Articulatable surgical end effector with asymmetric shaft arrangement

Information

  • Patent Grant
  • 10959727
  • Patent Number
    10,959,727
  • Date Filed
    Wednesday, December 21, 2016
    8 years ago
  • Date Issued
    Tuesday, March 30, 2021
    3 years ago
Abstract
A surgical tool assembly. A surgical end effector is movably coupled to a shaft assembly by an articulation joint that is configured to facilitate selective articulation of the surgical end effector relative to the shaft assembly. The shaft assembly includes a proximal end portion and a distal end portion. The distal end portion is operably coupled to the articulation joint. An elongate notch is provided in the distal end portion and is located on one lateral side of a shaft axis that is defined by the shaft assembly. The shaft assembly may be configured to prevent the distal end portion from buckling when an axial actuation motion is applied to the proximal end.
Description
BACKGROUND

The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:



FIG. 1 is a perspective view of an interchangeable surgical tool assembly embodiment that is operably coupled to a handle assembly embodiment;



FIG. 2 is an exploded assembly view of portions of the handle assembly and interchangeable surgical tool assembly of FIG. 1;



FIG. 3 is a perspective view of the interchangeable surgical tool assembly embodiment depicted in FIGS. 1 and 2 with portions thereof omitted for clarity;



FIG. 4 is a perspective view of a proximal portion of the interchangeable surgical tool assembly embodiment depicted in FIGS. 1-3 with portions thereof omitted for clarity;



FIG. 5 is an exploded assembly view of proximal portions of the interchangeable surgical tool assembly of FIGS. 1-4;



FIG. 6 is an exploded assembly view of distal portions of the interchangeable surgical tool assembly of FIGS. 1-5;



FIG. 7 illustrates use of an interchangeable surgical tool assembly embodiment to perform a medical procedure known as a lower anterior resection within a human pelvis area;



FIG. 8 is a top view of a portion of the interchangeable surgical tool assembly depicted in FIG. 7;



FIG. 9 is another top view of the interchangeable surgical tool assembly depicted in FIG. 8 with portions thereof shown in cross-section;



FIG. 10 is a partial perspective view of a distal portion of the interchangeable surgical tool assembly of FIG. 9;



FIG. 11 is a cross-sectional view of the interchangeable surgical tool assembly of FIG. 10 taken along line 11-11 in FIG. 10;



FIG. 12 is a partial perspective view of a portion of another interchangeable surgical tool assembly;



FIG. 13 is a cross-sectional end view of a shaft assembly portion of another interchangeable surgical tool embodiment;



FIG. 14 is a cross-sectional end view of a shaft assembly portion of another interchangeable surgical tool embodiment;



FIG. 15 is a top cross-sectional view of a portion of an interchangeable surgical tool embodiment in an articulated configuration;



FIG. 15A is a top view of portions of another surgical end effector and elongate shaft assembly arrangement with the surgical end effector in an unarticulated position (solid lines) and an articulated position (phantom lines);



FIG. 16 is a perspective view of a portion of an interchangeable surgical tool end effector employing an anvil cap to cover a portion of a firing member parking area within an end effector thereof;



FIG. 17 is another perspective view of a portion of the surgical end effector of FIG. 16 with the anvil cap omitted for clarity;



FIG. 18 is a side elevational view of the surgical end effector of FIG. 16 with the anvil thereof in an open configuration;



FIG. 18A is a cross-sectional side view of the surgical end effector of FIG. 18;



FIG. 19 is a cross-sectional side view of the surgical end effector of FIG. 18 during initiation of an anvil closure process;



FIG. 20 is another cross-sectional side view of the surgical end effector of FIGS. 18 and 19 with the anvil thereof in a fully closed position;



FIG. 20A is another cross-sectional side view of the surgical end effector of FIG. 20 after a firing member thereof has been advanced distally out of a firing member parking area;



FIG. 21 is a perspective view of a distal closure member embodiment;



FIG. 22 is a side elevational view of a portion of an interchangeable surgical tool assembly employing the distal closure member of FIG. 21 with an anvil of a surgical end effector portion thereof in a fully closed position;



FIG. 23 is another side elevational view of the portion of the interchangeable surgical tool assembly of FIG. 22, with the distal closure member in an initial opening position;



FIG. 24 is another side elevational view of the portion of the interchangeable surgical tool assembly of FIG. 22, with the distal closure member in another opening position;



FIG. 25 is another side elevational view of the portion of the interchangeable surgical tool assembly of FIG. 22, with the anvil thereof in a fully opened position;



FIG. 26 is a perspective view of another distal closure member embodiment;



FIG. 27 is a side view of another anvil embodiment;



FIG. 28 is a partial cross-sectional side view of another interchangeable surgical tool assembly employing the distal closure member of FIG. 26 and the anvil embodiment of FIG. 27 with the anvil in a fully closed position;



FIG. 29 is another partial cross-sectional side view of the interchangeable surgical tool assembly of FIG. 28 with the anvil thereof in a fully open position;



FIG. 30 is a perspective view of another distal closure member embodiment;



FIG. 31 is a partial cross-sectional side view of another interchangeable surgical tool assembly employing the distal closure member embodiment of FIG. 30 and with an anvil thereof in a fully open position;



FIG. 32 is a partial cross-sectional side view of another interchangeable surgical tool assembly with an anvil thereof in a fully closed position;



FIG. 33 is another partial cross-sectional side view of the interchangeable surgical tool assembly of FIG. 32 with the anvil thereof in a fully open position;



FIG. 34 is a side elevational view of a portion of another interchangeable surgical tool assembly with an anvil thereof in a fully closed position;



FIG. 35 is another side elevational view of the portion of the interchangeable surgical tool assembly of FIG. 34 with the anvil thereof in a fully open position;



FIG. 36 is a side elevational view of a portion of another interchangeable surgical tool assembly with an anvil thereof in a fully closed position;



FIG. 37 is another side elevational view of the portion of the interchangeable surgical tool assembly of FIG. 36 with the anvil thereof in a partially open position;



FIG. 38 is a side elevational view of a portion of another interchangeable surgical tool assembly with an anvil thereof in a fully closed position;



FIG. 39 is another side elevational view of the portion of the interchangeable surgical tool assembly of FIG. 38 with the anvil thereof in a partially open position;



FIG. 40 is a bottom perspective view of a camming or sled assembly embodiment;



FIG. 41 a top view of a portion of a surgical end effector embodiment with an unfired surgical staple cartridge installed therein and with a camming assembly thereof in a starting position and in unlocking engagement with a firing member lock member;



FIG. 42 is a top view of a portion of the surgical end effector embodiment of FIG. 41 that has an improper unfired surgical staple cartridge installed therein with a camming assembly thereof in a starting position and with a firing member lock in locking engagement with the firing member;



FIG. 43 is an exploded perspective view of portions of an anvil, a firing member, a sled assembly and firing member lock embodiment of another interchangeable surgical tool assembly embodiment;



FIG. 44 is a partial cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 43 with the firing member thereof omitted for clarity;



FIG. 45 is another partial cross-sectional view of the distal portion of the interchangeable surgical tool assembly of FIG. 44 with an unfired surgical staple cartridge properly seated within a surgical end effector thereof and with an anvil thereof in an open position and the firing member in a starting position;



FIG. 46 is another partial cross-sectional view of the distal portion of the interchangeable surgical tool assembly of FIG. 45 with the anvil in a fully closed position and the firing member in an initial firing position;



FIG. 47 is another partial cross-sectional view of the distal portion of the interchangeable surgical tool assembly of FIG. 45 with the anvil in a fully closed position and the firing member further distally advanced within the surgical end effector;



FIG. 48 is another partial cross-sectional view of the distal portion of the interchangeable surgical tool assembly of FIG. 47 with the anvil in a fully closed position and the firing member being retracted back to a starting position just prior to contacting the firing member lock;



FIG. 49 is another partial cross-sectional view of the distal portion of the interchangeable surgical tool assembly of FIG. 48 with the anvil in a fully closed position and the firing member being retracted back to a starting position after initially contacting the firing member lock;



FIG. 50 is another partial cross-sectional view of the distal portion of the interchangeable surgical tool assembly of FIG. 49 with the anvil in a fully closed position and the firing member being retracted back to the starting position;



FIG. 51 is a side cross-sectional view of a portion of another interchangeable surgical tool assembly embodiment with an unfired surgical staple cartridge loaded in a surgical end effector thereof and a firing member in a starting position or configuration;



FIG. 52 is another side cross-sectional view of the interchangeable surgical tool assembly embodiment of FIG. 51 after the firing member has started to be distally advanced through the surgical end effector;



FIG. 53 is another side cross-sectional view of the interchangeable surgical tool assembly embodiment of FIGS. 51 and 52 during the retraction of the firing member back to the starting position;



FIG. 54 is another side cross-sectional view of the interchangeable surgical tool assembly embodiment of FIGS. 51-53 after the firing member has been further retracted toward the starting position;



FIG. 55 is another side cross-sectional view of the interchangeable surgical tool assembly embodiment of FIGS. 51-54 after the firing member has been fully retracted back to the starting position;



FIG. 56 is an exploded perspective view of portions of a firing member, a sled assembly, a firing member and firing member lock member of another interchangeable surgical tool assembly embodiment;



FIG. 57 is a side cross-sectional view of a portion of the interchangeable surgical tool assembly embodiment of FIG. 56 with an anvil of a surgical end effector thereof in an open position prior to installation of an unfired surgical staple cartridge within the surgical end effector and with the firing member in a starting position;



FIG. 58 is another side cross-sectional view of a portion of the interchangeable surgical tool assembly embodiment of FIG. 57 with an unfired surgical staple cartridge installed within the surgical end effector and the anvil in a closed position;



FIG. 59 is a top cross-sectional view of the portion of the interchangeable surgical tool assembly embodiment of FIG. 58 with the firing member lock in a disengaged configuration relative to the firing member;



FIG. 60 is another side cross-sectional view of a portion of the interchangeable surgical tool assembly embodiment of FIGS. 58 and 59 after the firing member has been initially distally advanced;



FIG. 61 is another side cross-sectional view of a portion of the interchangeable surgical tool assembly embodiment of FIGS. 58-60 during retraction back to a starting position;



FIG. 62 is a top view of the portion of the interchangeable surgical tool assembly embodiment of FIG. 61;



FIG. 63 is another side cross-sectional view of a portion of the interchangeable surgical tool assembly embodiment of FIGS. 58-62 after the firing member has been fully retracted back to a starting position and is in locking engagement with the firing member lock;



FIG. 64 is an exploded perspective view of portions of an articulation joint and articulation lock embodiment of another interchangeable surgical tool assembly embodiment;



FIG. 65 is a perspective view of a lock spring assembly embodiment of the articulation lock embodiment of FIG. 64;



FIG. 66 is a top view of an end effector mounting assembly embodiment of the interchangeable surgical tool assembly embodiment of FIG. 64;



FIG. 67 is a top view of portions of the interchangeable surgical tool assembly embodiment of FIG. 64 with a surgical end effector thereof in an unarticulated configuration;



FIG. 68 is another top view of the portions of the interchangeable surgical tool assembly embodiment of FIG. 67 during an initial application of an articulation motion to the articulation joint;



FIG. 69 is a bottom view of the portions of the interchangeable surgical tool assembly embodiment of FIG. 68;



FIG. 70 is another bottom view of the portions of the interchangeable surgical tool assembly embodiment of FIG. 69 with the surgical end effector in an articulated configuration;



FIG. 71 is an exploded perspective view of portions of an articulation joint and articulation lock embodiment of another interchangeable surgical tool assembly embodiment;



FIG. 72 is a top view of an end effector mounting assembly embodiment of the interchangeable surgical tool assembly embodiment of FIG. 71;



FIG. 73 is a top view of portions of the interchangeable surgical tool assembly embodiment of FIG. 71 with a surgical end effector thereof in an unarticulated configuration;



FIG. 74 is a partial cross-sectional view of portions of the articulation lock embodiment of FIG. 73 taken along line 74-74 in FIG. 73;



FIG. 75 is another top view of the portions of the interchangeable surgical tool assembly embodiment of FIG. 73 during an initial application of an articulation motion to the articulation joint;



FIG. 76 is another top view of the portions of the interchangeable surgical tool assembly embodiment of FIG. 75 with the surgical end effector thereof in an articulated configuration and the articulation lock in an unlocked configuration;



FIG. 77 is another top view of the portions of the interchangeable surgical tool assembly embodiment of FIG. 75 with the surgical end effector thereof in an articulated configuration and the articulation lock in a locked configuration;



FIG. 78 is an exploded perspective view of portions of an articulation joint and articulation lock embodiment of another interchangeable surgical tool assembly embodiment;



FIG. 79 is a top view of portions of the interchangeable surgical tool assembly embodiment of FIG. 78 with a surgical end effector thereof in an unarticulated configuration;



FIG. 80 is a side cross-sectional view of the portions of the interchangeable surgical tool assembly of FIG. 79 taken along line 80-80 in FIG. 79;



FIG. 81 is another side cross-sectional view of the portions of the interchangeable surgical tool assembly of FIG. 80 during an initial application of articulation motion to the articulation lock thereof;



FIG. 82 is another side cross-sectional view of the portions of the interchangeable surgical tool assembly of FIG. 81 with the articulation joint locked in position by the articulation lock;



FIG. 83 is an exploded perspective view of portions of a spine assembly, an articulation joint and articulation lock embodiment of another interchangeable surgical tool assembly embodiment;



FIG. 84 is a top view of a portion of a distal end of the spine assembly and the articulation lock arrangement of the interchangeable surgical tool assembly embodiment of FIG. 83;



FIG. 85 is an exploded perspective view of portions of a spine assembly, an articulation joint and articulation lock embodiment of another interchangeable surgical tool assembly embodiment;



FIG. 86 is another exploded perspective view of portions of the spine assembly and articulation joint and articulation lock of the interchangeable surgical tool assembly of FIG. 85;



FIG. 87 is a top cross-sectional view of the interchangeable surgical tool assembly of FIG. 85 with a surgical end effector thereof in an unarticulated configuration;



FIG. 88 is another top cross-sectional view of the interchangeable surgical tool assembly of FIG. 87 with the surgical end effector thereof in an articulated configuration and the articulation lock in an unlocked configuration;



FIG. 89 is another top cross-sectional view of the interchangeable surgical tool assembly of FIG. 88 with the surgical end effector thereof in an articulated configuration and the articulation lock in a locked configuration;



FIG. 90 is an exploded perspective view of portions of a spine assembly, an articulation joint and articulation lock embodiment of another interchangeable surgical tool assembly embodiment;



FIG. 91 is a top cross-sectional view of the interchangeable surgical tool assembly of FIG. 90 with a surgical end effector thereof in an unarticulated configuration;



FIG. 92 is another top cross-sectional view of the interchangeable surgical tool assembly of FIG. 91 with the surgical end effector thereof in an articulated configuration and the articulation lock in an unlocked configuration;



FIG. 93 is a partial cross-sectional view of the articulation lock of FIG. 92 taken along line 93-93 in FIG. 92;



FIG. 94 is another top cross-sectional view of the interchangeable surgical tool assembly of FIG. 91 with the surgical end effector thereof in an articulated configuration and the articulation lock in a locked configuration;



FIG. 95 is a partial cross-sectional view of the articulation lock of FIG. 94 taken along line 95-95 in FIG. 94;



FIG. 96 is a perspective view of portions of an articulation stroke multiplier embodiment;



FIG. 97 is a cross-sectional end view of a shaft assembly of an interchangeable surgical tool assembly embodiment with the articulation stroke multiplier embodiment of FIG. 96 therein;



FIG. 98A is a top view of portions of the articulation stroke multiplier embodiment of FIG. 96 in an unactuated configuration;



FIG. 98B is another top view of the portions of the articulation stroke multiplier of FIG. 98A after application of an axial articulation motion thereto in a first axial direction;



FIG. 98C is another top view of the portions of the articulation stroke multiplier of FIG. 98A after application of another axial articulation motion thereto in a second axial direction;



FIG. 99A is a top cross-sectional view of portions of a shaft assembly of an interchangeable surgical tool assembly embodiment with another articulation stroke multiplier embodiment in an unactuated configuration;



FIG. 99B is another top cross-sectional view of the shaft assembly and articulation stroke multiplier of FIG. 99A after an axial articulation motion has been applied thereto in a first axial direction;



FIG. 99C is a top cross-sectional view of portions of a shaft assembly of another interchangeable surgical tool assembly embodiment with another articulation stroke multiplier embodiment in an unactuated configuration;



FIG. 99D is another top cross-sectional view of the shaft assembly and articulation stroke multiplier of FIG. 99C after an axial articulation motion has been applied thereto in a first axial direction;



FIG. 100 is an exploded perspective view of a channel and a staple cartridge;



FIG. 101 is an elevation view of the channel and the staple cartridge of FIG. 100;



FIG. 102 is a cross-sectional elevation view of the channel and the staple cartridge of FIG. 100 taken across the plane indicated in FIG. 101;



FIG. 103 is an exploded perspective view of a channel and a staple cartridge;



FIG. 104 is an elevation view of the staple cartridge of FIG. 103;



FIG. 105 is a cross-sectional elevation view of the channel and the staple cartridge of FIG. 103 taken across the plane indicated in FIG. 104;



FIG. 106 is an exploded elevation view of a channel and a staple cartridge;



FIG. 107 is an elevation view of the channel and the staple cartridge of FIG. 106 depicting the staple cartridge completely installed in the channel;



FIG. 108 is an exploded elevation view of a channel and a staple cartridge;



FIG. 109 is an elevation view of the channel and the staple cartridge of FIG. 108 depicting the staple cartridge completely installed in the channel;



FIG. 110 is an elevation view of the staple cartridge of FIG. 106 and the channel of FIG. 108 depicting the staple cartridge incompletely installed in the channel;



FIG. 111 is a perspective view of a portion of a staple cartridge;



FIG. 112 is a perspective view of a portion of a staple cartridge;



FIG. 113 is a perspective view of an end effector; and



FIGS. 114 and 115 depict tables of identifications for different types of end effectors.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/386,185, entitled SURGICAL STAPLING INSTRUMENTS AND REPLACEABLE TOOL ASSEMBLIES THEREOF;


U.S. patent application Ser. No. 15/386,230, entitled ARTICULATABLE SURGICAL STAPLING INSTRUMENTS;


U.S. patent application Ser. No. 15/386,221, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS;


U.S. patent application Ser. No. 15/386,209, entitled SURGICAL END EFFECTORS AND FIRING MEMBERS THEREOF;


U.S. patent application Ser. No. 15/386,198, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS AND REPLACEABLE TOOL ASSEMBLIES; and


U.S. patent application Ser. No. 15/386,240, entitled SURGICAL END EFFECTORS AND ADAPTABLE FIRING MEMBERS THEREFOR.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,939, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;


U.S. patent application Ser. No. 15/385,941, entitled SURGICAL TOOL ASSEMBLIES WITH CLUTCHING ARRANGEMENTS FOR SHIFTING BETWEEN CLOSURE SYSTEMS WITH CLOSURE STROKE REDUCTION FEATURES AND ARTICULATION AND FIRING SYSTEMS;


U.S. patent application Ser. No. 15/385,943, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;


U.S. patent application Ser. No. 15/385,950, entitled SURGICAL TOOL ASSEMBLIES WITH CLOSURE STROKE REDUCTION FEATURES;


U.S. patent application Ser. No. 15/385,945, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;


U.S. patent application Ser. No. 15/385,946, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;


U.S. patent application Ser. No. 15/385,951, entitled SURGICAL INSTRUMENTS WITH JAW OPENING FEATURES FOR INCREASING A JAW OPENING DISTANCE;


U.S. patent application Ser. No. 15/385,953, entitled METHODS OF STAPLING TISSUE;


U.S. patent application Ser. No. 15/385,954, entitled FIRING MEMBERS WITH NON-PARALLEL JAW ENGAGEMENT FEATURES FOR SURGICAL END EFFECTORS;


U.S. patent application Ser. No. 15/385,955, entitled SURGICAL END EFFECTORS WITH EXPANDABLE TISSUE STOP ARRANGEMENTS;


U.S. patent application Ser. No. 15/385,948, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;


U.S. patent application Ser. No. 15/385,956, entitled SURGICAL INSTRUMENTS WITH POSITIVE JAW OPENING FEATURES;


