the implant 102. In such an embodiment, the fixation element 104 may be capable of being coupled to the implant 102 and may be capable of being coupled to bone and/or tissue in the general region of the portion of the articular surface to be replaced by the implant system 100.


The articular surface implant 102 may generally include an implant body 106. The implant body 106 may have a load bearing surface 108 and a bone contacting region 110. The load bearing surface 108 may generally be configured to interact with a cooperating articulating feature, such as a cooperating articular surface, a cooperating articular surface implant, etc. In one embodiment, the implant body 106 may be at least partially received in an implant site provided by excising at least a portion of the articular surface and underlying bone. In such an embodiment, the load bearing surface 108 may be disposed generally replacing at least a portion of the excised articular surface. In an embodiment herein, the bone contacting region 110 may engage and/or contact subchondral within and/or forming at least a portion of a bottom of the implant site.


As mentioned previously, and consistent with the illustrated embodiment, the fixation element 104 maybe provided as a separate component from the implant 102. Providing the fixation element 104 as a separate component from the implant 102 may facilitate installation of the implant system 100. The fixation element 104 may first be coupled to bone and/or other tissue in and/or around the implant site. The implant 102 may then be positioned relative to the surrounding articular surface and the implant 102 may be coupled to the fixation element 104. In such a manner, the implant 102 may be secured in position relative to the articular surface.


In the illustrated embodiment, the fixation element 104 is depicted as a screw-type feature. Consistent with this illustrated embodiment, the fixation element 104 may be threadably engaged with bone and/or other tissue in and/or around the implant site. In addition to engaging bone and/or other tissue, a screw-type fixation element 104 may also facilitate depth positioning of the fixation element 104, and thereby depth positioning of the implant 102, relative to the articular surface. Suitable screw-type fixation elements are known in the art, for example, from U.S. Pat. No. 6,520,964, issued on Feb. 18, 2003. Consistent with various alternative embodiments, the fixation element may be configured having a barbed member or other similar features capable of engaging bone and/or other tissue in and/or around the implant site. In still other embodiments, the fixation element may include features that may be adhesively coupled to bone and/or other tissue in and/or around the implant site.


As illustrated, in an embodiment consistent with the present disclosure, the implant 102 and the fixation element 104 may be provided as separate components. The implant 102 may be coupled to the fixation element 104 to, at least in part, secure the implant 102 in position in the implant site. The implant 102 and the fixation element 104 may, accordingly, include interacting features wherein the implant 102 and fixation element 104 are capable of being coupled to one another. An embodiment of an implant 102 may be provided including a post 112 extending from the implant body 106. The fixation element 104 may include an opening 114 capable of receiving at least a portion of the post 112. In one such embodiment, the post 112 and the opening 114 may be provided having complimentary precision tapers. The implant 102 and the fixation element 104 may be coupled to one another by inserting the post 112 into the opening 114 and pressing the features together, e.g., as by applying an impact force. The precision taper of the post 112 and the opening 114 may achieve a secure frictional interaction between the implant 102 and the fixation element 104.


Various additional and/or alternative features and/or arrangements may be utilized for coupling the implant and the fixation element within the context of the present disclosure. Furthermore, in various embodiments in which the implant and the fixation element are provided as separate components, the implant and the fixation element may be assembled to one another prior to installation into an implant site. Consistent with some such embodiments, the fixation element may be configured to engage and/or to be coupled to bone and/or tissue in and/or around the implant site during installation. In one such embodiment, the fixation element may include a barbed post or similar feature. According to still further embodiments, the implant and the fixation element may be provided as a unitary structure.


The illustrated implant system 100 depicted in FIGS. 1 through 7 shows an implant 102 configured to replace a portion of the articular surface of the talus. Particularly, the illustrated implant system 100 shown in FIGS. 1 through 7 is configured to replace at least a portion of the lateral ridge of the trochlear surface of the talus, which articulates with the tibia. Damage to the lateral ridge of the trochlear surface of the talus may include fracture or shearing off of a portion of the ridge resulting from trauma. From a general perspective, the load bearing surface 108 may have a contour and/or geometry that may be capable of cooperating with an interacting articulating feature, including a cooperating articular surface, at least a portion of an implant replacing at least a portion of a cooperating articular surface, etc. In the context of the illustrated embodiment, the load bearing surface 108 may have a contour and/or geometry that may be capable of cooperating with an interacting articular surface of a tibia. According to a related embodiment in the context of the illustrated embodiment, the load bearing surface 108 of the implant 102 may include a geometry and/or contour that may be capable of cooperating with an interacting surface of an implant replacing at least a portion of an articular surface of a tibia.