U.S. patent application Ser. No. 15/385,958, entitled SURGICAL INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION UNLESS AN UNSPENT STAPLE CARTRIDGE IS PRESENT; and


U.S. patent application Ser. No. 15/385,947, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,896, entitled METHOD FOR RESETTING A FUSE OF A SURGICAL INSTRUMENT SHAFT;


U.S. patent application Ser. No. 15/385,898, entitled STAPLE FORMING POCKET ARRANGEMENT TO ACCOMMODATE DIFFERENT TYPES OF STAPLES;


U.S. patent application Ser. No. 15/385,899, entitled SURGICAL INSTRUMENT COMPRISING IMPROVED JAW CONTROL;


U.S. patent application Ser. No. 15/385,901, entitled STAPLE CARTRIDGE AND STAPLE CARTRIDGE CHANNEL COMPRISING WINDOWS DEFINED THEREIN;


U.S. patent application Ser. No. 15/385,902, entitled SURGICAL INSTRUMENT COMPRISING A CUTTING MEMBER;


U.S. patent application Ser. No. 15/385,904, entitled STAPLE FIRING MEMBER COMPRISING A MISSING CARTRIDGE AND/OR SPENT CARTRIDGE LOCKOUT;


U.S. patent application Ser. No. 15/385,905, entitled FIRING ASSEMBLY COMPRISING A LOCKOUT;


U.S. patent application Ser. No. 15/385,907, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN END EFFECTOR LOCKOUT AND A FIRING ASSEMBLY LOCKOUT;


U.S. patent application Ser. No. 15/385,908, entitled FIRING ASSEMBLY COMPRISING A FUSE; and


U.S. patent application Ser. No. 15/385,909, entitled FIRING ASSEMBLY COMPRISING A MULTIPLE FAILED-STATE FUSE.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,920, entitled STAPLE FORMING POCKET ARRANGEMENTS;


U.S. patent application Ser. No. 15/385,913, entitled ANVIL ARRANGEMENTS FOR SURGICAL STAPLERS;


U.S. patent application Ser. No. 15/385,914, entitled METHOD OF DEFORMING STAPLES FROM TWO DIFFERENT TYPES OF STAPLE CARTRIDGES WITH THE SAME SURGICAL STAPLING INSTRUMENT;


U.S. patent application Ser. No. 15/385,893, entitled BILATERALLY ASYMMETRIC STAPLE FORMING POCKET PAIRS;


U.S. patent application Ser. No. 15/385,929, entitled CLOSURE MEMBERS WITH CAM SURFACE ARRANGEMENTS FOR SURGICAL INSTRUMENTS WITH SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS;


U.S. patent application Ser. No. 15/385,911, entitled SURGICAL STAPLERS WITH INDEPENDENTLY ACTUATABLE CLOSING AND FIRING SYSTEMS;


U.S. patent application Ser. No. 15/385,927, entitled SURGICAL STAPLING INSTRUMENTS WITH SMART STAPLE CARTRIDGES;


U.S. patent application Ser. No. 15/385,917, entitled STAPLE CARTRIDGE COMPRISING STAPLES WITH DIFFERENT CLAMPING BREADTHS;


U.S. patent application Ser. No. 15/385,900, entitled STAPLE FORMING POCKET ARRANGEMENTS COMPRISING PRIMARY SIDEWALLS AND POCKET SIDEWALLS;


U.S. patent application Ser. No. 15/385,931, entitled NO-CARTRIDGE AND SPENT CARTRIDGE LOCKOUT ARRANGEMENTS FOR SURGICAL STAPLERS;


U.S. patent application Ser. No. 15/385,915, entitled FIRING MEMBER PIN ANGLE;


U.S. patent application Ser. No. 15/385,897, entitled STAPLE FORMING POCKET ARRANGEMENTS COMPRISING ZONED FORMING SURFACE GROOVES;


U.S. patent application Ser. No. 15/385,922, entitled SURGICAL INSTRUMENT WITH MULTIPLE FAILURE RESPONSE MODES;


U.S. patent application Ser. No. 15/385,924, entitled SURGICAL INSTRUMENT WITH PRIMARY AND SAFETY PROCESSORS;


U.S. patent application Ser. No. 15/385,912, entitled SURGICAL INSTRUMENTS WITH JAWS THAT ARE PIVOTABLE ABOUT A FIXED AXIS AND INCLUDE SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS;


U.S. patent application Ser. No. 15/385,910, entitled ANVIL HAVING A KNIFE SLOT WIDTH;


U.S. patent application Ser. No. 15/385,903, entitled CLOSURE MEMBER ARRANGEMENTS FOR SURGICAL INSTRUMENTS; and


U.S. patent application Ser. No. 15/385,906, entitled FIRING MEMBER PIN CONFIGURATIONS.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/386,188, entitled STEPPED STAPLE CARTRIDGE WITH ASYMMETRICAL STAPLES;


U.S. patent application Ser. No. 15/386,192, entitled STEPPED STAPLE CARTRIDGE WITH TISSUE RETENTION AND GAP SETTING FEATURES;


U.S. patent application Ser. No. 15,386,206, entitled STAPLE CARTRIDGE WITH DEFORMABLE DRIVER RETENTION FEATURES;


U.S. patent application Ser. No. 15/386,226, entitled DURABILITY FEATURES FOR END EFFECTORS AND FIRING ASSEMBLIES OF SURGICAL STAPLING INSTRUMENTS;


U.S. patent application Ser. No. 15/386,222, entitled SURGICAL STAPLING INSTRUMENTS HAVING END EFFECTORS WITH POSITIVE OPENING FEATURES; and


U.S. patent application Ser. No. 15/386,236, entitled CONNECTION PORTIONS FOR DISPOSABLE LOADING UNITS FOR SURGICAL STAPLING INSTRUMENTS.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,887, entitled METHOD FOR ATTACHING A SHAFT ASSEMBLY TO A SURGICAL INSTRUMENT AND, ALTERNATIVELY, TO A SURGICAL ROBOT;


U.S. patent application Ser. No. 15/385,889, entitled SHAFT ASSEMBLY COMPRISING A MANUALLY-OPERABLE RETRACTION SYSTEM FOR USE WITH A MOTORIZED SURGICAL INSTRUMENT SYSTEM;


U.S. patent application Ser. No. 15/385,890, entitled SHAFT ASSEMBLY COMPRISING SEPARATELY ACTUATABLE AND RETRACTABLE SYSTEMS;


U.S. patent application Ser. No. 15/385,891, entitled SHAFT ASSEMBLY COMPRISING A CLUTCH CONFIGURED TO ADAPT THE OUTPUT OF A ROTARY FIRING MEMBER TO TWO DIFFERENT SYSTEMS;


U.S. patent application Ser. No. 15/385,892, entitled SURGICAL SYSTEM COMPRISING A FIRING MEMBER ROTATABLE INTO AN ARTICULATION STATE TO ARTICULATE AN END EFFECTOR OF THE SURGICAL SYSTEM;


U.S. patent application Ser. No. 15/385,894, entitled SHAFT ASSEMBLY COMPRISING A LOCKOUT; and


U.S. patent application Ser. No. 15/385,895, entitled SHAFT ASSEMBLY COMPRISING FIRST AND SECOND ARTICULATION LOCKOUTS.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,916, entitled SURGICAL STAPLING SYSTEMS;


U.S. patent application Ser. No. 15/385,918, entitled SURGICAL STAPLING SYSTEMS;


U.S. patent application Ser. No. 15/385,919, entitled SURGICAL STAPLING SYSTEMS;


U.S. patent application Ser. No. 15/385,921, entitled SURGICAL STAPLE CARTRIDGE WITH MOVABLE CAMMING MEMBER CONFIGURED TO DISENGAGE FIRING MEMBER LOCKOUT FEATURES;


U.S. patent application Ser. No. 15/385,923, entitled SURGICAL STAPLING SYSTEMS;


U.S. patent application Ser. No. 15/385,925, entitled JAW ACTUATED LOCK ARRANGEMENTS FOR PREVENTING ADVANCEMENT OF A FIRING MEMBER IN A SURGICAL END EFFECTOR UNLESS AN UNFIRED CARTRIDGE IS INSTALLED IN THE END EFFECTOR;


U.S. patent application Ser. No. 15/385,926, entitled AXIALLY MOVABLE CLOSURE SYSTEM ARRANGEMENTS FOR APPLYING CLOSURE MOTIONS TO JAWS OF SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 15/385,928, entitled PROTECTIVE COVER ARRANGEMENTS FOR A JOINT INTERFACE BETWEEN A MOVABLE JAW AND ACTUATOR SHAFT OF A SURGICAL INSTRUMENT;


U.S. patent application Ser. No. 15/385,930, entitled SURGICAL END EFFECTOR WITH TWO SEPARATE COOPERATING OPENING FEATURES FOR OPENING AND CLOSING END EFFECTOR JAWS;


U.S. patent application Ser. No. 15/385,933, entitled ARTICULATABLE SURGICAL INSTRUMENT WITH INDEPENDENT PIVOTABLE LINKAGE DISTAL OF AN ARTICULATION LOCK;


U.S. patent application Ser. No. 15/385,934, entitled ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR IN AN ARTICULATED POSITION IN RESPONSE TO ACTUATION OF A JAW CLOSURE SYSTEM;


U.S. patent application Ser. No. 15/385,935, entitled LATERALLY ACTUATABLE ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR OF A SURGICAL INSTRUMENT IN AN ARTICULATED CONFIGURATION; and


U.S. patent application Ser. No. 15/385,936, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH ARTICULATION STROKE AMPLIFICATION FEATURES.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/191,775, entitled STAPLE CARTRIDGE COMPRISING WIRE STAPLES AND STAMPED STAPLES;


U.S. patent application Ser. No. 15/191,807, entitled STAPLING SYSTEM FOR USE WITH WIRE STAPLES AND STAMPED STAPLES;


U.S. patent application Ser. No. 15/191,834, entitled STAMPED STAPLES AND STAPLE CARTRIDGES USING THE SAME;


U.S. patent application Ser. No. 15/191,788, entitled STAPLE CARTRIDGE COMPRISING OVERDRIVEN STAPLES; and


U.S. patent application Ser. No. 15/191,818, entitled STAPLE CARTRIDGE COMPRISING OFFSET LONGITUDINAL STAPLE ROWS.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. Design patent application Ser. No. 29/569,218, entitled SURGICAL FASTENER;


U.S. Design patent application Ser. No. 29/569,227, entitled SURGICAL FASTENER;


U.S. Design patent application Ser. No. 29/569,259, entitled SURGICAL FASTENER CARTRIDGE; and


U.S. Design patent application Ser. No. 29/569,264, entitled SURGICAL FASTENER CARTRIDGE.


Applicant of the present application owns the following patent applications that were filed on Apr. 1, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/089,325, entitled METHOD FOR OPERATING A SURGICAL STAPLING SYSTEM;


U.S. patent application Ser. No. 15/089,321, entitled MODULAR SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY;


U.S. patent application Ser. No. 15/089,326, entitled SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY INCLUDING A RE-ORIENTABLE DISPLAY FIELD;


U.S. patent application Ser. No. 15/089,263, entitled SURGICAL INSTRUMENT HANDLE ASSEMBLY WITH RECONFIGURABLE GRIP PORTION;


U.S. patent application Ser. No. 15/089,262, entitled ROTARY POWERED SURGICAL INSTRUMENT WITH MANUALLY ACTUATABLE BAILOUT SYSTEM;


U.S. patent application Ser. No. 15/089,277, entitled SURGICAL CUTTING AND STAPLING END EFFECTOR WITH ANVIL CONCENTRIC DRIVE MEMBER;


U.S. patent application Ser. No. 15/089,296, entitled INTERCHANGEABLE SURGICAL TOOL ASSEMBLY WITH A SURGICAL END EFFECTOR THAT IS SELECTIVELY ROTATABLE ABOUT A SHAFT AXIS;


U.S. patent application Ser. No. 15/089,258, entitled SURGICAL STAPLING SYSTEM COMPRISING A SHIFTABLE TRANSMISSION;


U.S. patent application Ser. No. 15/089,278, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO PROVIDE SELECTIVE CUTTING OF TISSUE;


U.S. patent application Ser. No. 15/089,284, entitled SURGICAL STAPLING SYSTEM COMPRISING A CONTOURABLE SHAFT;


U.S. patent application Ser. No. 15/089,295, entitled SURGICAL STAPLING SYSTEM COMPRISING A TISSUE COMPRESSION LOCKOUT;


U.S. patent application Ser. No. 15/089,300, entitled SURGICAL STAPLING SYSTEM COMPRISING AN UNCLAMPING LOCKOUT;


U.S. patent application Ser. No. 15/089,196, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW CLOSURE LOCKOUT;


U.S. patent application Ser. No. 15/089,203, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW ATTACHMENT LOCKOUT;


U.S. patent application Ser. No. 15/089,210, entitled SURGICAL STAPLING SYSTEM COMPRISING A SPENT CARTRIDGE LOCKOUT;


U.S. patent application Ser. No. 15/089,324, entitled SURGICAL INSTRUMENT COMPRISING A SHIFTING MECHANISM;


U.S. patent application Ser. No. 15/089,335, entitled SURGICAL STAPLING INSTRUMENT COMPRISING MULTIPLE LOCKOUTS;


U.S. patent application Ser. No. 15/089,339, entitled SURGICAL STAPLING INSTRUMENT;


U.S. patent application Ser. No. 15/089,253, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO APPLY ANNULAR ROWS OF STAPLES HAVING DIFFERENT HEIGHTS;


U.S. patent application Ser. No. 15/089,304, entitled SURGICAL STAPLING SYSTEM COMPRISING A GROOVED FORMING POCKET;


U.S. patent application Ser. No. 15/089,331, entitled ANVIL MODIFICATION MEMBERS FOR SURGICAL STAPLERS;


U.S. patent application Ser. No. 15/089,336, entitled STAPLE CARTRIDGES WITH ATRAUMATIC FEATURES;


U.S. patent application Ser. No. 15/089,312, entitled CIRCULAR STAPLING SYSTEM COMPRISING AN INCISABLE TISSUE SUPPORT;


U.S. patent application Ser. No. 15/089,309, entitled CIRCULAR STAPLING SYSTEM COMPRISING ROTARY FIRING SYSTEM; and


U.S. patent application Ser. No. 15/089,349, entitled CIRCULAR STAPLING SYSTEM COMPRISING LOAD CONTROL.


Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Dec. 31, 2015 which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/984,488, entitled MECHANISMS FOR COMPENSATING FOR BATTERY PACK FAILURE IN POWERED SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 14/984,525, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and


U.S. patent application Ser. No. 14/984,552, entitled SURGICAL INSTRUMENTS WITH SEPARABLE MOTORS AND MOTOR CONTROL CIRCUITS.


Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Feb. 9, 2016 which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/019,220, entitled SURGICAL INSTRUMENT WITH ARTICULATING AND AXIALLY TRANSLATABLE END EFFECTOR;


U.S. patent application Ser. No. 15/019,228, entitled SURGICAL INSTRUMENTS WITH MULTIPLE LINK ARTICULATION ARRANGEMENTS;


U.S. patent application Ser. No. 15/019,196, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT;


U.S. patent application Ser. No. 15/019,206, entitled SURGICAL INSTRUMENTS WITH AN END EFFECTOR THAT IS HIGHLY ARTICULATABLE RELATIVE TO AN ELONGATE SHAFT ASSEMBLY;


U.S. patent application Ser. No. 15/019,215, entitled SURGICAL INSTRUMENTS WITH NON-SYMMETRICAL ARTICULATION ARRANGEMENTS;


U.S. patent application Ser. No. 15/019,227, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH SINGLE ARTICULATION LINK ARRANGEMENTS;


U.S. patent application Ser. No. 15/019,235, entitled SURGICAL INSTRUMENTS WITH TENSIONING ARRANGEMENTS FOR CABLE DRIVEN ARTICULATION SYSTEMS;


U.S. patent application Ser. No. 15/019,230, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH OFF-AXIS FIRING BEAM ARRANGEMENTS; and


U.S. patent application Ser. No. 15/019,245, entitled SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS.


Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Feb. 12, 2016 which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/043,254, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 15/043,259, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 15/043,275, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and


U.S. patent application Ser. No. 15/043,289, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS.


Applicant of the present application owns the following patent applications that were filed on Jun. 18, 2015 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/742,925, entitled SURGICAL END EFFECTORS WITH POSITIVE JAW OPENING ARRANGEMENTS;


U.S. patent application Ser. No. 14/742,941, entitled SURGICAL END EFFECTORS WITH DUAL CAM ACTUATED JAW CLOSING FEATURES;


U.S. patent application Ser. No. 14/742,914, entitled MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 14/742,900, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH COMPOSITE FIRING BEAM STRUCTURES WITH CENTER FIRING SUPPORT MEMBER FOR ARTICULATION SUPPORT;


U.S. patent application Ser. No. 14/742,885, entitled DUAL ARTICULATION DRIVE SYSTEM ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS; and


U.S. patent application Ser. No. 14/742,876, entitled PUSH/PULL ARTICULATION DRIVE SYSTEMS FOR ARTICULATABLE SURGICAL INSTRUMENTS.


Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/640,746, entitled POWERED SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0256184;


U.S. patent application Ser. No. 14/640,795, entitled MULTIPLE LEVEL THRESHOLDS TO MODIFY OPERATION OF POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/02561185;


U.S. patent application Ser. No. 14/640,832, entitled ADAPTIVE TISSUE COMPRESSION TECHNIQUES TO ADJUST CLOSURE RATES FOR MULTIPLE TISSUE TYPES, now U.S. Patent Application Publication No. 2016/0256154;


U.S. patent application Ser. No. 14/640,935, entitled OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0256071;


U.S. patent application Ser. No. 14/640,831, entitled MONITORING SPEED CONTROL AND PRECISION INCREMENTING OF MOTOR FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0256153;


U.S. patent application Ser. No. 14/640,859, entitled TIME DEPENDENT EVALUATION OF SENSOR DATA TO DETERMINE STABILITY, CREEP, AND VISCOELASTIC ELEMENTS OF MEASURES, now U.S. Patent Application Publication No. 2016/0256187;


U.S. patent application Ser. No. 14/640,817, entitled INTERACTIVE FEEDBACK SYSTEM FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0256186;


U.S. patent application Ser. No. 14/640,844, entitled CONTROL TECHNIQUES AND SUB-PROCESSOR CONTAINED WITHIN MODULAR SHAFT WITH SELECT CONTROL PROCESSING FROM HANDLE, now U.S. Patent Application Publication No. 2016/0256155;


U.S. patent application Ser. No. 14/640,837, entitled SMART SENSORS WITH LOCAL SIGNAL PROCESSING, now U.S. Patent Application Publication No. 2016/0256163;


U.S. patent application Ser. No. 14/640,765, entitled SYSTEM FOR DETECTING THE MIS-INSERTION OF A STAPLE CARTRIDGE INTO A SURGICAL STAPLER, now U.S. Patent Application Publication No. 2016/0256160;


U.S. patent application Ser. No. 14/640,799, entitled SIGNAL AND POWER COMMUNICATION SYSTEM POSITIONED ON A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2016/0256162; and


U.S. patent application Ser. No. 14/640,780, entitled SURGICAL INSTRUMENT COMPRISING A LOCKABLE BATTERY HOUSING, now U.S. Patent Application Publication No. 2016/0256161.


Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/633,576, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN INSPECTION STATION, now U.S. Patent Application Publication No. 2016/0249919;


U.S. patent application Ser. No. 14/633,546, entitled SURGICAL APPARATUS CONFIGURED TO ASSESS WHETHER A PERFORMANCE PARAMETER OF THE SURGICAL APPARATUS IS WITHIN AN ACCEPTABLE PERFORMANCE BAND, now U.S. Patent Application Publication No. 2016/0249915;


U.S. patent application Ser. No. 14/633,560, entitled SURGICAL CHARGING SYSTEM THAT CHARGES AND/OR CONDITIONS ONE OR MORE BATTERIES, now U.S. Patent Application Publication No. 2016/0249910;


U.S. patent application Ser. No. 14/633,566, entitled CHARGING SYSTEM THAT ENABLES EMERGENCY RESOLUTIONS FOR CHARGING A BATTERY, now U.S. Patent Application Publication No. 2016/0249918;


U.S. patent application Ser. No. 14/633,555, entitled SYSTEM FOR MONITORING WHETHER A SURGICAL INSTRUMENT NEEDS TO BE SERVICED, now U.S. Patent Application Publication No. 2016/0249916;


U.S. patent application Ser. No. 14/633,542, entitled REINFORCED BATTERY FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0249908;


U.S. patent application Ser. No. 14/633,548, entitled POWER ADAPTER FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0249909;


U.S. patent application Ser. No. 14/633,526, entitled ADAPTABLE SURGICAL INSTRUMENT HANDLE, now U.S. Patent Application Publication No. 2016/0249945;


U.S. patent application Ser. No. 14/633,541, entitled MODULAR STAPLING ASSEMBLY, now U.S. Patent Application Publication No. 2016/0249927; and


U.S. patent application Ser. No. 14/633,562, entitled SURGICAL APPARATUS CONFIGURED TO TRACK AN END-OF-LIFE PARAMETER, now U.S. Patent Application Publication No. 2016/0249917.


Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/574,478, entitled SURGICAL INSTRUMENT SYSTEMS COMPRISING AN ARTICULATABLE END EFFECTOR AND MEANS FOR ADJUSTING THE FIRING STROKE OF A FIRING MEMBER, now U.S. Patent Application Publication No. 2016/0174977;


U.S. patent application Ser. No. 14/574,483, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING LOCKABLE SYSTEMS, now U.S. Patent Application Publication No. 2016/0174969;


U.S. patent application Ser. No. 14/575,139, entitled DRIVE ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0174978;


U.S. patent application Ser. No. 14/575,148, entitled LOCKING ARRANGEMENTS FOR DETACHABLE SHAFT ASSEMBLIES WITH ARTICULATABLE SURGICAL END EFFECTORS, now U.S. Patent Application Publication No. 2016/0174976;


U.S. patent application Ser. No. 14/575,130, entitled SURGICAL INSTRUMENT WITH AN ANVIL THAT IS SELECTIVELY MOVABLE ABOUT A DISCRETE NON-MOVABLE AXIS RELATIVE TO A STAPLE CARTRIDGE, now U.S. Patent Application Publication No. 2016/0174972;


U.S. patent application Ser. No. 14/575,143, entitled SURGICAL INSTRUMENTS WITH IMPROVED CLOSURE ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174983;


U.S. patent application Ser. No. 14/575,117, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174975;


U.S. patent application Ser. No. 14/575,154, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND IMPROVED FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174973;


U.S. patent application Ser. No. 14/574,493, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A FLEXIBLE ARTICULATION SYSTEM, now U.S. Patent Application Publication No. 2016/0174970; and


U.S. patent application Ser. No. 14/574,500, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A LOCKABLE ARTICULATION SYSTEM, now U.S. Patent Application Publication No. 2016/0174971.


Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION, now U.S. Patent Application Publication No. 2014/0246471;


U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246472;


U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0249557;


U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT, now U.S. Pat. No. 9,358,003;


U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246478;


U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,326,767;


U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR, now U.S. Pat. No. 9,468,438;


U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS, now U.S. Patent Application Publication No. 2014/0246475;


U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM, now U.S. Pat. No. 9,398,911; and


U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP, now U.S. Pat. No. 9,307,986.


Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, now U.S. Patent Application Publication No. 2014/0263542;


U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT, now U.S. Pat. No. 9,332,987;


U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263564;


U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541;


U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263538;


U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263554;


U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263565;


U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,726;


U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,727; and


U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0277017.


Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:


U.S. patent application Ser. No. 14/200,111, entitled CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263539.


Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/226,106, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272582;


U.S. patent application Ser. No. 14/226,099, entitled STERILIZATION VERIFICATION CIRCUIT, now U.S. Patent Application Publication No. 2015/0272581;


U.S. patent application Ser. No. 14/226,094, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT, now U.S. Patent Application Publication No. 2015/0272580;


U.S. patent application Ser. No. 14/226,117, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL, now U.S. Patent Application Publication No. 2015/0272574;


U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES, now U.S. Patent Application Publication No. 2015/0272579;


U.S. patent application Ser. No. 14/226,093, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272569;


U.S. patent application Ser. No. 14/226,116, entitled SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION, now U.S. Patent Application Publication No. 2015/0272571;


U.S. patent application Ser. No. 14/226,071, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR, now U.S. Patent Application Publication No. 2015/0272578;


U.S. patent application Ser. No. 14/226,097, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS, now U.S. Patent Application Publication No. 2015/0272570;


U.S. patent application Ser. No. 14/226,126, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272572;


U.S. patent application Ser. No. 14/226,133, entitled MODULAR SURGICAL INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272557;


U.S. patent application Ser. No. 14/226,081, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT, now U.S. Patent Application Publication No. 2015/0277471;


U.S. patent application Ser. No. 14/226,076, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION, now U.S. Patent Application Publication No. 2015/0280424;


U.S. patent application Ser. No. 14/226,111, entitled SURGICAL STAPLING INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272583; and


U.S. patent application Ser. No. 14/226,125, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2015/0280384.


Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/479,103, entitled CIRCUITRY AND SENSORS FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066912;


U.S. patent application Ser. No. 14/479,119, entitled ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0066914;


U.S. patent application Ser. No. 14/478,908, entitled MONITORING DEVICE DEGRADATION BASED ON COMPONENT EVALUATION, now U.S. Patent Application Publication No. 2016/0066910;


U.S. patent application Ser. No. 14/478,895, entitled MULTIPLE SENSORS WITH ONE SENSOR AFFECTING A SECOND SENSOR′S OUTPUT OR INTERPRETATION, now U.S. Patent Application Publication No. 2016/0066909;


U.S. patent application Ser. No. 14/479,110, entitled POLARITY OF HALL MAGNET TO DETECT MISLOADED CARTRIDGE, now U.S. Patent Application Publication No. 2016/0066915;


U.S. patent application Ser. No. 14/479,098, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION, now U.S. Patent Application Publication No. 2016/0066911;


U.S. patent application Ser. No. 14/479,115, entitled MULTIPLE MOTOR CONTROL FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066916; and


U.S. patent application Ser. No. 14/479,108, entitled LOCAL DISPLAY OF TISSUE PARAMETER STABILIZATION, now U.S. Patent Application Publication No. 2016/0066913.


Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/248,590, entitled MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS, now U.S. Patent Application Publication No. 2014/0305987;


U.S. patent application Ser. No. 14/248,581, entitled SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT, now U.S. Patent Application Publication No. 2014/0305989;


U.S. patent application Ser. No. 14/248,595, entitled SURGICAL INSTRUMENT SHAFT INCLUDING SWITCHES FOR CONTROLLING THE OPERATION OF THE SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305988;


U.S. patent application Ser. No. 14/248,588, entitled POWERED LINEAR SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309666;


U.S. patent application Ser. No. 14/248,591, entitled TRANSMISSION ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305991;


U.S. patent application Ser. No. 14/248,584, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS, now U.S. Patent Application Publication No. 2014/0305994;


U.S. patent application Ser. No. 14/248,587, entitled POWERED SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309665;


U.S. patent application Ser. No. 14/248,586, entitled DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305990; and


U.S. patent application Ser. No. 14/248,607, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS, now U.S. Patent Application Publication No. 2014/0305992.


Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entireties:


U.S. Provisional Patent Application Ser. No. 61/812,365, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR;


U.S. Provisional Patent Application Ser. No. 61/812,376, entitled LINEAR CUTTER WITH POWER;


U.S. Provisional Patent Application Ser. No. 61/812,382, entitled LINEAR CUTTER WITH MOTOR AND PISTOL GRIP;


U.S. Provisional Patent Application Ser. No. 61/812,385, entitled SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL; and


U.S. Provisional Patent Application Ser. No. 61/812,372, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR.


Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.


The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.


The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.


Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.


A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.


The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.


The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.


Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.



FIG. 1 depicts one form of an interchangeable surgical tool assembly 1000 that is operably coupled to a motor driven handle assembly 500. The interchangeable surgical tool assembly 1000 may also be effectively employed with a tool drive assembly of a robotically controlled or automated surgical system. For example, the surgical tool assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods such as, but not limited to, those disclosed in U.S. Pat. No. 9,072,535, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, which is hereby incorporated by reference herein in its entirety. The handle assembly 500, as well as the tool drive assembly of a robotic system may also be referred to herein as “control systems” or “control units”.



FIG. 2 illustrates attachment of the interchangeable surgical tool assembly 1000 to the handle assembly 500. The handle assembly 500 may comprise a handle housing 502 that includes a pistol grip portion 504 that can be gripped and manipulated by the clinician. The handle assembly 500 may further include a frame 506 that operably supports the plurality of drive systems. For example, the frame 506 can operably support a “first” or closure drive system, generally designated as 510, which may be employed to apply closing and opening motions to the interchangeable surgical tool assembly 1000 that is operably attached or coupled to the handle assembly 500. In at least one form, the closure drive system 510 may include an actuator in the form of a closure trigger 512 that is pivotally supported by the frame 506. Such arrangement enables the closure trigger 512 to be manipulated by a clinician such that when the clinician grips the pistol grip portion 504 of the handle assembly 500, the closure trigger 512 may be easily pivoted from a starting or “unactuated” position to an “actuated” position and more particularly to a fully compressed or fully actuated position. In various forms, the closure drive system 510 further includes a closure linkage assembly 514 that is pivotally coupled to the closure trigger 512 or otherwise operably interfaces therewith. As will be discussed in further detail below, in the illustrated example, the closure linkage assembly 514 includes a transverse attachment pin 516 that facilitates attachment to a corresponding drive system on the surgical tool assembly. In use, to actuate the closure drive system 510, the clinician depresses the closure trigger 512 towards the pistol grip portion 504. As described in further detail in U.S. patent application Ser. No. 14/226,142, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, now U.S. Patent Application Publication No. 2015/0272575, which is hereby incorporated by reference in its entirety herein, when the clinician fully depresses the closure trigger 512 to attain a “full” closure stroke, the closure drive system 510 is configured to lock the closure trigger 512 into the fully depressed or fully actuated position. When the clinician desires to unlock the closure trigger 512 to permit it to be biased to the unactuated position, the clinician simply activates a closure release button assembly 518 which enables the closure trigger 512 to return to the unactuated position. The closure release button assembly 518 may also be configured to interact with various sensors that communicate with a microcontroller 520 in the handle assembly 500 for tracking the position of the closure trigger 512. Further details concerning the configuration and operation of the closure release button assembly 518 may be found in U.S. Patent Application Publication No. 2015/0272575.


In at least one form, the handle assembly 500 and the frame 506 may operably support another drive system referred to herein as a firing drive system 530 that is configured to apply axial or firing motions to corresponding portions of the interchangeable surgical tool assembly that is attached thereto. As was described in detail in U.S. Patent Application Publication No. 2015/0272575, the firing drive system 530 may employ an electric motor 505 that is located in the pistol grip portion 504 of the handle assembly 500. In various forms, the motor 505 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor 505 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor 505 may be powered by a power source 522 that in one form may comprise a removable power pack. The power pack may support a plurality of Lithium Ion (“LI”) or other suitable batteries therein. A number of batteries may be connected in series may be used as the power source 522 for the handle assembly 500. In addition, the power source 522 may be replaceable and/or rechargeable.


The electric motor 505 is configured to axially drive a longitudinally movable drive member 540 in distal and proximal directions depending upon the polarity of the motor. For example, when the motor 505 is driven in one rotary direction, the longitudinally movable drive member 540 will be axially driven in the distal direction “DD”. When the motor 505 is driven in the opposite rotary direction, the longitudinally movable drive member 540 will be axially driven in a proximal direction “PD”. The handle assembly 500 can include a switch 513 which can be configured to reverse the polarity applied to the electric motor 505 by the power source 522 or otherwise control the motor 505. The handle assembly 500 can also include a sensor or sensors (not shown) that is configured to detect the position of the drive member 540 and/or the direction in which the drive member 540 is being moved. Actuation of the motor 505 can be controlled by a firing trigger 532 that is pivotally supported on the handle assembly 500. The firing trigger 532 may be pivoted between an unactuated position and an actuated position. The firing trigger 532 may be biased into the unactuated position by a spring (not shown) or other biasing arrangement such that when the clinician releases the firing trigger 532, it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement. In at least one form, the firing trigger 532 can be positioned “outboard” of the closure trigger 512 as was discussed above. As discussed in U.S. Patent Application Publication No. 2015/0272575, the handle assembly 500 may be equipped with a firing trigger safety button (not shown) to prevent inadvertent actuation of the firing trigger 532. When the closure trigger 512 is in the unactuated position, the safety button is contained in the handle assembly 500 where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 532 and a firing position wherein the firing trigger 532 may be fired. As the clinician depresses the closure trigger 512, the safety button and the firing trigger 532 may pivot down wherein they can then be manipulated by the clinician.


In at least one form, the longitudinally movable drive member 540 may have a rack of teeth (not shown) formed thereon for meshing engagement with a corresponding drive gear arrangement (not shown) that interfaces with the motor 505. Further details regarding those features may be found in U.S. Patent Application Publication No. 2015/0272575. At least one form also includes a manually-actuatable “bailout” assembly that is configured to enable the clinician to manually retract the longitudinally movable drive member 540 should the motor 505 become disabled. The bailout assembly may include a lever or bailout handle assembly that is stored within the handle assembly 500 under a releasable door 550. The lever is configured to be manually pivoted into ratcheting engagement with the teeth in the drive member 540. Thus, the clinician can manually retract the drive member 540 by using the bailout handle assembly to ratchet the drive member 540 in the proximal direction “PD”. U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Patent Application Publication No. 2010/0089970, the entire disclosure of which is hereby incorporated by reference herein discloses bailout arrangements and other components, arrangements and systems that may also be employed with the tool assembly 1000.


Turning now to FIGS. 5 and 6, the interchangeable surgical tool assembly 1000 includes a shaft mounting portion 1300 that is operably attached to an elongate shaft assembly 1400. A surgical end effector 1100 that comprises an elongate channel 1102 that is configured to operably support a surgical staple cartridge 1150 therein is operably attached to the elongate shaft assembly 1400. See FIGS. 3 and 6. The surgical end effector 1100 may further include an anvil 1130 that is pivotally supported relative to the elongate channel 1102. The elongate channel 1102 with a staple cartridge 1150 installed therein and the anvil 1130 may also be referred to as the end effector “jaws”. The interchangeable surgical tool assembly 1000 may further include an articulation joint 1200 and an articulation lock 1210 (FIGS. 3 and 6) which can be configured to releasably hold the surgical end effector 1100 in a desired articulated position about an articulation axis B-B which is transverse to a shaft axis SA. Many details regarding the construction and operation of the articulation lock 1210 may be found in U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541, the entire disclosure of which is hereby incorporated by reference herein. Additional details concerning the articulation lock 1210 may also be found in U.S. patent application Ser. No. 15/019,196, filed Feb. 9, 2016, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT, the entire disclosure of which is hereby incorporated by reference herein.


As can be seen in FIGS. 5 and 6, the shaft mounting portion 1300 includes a proximal housing or nozzle 1301 comprised of nozzle portions 1302, 1304 as well as an actuator wheel portion 1306 that is configured to be coupled to the assembled nozzle portions 1302, 1304 by snaps, lugs, screws, etc. In the illustrated embodiment, the interchangeable surgical tool assembly 1000 further includes a closure assembly 1406 which can be utilized to close and/or open the anvil 1130 relative to the elongate channel 1102 of the surgical end effector 1100 as will be discussed in further detail below. In addition, the illustrated interchangeable surgical tool assembly 1000 includes a spine assembly 1500 which operably supports the articulation lock 1210. The spine assembly 1500 is configured to, one, slidably support a firing member assembly 1600 therein and, two, slidably support the closure assembly 1406 which extends around the spine assembly 1500 or is otherwise movably supported thereby.


In the illustrated arrangement, the surgical end effector 1100 is operably coupled to the elongate shaft assembly 1400 by an articulation joint 1200 that facilitates selective articulation of the surgical end effector 1100 about an articulation axis B-B that is transverse to the shaft axis SA. See FIG. 1. As can be seen in FIGS. 5 and 6, the spine assembly 1500 slidably supports a proximal articulation driver 1700 that operably interfaces with an articulation lock 1210. The articulation lock 1210 is supported on a distal frame segment 1560 that also comprises a portion of the spine assembly 1500. As can be seen in FIG. 6, the distal frame segment 1560 comprises a distal spine extension 1562 that is pivotally coupled to the elongate channel 1102 by an end effector mounting assembly 1230. In one arrangement, for example, a distal end 1563 of the distal frame segment 1560 has a spine attachment pin 1564 formed thereon. The spine attachment pin 1564 is adapted to be pivotally received within a spine attachment hole 1234 that is formed in the end effector mounting assembly 1230. See FIG. 6.


Referring again to FIG. 6, in the illustrated embodiment, the proximal articulation driver 1700 has a distal end 1702 that is configured to operably engage the articulation lock 1210. The articulation lock 1210 includes an articulation frame 1212 that is pivotally coupled or pinned to a distal articulation link 1710 that is also configured to be pivotally attached to the end effector mounting assembly 1230. In particular, as can be seen in FIG. 6, a distal end 1712 of the distal articulation link 1710 includes an articulation pin 1714 that is configured to be pivotally received within corresponding articulation holes 1236 in the end effector mounting assembly 1230. The distal articulation link 1710 is slidably supported by the distal spine extension 1562. The end effector mounting assembly 1230 is attached to a proximal end 1103 of the elongate channel 1102 by a spring pin connector 1235 that extends through a transverse mounting hole 1231 in the end effector mounting assembly 1230 to be received within channel or jaw mounting holes 1106 that are provided in the proximal end 1103 of the elongate channel 1102. The spine attachment pin 1564 defines an articulation axis B-B that is transverse to the shaft axis SA. Such arrangement facilitates pivotal travel (i.e., articulation) of the surgical end effector 1100 about the articulation axis B-B relative to the spine assembly 1500. As indicated above, further details regarding the operation of the articulation lock 1210 and the articulation frame 1212 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541.


In various circumstances, the spine assembly 1500 further comprises an intermediate spine segment 1510 that is attached to the distal frame segment 1560 of the articulation lock 1210. The spine assembly 1500 further comprises a proximal spine mounting segment 1530 that includes a proximal end portion 1532 that has opposing notches 1535 (only one can be seen in FIG. 5) for receiving a corresponding mounting lug 1308 (shown in FIG. 4) that protrude inwardly from each of the nozzle portions 1302, 1304. Such arrangement facilitates rotation of the proximal spine assembly 1500 about the shaft axis SA by rotating the nozzle 1301 about the shaft axis SA. The interchangeable surgical tool assembly 1000 includes a chassis 1800 that rotatably supports the shaft assembly 1400. The proximal end portion 1532 of the proximal spine mounting segment is rotatably supported in a central shaft hole 1801 that is formed in the chassis 1800. See FIG. 5. In one arrangement, for example, the proximal end portion 1532 has threads 1533 thereon for attachment to a spine bearing (not shown) or other wise supported in a spine bearing that is mounted within the chassis 1800. Such an arrangement facilitates rotatable attachment of the spine assembly 1500 to the chassis 1800 such that the spine assembly 1500 may be selectively rotated about a shaft axis SA relative to the chassis 1800.


The closure assembly 1406 comprises an elongate proximal closure member 1410 and a distal closure member 1430. In the illustrated arrangement, the proximal closure member 1410 comprises a hollow tubular member that is slidably supported on the spine assembly 1500. Hence, the proximal closure member 1410 may also be referred to herein as the “proximal closure tube”. Similarly, the distal closure member 1430 may also be referred to as the “distal closure tube”. Referring primarily to FIG. 5, the interchangeable surgical tool assembly 1000 includes a closure shuttle 1420 that is slidably supported within the chassis 1800 such that it may be axially moved relative thereto. In one form, the closure shuttle 1420 includes a pair of proximally-protruding hooks 1421 that are configured for attachment to the transverse attachment pin 516 (FIG. 2) that is attached to the closure linkage assembly 514 of the handle assembly 500. Thus, when the hooks 1421 are hooked over the transverse attachment pin 516, actuation of the closure trigger 512 will result in the axial movement of the closure shuttle 1420 and ultimately, the closure assembly 1406 on the spine assembly 1500. A closure spring (not shown) may also be journaled on the closure assembly 1406 and serves to bias the closure assembly 1406 in the proximal direction “PD” which can serve to pivot the closure trigger 512 into the unactuated position when the surgical tool assembly 1000 is operably coupled to the handle assembly 500. In use, the closure assembly 1406 is translated distally (direction DD) to close the jaws 1130, 1102 for example, in response to the actuation of the closure trigger 512.