Consistent with the foregoing, an implant may include a load bearing surface having a contour and/or geometry that may be capable of cooperating with an interacting articulating surface. In one embodiment, the load bearing surface may have a contour and/or geometry that may generally approximate and/or be based on a contour and/or geometry of the portion of the articular surface being replaced by the implant. In an embodiment, the portion of the articular surface being replaced may be mapped using various know techniques to quantitatively and/or qualitatively assess the contour and/or geometry of the portion of the articular surface that may be replaced by the implant. An implant may be constructed and/or selected from a set of implants having various contours and/or geometries. Consistent with such an embodiment, the load bearing surface of the implant may be based on the contour and/or geometry of the portion of the articular surface to be replaced by the implant. In an alternative embodiment, an implant may be fabricated or selected from a set of standard size and/or shape implants to provide a general approximation of the articular surface being replaced. Selection and/or fabrication of an implant may rely on various degrees of quantitative reference to the articular surface being replaced, including no quantitative reference to the articular surface.


Referring to FIGS. 1 through 4, according to one aspect, a contour and/or geometry of the load bearing surface 108 of an implant 102 may generally be defined by a first curve string 116 and a second curve string 118. As used in any embodiment herein, a curve string may include a single curve and/or a plurality of curves joined together curves in a plane. The first curve string 116 and the second curve string 118 generally defining the contour and/or geometry of the load bearing surface 108 may be disposed in intersecting planes. In the illustrated embodiment, the plane of the first curve string 116 and the plane of the second curve string 118 may generally be mutually perpendicular. Various other angular relationships of the planes including the first curve string 116 and the second curve string 118 may also suitably be employed herein.


A design methodology capable of achieving a load bearing surface of an implant herein may include providing a curve string defining a contour and/or geometry of the load bearing surface and sweeping the curve string along another curve string defining an intersecting contour and/or geometry of the load bearing surface. As alluded to above, curve strings defining the contour and/or geometry of the load bearing surface may be derived based on mapped curves and/or approximations of curves of a portion of an articular surface to be replace, a portion of a cooperating articulating feature, etc. In one such embodiment, measurements of the contour and/or geometry of the portion of the articular surface to be replaced may be taken. Measurement of the contour and/or geometry of the portion of the articular surface to be replaced by the implant may be achieved using direct contact contour mapping of the articular surface, e.g., measuring relative heights of various regions of the articular surface, and/or using various imaging techniques, such as radiological imaging techniques.


According to one embodiment, the load bearing surface 108 may have a contour and/or geometry corresponding to the second curve string 118 lofted over the first curve string 116. In one such embodiment, the contour and/or geometry of the load bearing surface 108 may be achieved by sweeping the second curve string 118 along the first curve 116 while maintaining the second curve 118 normal to the first curve 116. In such an embodiment, the first curve 116 may be provided in a first plane, e.g. a plane defined by the X and Z axis. The second curve 118 may be provided in a perpendicular plane. The angular pitch of the perpendicular plane relative to the first plane may vary along the first curve 116 to maintain the second curve 118 normal to the first curve 116 along the sweep of the first curve 116. According to another embodiment, the second curve 118 may be swept along the first curve 116 with the first curve 116 and the second curve 118 in orthogonal planes. For example, the first curve 116 may be provided in a first plane, e.g., a plane defined by the Y and Z axis and the second curve may be provided in an orthogonal plane, e.g., a plane defined by the X and Z axis. As shown in FIGS. 3 and 4, an embodiment of an implant provided consistent with the preceding design methodology may be generally symmetrical in each of the planes including the first curve string and the second curve string.


In another embodiment the load bearing surface 108 may have a contour and/or geometry resulting from a faired transition between the first curve string 116 and the second curve string 118. That is, the contour and/or geometry of the load bearing surface 108 may be provided by a smooth transition between the first curve string 116 and the second curve string 118 at each quadrant between the first curve string 116 and the second curve string 118. In similar embodiments, providing a faired transition between the first curve string and the second curve string may be achieved using various averaging techniques known for surface generation. Various such averaging techniques are commonly employed in commercial surfacing design and solid modeling computer assisted drafting software packages.


The implant 102 may include a relieved edge 120 around the perimeter of the load bearing surface 108. The relieved edge 120 may include a rounded over, e.g., radiused, edge, a chamfer edge, etc. According to one aspect, when the implant 102 is installed in an articular surface and replacing at least a portion of the articular surface, the relieved edge 120 around the load bearing surface 108 may reduce the presence of a hard edge at a transition between the implant and surrounding articular surface. A reduction and/or elimination of a hard edge at the transition between the load bearing surface of the implant and the surrounding articular surface may reduce and/or eliminate scraping of an interacting articular surface during articulation of the joint. Additionally, the relieved edge 120 may accommodate manufacturing and/or installation tolerances. The relieved edge 120 may permit smooth operation of the joint in a situation in which the implant 102 sits slightly proud above and/or slightly recessed below the surrounding articular surface.


With particular reference to FIGS. 5 through 7, the load bearing surface 108 of the implant is depicted. As mentioned previously the illustrated implant system 100 may replace a portion of the lateral trochlear ridge of the talus. In one embodiment, an implant site may be prepared using a rotating excision tool, e.g., an excision blade rotating about an axis. Accordingly, the implant site may include a circular excision projected along the axis of rotation of the excision blade. In such an embodiment, the cross-sectional geometry of the implant may generally correspond to the intersection of a projected circular excision with the articular surface of the talus. Various additional and/or alternative excision site preparation tools and techniques are also be contemplated by the present disclosure, along with the attendant changes to the implant configuration.


The location of the fixation element and the orientation of the load bearing surface to the fixation element may be selected to provide secure and stable anchoring of the implant relative to the articular surface. In an embodiment, the implant system may have a configuration wherein the fixation element may extend into the talus at an angle to, and/or spaced from, the lateral ridge. Such a configuration may provide secure anchoring of the implant and/or may reduce the occurrence of tear-out and/or crumbling of the talus resulting from weakening of the talus caused by extension of the fixation element along the lateral face adjacent the trochlear surface. Various additional and/or alternative configurations may also be employed.


Turning to FIGS. 8 and 9, another embodiment of an implant 200 is shown. The illustrated implant 200 is generally configured to replace at least a portion of an articular surface of a patella. Similar to the previously described embodiment, the implant 200 may generally include an implant body 202 having a load bearing surface 204. The load bearing surface 204 of the illustrated implant 200 may have a contour and/or geometry that may suitably replace at least a portion of an articular surface of a patella. The implant 200 may also include a post 206 capable of coupling with a fixation element (not shown) for anchoring the implant 200 to an articular surface and/or underlying bone. Various other features in addition to, or as an alternative to, a post may be employed for coupling the implant 200 to a fixation element. Furthermore, an embodiment of an implant herein may be provided including an integral fixation element. In such an embodiment, the feature for coupling to a fixation element may optionally be excluded.


Similar to the preceding embodiment, the load bearing surface 204 of the implant 200 may be defined by a first curve string 208 and a second curve string 210. The contour and/or geometry of the load bearing surface 204 may be provided as the first curve string 208 lofted over the second curve string 210, and/or vice-versa. As previously described, the lofted load bearing surface 204 may be achieved by sweeping the first curve string 208 along the second curve string 210. In another embodiment, the load bearing surface of the implant may be provided using averaging algorithms to provide a faired surface in between the first curve string and the second curve string.


Yet another embodiment of an implant 300 is depicted with reference to FIGS. 10 and 11. The illustrated implant 300 may be capable of replacing at least a portion of a trochlear articular surface, for example a trochlear articular surface of a humerus, etc. As with the previously described embodiments, the implant 300 may generally include an implant body 302 having a load bearing surface 304. The load bearing surface 304 may be defined by a first curve string 306 and a second curve string 308. The load bearing surface 304 may be provided by sweeping the second curve string 308 along the first curve string 306 consistent with the previously described design methodology. Furthermore, the load bearing surface may also be provided as a faired surface defined by a first and second intersecting curve string.


Referring to FIG. 12, a model articular surface is shown including an implant capable of replacing at least a portion of a trochlear surface is shown. The implant depicted in FIG. 12 may be generally consistent with the embodiment described with reference to FIGS. 10 and 11. The load bearing surface of the implant, visible in the photograph of the model, may generally have a contour and/or geometry that may generally correspond to the portion of the articular surface being replaced by the implant. In such an embodiment, the implant may provide smooth interaction with a cooperating articular surface, such as depicted in FIG. 12. As previously described, in one embodiment an implant site may be created in an articular surface using a rotating excision tool. A rotating excision tool may provide a circular cutting path that may be projected into the articular surface and/or the underlying subchondral bone. The shape of the implant may, in such an embodiment, generally correspond to the intersection of the circular cutting path and the articular surface.