The closure linkage assembly 514 may also be referred to herein as a “closure actuator” and the closure linkage assembly 514 and the closure shuttle 1420 may be collectively referred to herein as a “closure actuator assembly”. A proximal end 1412 of the proximal closure member 1410 is coupled to the closure shuttle 1420 for relative rotation thereto. For example, a U-shaped connector 1424 is inserted into an annular slot 1414 in the proximal end 1412 of the proximal closure member 1410 and is retained within vertical slots 1422 in the closure shuttle 1420. See FIG. 5. Such arrangement serves to attach the proximal closure member 1410 to the closure shuttle 1420 for axial travel therewith while enabling the closure assembly 1406 to rotate relative to the closure shuttle 1420 about the shaft axis SA.


As indicated above, the illustrated interchangeable surgical tool assembly 1000 includes an articulation joint 1200. As can be seen in FIG. 6, upper and lower tangs 1415, 1416 protrude distally from a distal end of the proximal closure member 1410 to be movably coupled to the distal closure member 1430. As can also be seen in FIG. 6, the distal closure member 1430 includes upper and lower tangs 1434, 1436 that protrude proximally from a proximal end thereof. The proximal closure member 1410 and the distal closure member 1430 are coupled together by an upper double pivot link 1220. The upper double pivot link 1220 includes proximal and distal pins that engage corresponding holes in the upper tangs 1415, 1434 of the proximal closure member 1410 and distal closure member 1430, respectively. The proximal closure member 1410 and the distal closure member 1430 are also coupled together by a lower double pivot link 1222. The lower double pivot link 1222 includes proximal and distal pins that engage corresponding holes in the lower tangs 1416 and 1436 of the proximal closure member 1410 and distal closure member 1430, respectively. As will be discussed in further detail below, distal and proximal axial translation of the closure assembly 1406 will result in the closing and opening of the anvil 1130.


The interchangeable surgical tool assembly 1000 depicted in FIGS. 1-6 includes a surgical end effector 1100 that is capable of articulating about the articulation axis B-B in one direction. As noted above, the articulation axis B-B is defined by the spine attachment pin 1564 that is rotatably received within the spine attachment hole 1234 that is formed in the end effector mounting assembly 1230. In the illustrated arrangement, the spine attachment hole 1234 may be transversely axially aligned with the shaft axis SA. In other arrangements, the spine attachment hole 1234 may be slightly laterally offset from the shaft axis. In the illustrated example, the articulation axis B-B is transverse to and intersects the shaft axis SA. The illustrated example only employs a proximal articulation driver 1700 that interfaces with a single distal articulation link 1710 (through the articulation lock 1210) that operably interfaces with the end effector mounting assembly 1230 to apply articulation motions thereto. For example, distally advancing the distal articulation link 1710 will cause the surgical end effector 1100 to articulate in a single “first” articulation direction. In one arrangement, for example, the surgical end effector 1100 may be selectively articulatable from a first unarticulated position wherein the surgical end effector 1100 is axially aligned with the shaft assembly 1400 (for insertion through a trocar or other access opening) through an articulation angle of approximately 110° (after the surgical end effector 1100 has exited the trocar into the patient). Other articulation angle arrangements may be achieved.


As can be seen in FIG. 7, for example, the interchangeable surgical tool assembly 1000 may be well-suited for use in connection with a medical procedure known as a lower anterior resection “LAR”. Such procedure commonly involves removal of a diseased portion of the colon. For example, this procedure may comprise removal of the blood vessels and lymph nodes associated with this portion of the bowel. The surgeon then re-joins the remaining colon and the remaining part of the rectum (which may be referred to as an anastomosis). One challenge commonly facing the surgeon during this procedure is associated with getting the end effector into the pelvic area far enough to complete the procedure. FIG. 7 illustrates a desired position of the surgical end effector 1100 within the pelvis 400 of a patient during the resection of the patient's colon 410. Lines BTL in FIG. 7 may illustrate travel limits commonly created by the patient's pelvic bone structure and associated tissue. In the illustrated arrangement, the surgical tool assembly 1000 employs an “asymmetric” proximal closure member 1410 that is configured to provide additional clearance and maneuverability for the surgical tool assembly 1000 within that region.


As can be seen in FIG. 7, in one example, the proximal closure member 1410 of the shaft assembly 1400 includes an elongate proximal end portion 1417 and an elongate distal end portion 1411 that extends from the proximal end portion 1417. As can be seen in FIGS. 7-9, to facilitate more clearance between the shaft assembly 1400 and the pelvic structure for example, an asymmetric cut out or notched area 1418 is provided in the distal end portion 1411 of the proximal closure member 1410. In at least one example, the notched area 1418 extends for the entire distal end portion 1411. In such arrangement, an axial length of the distal end portion is less than an axial length of the proximal end portion 1417.


Referring now to FIG. 11, in the illustrated example, the proximal end portion 1417 has an uninterrupted or “continuous” “proximal” outer perimeter or perimetrical shape 1417P. At least a portion of the distal end portion 1411 has a discontinuous or interrupted “distal” outer perimeter or outer perimetrical shape 1411P. As can also be seen in FIG. 9, for example, the distal spine extension 1562 has a similar notched area 1568 therein. Also, the intermediate spine segment 1510 may also have an asymmetric notch 1516 therein that matches the notched areas 1418 and 1568. See FIGS. 10 and 11. Such arrangement may permit the clinician to position the shaft assembly 1400 and the surgical end effector 1100 into the position shown in FIG. 7 within the pelvic region. In the illustrated arrangement, for example, the articulation angle AA may be approximately 110°. Thus, such arrangement may afford the clinician the ability to position the surgical end effector 1100 deeper within the pelvic region as compared with other tool and end effector arrangements. In the illustrated arrangement, the notched areas 1418, 1516, 1568 are located on the opposite side of the shaft axis SA from which the end effector 1100 articulates (e.g., direction of articulation DA). In other arrangements, however, it is conceivable that the notched areas 1418, 1516, 1568 are provided on the same side of the shaft axis SA from which the surgical end effector articulates.


In one example, to maintain the proximal closure member 1410 in axial alignment on the spine assembly 1500 as it moves axially thereon and to retard or prevent buckling of the shaft components during articulation and closing of the end effector jaws 1130, 1102, opposed closure alignment members 1413 are employed. In one arrangement, for example, a pair of diametrically-opposed alignment pins 1413 are attached to and extend inwardly from the proximal closure member 1410 to be slidably received within corresponding alignment slots 1514, 1566 in the intermediate spine segment 1510 and the distal spine extension 1562, respectively. See FIGS. 10 and 11. As can also be seen in FIG. 11, the distal spine extension 1562 may have a recessed area 1567 for receiving a downwardly protruding lug portion 1518 that is formed on the underside of the intermediate spine segment 1510. Such arrangement may serve to somewhat laterally interlock the intermediate spine segment 1510 and the distal spine extension 1562 together to thereby resist any lateral deflection from occurring between those components. FIG. 12 illustrates an alternative proximal closure member 1410′ that is identical to the proximal closure member 1410 described above, except that the proximal closure member 1410′ includes a connector bridge 1419 that extends between the upper and lower tangs 1415 and 1416 which may serve to limit any tendency of the upper and lower tangs 1415, 1416 from spreading apart during use.



FIG. 13 illustrates another arrangement that is configured to prevent or limit the opening of a proximal closure member 1410″ in the directions OD when a lateral load LL is applied laterally to the shaft assembly 1400 in the notched areas. The proximal closure member 1410″ may be identical to proximal closure member 1410 except for the differences noted herein. As can be seen in FIG. 13, the proximal closure member 1410″ additionally includes a pair of inwardly protruding, somewhat diametrically opposed flexure tabs 1425. One flexure tab 1425 is slidably received within a corresponding axially extending slot 1519 and the other flexure tab 1425 is slidably received within a corresponding axial slot 1569 in the distal spine extension 1562. Such arrangement serves to slidably interlock the proximal closure member 1410″ on the spine assembly 1500′ to thereby cause the proximal closure member 1410″ to resist opening (in the OD directions) when a lateral load LL is applied thereto. FIG. 14 illustrates an alternative arrangement that employs flexure tabs 1425′ are somewhat L-shaped and are slidably received within corresponding L-shaped slots 1514′ and 1569′.


As mentioned above, the interchangeable surgical tool assembly 1000 further includes a firing member assembly 1600 that is supported for axial travel within the spine assembly 1500. In the illustrated embodiment, the firing member assembly 1600 includes a proximal firing shaft segment 1602 and a distal cutting portion or distal firing bar 1620. The firing member assembly 1600 may also be referred to herein as a “second shaft” and/or a “second shaft assembly”. As can be seen in FIG. 5, the proximal firing shaft segment 1602 includes a proximal attachment lug 1604 that protrudes proximally from a proximal end thereof that is configured to be operably received within the firing shaft attachment cradle 542 in the longitudinally movable drive member 540 that is supported in the handle assembly 500. See FIG. 2.


Referring again to FIG. 5, a distal end 1606 of the proximal firing shaft segment 1602 includes a longitudinal slot 1608 which is configured to receive a tab (not shown) on the proximal end of the distal firing bar 1620. The longitudinal slot 1608 and the proximal end of the distal firing bar 1620 can be sized and configured to permit relative movement therebetween and can comprise a slip joint 1622. The slip joint 1622 can permit the proximal firing shaft segment 1602 to move during the articulation actuation without moving, or at least substantially moving, the distal firing bar 1620. Once the end effector 1100 has been suitably oriented, the proximal firing shaft segment 1602 can be advanced distally until a proximal end wall of the slot 1608 comes into contact with the tab on the distal firing bar 1620 to advance the distal firing bar 1620 and fire the surgical staple cartridge 1150 that is positioned within the elongate channel 1102. As can be further seen in FIG. 5, the intermediate spine segment 1510 includes a channel 1512 for slidably supporting the proximal firing shaft segment 1602 therein. To facilitate assembly of the proximal firing shaft segment 1602 and the spine assembly 1500, a top spine cover 1527 may be engaged with the intermediate spine segment 1510 to enclose those portions of the firing member assembly 1600 therein.



FIG. 15 illustrates the surgical end effector 1100 in an articulated position. As can be seen in FIG. 15, as well as in FIG. 6, a middle support member 1614 is employed to provide lateral support to the distal firing bar 1620 as it flexes to accommodate articulation of the surgical end effector 1100. In one example, a distal pivot pin 1615 protrudes from a distal end of the middle support member 1614 and is received within a spine attachment hole 1234 in the end effector mounting assembly 1230. A proximal pivot pin 1616 is received within an elongate slot 1569 in the distal spine extension 1562. In addition, the middle support member 1614 includes a passageway 1618 therein that provides lateral support to the distal firing bar 1620 as the surgical end effector 1100 is articulated. Further details concerning the middle support member and alternative knife bar support arrangements are disclosed in U.S. patent application Ser. No. 15/019,245 which has been herein incorporated by reference in its entirety.



FIG. 15A illustrates an alternative articulation joint 1200′ that facilitates articulation of the surgical end effector 1100 about an articulation axis B-B that is transverse to a shaft axis SA that is defined by the elongate shaft assembly 1400′ to which it is operably attached. In the illustrated example, the surgical end effector 1100 is selectively articulatable to one side of the shaft axis SA. Such articulation direction is represented by arrow LD. Similar to the embodiment described above, an end effector mounting assembly 1230 is pivotally attached to a proximal end 1103 of an elongate channel 1102 of the surgical end effector 1100. The end effector mounting assembly 1230 is pivotally attached to a distal spine extension 1562 of a distal frame segment 1560 of the elongate shaft assembly 1400′. Similar to the above described embodiment, the distal frame segment 1560 may operably support an articulation lock 1210 (FIG. 6) that is actuated by a proximal articulation driver 1700 (FIG. 6) that operably interfaces with a source of articulation and retraction motions as described in detail herein. In the example illustrated in FIG. 15A, the end effector mounting assembly 1230 is pivotally attached to the distal spine extension 1562 by a distal support link 1570. In one arrangement for example, the end effector mounting assembly 1230 is pinned to a distal end 1572 of the distal support link 1570 by an articulation pin 1580 that defines the articulation axis B-B. A proximal end 1574 of the distal support link 1570 is attached to a distal end 1563 of the distal spine extension 1562 for axial and pivotal travel relative thereto.


As can be further seen in FIG. 15A, the proximal end 1574 of the distal support link 1570 includes an axial slot 1576 that is sized to slidably and pivotally receive therein a proximal attachment pin 1578 that is attached to the distal spine extension 1562. Such arrangement serves to couple the surgical end effector 1100 to the distal frame segment 1560 for selective pivotal travel (articulation) about the articulation axis B-B as well as some limited axial travel relative thereto. In the illustrated arrangement, articulation motions are applied to the surgical end effector 1100 by a distal articulation link 1710 that is pivotally coupled to or otherwise operably interfaces with the articulation lock 1210. Axial movement of the distal articulation link 1710 in the proximal direction PD (which is constrained to move axially along one side of the shaft axis SA), will cause the surgical end effector 1100 to articulate in the left direction LD from an unarticulated position wherein the surgical end effector 1100 is axially aligned on the shaft axis SA to articulated positions on the left side of the shaft axis SA (represented in phantom lines in FIG. 15A). Axial movement of the distal articulation link 1710 in the distal direction DD will move the surgical end effector 1100 from an articulated position towards the unactuated position (arrow RD). In one arrangement, a stop member or stop formation 1232 is formed or otherwise attached to the end effector mounting assembly 1230 to contact the distal end 1563 of the distal spine extension when the surgical end effector 1100 has attained the unactuated position to prevent any further travel thereof in the right direction RD. Such articulation joint arrangement may provide improved articulation travel and closure stability.


Further to the above, the interchangeable surgical tool assembly 1000 includes a clutch assembly 1640 which can be configured to selectively and releasably couple the proximal articulation driver 1700 to the firing member assembly 1600. In one form, the clutch assembly 1640 includes a rotary lock assembly that, in at least one embodiment, comprises a lock collar, or lock sleeve 1650 that is positioned around the firing member assembly 1600. The lock sleeve 1650 is configured to be rotated between an engaged position in which the lock sleeve 1650 couples the proximal articulation driver 1700 to the firing member assembly 1600 and a disengaged position in which the proximal articulation driver 1700 is not operably coupled to the firing member assembly 1600. When lock sleeve 1650 is in its engaged position, distal movement of the firing member assembly 1600 can move the proximal articulation driver 1700 distally and, correspondingly, proximal movement of the firing member assembly 1600 can move the proximal articulation driver 1700 proximally. When lock sleeve 1650 is in its disengaged position, movement of the firing member assembly 1600 is not transmitted to the proximal articulation driver 1700 and, as a result, the firing member assembly 1600 can move independently of the proximal articulation driver 1700. In various circumstances, the proximal articulation driver 1700 can be held in position by the articulation lock 1210 when the proximal articulation driver 1700 is not being moved in the proximal or distal directions by the firing member assembly 1600.


Referring primarily to FIGS. 4 and 5, the lock sleeve 1650 comprises a cylindrical, or an at least substantially cylindrical, body that includes a longitudinal aperture 1652 that is configured to receive the proximal firing shaft segment 1602 of the firing member assembly 1600. The lock sleeve 1650 also has two diametrically-opposed, inwardly-facing lock protrusions 1654 and an outwardly protruding second lock member 1656 formed thereon. The lock protrusions 1654 can be configured to be selectively engaged with the proximal firing shaft segment 1602 of the firing member assembly 1600. More particularly, when the lock sleeve 1650 is in its engaged position, the lock protrusions 1654 are positioned within a drive notch 1603 that is provided in the proximal firing shaft segment 1602 such that a distal pushing force and/or a proximal pulling force can be transmitted from the firing member assembly 1600 to the lock sleeve 1650. When the lock sleeve 1650 is in its engaged position, the second lock member 1656 is received within a drive notch 1704 that is defined in the proximal articulation driver 1700 such that the distal pushing force and/or the proximal pulling force applied to the lock sleeve 1650 can be transmitted to the articulation driver 1700. In effect, the firing member assembly 1600, the lock sleeve 1650, and the proximal articulation driver 1700 will move together when the lock sleeve 1650 is in its engaged position. On the other hand, when the lock sleeve 1650 is in its disengaged position, the lock protrusions 1654 may not be positioned within the drive notch 1603 of the proximal firing shaft segment 1602 of the firing member assembly 1600 and, as a result, a distal pushing force and/or a proximal pulling force may not be transmitted from the firing member assembly 1600 to the lock sleeve 1650. Correspondingly, the distal pushing force and/or the proximal pulling force may not be transmitted to the proximal articulation driver 1700. In such circumstances, the firing member assembly 1600 can be slid proximally and/or distally relative to the lock sleeve 1650 and the proximal articulation driver 1700.


The clutch assembly 1640 further includes a switch drum 1630 that interfaces with the lock sleeve 1650. Further details concerning the operation of the switch drum 1630 and lock sleeve 1650 may be found in U.S. patent application Ser. No. 13/803,086 and U.S. patent application Ser. No. 15/019,196, which have each been herein incorporated by reference in their respective entireties. The switch drum 1630 can further comprise at least partially circumferentially extending openings 1632 defined therein which can receive circumferential mounts 1305 that extend from the nozzle portions 1302, 1304 and permit relative rotation, but not translation, between the switch drum 1630 and the proximal nozzle 1301. See FIG. 6. Rotation of the nozzle 1301 to a point where the mounts reach the end of their respective openings 1632 in the switch drum 1630 will result in rotation of the switch drum 1630 about the shaft axis SA. Rotation of the switch drum 1630 will ultimately result in the movement of the lock sleeve 1650 between its engaged and disengaged positions. In alternative embodiments, the nozzle 1301 may be employed to operably engage and disengage the articulation drive system with the firing drive system. As discussed above, clutch assembly 1640 may operate in the various manners described in further detail in U.S. patent application Ser. No. 13/803,086 and U.S. patent application Ser. No. 15/019,196.


In the illustrated arrangement, the switch drum 1630 includes an L-shaped slot 1636 that extends into a distal opening 1637 in the switch drum 1630. The distal opening 1637 receives a transverse switch pin 1639 of a shifter plate 1638. In one example, the shifter plate 1638 is received within a longitudinal slot (not shown) that is provided in the lock sleeve 1650 to facilitate axial movement of the lock sleeve 1650 when engaged with the proximal articulation driver 1700. Further details regarding the operation of the shifter plate and shift drum arrangements may be found in U.S. patent application Ser. No. 14/868,718, filed Sep. 28, 2015, entitled SURGICAL STAPLING INSTRUMENT WITH SHAFT RELEASE, POWERED FIRING AND POWERED ARTICULATION, the entire disclosure of which is hereby incorporated by reference herein.


Also in the illustrated embodiment, the switch drum 1630 includes a magnet support arm 1665 that supports a magnet or other sensor arrangement that is configured to operably interface with a Hall effect sensor 1662 that interfaces with a slip ring assembly 1660 that is operably mounted to the chassis 1800. The slip ring assembly 1660 is configured to conduct electrical power to and/or from the interchangeable surgical tool assembly 1000 and/or communicate signals to and/or from the interchangeable surgical tool assembly 1000 components back to the microcontroller 520 in the handle assembly 500 (FIG. 2) or robotic system controller, for example. Further details concerning the slip ring assembly 1660 and associated connectors may be found in U.S. patent application Ser. No. 13/803,806 and U.S. patent application Ser. No. 15/019,196 which have each been herein incorporated by reference in their respective entireties as well as in U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, now U.S. Patent Application Publication No. 2014/0263552, which is hereby incorporated by reference herein in its entirety. The magnet or magnets supported on the magnet support arm 1665 cooperate with the Hall effect sensor 1662 or other sensor arrangement to detect the rotary position of the switch drum 1630 and convey that information to the microcontroller 520 which may serve to provide an indication or indications to the user in the various manners discussed in the aforementioned incorporated references. Other sensor arrangements may also be employed.