In summary, according to one aspect, an implant may be provided for replacing a portion of an articular surface. The implant may include a load bearing surface having a contour defined by a first curve string based on a contour of the articular surface in a first plane and by a second curve string based on a contour of the articular surface in a second plane. The first and second planes may be planes which intersect one another. The implant may further include a bone contacting surface.


According to another aspect, the present disclosure may provide an implant system for replacing a portion of an articular surface. The implant system may include an implant having a load bearing surface which is defined by a first and a second curve string. The first curve string may be based on a contour of the articular surface in a first plane and the second curve string may be based on a contour of the articular surface in a second plane. The first and second planes may intersect one another. The implant system may also include a fixation element capable of engaging bone and capable of being coupled to the implant.


According to yet another aspect, the present disclosure may provide a method of forming an implant. The method may include measuring a contour of an articular surface in a first plane and measuring a contour of the articular surface in a second plane, in which the first and second planes are intersecting planes. The method may further include providing an implant body having a load bearing surface. The load bearing surface of the implant body may have a contour defined by the contour of the articular surface in the first plane and the contour of the articular surface in the second plane.


While the embodiments of the implant system illustrated and described above are provided in the context of an implant configured to replace at least a portion of the talus, patella, and humerus trochlea, an implant consistent with the present disclosure may be sized and shaped for replacing at least a portion of various other articular surfaces of the body. Accordingly, consistent with the present disclosure, an implant system may be provided to replace at least a portion of various articular surfaces in addition to a portion of an articular surface of a talus. For example, an implant herein may suitably be employed to replace a portion of an articular surface of a knee joint, a hip joint, a shoulder joint, etc. Accordingly, the foregoing example should not be construed as limiting on the application of an implant consistent with the present disclosure.

Claims
  • 1. An implant for replacing a portion of an articular surface comprising: a load bearing surface having a contour defined by a first curve string based on a contour of said articular surface in a first plane and a second curve string based on a contour of said articular surface in at least a second plane, wherein said second curve string is swept along said first curve string while maintaining said second curve string normal to said first curve string; anda bone contacting surface;wherein said first curve string is based on a plurality of measurements of the articular surface in the first plane and wherein said second curve string is based on a plurality of measurements of the articular surface in the second plane.
  • 2. An implant according to claim 1, wherein said first and second planes are orthogonal.
  • 3. An implant according to claim 1, further comprising an attachment feature capable of coupling to one of a fixation element or an implant site.
  • 4. An implant according to claim 3, wherein said attachment feature comprises a tapered post capable of engaging a fixation element.
  • 5. An implant according to claim 1, wherein said load bearing surface is relieved around at least a portion of a perimeter of said load bearing surface.
  • 6. An implant system for replacing a portion of an articular surface comprising; an implant having a load bearing surface defined by a first curve string based on a contour of said articular surface in a first plane and a second curve string based on a contour of said articular surface in a second plane, said first and second planes intersecting, wherein said second curve string is swept along said first curve string while maintaining said second curve string normal to said first curve string; anda fixation element capable of engaging bone and capable of being coupled to said implant;wherein said first curve string is based on a plurality of measurements of the articular surface in the first plane and wherein said second curve string is based on a plurality of measurements of the articular surface in the second plane.
  • 7. A system according to claim 6, wherein said first and second planes are orthogonal.
  • 8. A system according to claim 6, wherein said fixation element comprises a threaded region capable of engaging bone.
  • 9. A system according to claim 6, wherein said fixation element comprises an opening and said implant comprises a protrusion capable of being at least partially received in said opening for coupling said implant and said fixation element.
  • 10. A method of forming an implant comprising: measuring a contour of an articular surface in a first plane based on a plurality of measurements of the articular surface in the first plane;measuring a contour of said articular surface in a second plane based on a plurality of measurements of the articular surface in the second plane, andproviding an implant body having a load bearing surface, said load bearing surface having a contour defined by said contour of said articular surface in said second plane swept along said contour of said articular surface in said first plane while maintaining said second plane normal to said first plane.
  • 11. A method according to claim 10, wherein said first and second planes are orthogonal.
  • 12. A method according to claim 10, said implant body further comprising a bone contacting surface.
  • 13. A method according to claim 10, wherein measuring said contour of said articular surface in one of said first plane and said second plane comprises one of direct contact contour mapping and radiographic imaging.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application Ser. No. 60/654,989, filed Feb. 22, 2005. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/373,463, filed Feb. 24, 2003 which is a continuation-in-part application of application Ser. No. 10/162,533, filed Jun. 4, 2002, now U.S. Pat. No. 6,679,917 which is itself a continuation-in-part application of application Ser. No. 10/024,077, filed Dec. 17, 2001, now U.S. Pat. No. 6,610,067 which is itself a continuation-in-part application of application Ser. No. 09/846,657, filed May 1, 2001, now U.S. Pat. No. 6,520,964 which claims priority from U.S. provisional application Ser. No. 60/201,049, filed May 1, 2000, all of which are incorporated herein for reference. The entire disclosures of all of the above-identified applications are incorporated herein by reference.

US Referenced Citations (296)
Number Name Date Kind
992819 Springer May 1911 A
1451610 Gestas Apr 1923 A
2267925 Johnston Dec 1941 A
3176395 Warner et al. Apr 1965 A
3840905 Deane Oct 1974 A
4016651 Kawahara et al. Apr 1977 A
4034418 Jackson et al. Jul 1977 A
4044464 Schiess et al. Aug 1977 A
4158894 Worrell Jun 1979 A
4344192 Imbert Aug 1982 A
4433687 Burke et al. Feb 1984 A
4462120 Rambert et al. Jul 1984 A
4474177 Whiteside Oct 1984 A
4484570 Sutter et al. Nov 1984 A
4531517 Forte et al. Jul 1985 A
4535768 Hourahane et al. Aug 1985 A
4634720 Dorman et al. Jan 1987 A
4655752 Honkanen et al. Apr 1987 A
4661536 Dorman et al. Apr 1987 A
4662371 Whipple et al. May 1987 A
4664669 Ohyabu et al. May 1987 A
4673407 Martin Jun 1987 A
4693986 Vit et al. Sep 1987 A
4712545 Honkanen Dec 1987 A
4714478 Fischer Dec 1987 A
4719908 Averill et al. Jan 1988 A
4729761 White Mar 1988 A
4823780 Odensten et al. Apr 1989 A
4842604 Dorman et al. Jun 1989 A
4896663 Vandewalls Jan 1990 A
4911153 Border Mar 1990 A
4927421 Goble et al. May 1990 A
4938778 Ohyabu et al. Jul 1990 A
4940467 Tronzo Jul 1990 A
4976037 Hines Dec 1990 A
4979957 Hodorek Dec 1990 A
4989110 Zevin et al. Jan 1991 A
4990163 Ducheyne et al. Feb 1991 A
4997434 Seedhom et al. Mar 1991 A
4998938 Ghajar et al. Mar 1991 A
5007930 Dorman et al. Apr 1991 A
5019104 Whiteside et al. May 1991 A
5053049 Campbell Oct 1991 A
5100405 McLaren Mar 1992 A
5127920 MacArthur Jul 1992 A
5192291 Pannek, Jr. Mar 1993 A
5201881 Evans Apr 1993 A
5211647 Schmieding May 1993 A
5224945 Pannek, Jr. Jul 1993 A
5255838 Gladdish, Jr. et al. Oct 1993 A
5263498 Caspari et al. Nov 1993 A
5263987 Shah Nov 1993 A
5282863 Burton Feb 1994 A
5290313 Heldreth Mar 1994 A
5312411 Steele May 1994 A
5314478 Oka et al. May 1994 A
5314482 Goodfellow et al. May 1994 A
5336224 Selman Aug 1994 A
5354300 Goble et al. Oct 1994 A
5358525 Fox et al. Oct 1994 A
5360446 Kennedy Nov 1994 A
5374270 McGuire et al. Dec 1994 A
5383937 Mikhail Jan 1995 A
5387218 Meswania Feb 1995 A
5395401 Bahler Mar 1995 A
5409494 Morgan Apr 1995 A
5413608 Keller May 1995 A
5423822 Hershberger Jun 1995 A
5458643 Oka et al. Oct 1995 A
5480443 Elias Jan 1996 A
5486178 Hodge Jan 1996 A
5509918 Romano Apr 1996 A
5520695 Luckman May 1996 A
5522900 Hollister Jun 1996 A
5534031 Matsuzaki et al. Jul 1996 A
5540696 Booth, Jr. et al. Jul 1996 A
5580353 Mendes et al. Dec 1996 A
5593450 Scott et al. Jan 1997 A
5595193 Walus et al. Jan 1997 A
5601550 Esser Feb 1997 A
5616146 Murray Apr 1997 A
5620055 Javerlhac Apr 1997 A
5624463 Stone et al. Apr 1997 A
5632745 Schwartz May 1997 A
5645598 Brosnahan, III Jul 1997 A
5681311 Foley et al. Oct 1997 A
5682886 Delp et al. Nov 1997 A
5683400 McGuire Nov 1997 A
5683465 Shinn et al. Nov 1997 A
5683466 Viatle Nov 1997 A