Referring again to FIGS. 2 and 5, the chassis 1800 includes at least one, and preferably two, tapered attachment portions 1802 that are formed thereon and are adapted to be received within corresponding dovetail slots 507 that are formed within the distal end portion of the frame 506 of the handle assembly 500. As can be further seen in FIG. 2, a shaft attachment lug 1607 is formed on the proximal end of the proximal firing shaft segment 1602. As will be discussed in further detail below, when the interchangeable surgical tool assembly 1000 is coupled to the handle assembly 500, the shaft attachment lug 1607 is received in a firing shaft attachment cradle 542 that is formed in the distal end of the longitudinally movable drive member 540. See FIG. 2.


The interchangeable surgical tool assembly 1000 employs a latch system 1810 for removably coupling the interchangeable surgical tool assembly 1000 to the frame 506 of the handle assembly 500. As can be seen in FIG. 5, for example, in at least one form, the latch system 1810 includes a lock member or lock yoke 1812 that is movably coupled to the chassis 1800. In the illustrated embodiment, for example, the lock yoke 1812 has a U-shape and includes two downwardly extending legs 1814. The legs 1814 each have a pivot lug (not shown) formed thereon that is adapted to be received in corresponding holes 1816 that are formed in the chassis 1800. Such arrangement facilitates pivotal attachment of the lock yoke 1812 to the chassis 1800. The lock yoke 1812 may include two proximally protruding lock lugs 1818 that are configured for releasable engagement with corresponding lock detents or grooves 509 in the distal end of the frame 506 of the handle assembly 500. See FIG. 2. In various forms, the lock yoke 1812 is biased in the proximal direction by a spring or biasing member 1819. Actuation of the lock yoke 1812 may be accomplished by a latch button 1820 that is slidably mounted on a latch actuator assembly 1822 that is mounted to the chassis 1800. The latch button 1820 may be biased in a proximal direction relative to the lock yoke 1812. The lock yoke 1812 may be moved to an unlocked position by biasing the latch button 1820 in the distal direction which also causes the lock yoke 1812 to pivot out of retaining engagement with the distal end of the frame 506. When the lock yoke 1812 is in “retaining engagement” with the distal end of the frame 506, the lock lugs 1818 are retainingly seated within the corresponding lock detents or grooves 509 in the distal end of the frame 506.


In the illustrated arrangement, the lock yoke 1812 includes at least one and preferably two lock hooks 1824 that are adapted to contact corresponding lock lug portions 1426 that are formed on the closure shuttle 1420. When the closure shuttle 1420 is in an unactuated position, the lock yoke 1812 may be pivoted in a distal direction to unlock the interchangeable surgical tool assembly 1000 from the handle assembly 500. When in that position, the lock hooks 1824 do not contact the lock lug portions 1426 on the closure shuttle 1420. However, when the closure shuttle 1420 is moved to an actuated position, the lock yoke 1812 is prevented from being pivoted to an unlocked position. Stated another way, if the clinician were to attempt to pivot the lock yoke 1812 to an unlocked position or, for example, the lock yoke 1812 was inadvertently bumped or contacted in a manner that might otherwise cause it to pivot distally, the lock hooks 1824 on the lock yoke 1812 will contact the lock lugs 1426 on the closure shuttle 1420 and prevent movement of the lock yoke 1812 to an unlocked position. See FIG. 5. Further details concerning the latching system may be found in U.S. Patent Application Publication No. 2014/0263541.


Attachment of the interchangeable surgical tool assembly 1000 to the handle assembly 500 will now be described with reference to FIG. 2. To commence the coupling process, the clinician may position the chassis 1800 of the interchangeable surgical tool assembly 1000 above or adjacent to the distal end of the frame 506 such that the tapered attachment portions 1802 formed on the chassis 1800 are aligned with the dovetail slots 507 in the frame 506. The clinician may then move the surgical tool assembly 1000 along an installation axis IA that is perpendicular to the shaft axis SA to seat the tapered attachment portions 1802 in “operable engagement” with the corresponding dovetail receiving slots 507 in the distal end of the frame 506. In doing so, the shaft attachment lug 1606 on the proximal firing shaft segment 1602 will also be seated in the cradle 542 in the longitudinally movable drive member 540 and the portions of the transverse attachment pin 516 on the closure linkage assembly 514 will be seated in the corresponding hooks 1421 in the closure shuttle 1420. As used herein, the term “operable engagement” in the context of two components means that the two components are sufficiently engaged with each other so that upon application of an actuation motion thereto, the components may carry out their intended action, function and/or procedure.


Referring again to FIGS. 11 and 15, the distal firing bar 1620 may comprise a laminated beam structure that includes at least two beam layers. Such beam layers may comprise, for example, stainless steel bands that are interconnected by, for example, welding or pinning together at their proximal ends and/or at other locations along their length. In alternative embodiments, the distal ends of the bands are not connected together to allow the laminates or bands to splay relative to each other when the end effector is articulated. Such arrangement permits the distal firing bar 1620 to be sufficiently flexible to accommodate articulation of the end effector. Various other suitable laminated knife bar arrangements are disclosed in U.S. patent application Ser. No. 15/019,245. As can also be seen in FIG. 4, a middle support member 1614 is employed to provide lateral support to the distal firing bar 1620 as it flexes to accommodate articulation of the surgical end effector 1100. Further details concerning the middle support member and alternative knife bar support arrangements are disclosed in U.S. patent application Ser. No. 15/019,245.


After the interchangeable surgical tool assembly 1000 has been operably coupled to the handle assembly 500 (FIG. 1), the clinician may operate the surgical tool assembly 1000 as follows. As discussed above, when the closure drive system 510 is in its unactuated position (i.e., the closure trigger 512 has not been actuated), a torsion spring 1642 has biased the clutch assembly 1640 and, more particularly, the switch pin 1639 and the lock sleeve 1650 into the articulation position. When in that mode, the magnet or magnets in the magnet support arm 1665 may cooperate with the Hall effect sensor 1662 or other sensor arrangements as to indicate to the microcontroller 520 that the surgical tool assembly 1000 is in the articulation mode. When the clinician actuates the firing trigger 532, the motor drives the proximal firing shaft segment 1602 distally. As mentioned above, however, the slip joint 1622 facilitates movement of the proximal firing shaft segment 1602 without moving, or at least substantially moving, the distal firing bar 1620. Because the lock sleeve 1650 is in operable engagement with the proximal firing shaft segment 1602 and the proximal articulation driver 1700 is in engagement with the lock sleeve 1650, actuation of the proximal firing shaft segment 1602 results in the distal movement of the proximal articulation driver 1700. Distal movement of the proximal articulation driver 1700 causes the surgical end effector 1100 to articulate around the articulation axis B-B. During this time, the clinician can also partially close the jaws of the surgical end effector 1100 by partially depressing the closure trigger. Such arrangement facilitates axial movement of the proximal closure member 1410 without automatically shifting the clutch assembly 1640 to the firing mode. This feature may enable the clinician to use the jaws to grasp and manipulate tissue prior to clamping onto the target tissue.


Once the clinician has articulated the surgical end effector 1100 into a desired position and the jaws have been positioned in a desired orientation relative to the target tissue, the clinician releases the firing trigger 532 which will discontinue the motorized movement of the proximal firing shaft segment 1602 as well as the proximal articulation driver 1700. The articulation lock 1210 will lock the proximal articulation driver 1700 in that position to prevent further articulation of the surgical end effector 1100. The clinician may clamp the target tissue between the jaws by depressing the closure trigger 512 to the fully depressed position. Such action moves the proximal closure member 1410 distally. Such distal movement of the proximal closure member 1410 causes the shifter plate 1638 to rotate the lock sleeve 1650 to rotate to a disengaged position with the proximal firing shaft segment 1602. When in that position, the lock protrusions 1654 have disengaged from the drive notch 1603 in the proximal firing shaft segment 1602. Thus, the proximal firing shaft segment 1602 can move axially without moving the lock sleeve 1650 and the proximal articulation driver 1700. As the proximal closure member 1410 is moved distally to the fully actuated position (by depressing the closure trigger 512), the proximal and distal closure members 1410 and 1430 move distally to close the jaws 1130, 1102. When in this position, the closure drive system 510 in the handle assembly 500 may be locked and the clinician can release the closure trigger 512. When the clutch assembly 1640 has been moved to this firing mode, the magnet or other sensors in the magnet support arm 1665 or other portion is in communication with the Hall effect sensor 1662 to indicate the position of the clutch assembly 1640 to the microcontroller 520.


The microcontroller 520 may provide the clinician with an indication of the position of the distal firing bar 1620 as it is advanced distally through the target tissue that is clamped between the end effector jaws. Once the distal firing bar 1620 and, more specifically, the firing member or knife member attached thereto has been advanced to a fully fired position, the microcontroller 520, by means of sensor arrangements, detects the position of a portion of the firing member assembly 1600 and may then reverse the motor to retract the distal firing bar 1620 to its starting position. This action may be automatic or the clinician may have to depress the firing trigger 532 during the retraction process. Once the distal firing bar 1620 has been fully retracted to its starting position, the microcontroller 520 may provide the clinician with an indication that the distal firing bar 1620 has been fully retracted and the closure trigger 512 may be unlocked to enable the closure assembly 1406 to be returned to the unactuated position which thereby moves the jaws to the open position.


In one example, the elongate channel 1102 is roughly C-shaped with two upstanding sidewall portions 1104. The anvil 1130 includes an anvil body portion 1132 and an anvil mounting portion 1134. The anvil mounting portion 1134 comprises a pair of anvil mounting walls 1136 that are separated by a slot 1138 (FIG. 6). As discussed above, the end effector mounting assembly 1230 is pivotally attached to the proximal end 1103 of the elongate channel 1102 by a spring pin connector 1235 that extends through a transverse mounting hole 1231 in the end effector mounting assembly 1230 to be received within channel mounting holes 1106 provided in the sidewalls 1104 of the elongate channel 1102. Each of the anvil mounting walls 1136 has an anvil trunnion 1137 protruding therefrom that are each adapted to be rotatably received within a corresponding anvil mounting hole 1107 in the proximal end 1103 of the elongate channel 1102. As can be seen in FIGS. 16 and 17, each of the channel sidewalls 1104 may have a vertical slot or relieved area 1108 that corresponds to each anvil mounting hole 1107 that enables the anvil trunnions 1137 to be vertically dropped into each slot 1108 for ease of assembly. The anvil trunnions define a pivot axis PA about which the anvil 1130 is selectively pivotable relative to the elongate channel 1102. In various examples, the pivot axis PA is transverse to the shaft axis SA. See FIG. 16.


The elongate channel 1102 is configured to removably support a surgical staple cartridge 1150 therein. The surgical staple cartridge 1150 includes a cartridge body 1151 that defines a deck surface 1152 that faces a staple-forming undersurface 1133 of the anvil body portion 1132. The cartridge body 1151 has an elongate slot 1154 extending therethrough for permitting the passage of a firing member 1670 that is attached to a distal end of the distal firing bar 1620. The cartridge body 1151 has a plurality of anvil pockets 1156 that are serially arranged in lines on both sides of the elongate slot 1154. See FIG. 6. Housed within these pockets 1156 are staple drivers that operably support one or more surgical staples or fasteners thereon. When the target tissue is clamped between the staple forming undersurface 1133 of the anvil body portion 1132 and the staple cartridge deck surface 1152, the target tissue must be positioned so that the tissue that is severed is stapled on each side of the cut line. To avoid the target tissue from being positioned proximal of the proximal most staples or fasteners, the anvil 1130 may include two downwardly extending tissue stops 1140. See FIG. 18. The tissue stops 1140 when extending downward past the cartridge deck surface 1152 serve to block the target tissue from getting too far proximal between the anvil 1130 and the surgical staple cartridge 1150.


Still referring to FIGS. 18 and 19, in the illustrated example the anvil mounting walls 1136 are somewhat elongated and extend proximally. In one example, one or both of the anvil mounting walls 1136 include an opening limiter 1139 (FIG. 18) formed thereon that is configured to contact the end effector mounting assembly 1230 to prevent the anvil 1130 from opening too far. See FIG. 18. Such anvil opening limiter 1139 may prevent the anvil 1130 from being too loose and sloppy on the elongate channel 1102. In addition, the opening limiter 1139 prevents the anvil 1130 from opening to a position wherein the tissue stops 1140 extend above the cartridge deck surface 1152. If that were to occur, tissue could be permitted to extend too far proximally between the anvil 1130 and the surgical staple cartridge 1150 and potentially be severed but not stapled. Such arrangement may also serve to prevent the anvil from being perceived as being too loose and sloppy relative to the elongate channel.


Referring again to FIG. 17, the anvil mounting portion 1134 defines a firing member “parking area” 1141 which accommodates the firing member 1670 therein when the firing member 1670 is in a starting (unfired) position. In the illustrated arrangement, at least a portion of the parking area 1141 is proximal to the pivot axis. See, for example, FIG. 19. Such arrangement may reduce the negative moment arm that is created from the tissue that is clamped between the anvil 1130 and the surgical staple cartridge 1150 that is supported in the elongate channel 1102. In one example, an anvil cap or cover 1142 is attached to the anvil mounting portion 1134 to provide a pre-closure surface 1143 for contact by a distal camming ramp or surface 1440 formed on a distal end 1431 of the distal closure member 1430. See FIG. 20. In one arrangement, the anvil cap 1142 includes a pair of downwardly extending legs 1144 that are configured to snappingly engage attachment lugs 1145 that are formed on the anvil mounting walls 1136. As can be seen in FIG. 16, for example, the anvil cap 1142 includes a distally extending transition portion 1146 that extends between the anvil mounting walls 1136 and covers the firing member 1670 when it is in the firing member parking area 1141. The transition portion 1146 extends between the anvil mounting walls 1136 and forms a transition from the pre-closure surface 1143 and an anvil cam surface 1147 formed on the anvil mounting portion 1134. In addition, the anvil cap 1142 may minimize pinch points that may otherwise be present between the anvil mounting portion 1134 and the distal end 1431 of the distal closure member 1430 when the anvil 1130 is in its fully opened position.


Operation of the closure process employed in this example will now be described with reference to FIGS. 18A, 19 and 20A. In the illustrated arrangement, the anvil body portion 1132 defines an upper anvil surface 1135. As can be seen in FIG. 18A, the cam area or cam surface 1147 that is formed on the anvil mounting portion 1134 gradually transitions to the upper anvil surface 1135. More specifically, in the illustrated arrangement, the cam surface 1147 comprises two surface portions: a proximal cam surface portion 1147P and a distal cam surface portion 1147D. In at least one example, the proximal cam surface portion 1147P extends from a proximal end of the anvil body portion 1132 to the distal cam surface portion 1147D. The distal cam surface portion 1147D extends from the proximal cam surface portion 1147P to the upper anvil surface 1135. In one arrangement, the proximal cam surface portion 1147P may have a slightly steeper angle than the distal cam surface portion 1147D. In other arrangements, the cam surface on the anvil mounting portion may comprise one continuous cam surface oriented relative to the outer surface at a single cam angle.


As can be seen in FIG. 19, the distal closure member 1430 has a distal end surface 1431 formed on a distal end thereof. A distal camming surface 1440 extends at an obtuse cam angle CA relative to the distal end surface 1431. In the illustrated arrangement, the distal closure member 1430 comprises a distal closure tube that has an outer surface 1433 and an inner surface 1435 that defines a cross-sectional thickness CT therebetween. The distal end surface 1431 comprises a portion of the cross-sectional thickness CT. The distal camming surface 1440 extends from the distal end surface 1431 to the inner surface 1435 of the distal closure member 1430. An initial cam area 1437 comprises the line or point of intersection between the distal end surface 1431 and the distal camming surface 1440.



FIG. 18A illustrates the distal closure member 1430 in a starting position with the anvil 1130 in an open position. As can be seen in FIG. 18A, the distal camming surface 1440 is in contact with the pre-closure surface 1143 on the anvil cap 1142. To begin the closure process, the distal closure member 1430 is axially advanced in the distal direction DD. When the initial cam area 1437 and/or the distal end surface 1431 initially contacts the cam surface 1147 (proximal cam surface portion 1147P) an initial closure motion or initial closure force ICF is applied thereto. See FIG. 19. This initial closure force ICF is normal or perpendicular to the proximal cam surface portion 1147P. Continued axial advancement of the distal closure member 1430 brings the distal camming surface 1440 into camming engagement with the cam surface 1147 (distal cam surface 1147D) and essentially applies a closure force CF that is essentially parallel to the shaft axis SA. See FIG. 20A.


In the above-described example, the anvil mounting walls 1136 may have a length that is somewhat longer than the anvil mounting configurations employed by other anvil arrangements. Such elongated anvil mounting walls 1136 serve to enable the pivot axis to be located relatively close to the articulation axis that is defined by the articulation joint 1200. This arrangement facilitates establishment of a longer initial moment arm MAI (FIG. 19) between the pivot axis PA and the initial closure force ICF. Such arrangement also facilitates the location of the pivot axis PA in a position that is slightly closer to the bottom of the elongate channel 1102 when compared to other anvil/channel mounting arrangements. Thus, in the illustrated arrangement, the distance between the pivot axis PA and the axis along which the closure force CF is applied is somewhat greater than other arrangements (larger moment arm). This arrangement may also lead to the establishment of a greater closure force CF when compared to other anvil mounting arrangements. Thus, the anvil mounting arrangement of the illustrated example may offer a larger mechanical closure advantage than is commonly attainable with other anvil mounting arrangements. Another advantage that may be gained by the foregoing example, is that locating at least a portion of the firing member parking area 1141 proximal to the pivot axis PA may help to reduce the “negative” moment arm that is applied to the anvil by the tissue that is clamped between the anvil and the cartridge.


Turning now to FIGS. 21-25, the distal closure member 1430 is formed with at least one and preferably two, positive jaw opening hooks or tabs 1442. Tabs 1442 may also be referred to herein as “primary positive jaw opening tabs”. In one example, the positive jaw opening tabs are integrally formed into the distal closure member 1430. For example, the positive jaw opening tabs 1442 are cut out of the walls of the tubular structure comprising the distal closure member 1430. Each of the positive jaw opening tabs 1442 include an upwardly protruding hook portion 1444 that has a rounded camming end 1445 formed thereon that is configured for camming engagement with a corresponding anvil opening ramp 1148 extending downwardly from the anvil body portion 1132. FIG. 22 illustrates the position of the anvil 1130 and distal closure member 1430 when the anvil 1130 is in a closed orientation. FIG. 23 illustrates the beginning of the opening process wherein the distal closure member 1430 has started to be retracted in the proximal direction PD. As can be seen in FIG. 23, the camming end 1445 has initially contacted the anvil opening ramp 1148. FIG. 24 illustrates the anvil 1130 in a partially opened position and FIG. 25 illustrates the anvil 1130 in a fully opened position. As can be seen in FIG. 25, the camming end 1445 is on the bottom end 1149 of the anvil opening ramp to retain the anvil 1130 in the fully opened position. Such use of features on the distal closure member to effectuate the opening of the anvil from a fully closed position to a fully open position may be referred to herein as “positive jaw opening” features. Other suitable positive jaw opening arrangements are disclosed in U.S. patent application Ser. No. 14/742,925, entitled SURGICAL END EFFECTORS WITH POSITIVE JAW OPENING ARRANGEMENTS, which has been incorporated by reference in its entirety herein.



FIGS. 26-29 illustrate an alternative distal closure member 1430′ that employs secondary positive jaw opening tabs 1448 that are configured to cooperate with secondary jaw opening features 1160 that are formed on the anvil mounting walls 1136. See FIGS. 16, 17 and 27. As can be seen in FIG. 26, the secondary positive jaw opening tabs 1448 may be cut into the walls of the distal closure tube or member 1430′ and bent inward so as to be able to contact the secondary jaw opening features 1160 on the anvil 1130 as the distal closure tube or member 1430′ is moved in the proximal direction PD. FIG. 29 illustrates the anvil 1130 in a fully opened position. As the distal closure member 1430′ is moved proximally, the primary positive jaw opening tabs 1442 cam up the corresponding anvil opening ramp 1148 on the anvil 1130 and begin to pivot the anvil open. Thereafter, during the closing process, the secondary positive jaw opening tabs 1448 in the distal closure member 1430′ contact the secondary jaw opening features 1160 that are formed on the anvil mounting walls 1136 to further assist with moving the anvil 1130 to the fully opened position. As can be seen in FIG. 26 the secondary positive jaw opening tabs 1448 generally follow the contour of the distal closure tube 1430′.