5700264 Zucherman et al. Dec 1997 A
5700265 Romano Dec 1997 A
5702401 Shaffer Dec 1997 A
5702465 Burkinshaw Dec 1997 A
5702467 Gabriel et al. Dec 1997 A
5741266 Moran et al. Apr 1998 A
5769855 Bertin et al. Jun 1998 A
5769899 Schwartz et al. Jun 1998 A
5771310 Vannah Jun 1998 A
5776137 Katz Jul 1998 A
5782835 Hart et al. Jul 1998 A
5810851 Yoon Sep 1998 A
5817095 Smith Oct 1998 A
5824105 Ries et al. Oct 1998 A
RE36020 Moore et al. Dec 1998 E
5882350 Ralph et al. Mar 1999 A
5885297 Matsen, III Mar 1999 A
5885298 Herrington et al. Mar 1999 A
5888210 Draenert Mar 1999 A
5893889 Harrington Apr 1999 A
5895390 Moran et al. Apr 1999 A
5911126 Massen Jun 1999 A
5918604 Whelan Jul 1999 A
5919196 Bobic et al. Jul 1999 A
5928239 Mirza Jul 1999 A
5928286 Ashby et al. Jul 1999 A
5964752 Stone Oct 1999 A
5964768 Huebner Oct 1999 A
5964808 Blaha et al. Oct 1999 A
5968050 Torrie Oct 1999 A
5989269 Vibe-Hansen et al. Nov 1999 A
5990382 Fox Nov 1999 A
5997543 Truscott Dec 1999 A
5997582 Weiss Dec 1999 A
6004323 Park et al. Dec 1999 A
6010502 Bagby Jan 2000 A
6015411 Ohkoshi et al. Jan 2000 A
6017348 Hart et al. Jan 2000 A
6019767 Howell Feb 2000 A
6045564 Walen Apr 2000 A
6052909 Gardner Apr 2000 A
6059831 Braslow May 2000 A
6071310 Picha et al. Jun 2000 A
6081741 Hollis Jun 2000 A
6086593 Bonutti Jul 2000 A
6102948 Brosnahan, III Aug 2000 A
6120542 Camino et al. Sep 2000 A
6132433 Whelan Oct 2000 A
6146385 Torrie et al. Nov 2000 A
6149654 Johnson Nov 2000 A
6159216 Burkinshaw et al. Dec 2000 A
6165223 Metzger et al. Dec 2000 A
6168626 Hyon et al. Jan 2001 B1
6171340 McDowell Jan 2001 B1
6193724 Chan Feb 2001 B1
6206885 Ghahremani et al. Mar 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217619 Keller Apr 2001 B1
6235060 Kubein-Meesenburg May 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6299645 Ogden Oct 2001 B1
6299648 Doubler et al. Oct 2001 B1
6306142 Johanson et al. Oct 2001 B1
6315798 Ashby et al. Nov 2001 B1
6322500 Sikora et al. Nov 2001 B1
6328752 Sjostrom et al. Dec 2001 B1
6342075 MacArthur Jan 2002 B1
6358251 Mirza Mar 2002 B1
6358253 Torrie et al. Mar 2002 B1
6375658 Hangody et al. Apr 2002 B1
6383188 Kuslich May 2002 B2
6415516 Tirado et al. Jul 2002 B1
6443954 Bramlet et al. Sep 2002 B1
6461373 Wyman et al. Oct 2002 B2
6468309 Lieberman Oct 2002 B1
6478178 Ralph et al. Nov 2002 B2
6478801 Ralph et al. Nov 2002 B1
6482210 Skiba et al. Nov 2002 B1
6494914 Brown Dec 2002 B2
6520964 Tallarida et al. Feb 2003 B2
6527754 Tallarida et al. Mar 2003 B1
6530956 Mansmann Mar 2003 B1
6537274 Chibrac et al. Apr 2003 B1
6540786 Chibrac et al. Apr 2003 B2
6551322 Lieberman Apr 2003 B1
6575982 Bonutti Jun 2003 B1
6585666 Suh et al. Jul 2003 B2
6591581 Schmieding Jul 2003 B2
6599321 Hyde et al. Jul 2003 B2
6607561 Brannon Aug 2003 B2