FIG. 30 illustrates an alternative distal closure member 1430′ wherein the secondary positive jaw opening tabs 1448′ are integrally formed into the wall of the distal closure tube 1430′, but they extend proximally inward to contact the secondary jaw opening features 1160 on the anvil 1130 as the distal closure tube or member 1430′ is moved in the proximal direction PD. FIG. 31 illustrates the anvil 1130 in a fully opened position. Such primary and secondary anvil opening or jaw opening features may therefore serve to sequentially apply opening motions to the anvil as the distal closure member moves from a fully actuated position which corresponds to the fully closed position of the anvil to an unactuated position which corresponds to the fully open position of the anvil. In such arrangement, as the distal closure tube 1430′ is moved in the proximal direction, the primary positive jaw opening tabs 1442 cam the anvil into a “mostly open” position. The secondary positive jaw opening tabs 1448 serve to assure that the anvil is moved into its fully open position when the distal closure member is moved back to the unactuated position.



FIGS. 32 and 33 illustrate an alternative secondary positive jaw opening arrangement wherein the anvil mounting walls 1136 include a proximal anvil extension 1162 that cooperates with a corresponding secondary anvil biasing spring 1164 to bias the anvil into an open position. As the distal closure member 1430 is moved proximally, the primary positive jaw opening tabs 1442 cam up the corresponding anvil opening ramp 1148 on the anvil 1130 and begin to pivot the anvil open. In addition, the secondary anvil biasing spring 1164 applies a biasing force to the proximal anvil extension 1162 to further assist with moving the anvil 1130 to the fully opened position. In prior jaw opening arrangements, there is commonly a “lag time” between actuation of the jaw opening system (e.g., firing trigger) and the active opening of the jaws. In the above-described example, the secondary anvil biasing spring 1164 is located proximal to the pivot axis PA about which the anvil pivots relative to the elongate channel. Such arrangement may serve to increase the biasing (opening) motion to the anvil as well as to minimize the occurrence of any “dead zone” that might otherwise occur between initial retraction of the closure member and a point wherein the closure member actually starts to apply a sufficient amount of opening motion to the anvil to cause the anvil to move to the open position.



FIGS. 34 and 35 illustrate an alternative distal closure member 1430″ that employs a positive jaw biasing member 1450 on each of the positive jaw opening tabs 1442. The positive jaw biasing members 1450 may form leaf-type spring arrangements formed from metal or the like and serve to apply additional opening forces to the anvil opening ramps 1148 on the anvil 1130 as the distal closure member 1430″ is moved in the proximal direction PD. FIG. 34 illustrates the anvil 1130 in a fully closed position and FIG. 35 illustrates the anvil 1130 in a fully opened position. FIGS. 36 and 37 illustrate an alternative distal closure member 1430″ that employs another form of positive jaw biasing member 1452 on each of the positive jaw opening tabs 1442. The positive jaw biasing members 1452 may have a somewhat V-shape configuration and be formed from spring steel or the like. FIG. 36 illustrates the anvil 1130 in a fully closed position and FIG. 37 illustrates the anvil 1130 in a partially opened position as the distal closure member 1430″ initially moves in the proximal direction. The positive jaw biasing members 1452 serve to ensure that the anvil 1130 is raised against the distal closure member 1430″ from the beginning of the opening process.



FIGS. 38 and 39 illustrate an alternative distal closure member 1430″ wherein each of the positive jaw opening tabs 1442 have a compliant portion 1454 thereon that serves to ensure that the anvil 1130 is raised against the distal closure member 1430″ from the beginning of the opening process. The compliant portion 1454 may comprise rubber or similar material formed onto the hook portions 1444 of the positive jaw opening tabs 1442. In other arrangements, the portions 1454 may not be formed from compliant material, but instead may be formed from a hardened material to prevent wear on the positive jaw opening tabs 1442. FIG. 38 illustrates the anvil 1130 in a fully closed position and FIG. 39 illustrates the anvil 1130 in a partially opened position. Such compliant arrangements and biasing member arrangements may serve to urge the anvil open while the closure member cam features remain in camming engagement with the cam ramps on the anvil to minimize any dead zone lag occurring between actuation of the closure system (to open the anvil) and the actual opening of the anvil. Such configurations may also serve to establish solid camming surfaces that would enable the user to overpower an anvil jam by operating the closure trigger.


Turning next to FIGS. 40-42, the firing member 1670 is configured to operably interface with a sled or cam assembly 1120 that is operably supported within the body 1151 of the surgical staple cartridge 1150. The cam assembly 1120 is slidably displaceable within the surgical staple cartridge body 1151 from a proximal starting position adjacent the proximal end 1153 of the cartridge body 1151 to an ending position adjacent a distal end 1155 of the cartridge body 1151. The cartridge body 1151 operably supports therein a plurality of staple drivers (not shown) that are aligned in rows on each side of a centrally disposed slot 1154. The centrally disposed slot 1154 enables the firing member 1670 to pass therethrough and cut the tissue that is clamped between the anvil 1130 and the surgical staple cartridge 1150. The drivers are associated with corresponding pockets 1156 that open through the upper deck surface 1152 of the cartridge body 1151. Each of the staple drivers supports one or more surgical staple or fastener (not shown) thereon. Thus, a plurality of surgical staples are arranged in lines or rows situated on both sides of the slot 1154. The cam assembly 1120 includes a plurality of sloped or wedge-shaped cams 1122 wherein each cam 1122 corresponds to a particular line of fasteners or drivers located on a side of the slot 1154. When the firing member 1670 is fired or driven distally, the firing member 1670 drives the cam assembly 1120 distally as well. As the firing member 1670 moves distally through the surgical staple cartridge 1150, the tissue cutting feature 1676 cuts the tissue that is clamped between the anvil 1130 and the surgical staple cartridge 1150 and the cam assembly 1120 drives the drivers upwardly in the cartridge which drive the corresponding staples or fasteners into forming contact with the anvil 1130.


In those embodiments wherein the firing member includes a tissue cutting surface or tissue cutting feature, it may be desirable for the elongate shaft assembly to be configured in such a way so as to prevent the inadvertent advancement of the firing member unless an unfired or new staple cartridge is properly supported in the elongate channel 1102 of the surgical end effector 1100. If, for example, no staple cartridge is present at all and the firing member is distally advanced through the end effector, the tissue would be severed, but not stapled. Similarly, if a spent staple cartridge (i.e., a staple cartridge wherein at least some of the staples have already been fired therefrom) is present in the end effector and the firing member is advanced, the tissue may be severed, but may not be completely stapled, if at all. It will be appreciated that such occurrences could lead to undesirable catastrophic results during the surgical procedure. U.S. Pat. No. 6,988,649 entitled SURGICAL STAPLING INSTRUMENT HAVING A SPENT CARTRIDGE LOCKOUT, U.S. Pat. No. 7,044,352 entitled SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, and U.S. Pat. No. 7,380,695 entitled SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, and U.S. patent application Ser. No. 14/742,933, entitled SURGICAL STAPLING INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION WHEN A CARTRIDGE IS SPENT OR MISSING each disclose various firing member lockout arrangements that may be employed. Each of those references is hereby incorporated by reference in their entireties herein.


An “unfired”, “unspent”, “fresh” or “new” surgical staple cartridge 1150 means herein that the surgical staple cartridge 1150 has all of its fasteners in their “ready-to-be-fired” positions when properly loaded within the end effector. When in that position, the cam assembly 1120 is located in its starting position. The new surgical staple cartridge 1150 is seated within the elongate channel 1102 and may be retained therein by snap features on the cartridge body that are configured to retainingly engage corresponding portions of the elongate channel 1102. FIG. 41 illustrates portions of the surgical end effector 1100 with a new or unfired surgical staple cartridge 1150 seated therein. As can be seen in FIG. 41, the cam assembly 1120 is in the starting position. To prevent the firing system from being activated and, more precisely, to prevent the firing member 1670 from being distally driven through the end effector 1100 unless an unfired or new surgical staple cartridge has been properly seated within the elongate channel 1102, the illustrated interchangeable surgical tool assembly 1000 employs a firing member lockout system generally designated as 1730 that, in certain aspects, may be similar to the lockout systems disclosed in U.S. patent application Ser. No. 15/385,958, filed on Dec. 21, 2016, entitled SURGICAL INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION UNLESS AN UNSPENT STAPLE CARTRIDGE IS PRESENT, the entire disclosure of which is hereby incorporated by reference herein in its entirety.


In the illustrated example, the firing member lockout system 1730 includes a movable lock member 1732 that is configured to retainingly engage the firing member 1670 when an unspent or unfired surgical staple cartridge 1150 is not properly seated within the elongate channel 1102. The lock member 1732 comprises a pair of lateral spring arms 1733 that are interconnected by a central mount tab feature 1734. As can be seen in FIG. 41, each of the lateral spring arms 1733 are laterally offset from the shaft axis SA. When the lock member 1732 is installed, the mount tab feature 1734 is configured to bias the lock member 1732 upward. In addition, the lock member 1732 includes two lateral anvil spring arms 1736 that angle upward to engage the bottom surface of a corresponding anvil mounting wall 1136 on the anvil mounting portion 1134 to bias the lock member 1732 downward when the anvil 1130 is closed. The distal portion of each lateral spring arm 1733 terminates in a sled tab 1738 that are each further laterally offset from the shaft axis SA. Each of the sled tabs 1738 are oriented to contact a corresponding unlocking feature or sled boss 1124 that is formed on the proximal end portion 1121 of the cam assembly 1120. As can be seen in FIG. 40, for example, in the illustrated arrangement, the cam assembly 1120 has a central axis CA. When the sled assembly 1120 is in its starting position within an unfired staple cartridge that is properly supported in the elongate channel, the central axis CA is laterally aligned with the shaft axis SA. As can be seen in FIG. 40, the sled bosses are laterally offset from the central axis CA (and ultimately the shaft axis SA) so as to define a central area 1123 therebetween. When the firing member is distally advanced through the end effector, the firing member contacts the cam assembly 1120 in the central area to drive the cam assembly 1120 distally through the cartridge body. In alternative arrangements, only one lateral spring arm 1733 may be employed and therefore only one lateral sled tab 1738 is provided. In such arrangement, only one corresponding sled boss 1124 is formed on the cam assembly 1120. In still other arrangements, the lock member 1732 may have two lateral spring arms 1733, but only one of the lateral spring arms may be provided with a sled tab 1738. In the illustrated arrangement, each of the proximally facing sled bosses 1124 includes a ramp 1127 to facilitate easier interfacing between the sled bosses 1124 and the lateral sled tabs 1738 during installation of the cartridge in the elongate channel.


Each of the lateral spring arms 1733 includes a lock notch therein that is configured to lockingly engage a corresponding central lock lug 1674 that extends laterally from a firing member body portion 1672. FIG. 41 illustrates the cam assembly 1120 in a starting position wherein the sled bosses 1124 have lifted the lock member 1732 out of locking engagement with the lock lugs 1674. FIG. 42 illustrates an improper surgical staple cartridge 1150W installed in relation to the lock member 1732. As can be seen in FIG. 42, although the cartridge 1150W has a cam assembly 1120W with proximally extending features 1124W that are laterally offset from a central axis of the cam assembly, the features 1124W are in not in unlocking engagement with the sled tabs 1738 of the lock member 1732. Thus, the cam assembly 1120W, even though in its starting position, will not move the lock member 1732 out of locking engagement with the firing member 1670.


In alternative arrangements, the lock member may be configured to complete an electrical circuit when it is moved down into contact with a corresponding portion of a sled of a properly loaded unfired cartridge (when the sled is in its proper firing position). In such arrangement, for example, when the circuit is open, the motor is inoperable. In one arrangement, the lock member may also be able to mechanically engage the firing member in the above-described manner to thereby facilitate both mechanical and electrical lockout features/capabilities.



FIGS. 43-50 illustrate another firing member lockout system 1740 that may be employed in connection with the various end effector embodiments disclosed herein. In this embodiment, the firing member lockout system 1740 includes a firing member lock 1742 that is supported for pivotal travel between a locked position wherein the firing member lock 1742 is in locking engagement with the firing member 1670 and an unlocked position wherein the firing member 1670 is free to be distally advanced through the surgical staple cartridge 1150. As can be seen in FIG. 43, the firing member lock 1742 includes a mounting portion 1743 that has a pivot member 1744 protruding laterally from each side thereof. The pivot members 1744 are pivotally captured within pivot notches 1238 provided in the underside of the end effector mounting assembly 1230. See FIG. 44. As can be seen in FIG. 44, the pivot members 1744 are rotatably captured in the pivot notches 1238 by the lower double pivot link 1222. As can also be seen in FIG. 43, a pair of hook arms 1746 extends distally from the mounting portion 1743. Each hook arm 1746 includes a lock notch 1748 that is formed in the underside thereof that is configured to engage a corresponding one of the central lock lugs 1674 on the firing member 1670. The firing member lockout system 1740 further includes a pair of biasing members 1749 in the form of leaf springs or the like that engage the corresponding anvil mounting walls 1136 on the anvil 1130 and the firing member lock 1742 to bias the firing member lock 1742 downwardly.



FIG. 45 illustrates the surgical end effector 1100 with the anvil 1130 and the elongate channel 1102 in their fully opened position which occurs during the loading of an unspent or unfired surgical staple cartridge 1150 therein. When in the open position, the firing member 1670 cannot be distally advanced at least due to the misalignment of portions of the firing member with corresponding passages within the anvil 1130. In addition, the instrument may employ various sensor arrangements that are configured to detect the position of the anvil and/or configurations of other portions of the anvil closure system to prevent actuation of firing system components unless the anvil is in a fully closed position. As can be seen in FIG. 45, when in the open position, the hook arms 1746 are oriented in an unactuated position wherein a portion of each of the hook arms 1746 is received on the corresponding central lock lug 1674 of the firing member 1670 such that the lock notch 1748 is not in position to engage the corresponding central lock lug 1674.



FIG. 46 illustrates the end effector after an unfired surgical staple cartridge 1150 with a sled assembly or cam assembly 1120 has been properly installed in the elongate channel 1102 and the anvil 1130 has been is closed. When in such configuration, the biasing member 1749 applies a downward biasing motion onto the firing member lock 1742, which is now in contact with the sled bosses 1124 as well as the central lock lug 1674 on the firing member 1670. As can be further seen in FIG. 46, the sled bosses 1124 on the sled assembly 1120 serve to lift the firing member lock 1742 upward so that the lock notches 148 therein are out of locking engagement with the central lock lugs 1674 on the firing member 1670. Thus, the firing member 1670 is free to be distally advanced as illustrated in FIG. 47. As can be seen in FIG. 47, the firing member lock 1742 is out of engagement with the firing member 1670 as well as the sled assembly 1120 and the biasing members 1749 have pivoted the firing member lock 1742 downward.



FIGS. 48-50 illustrate the retraction of the firing member 1670. FIG. 48 shows the position of the firing member 1670 and the firing member lock 1742 at the beginning of the retraction process. FIG. 49 illustrates the position of the firing member 1670 after the tapered proximal ends 1675 of the central lock lugs 1674 have contacted the angled surfaces on the distal ends of the hook arms 1746 and pivoted the hook arms 1746 upward (arrow U). FIG. 50 illustrates the firing member 1670 in its fully retracted or starting position. As can be seen in FIG. 50, the hook arms 1746 have pivoted downward into a “pre-locked” position. When the lock member is in the pre-locked position, the firing member 1670 can be moved distally until the central lock lugs 1674 thereon lockingly engage the hook harms 1746 which serve to prevent further distal advancement of the firing member 1670. Thus, in the illustrated example, the firing member lock 1742 will not be moved from an unlocked or un-activated position to an actuated position unless the anvil is first moved to a closed position. In this context, the term “closed position” means that the anvil is moved to a position relative to the cartridge and firing member that would otherwise enable the firing member to be distally advanced therein but for the firing member lockout system, for example.



FIGS. 51-55 illustrate another firing member lockout system 1750 that may be employed in connection with the various end effector embodiments disclosed herein. In this embodiment, the firing member lockout system 1750 includes at least one firing member lock 1752 that is supported for vertical travel along a lock axis LA that is transverse to the shaft axis SA. In one example, a firing member lock 1752 corresponds to each of the anvil mounting walls 1136. In other examples, only one firing member lock 1752 may be employed. Only one firing member lock 1752 is shown in the Figures for clarity purposes. In the illustrated example, each firing member lock 1752 has an L-shape and a latch portion 1754. The firing member lock 1752 is movably journaled on a corresponding mounting rod 1751 that is attached to the corresponding anvil mounting wall 1136 or other portion of the anvil. A corresponding lock spring or biasing member 1756 biases the firing member lock 1752 downward (arrow D in FIGS. 52 and 53). FIG. 51 illustrates the surgical end effector 1100 with the anvil 1130 and the elongate channel 1102 in their fully closed position with an unspent or unfired surgical staple cartridge 1150 properly supported therein. As can be seen in FIG. 51, a tapered end 1755 of each of the latch portions 1754 has been engaged by corresponding unlocking features 1125 on the sled assembly 1120. The unlocking features 1125 serve to vertically displace the latch portions 1754 so that the central lock lugs 1674 on the firing member 1670 may pass thereunder. Thus, the firing member 1670 is free to be distally advanced. FIG. 52 illustrates the position of the firing member 1670 at the beginning of the firing process wherein it has been advanced distally from its starting position. As can be seen in FIG. 52, the unlocking features 1125 are no longer in contact with the latch portions 1754.



FIGS. 53-55 illustrate the retraction of the firing member 1670. FIG. 53 shows the position of the firing member 1670 and the firing member lock 1752 at the beginning of the retraction process. FIG. 54 illustrates the position of the firing member 1670 after the tapered proximal ends 1675 of the central lock lugs 1674 have contacted the angled surfaces or tapered ends 1755 of the latch portions 1754 to vertically displace the firing member lock 1752 in the up direction (arrow U—FIGS. 54 and 55). FIG. 55 illustrates the firing member 1670 in its fully retracted or starting position. As can be seen in FIG. 55, the firing member lock 1752 is in a locked or bottom position wherein, if the firing member 1670 were to be moved distally, the central lock lug 1674 on the firing member 1670 would contact the latch portions 1754 of the corresponding firing member lock 1752. When in that position, the firing member 1670 cannot be distally advanced. Because the firing member locks 1752 are attached to the anvil, when the anvil is in an open position, the firing member locks 1752 are not in a locked position wherein they can prevent the axial advancement of the firing member 1670. Thus, to actuate the firing member lockout system 1750, the anvil 1130 must first be moved to a closed position. In this context, the term “closed position” means that the anvil is moved to a position relative to the cartridge and firing member that would otherwise enable the firing member to be distally advanced therein, but for the firing member lockout system, for example.



FIGS. 56-63 illustrate another firing member lockout system 1760 that includes a movable lock member 1762 that is configured to retainingly engage the firing member 1670 when a surgical staple cartridge 1150 is not properly seated within the elongate channel 1102. The lock member 1762 comprises at least one laterally moving locking portion 1764 that is configured to retainingly engage a corresponding portion of the firing member when the sled assembly 1120 is not present within the surgical staple cartridge 1150 in its starting position. In the illustrated arrangement, the lock member 1762 employs two laterally moving locking portions 1764 wherein each locking portion 1764 engages a laterally extending portion of the firing member 1670.


In the illustrated embodiment, the lock member 1762 comprises a generally U-shaped spring member wherein each laterally movable leg or locking portion 1764 extends from a central spring portion 1763 and is configured to move in lateral directions represented by arrows “L” in FIGS. 56, 59 and 62. It will be appreciated that the term “lateral directions” refers to directions that are transverse to the shaft axis SA. The spring or lock member 1762 may be fabricated from high strength spring steel or similar material. The central spring portion 1763 may include a proximally extending spring tab 1767 that is retained within a notch 1240 in the end effector mounting assembly 1230. See FIG. 57. In the illustrated example, the spring tab 1767 serves to bias the lock member 1762 into an unlocked configuration when the anvil 1130 is in an open position. FIG. 57 illustrates the anvil 1130 in an open position ready for an unfired or new cartridge to be installed in the elongate channel 1102. As can be seen in FIG. 57, the mounting tab 1767 biases the lock member 1762 in an upward direction (arrow U). When in that unlocked position, the lock member 1762 is not in a position to prevent the distal advancement of the firing member 1762. The instrument may, however, employ other sensors and lockout arrangements to detect the position of the anvil and otherwise prevent actuation of the firing system unless the anvil has been moved to a closed position.



FIG. 58 illustrates a portion of the surgical end effector 1100 with an unfired staple cartridge 1150 loaded or properly supported within the elongate channel 1102 and after the anvil 1130 has been moved to a closed position. As the anvil 1130 is moved to the closed position, the anvil mounting walls 1136 contact corresponding laterally extending anvil tabs 1766 that are formed on the lock member 1762. See FIG. 56. The anvil mounting walls 1136 thereby serve to move the lock member 1762 from a disengaged position to a locked position wherein the lock member 1762 is in locking engagement with the firing member 1670. In one example, each of the laterally movable legs or locking portions 1764 of the lock member 1762 includes a locking window 1768 therein. When the lock member 1762 is in a locked position, the central lock lug 1674 on each lateral side of the firing member 1670 extends into the corresponding locking window 1768 to retainingly prevent the firing member 1670 from being distally axially advanced.


As can be seen in FIG. 56, the sled or cam assembly 1120 includes an unlocking feature 1125 that corresponds to each of the laterally movable locking portions 1764. In the illustrated arrangement, an unlocking feature 1125 is provided on, or extends proximally from, each of the central wedge-shaped cams 1122. In alternative arrangements, the unlocking feature 1125 may comprise a proximally protruding portion of the corresponding wedge-shaped cam 1122. As can be seen in FIG. 59, when the sled assembly 1120 is in its starting position, the unlocking features 1125 engage and bias the corresponding locking portions 1764 laterally in a direction that is transverse to the shaft axis SA (arrows L). When the locking portions 1764 are in those unlocked orientations, the central lock lugs 1674 are not in retaining engagement with their corresponding locking window 1768. When in those orientations, the firing member 1670 may be distally axially advanced (fired). However, when an unfired surgical staple cartridge 1150 is not present in the elongate channel 1102 or the sled assembly 1120 has been moved out of its starting position (which may mean that the cartridge is at least partially or completely fired), the locking portions 1764 spring laterally into retaining engagement with the firing member 1670. When in that position as illustrated in FIG. 58, the central lock lugs 1674 are received within their respective locking windows 1768 and are prevented from moving distally by a lockout stop 1769. When in such position, the firing member 1670 cannot be moved distally.



FIG. 61 illustrates the firing member 1670 as it is being retracted to its starting or unfired position. As the tapered or tapered proximal ends 1675 of the central lock lugs 1674 contact the radiused distal ends 1765 of the movable locking portions 1764, the movable locking portions 1764 are biased laterally outward as shown in FIG. 62 until each of the central lock lugs 1674 once again are completely received within the lock window portions 1768 in the locking portions 1764 (FIG. 63). When the firing member 1670 has been fully retracted to the starting position shown in FIG. 63, the firing member 1670 is once again locked in place by the lock member 1762 and prevented from being distally advanced until another fresh cartridge has been properly loaded into the elongate channel 1102 as described above. When the anvil 1130 is opened, the spring tab 1767 once again biases the lock member 1762 back to the unlocked or pre-actuated position. Thus, to actuate the firing member lockout system 1760, the user must first move the anvil to a closed position. In this context, the term “closed position” means that the anvil is moved to a position relative to the cartridge and firing member that would otherwise enable the firing member to be distally advanced therein, but for the firing member lockout system, for example.



FIGS. 64-70 illustrate an alternative articulation lock arrangement 1910 for locking a surgical end effector 1100′ in an articulated position about an articulation axis B-B relative to a shaft axis SA. In the illustrated example, the surgical end effector 1100′ is pivotally coupled to a spine assembly 1500′. The spine assembly 1500′ may be attached to the chassis 1800 (FIG. 4) in the above described manner. A distal end portion 1540 of the spine assembly 1500′ is formed with a downwardly protruding articulation pin 1542 that defines the articulation axis B-B. The articulation pin 1542 is configured to be rotatably or pivotally received within a spine attachment hole 1254 that is provided in a mounting base 1252 of an end effector mounting assembly 1250. The end effector mounting assembly 1250 is attached to a proximal end 1103 of the elongate channel 1102 by a spring pin connector 1235 (FIG. 6) that extends through a transverse mounting hole 1251 in the mounting assembly 1250 to be received within the channel mounting holes 1106 (FIG. 6) that are provided in the proximal end 1103 of the elongate channel 1102.


Referring to FIGS. 64 and 65, in one example, the articulation lock arrangement 1910 comprises a lock spring assembly 1920 that includes a central spring body portion 1922 that defines a central pin hole 1924 and which includes bottom release ring segments 1930 and 1932 and top release ring segments 1940 and 1942. The lock spring assembly 1920 is sized to be rotatably received within the spine attachment hole 1254 in the mounting base 1252. In one example, an upper release stop 1256 and a lower release stop 1258 each protrude inwardly within the spine attachment hole 1254. The articulation lock arrangement 1910 further includes a release pin assembly 1950 that includes an upper release arm 1952 and a lower release arm 1954. The release pin assembly 1950 is attached to a distal articulation link 1960 that is pinned to a distal end of the distal articulation link 1710′ by a link pin 1962. The distal articulation link 1710′ may interface with the articulation systems described herein for axially moving the distal articulation link 1710′ in the distal and proximal directions depending upon the direction of articulation desired. A bottom portion (not shown) of the release pin assembly 1950 is configured to be pivotally and slidably supported within a lower arcuate release pin slot 1260 that is formed in the end effector mounting assembly 1250. A second upper release arm slot 1270 is also formed in the end effector mounting assembly and is configured to movably accommodate the upper and lower release arms 1952 and 1954. As can be seen in FIG. 67, an upper balance formation 1272 protrudes into the second upper release arm slot 1270 and is configured to operably interface with the upper release arm 1952. Likewise, a lower balance formation 1274 protrudes into the second upper release arm slot 1270 and is configured to operably interface with the lower release arm 1954.


In the illustrated example, the articulation pin 1542 is rotatably received within the central pin hole 1924 in the lock spring assembly 1920. The lock spring assembly 1920 is received within the spine attachment hole 1254 in the end effector mounting assembly 1250 such that the upper release stop 1256 is received within an upper lock space 1941 that is formed between the top release ring segments 1940 and 1942 and the lower release stop 1258 is located within a lower lock space 1931 formed between the bottom release ring segments 1930 and 1932. FIG. 67 illustrates the surgical end effector 1100 in an unarticulated position. As can be seen in FIG. 67, the upper release stop 1256 is in abutting engagement with the top release ring segment 1940. The lower release stop 1258 may also be in abutting engagement with the bottom release ring segment 1932. Such configuration retains the lock spring assembly 1920 in frictional engagement with the articulation pin 1542 to retain the surgical end effector 1100 in the unarticulated position.



FIG. 68 is a top view of the articulation lock arrangement 1910 upon initiation of articulation of the surgical end effector to the right (arrow RD) about the articulation axis. As can be seen in FIG. 68, the right articulation process is initiated by axially advancing the distal articulation link 1710′ in the distal direction DD. Distal advancement of the distal articulation link 1710′ causes the distal articulation link 1960 to move the release pin assembly 1950 distally such that the upper release arm 1952 is brought into abutting engagement with the upper balance formation 1272 on the end effector mounting assembly 1250. Such contact between the upper balance formation 1272 and the upper release arm 1952 causes the upper release arm 1952 to contact the top release ring segment 1942 and apply the right articulation force RAF thereto. Such movement causes the top release ring segment 1942 to move counterclockwise CCW to thereby cause the lock spring assembly 1920 to open or expand to disengage from frictional engagement with the articulation pin 1542. FIG. 69 is a bottom view of the articulation lock arrangement 1910 as illustrated in FIG. 68. As can be seen in FIG. 69, the lower release stop 1258 is in abutting engagement with the bottom release ring segment 1930 which prevents the bottom release ring segment 1930 from moving. As a result, the lock spring assembly 1920 expands to release the articulation pin 1542. Further distal advancement of the distal articulation link 1710′ causes the release pin assembly 1950 to apply the articulation motion to the surgical end effector mounting assembly 1250 in the right direction RD while also moving the lock spring assembly 1920 out of locking engagement with the articulation pin 1542. See FIG. 70. To articulate the surgical end effector 1100 in the left direction, the distal articulation link 1710′ is moved in the proximal direction which causes the release pin assembly to expand the lock spring assembly 1920 and move the surgical end effector mounting assembly 1250 in the left direction in an opposite, but similar manner. Thus, as may be appreciated from the forgoing description, the locking spring assembly essentially comprises a spring assembly that is expandable from a first locked or retention configuration wherein the lock spring assembly 1920 is in frictional retaining engagement with the articulation pin 1542 and a second unlocked position wherein the lock spring assembly 1920 is free to pivot about the articulation pin 1542 with the surgical end effector mounting assembly 1250 as articulation motions are applied thereto.



FIGS. 71-77 illustrate an alternative articulation lock arrangement 2010 for locking a surgical end effector 1100 in an articulated position about an articulation axis B-B relative to a shaft axis SA. In the illustrated example, the surgical end effector 1100 is pivotally coupled to a spine assembly 1500′. The spine assembly 1500′ may be attached to the chassis 1800 (FIG. 4) in the above described manner. A distal end portion 1540 of the spine assembly 1500′ is formed with a downwardly protruding articulation pin 1542 that defines the articulation axis B-B. The articulation pin 1542 is configured to be rotatably or pivotally received within a spine attachment hole 1254 that is provided in a mounting base 1252′ of an end effector mounting assembly 1250′. The end effector mounting assembly 1250′ is attached to a proximal end 1103 of the elongate channel 1102 by a spring pin connector 1235 (FIG. 6) that extends through a transverse mounting hole 1251 in the mounting assembly 1250′ to be received within the channel mounting holes 1106 (FIG. 6) that are provided in the proximal end 1103 of the elongate channel 1102.


Referring to FIGS. 71 and 73, in one example, the articulation lock arrangement 2010 comprises a ball lock assembly 2020 that includes a ball retainer base 2022 that has a central pivot hole 2024 therein that is configured to receive the articulation pin 1542 therethrough. The ball retainer base 2022 is attached to an articulation lock link 1960 by an articulation pin 2023 that extends through a pin hole 2025 in the ball retainer base 2022 into an articulation slot 1264 in the mounting base 1252′ of the surgical end effector mounting assembly 1250′. The articulation lock link 1960 is pinned to a distal end of the distal articulation link 1710′ by a link pin 1962. The distal articulation link 1710′ may interface with the articulation systems described herein for axially moving the distal articulation link 1710′ in the distal and proximal directions depending upon the direction of articulation desired. The ball retainer base 2022 further includes two upstanding ball stop members 2026 and 2028 that serve to retain two locking balls 2030 and 2032 between a distal locking surface 1263 formed on a locking cradle 1262 on the surgical end effector mounting assembly 1250′ and a proximal locking surface 1541 formed on the distal end portion 1540 of the spine assembly 1500′. The ball retainer base 2022 further includes two centering springs 2034 and 2036 that serve to also support the locking balls 2030, 2032, respectively.



FIG. 73 illustrates the surgical end effector 1100 in an unarticulated position. As can be seen in FIG. 73, the locking balls 2030, 2032 are captured in locking engagement between the distal locking surface 1263 on the locking cradle 1262 and the proximal locking surface 1541 on the distal end portion 1540 of the spine assembly 1500′ to retain the surgical end effector 1100 in the unarticulated position. FIG. 74 illustrates a locking plane LP that extends through the points of contact between the locking ball 2030 and the distal locking surface 1263 on the locking cradle 1262 and the proximal locking surface 1541. FIG. 75 is a top view of the articulation lock arrangement 2010 upon initiation of articulation of the surgical end effector to the right (arrow RD) about the articulation axis. As can be seen in FIG. 75, the right articulation process is initiated by axially advancing the distal articulation link 1710′ in the distal direction DD. Distal advancement of the distal articulation link 1710′ causes the articulation lock link 1960 to move the articulation pin 2023 distally within the articulation slot 1264 in the mounting base 1252′ of the end effector mounting assembly 1250′ while also applying a release load RL to the ball retainer base 2022. Movement of the ball retainer base 2022 in the right direction RD causes the ball stop 2026 to move the locking ball 2032 out of locking engagement with the distal locking surface 1263 on the locking cradle 1262. Although the ball stop 2026 has moved out of engagement with locking ball 2030, initially, the locking ball 2030 remains in temporary engagement with the distal locking surface 1263 on the locking cradle 1262 and the proximal locking surface 1541. Further distal advancement of the distal articulation link 1710′ causes the articulation pin 2023 to apply the articulation motion to the surgical end effector mounting assembly 1250′ in the right direction RD while also moving the ball retainer base 2022 in the right direction RD. The articulation angle AA represents the amount of articulation experienced by the surgical end effector 1100. As the ball retainer base 2022 moves in the right direction RD, the locking ball 2030 also moves out of locking engagement with the distal locking surface 1263 and the proximal locking surface 1541. Ball stop 2028 also holds the locking ball 2032 out of locking engagement with the distal locking surface 1263 and the proximal locking surface 1541 during articulation. Once the surgical end effector 1100 has been articulated to a desired position, the distal advancement of the distal articulation link 1710′ is discontinued. Thereafter, the centering springs 2034 and 2036 urge the locking balls 2030 and 2032 into locking engagement with the distal locking surface 1263 and the proximal locking surface 1541 to retain the surgical end effector 1100 in the articulated position. As can be seen in FIG. 76, when in the locked articulated position, the act of the centering springs biasing the locking balls 2030, 2032 into retaining engagement with the distal locking surface 1263 and the proximal locking surface 1541, also results in the movement of the articulation pin 2023 to a neutral position within the articulation slot 1264. To articulate the surgical end effector 1100 in the left direction, the distal articulation link 1710′ is moved in the proximal direction which causes the ball lock assembly 2020 and the surgical end effector 1100 to pivot in the left direction and operates in a similar manner.



FIGS. 78-82 illustrate an alternative articulation lock arrangement 2110 for locking a surgical end effector 1100 in an articulated position about an articulation axis B-B relative to a shaft axis SA. In the illustrated example, the surgical end effector 1100 is pivotally coupled to a spine assembly 1500″. The spine assembly 1500″ may be attached to the chassis 1800 (FIG. 4) in the above described manner. A distal end portion 1540′ of the spine assembly 1500″ includes a pivot hole 1543 that defines the articulation axis B-B. An end effector mounting assembly 1250″ is attached to a proximal end 1103 of the elongate channel 1102 by a spring pin connector 1235 (FIGS. 80-82) that extends through a transverse mounting hole 1251 in the mounting assembly 1250″ to be received within the channel mounting holes 1106 (FIG. 6) that are provided in the proximal end 1103 of the elongate channel 1102. In the illustrated example, the surgical end effector mounting assembly 1250″ includes a tapered mounting column 1253 that extends upward from the mounting base 1252 to be received within the pivot hole 1543 in the spine assembly 1500″. In one arrangement, the tapered mounting column 1253 tapers away from the mounting base 1252. Stated another way, the cross-sectional area of the end 1255 of the tapered mounting column 1253 is smaller than the cross-sectional area of the portion of the tapered mounting column 1253 adjacent the mounting base 1252.


The articulation lock arrangement 2110 comprises at least one locking member or locking shoe that is movably supported between the mounting column 1253 and an inner wall 1545 of the pivot hole 1543. In the illustrated arrangement, the mounting column 1253 has a triangular cross sectional shape that defines three column sides 1280, 1282, 1284. Thus, (in the illustrated example), three locking members or locking shoes 2112, 2114, 2116 are employed wherein locking shoe 2112 is arranged adjacent the column wall 1282 and locking shoe 2114 is arranged adjacent column wall 1284 and locking shoe 2116 is adjacent column wall 1280. Mounting columns having other shapes and other numbers of locking shoes may also be employed. Each of the locking shoes 2112, 2114, 2116 are received on a wave washer 2120 that is mounted on the mounting base 1252 of the end effector mounting assembly 1250″. The illustrated arrangement includes a proximal closure member 2410 that may be axially advanced and retracted in the various manners described herein with respect to proximal closure member 1410, for example. The proximal closure member 2410 is pivotally coupled to a distal closure member 2430 that is similar in construction and operation to distal closure member 1430. As can be seen in FIGS. 80-82, the distal closure member 2430 is coupled to the proximal closure member 2410 by an upper double pivot link 1220 and a lower double pivot link 1222′. In one embodiment, the lower double pivot link 1222′ is formed with a tapered ramp 1226 on the upper surface 1224 thereof. See FIG. 78. The illustrated arrangement employs two articulation links 1710R and 1710L to apply left and right articulation motions to the surgical end effector 1100. See FIG. 79. To articulate the surgical end effector 1100 to the right, the articulation link 1710R is axially retracted in the proximal direction PD and the articulation link 1710L is axially advanced in the distal direction DD. Conversely, to articulate the surgical end effector 1100 in the left direction, the articulation link 1710L is axially retracted in the proximal direction PD and the articulation link 1710R is axially advanced in the distal direction DD. The articulation control motions may be generated and applied to the articulation links 1710R, 1710L by various known articulation system arrangements and other articulation system arrangements disclosed herein. The articulation link 1710R has a slotted end portion 1711R that is received on a right articulation pin 1266R that is attached to the end effector mounting assembly 1250″. Likewise, the articulation link 1710L has a slotted end portion 1711L that is received on a left articulation pin 1266L that is attached to the end effector mounting assembly 1250″.


Turning now to FIG. 80, in the illustrated arrangement, the wave washer 2120 biases the mounting base 1252 of the end effector mounting assembly 1250″ downward (arrow D) when the closure system is in an unactuated state. In FIG. 80, the proximal closure member 2410 is in a proximal position. Likewise, the lower double pivot link 1222′ is also in a proximal position which permits the mounting base 1252 to be driven downward. Because the mounting base 1252 is in its down-most or unlocked position, the tapered mounting column 1253 has released the locking shoes 2112, 2114, 2116 from retaining engagement with the distal end portion 1540′ of the spine assembly 1500″ (first unlocked position). Thus, when in that position, the surgical end effector 1100 may be articulated about the articulation axis B-B by the articulation links 1710R, 1710L. Once the surgical end effector 1100 has been articulated to a desired position, the articulation lock arrangement 2110 may be reactivated by distally advancing the proximal closure member 2410.



FIG. 81 illustrates the initiation of the locking process. As can be seen in that Figure, the proximal closure member 2410, as well as the lower double pivot link 1222′, has been initially moved in the distal direction DD. As the lower double pivot link 1222′ moves distally, the ramp 1226 thereon drives the mounting base 1252 of the end effector mounting assembly 1250″ upward to collapse the wave washer 2120. As the mounting base 1252 moves upward (arrow U), the tapered mounting column 1253 urges the locking shoes 2112, 2114, 2116 from a first unlocked position into retaining locking engagement with the distal end portion 1540′ of the spine assembly 1500″ (second locked position) to lock the surgical end effector 1100 in the articulated position. This locking of the surgical end effector 1100 takes place before the jaws of the surgical end effector are fully closed. FIG. 82 illustrates the positions of the proximal closure member 2410, the lower double pivot link 1222′, and the articulation lock arrangement 2110 when the closure system components have been moved to the fully closed position wherein the end effector has been fully closed. Thus, the articulation lock arrangement 2110 may be actuated or moved between a locked state and an unlocked state by actuating the closure system a small amount. Alternative arrangements are contemplated wherein the mounting column is attached to the distal end of the spine assembly and the pivot hole is provide in a proximal portion of the surgical end effector.



FIGS. 83 and 84 illustrate an alternative articulation lock arrangement 2110′ for locking a surgical end effector 1100 in an articulated position about an articulation axis B-B relative to a shaft axis SA. In the illustrated example, the surgical end effector 1100 is pivotally coupled to a spine assembly 1500″. The spine assembly 1500″ may be attached to the chassis 1800 (FIG. 4) in the above described manner. A distal end portion 1540′ of the spine assembly 1500″ includes a pivot hole 1543 that defines the articulation axis B-B. An end effector mounting assembly 1250″ is attached to a proximal end 1103 of the elongate channel 1102 by a spring pin connector 1235 (FIG. 6) that extends through a transverse mounting hole 1251 in the mounting assembly 1250″ to be received within the channel mounting holes 1106 (FIG. 6) that are provided in the proximal end 1103 of the elongate channel 1102. The surgical end effector mounting assembly 1250″ includes a mounting column 1253′ that extends upward from the mounting base 1252 to be received within the pivot hole 1543 in the spine assembly 1500″. In this embodiment, the mounting column 1253′ may not be tapered.