6610067 Tallarida Aug 2003 B2
6679917 Ek Jan 2004 B2
6746451 Middleton et al. Jun 2004 B2
6755837 Ebner Jun 2004 B2
6770078 Bonutti Aug 2004 B2
6783550 MacArthur Aug 2004 B2
6783551 Metzger Aug 2004 B1
6802864 Tornier Oct 2004 B2
6814735 Zirngibl Nov 2004 B1
6827722 Schoenefeld Dec 2004 B1
6860902 Reiley Mar 2005 B2
6884246 Sonnabend et al. Apr 2005 B1
6923813 Phillips et al. Aug 2005 B2
6926739 O'Connor et al. Aug 2005 B1
6962577 Tallarida et al. Nov 2005 B2
6969393 Pinczewski et al. Nov 2005 B2
6989016 Tallarida et al. Jan 2006 B2
7029479 Tallarida Apr 2006 B2
7063717 St. Pierre et al. Jun 2006 B2
7115131 Engh et al. Oct 2006 B2
7156880 Evans et al. Jan 2007 B2
7160305 Schmieding Jan 2007 B2
7163541 Ek Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7192431 Hangody et al. Mar 2007 B2
7204839 Dreyfuss et al. Apr 2007 B2
7204854 Guederian et al. Apr 2007 B2
7235107 Evans et al. Jun 2007 B2
7238189 Schmieding et al. Jul 2007 B2
7241316 Evans et al. Jul 2007 B2
7264634 Schmieding Sep 2007 B2
7303577 Dean Dec 2007 B1
7311702 Tallarida et al. Dec 2007 B2
7510558 Tallarida Mar 2009 B2
7569059 Cerundolo Aug 2009 B2
20010012967 Mosseri Aug 2001 A1
20010039455 Simon et al. Nov 2001 A1
20010056266 Tallarida et al. Dec 2001 A1
20020055783 Tallarida et al. May 2002 A1
20020106393 Bianchi et al. Aug 2002 A1
20020138150 Leclercq Sep 2002 A1
20020147498 Tallarida et al. Oct 2002 A1
20030028196 Bonutti Feb 2003 A1
20030060887 Ek Mar 2003 A1
20030065391 Re et al. Apr 2003 A1
20030105465 Schmieding et al. Jun 2003 A1
20030120276 Tallarida et al. Jun 2003 A1
20030120278 Morgan et al. Jun 2003 A1
20030130741 McMinn Jul 2003 A1
20030171756 Fallin et al. Sep 2003 A1
20030181878 Tallarida et al. Sep 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030216669 Lang et al. Nov 2003 A1
20030225456 Ek Dec 2003 A1
20030225457 Justin et al. Dec 2003 A1
20040015170 Tallarida et al. Jan 2004 A1
20040034359 Schmieding et al. Feb 2004 A1
20040034437 Schmieding Feb 2004 A1
20040082906 Tallarida et al. Apr 2004 A1
20040106928 Ek Jun 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040138758 Evans et al. Jul 2004 A1
20040148030 Ek Jul 2004 A1
20040153087 Sanford et al. Aug 2004 A1
20040193281 Grimes Sep 2004 A1
20040199166 Schmieding et al. Oct 2004 A1
20040230315 Ek Nov 2004 A1
20040260303 Carrison Dec 2004 A1
20050015153 Goble et al. Jan 2005 A1
20050038520 Binette et al. Feb 2005 A1
20050043808 Felt et al. Feb 2005 A1
20050065612 Winslow Mar 2005 A1
20050075642 Felt Apr 2005 A1
20050143731 Justin et al. Jun 2005 A1
20050143745 Hodorek et al. Jun 2005 A1
20050143831 Justin et al. Jun 2005 A1
20050154398 Miniaci et al. Jul 2005 A1
20050209705 Niederauer et al. Sep 2005 A1
20050229323 Mills et al. Oct 2005 A1
20050287187 Mansmann Dec 2005 A1
20060004461 Justin et al. Jan 2006 A1
20060020343 Ek Jan 2006 A1
20060052878 Schmieding Mar 2006 A1
20060058744 Tallarida et al. Mar 2006 A1
20060085006 Ek Apr 2006 A1
20060149370 Schmieding et al. Jul 2006 A1
20060190002 Tallarida Aug 2006 A1
20060195112 Ek Aug 2006 A1
20060229726 Ek Oct 2006 A1
20070005143 Ek Jan 2007 A1
20070073394 Seedhom et al. Mar 2007 A1
20070093842 Schmieding Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070118136 Ek May 2007 A1
20070123921 Ek May 2007 A1
20070179608 Ek Aug 2007 A1
20070233128 Schmieding et al. Oct 2007 A1
20070250067 Schmieding et al. Oct 2007 A1
20070255399 Eliasen et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070288031 Dreyfuss et al. Dec 2007 A1
20070299519 Schmieding Dec 2007 A1
20080004659 Burkhart et al. Jan 2008 A1
20080015709 Evans et al. Jan 2008 A1
20080027430 Montgomery et al. Jan 2008 A1
20080033443 Sikora et al. Feb 2008 A1
20080086139 Bourke et al. Apr 2008 A1
20080172125 Ek Jul 2008 A1
20080183290 Baird et al. Jul 2008 A1
20080188935 Saylor et al. Aug 2008 A1
20080275512 Albertirio et al. Nov 2008 A1
20080306483 Iannarone Dec 2008 A1
20090198288 Hoof et al. Aug 2009 A1
20090234452 Steiner et al. Sep 2009 A1
Foreign Referenced Citations (54)
Number Date Country
2001262308 Dec 2001 AU
2003262428 Aug 2009 AU
2933174 Apr 1980 DE
3516743 Nov 1986 DE
0350780 Jul 1989 EP
0350780 Jan 1990 EP
0485678 May 1992 EP
0327387 Sep 1992 EP
0505634 Sep 1992 EP
0903125 Mar 1999 EP
0903127 Mar 1999 EP
0661023 Aug 2001 EP
1426013 Sep 2004 EP
1278460 Apr 2009 EP
2242068 Mar 1975 FR
2642301 Mar 1990 FR
2676917 Dec 1992 FR
2718014 Oct 1995 FR
2739151 Mar 1997 FR
2372707 Sep 2002 GB
61502029 Sep 1986 JP
63300758 Dec 1988 JP
3504932 Oct 1991 JP
H03-092328 Nov 1992 JP
518511 Mar 1993 JP
06339490 Dec 1994 JP
11244315 Sep 1999 JP
2001525210 Dec 2001 JP
2002291779 Oct 2002 JP
2003534096 Nov 2003 JP
WO8803781 Jun 1988 WO
8909578 Oct 1989 WO
9427507 Dec 1994 WO
9624304 Aug 1996 WO
WO9722306 Jun 1997 WO
9920192 Apr 1999 WO
0105336 Jan 2001 WO
0166021 Sep 2001 WO
0166022 Sep 2001 WO
0182677 Nov 2001 WO
0191648 Dec 2001 WO
0191672 Dec 2001 WO
02086180 Oct 2002 WO
03047470 Jun 2003 WO
03051210 Jun 2003 WO
03051211 Jun 2003 WO
03061516 Jul 2003 WO
2004014261 Feb 2004 WO
2004026170 Apr 2004 WO
2004075777 Sep 2004 WO
2005051231 Jun 2005 WO
WO2005051231 Jun 2005 WO
2006004885 Jan 2006 WO
2006091686 Aug 2006 WO
Related Publications (1)
Number Date Country
20060229726 A1 Oct 2006 US
Provisional Applications (2)
Number Date Country
60201049 May 2000 US
60654989 Feb 2005 US
Continuation in Parts (4)
Number Date Country
Parent 10373463 Feb 2003 US
Child 11359891 US
Parent 10162533 Jun 2002 US
Child 10373463 US
Parent 10024077 Dec 2001 US
Child 10162533 US
Parent 09846657 May 2001 US
Child 10024077 US