This embodiment also includes a plurality of locking shoes 2112′, 2114′, 2116′ that are each fabricated from electrically activated polymer material (EAP). Such material, for example, may expand when it has been electrically excited. For example, electrical current may be applied to one or more of the locking shoes 2112′, 2114′, 2116′ by a conductor (not shown) that extends from the housing or handle arrangement or robotic control system, etc. Thus, once the surgical end effector 1100 has been articulated to a desired position, one or more of the locking shoes 2112′, 2114′, 2116′ are expanded by applying an electrical current thereto. In other arrangements, one or more of the locking shoes 2112′, 2114′, 2116′ may be configured to be pneumatically or hydraulically inflated. In other arrangements, the locking shoes 2112′, 2114′, 2116′ may not be expandable. In such arrangements, the mounting column 1253 may be fabricated from EAP and be selectively expandable by applying an electrical current thereto. In other arrangements, the mounting column 1253 may be selectively pneumatically or hydraulically expandable.



FIGS. 85-89 illustrate an alternative articulation lock arrangement 2210 for locking a surgical end effector 1100 in an articulated position about an articulation axis B-B relative to a shaft axis SA. In the illustrated example, the surgical end effector 1100 is pivotally coupled to a spine assembly 1500′. The spine assembly 1500′ may be attached to the chassis 1800 (FIG. 4) in the above described manner. A distal end portion 1540 of an upper portion 1539 of the spine assembly 1500′ is formed with a downwardly protruding articulation pin 1542 that defines the articulation axis B-B. The articulation pin 1542 is configured to be rotatably or pivotally received within a spine attachment hole 1254 that is provided in a mounting base 1252 of an end effector mounting assembly 1250″. The end effector mounting assembly 1250″ is attached to a proximal end 1103 of the elongate channel 1102 by a spring pin connector 1235 (FIG. 6) that extends through a transverse mounting hole 1251 in the mounting assembly 1250″ to be received within the channel mounting holes 1106 (FIG. 6) that are provided in the proximal end 1103 of the elongate channel 1102.


Referring to FIG. 85, the illustrated arrangement employs two articulation links 1710R′ and 1710L′ to apply left and right articulation motions to the surgical end effector 1100. In other examples, however, only one articulation link may be employed. In the illustrated arrangement, to articulate the surgical end effector 1100 to the right, the articulation link 1710R′ is axially retracted in the proximal direction PD and the articulation link 1710L′ is axially advanced in the distal direction DD. Conversely, to articulate the surgical end effector 1100 in the left direction, the articulation link 1710L′ is axially retracted in the proximal direction PD and the articulation link 1710R′ is axially advanced in the distal direction DD. The articulation link 1710R′ has a slotted end portion 1711R that is received on a right articulation pin 1266R that is attached to the end effector mounting assembly 1250″. Likewise, the articulation link 1710L′ has a slotted end portion 1711L that is received on a left articulation pin 1266L that is attached to the end effector mounting assembly 1250″.


Still referring to FIG. 85, the articulation lock arrangement 2210 in the illustrated embodiment includes a locking assembly 2220 that includes a distal end 2222 that has a right locking member or fork 2224 and a left locking member or fork 2228 protruding therefrom. The right locking member 2224 includes a right locking gear rack 2226 that is laterally adjacent to and in confronting relationship therewith a corresponding right articulation gear rack 1720 that is formed on a downwardly extending portion of the right articulation link 1710R′. Similarly, the left locking member 2228 includes a left locking gear rack 2230 that is laterally adjacent to and in confronting relationship with a corresponding left articulation gear rack 1723 that is formed on a downwardly extending portion 1722 of the left articulation link 1710L′. In an unactuated state, the right locking member 2224 and the left locking member 2228 are centrally located between the right articulation link 1710R′ and the left articulation link 1710L′ and are not in engagement therewith. As can also be seen in FIG. 85, the locking assembly 2220 is supported between a lower distal spine portion 1550 and the upper spine portion 1539. The lower distal spine portion 1550 includes an upwardly extending distal support pin 1554 that extends through a mounting hole 2223 in the distal end 2222 of the locking assembly 2220 to be received in a distal boss 1544 formed on the underside of the upper spine portion 1539. See FIG. 86. The lower distal spine portion 1550 further includes an upwardly extending proximal support pin 1556 that extends through a locking opening 2225 between the right and left locking members 2224, 2228 to be received in a proximal boss 1546 formed on the underside of the upper spine portion 1539.


In the illustrated arrangement, the articulation lock arrangement 2210 also includes an axially movable locking bar assembly 2240 that operably interfaces with an articulation transmission 2250 that is operably supported within the shaft assembly 1400′. The locking bar assembly 2240 includes a locking wedge 2244 that is formed on a distal end 2242 thereof. The articulation transmission 2250 is configured to operably interface with the distal firing bar 1620 that is operably supported in the shaft assembly 1400′. In this context, the distal firing bar 1620 may comprise a firing actuator.


Turning now to FIGS. 85-87, in the illustrated arrangement, one form of the articulation transmission 2250 includes a firing rack 1624 that is formed on a portion of the distal firing bar 1620 and which is configured to operably engage a shifter drive rack 2254 that is formed on a shifter 2252. A proximal end 2253 of the shifter 2252 is configured to operably interface with a lock bar coupler 2246 that is formed on the locking bar assembly 2240. As can also be seen in FIGS. 85-87, the shifter 2252 further includes a shifter driven rack 2256 that is in meshing engagement with an articulation pinion gear 2262 that is attached to an articulation sprocket gear 2260. The articulation sprocket gear 2260 is rotatably supported within the shaft assembly 1400′ and is in meshing engagement with a right articulation drive rack 1724 that is formed on or attached to the right distal articulation link 1710R′ as well as in meshing engagement with a left articulation drive rack 1726 that is formed on or otherwise attached to the left distal articulation link 1710L′.


Operation of the articulation transmission 2250 as well as the articulation lock arrangement 2210 will be explained with reference to FIGS. 87-89. FIG. 87 illustrates the surgical end effector 1100 in an unarticulated position. The locking bar assembly 2240 is in its distal-most “unlocked position” wherein the locking wedge 2244 is received within the locking opening 2225 located between the right and left locking members 2224, 2228. The right and left locking members 2224, 2228 are in their unactuated state and not in engagement with the right and left articulation links 1710R′, 1710L′. Thus, the right locking gear rack 2226 on the right locking member 2224 is out of engagement with the right articulation gear rack 1720 on the right distal articulation link 1710R′ and the left locking gear rack 2230 is out of meshing engagement with the left articulation gear rack 1723 on the left distal articulation link 1710L′. As such, the articulation lock arrangement 2210 is in an “unlocked” configuration. However, friction between the various components may keep the surgical end effector 1100 from flopping or rotating about the articulation axis B-B.



FIG. 88 illustrates initiation of the articulation process. As can be seen in FIG. 88, the proximal end 2253 of the shifter 2252 is operably engaged with the lock bar coupler 2246 and the locking bar assembly 2240 is in the unlocked orientation. When the shifter 2252 is engaged with the locking bar assembly 2240 in this manner, the shifter drive rack 2254 is in meshing engagement with the firing rack 1624 on the distal firing bar 1620. The articulation process is then initiated by axially moving the distal firing bar 1620. In the example shown in FIG. 88, the end effector 1100 is articulated about the articulation axis in the right direction RD by axially moving the distal firing bar 1620 in the proximal direction PD. Axial actuation of the distal firing bar 1620 in the proximal and distal directions has been discussed in detail herein. Because the lock bar coupler 2246 is retaining the shifter drive rack 2254 in meshing engagement with the firing rack 1624 on the distal firing bar 1620, the shifter 2252 moves proximally with the distal firing bar 1620. Movement of the shifter 2252 in the proximal direction PD, by virtue of the meshing engagement of the shifter driven rack 2256 with the articulation pinion gear 2262, causes the articulation pinion gear 2262 and the articulation sprocket gear 2260 to rotate in the clockwise direction through an articulation actuation angle AAA. As the articulation sprocket gear 2260 rotates, the right distal articulation link 1710R′ is driven in the proximal direction PD and the left distal articulation link 1710L′ is driven in the distal direction DD which ultimately causes the surgical end effector to pivot about the articulation axis in the right direction RD. Once the surgical end effector 1100 has been articulated to the desired position, the user can lock the end effector 1100 in that articulated position by axially advancing the locking bar assembly 2240 in the proximal direction PD to cause the locking wedge 2244 to move proximally into driving contact with two actuation detents 2227, 2229 formed on the right locking member 2224 and left locking member 2228, respectively to laterally bias the right locking member 2224 and left locking member 2228 laterally outward into locking engagement with the right and left articulation gear racks 1720, 1723, respectively. Such proximal movement of the locking bar assembly 2240 also serves to decouple the lock bar coupler 2246 from the shifter 2252 as shown in FIG. 89.


As can be seen in FIG. 89, when the shifter 2252 has been decoupled from the locking bar assembly 2240, the shifter drive rack 2254 is no longer in meshing engagement with the firing rack 1624 on the distal firing bar 1620 and the shifter driven rack 2256 is no longer in meshing engagement with the articulation pinion gear 2262. Thus, the distal firing bar 1620 can now be distally advanced to apply firing motions to the surgical end effector and then retracted in the proximal direction back to the starting position shown in FIG. 87. Once the distal firing bar 1620 has returned to the starting position, the user may then distally advance the locking bar assembly 2240 so as to bring the lock bar coupler 2246 into operable engagement with the proximal end 2253 of the shifter 2252 and move the locking wedge 2244 back into its starting or unlocked position wherein the right locking member 2224 and the left locking member 2228 can spring back or otherwise return to their unlocked positions. The user may then apply axial motion to the distal firing bar 1620 in the appropriate axial direction to return the surgical end effector 1100 to its unarticulated position.



FIGS. 90-95 illustrate an alternative articulation lock arrangement 2310 for locking a surgical end effector 1100 in an articulated position about an articulation axis B-B relative to a shaft axis SA. In the illustrated example, the surgical end effector 1100 is pivotally coupled to a spine assembly 1500′. The spine assembly 1500′ may be attached to the chassis 1800 (FIG. 4) in the above-described manner. A distal end portion 1540 of an upper spine portion 1539 of the spine assembly 1500′ is formed with a downwardly protruding articulation pin 1542 that defines the articulation axis B-B. The articulation pin 1542 is configured to be rotatably or pivotally received within a spine attachment hole 1254 that is provided in a mounting base 1252 of an end effector mounting assembly 1250″. The end effector mounting assembly 1250″ is attached to a proximal end 1103 of the elongate channel 1102 by a spring pin connector 1235 (FIG. 6) that extends through a transverse mounting hole 1251 in the mounting assembly 1250″ to be received within the channel mounting holes 1106 (FIG. 6) that are provided in the proximal end 1103 of the elongate channel 1102.


Referring to FIG. 90, the illustrated arrangement employs two articulation links 1710R″ and 1710L″ to apply right and left articulation motions to the surgical end effector 1100. To articulate the surgical end effector 1100 to the right, the articulation link 1710R″ is axially retracted in the proximal direction PD and the articulation link 1710L″ is axially advanced in the distal direction DD. Conversely, to articulate the surgical end effector 1100 in the left direction, the articulation link 1710L″ is axially retracted in the proximal direction PD and the articulation link 1710R″ is axially advanced in the distal direction DD. The right distal articulation link 1710R″ has a slotted end portion 1711R that is received on a right articulation pin 1266R that is attached to the end effector mounting assembly 1250″. Likewise, the left distal articulation link 1710L″ has a slotted end portion 1711L that is received on a left articulation pin 1266L that is attached to the end effector mounting assembly 1250″.


Still referring to FIG. 90, a right brake plate 2312 is formed on the right distal articulation link 1710R″ and a left brake plate 2320 is formed on the left distal articulation link 1710L″. As can also be seen in FIG. 90, the right and left brake plates 2312, 2320 are supported between a lower distal spine portion 1552′ and the upper spine portion 1539. The lower distal spine portion 1552′ includes an upwardly extending distal support pin 1554 that is configured to be received in a distal boss (not shown) that is formed on the underside of the upper spine portion 1539. In the illustrated arrangement, the articulation lock arrangement 2310 also includes an axially movable and lockable locking bar assembly 2340 that may operably interface with an articulation transmission of the type described herein or otherwise interface with a lock bar control arrangement (not shown) that is configured to apply axial control motions thereto in the distal direction DD and proximal direction PD. The locking bar assembly 2340 includes a locking clamp 2344 that is formed on a distal end 2342 thereof. The locking clamp 2344 extends through a right brake slot 2314 in the right brake plate 2312 and a left brake slot 2322 in the left brake plate 2320 as well as through an axial slot 2352 provided through a wedge plate 2350 to engage a clamp plate 2360.


Operation of the articulation lock arrangement 2310 will be explained with reference to FIGS. 91-95. FIG. 91 illustrates the surgical end effector 1100 in an unarticulated position. The locking bar assembly 2340 is in an unlocked position wherein the clamp portion 2344 is not applying any clamping force to the right and left brake plates 2312, 2320. Thus, the right distal articulation link 1710R″ and the left distal articulation link 1710L″ are free to move axially when articulation motions are applied thereto. Friction between the various components may keep the surgical end effector 1100 from flopping or rotating about the articulation axis B-B. FIG. 92 illustrates articulation of the surgical end effector 1100 in the left direction LD by axially moving the right distal articulation link 1710R″ in the distal direction DD and moving the left distal articulation link 1710L″ in the proximal direction PD. FIG. 93 illustrates the articulation lock arrangement 2310 in the unlocked configuration. FIGS. 94 and 95 illustrate the articulation lock arrangement 2310 in the locked configuration. The articulation lock arrangement 2310 is locked by applying an actuation motion to the locking bar assembly 2340 in the proximal direction. Such action causes the clamping portion thereof to clamp the right and left brake plates 2312, 2320 to be retainingly clamped between the wedge plate 2350 and the lower distal spine portion 1552′. Such arrangement serves to apply a clamping force CF between the clamping plate 2360 and the lower distal spine portion 1552′ to thereby prevent any further axial movement of the right distal articulation link 1710R″ and the left distal articulation link 1710L″.



FIGS. 96 and 97 illustrate an example of an articulation stroke multiplier transmission arrangement 2410 that may be employed with various articulation link arrangements disclosed herein. Turning first to FIG. 97, a cross-sectional view is illustrated of a portion of a shaft assembly 1400″ that includes a proximal closure member 1410 as well as an upper intermediate spine segment 1510″ and a distal spine extension 1562″. The intermediate spine segment 1510″ and a distal spine extension 1562″ serve to operably support a distal firing bar 1620 as well as the proximal firing shaft segment 1602 in the various manners disclosed herein. This embodiment includes an intermediate articulation link segment 1706 and a distal articulation link segment 1707 that may interface with an end effector mounting assembly in any of the various ways disclosed herein. The intermediate articulation link 1706 may operably interface with an articulation lock 1210 in the various manners disclosed herein. As can be seen in FIG. 96, the intermediate articulation link segment 1706 includes an intermediate or first gear rack 1708 formed thereon and the distal articulation link segment 1707 includes a second or distal gear rack 1709. The gear racks 1708 and 1709 are in meshing engagement with at least one and preferably at least two multiplier pinion gear sets 2412 that are rotatably supported between an upper intermediate spine segment 1510″ and the distal spine extension 1562″. See FIG. 97. In the illustrated arrangement for example, each multiplier gear set 2412 comprises a smaller drive gear 2414 that is supported in meshing engagement with the first gear rack 1708 and a larger multiplier gear 2416 that is supported in meshing engagement with the distal gear rack 1709.



FIGS. 98A-98C illustrate operation of the articulation stroke multiplier transmission arrangement 2410. FIG. 98A illustrates the positions of the intermediate articulation link segment 1706 and a distal articulation link segment 1707 when in a neutral or unarticulated position. FIG. 98B illustrates the positions of the intermediate articulation link segment 1706 and a distal articulation link segment 1707 after the intermediate articulation link segment 1706 has been axially advanced in the distal direction from the neutral position in FIG. 98A a distance D1R. As can also be seen in FIG. 98B, the distal articulation link 1707 moved an axial distance D2R. In the illustrated example, D2R>D1R. FIG. 98C illustrates the positions of the intermediate articulation link segment 1706 and a distal articulation link segment 1707 after the intermediate articulation link segment 1706 has been axially advanced in the proximal direction PD from the neutral position illustrated in FIG. 98A a distance D1L. As can also be seen in FIG. 98C, the distal articulation link 1707 moved an axial distance D2L. In the illustrated example, D2L>D1L. Thus, such an arrangement enables additional axial articulation stroke to be gained and employed to articulate the end effector through greater ranges of articulation about the articulation axis.



FIGS. 99A-99B illustrate an example of an articulation stroke multiplier transmission 2510 that may be employed with various articulation link arrangements disclosed herein. The articulation stroke multiplier 2510 operably interfaces with a proximal articulation driver 1700″ which may be identical to the proximal articulation driver 1700 except for the noted differences. In particular, the proximal articulation driver 1700″ includes a drive rack 1701 that is formed on the distal end thereof. The drive rack is configured to meshingly engage a gear segment 2522 that is formed on a swing gear 2520 that is pivotally pinned to a corresponding portion of the spine assembly. In the illustrated arrangement, the swing gear 2520 is pivotable about a swing gear axis that is transverse to the axial directions in which the proximal articulation driver 1700″ is configured to travel. The swing gear 2520 further includes a transfer slot 2524 that is configured to receive a transfer pin 1713 that is attached to a proximal end 1716 of an intermediate articulation link segment 1706″. As can be seen in FIGS. 99A-99B, the distal end of the intermediate articulation link segment 1706″ is configured to operably interface with an articulation lock 1210 in the various manners disclosed herein.



FIG. 99A, illustrates the articulation stroke multiplier transmission 2510 in a neutral position wherein no articulation motion has been applied to the proximal articulation driver 1700″. FIG. 99B illustrates the position of the articulation stroke multiplier transmission 2510 after the proximal articulation driver 1700″ has been axially advanced in the distal direction DD a first axial distance D1. Such movement of the proximal articulation driver 1700″ in the distal direction causes the swing gear 2520 to pivot in a clockwise direction CW about the swing gear axis. Such movement of the swing gear 2520 drives the intermediate articulation link segment 1706″ in the proximal direction a second axial distance D2. In such example, D2>D1. FIGS. 99C-99D illustrate a similar arrangement, except that the transfer slot 2524 is provided in the proximal end 1716 of the intermediate articulation link segment 1706″ and the transfer pin 1713 is provided in the swing gear 2520.


EXAMPLES

Example 1—A surgical tool assembly comprising a surgical end effector movably coupled to a shaft assembly by an articulation joint. The articulation joint is configured to selectively facilitate selective articulation of the surgical end effector relative to the shaft assembly about an articulation axis. The articulation axis is transverse to a shaft axis that is defined by the shaft assembly. The shaft assembly comprises a proximal end, a distal end operably coupled to the articulation joint, and an elongate notch in the shaft assembly. The elongate notch is on one lateral side of the shaft axis and is located adjacent to the distal end.


Example 2—The surgical tool assembly of Example 1, wherein the articulation joint is configured to restrict articulation of the surgical end effector about the articulation axis to the one lateral side of the shaft axis.


Example 3—The surgical tool assembly of Examples 1 or 2, wherein the shaft assembly comprises a spine assembly and a proximal closure member. The spine assembly comprises a distal spine end operably coupled to the articulation joint. The proximal closure member is supported on the spine assembly for selective axial travel relative thereto. The elongate notch further comprises an elongate spine notch in the distal spine end on the one lateral side of the shaft axis and an elongate closure member notch in the proximal closure member on the one lateral side of the shaft axis and corresponding with the elongate spine notch.


Example 4—The surgical tool assembly of Example 3, wherein the surgical end effector comprises a first jaw operably coupled to the articulation joint and a second jaw supported for selective movable travel relative to the first jaw in response to closure motions applied thereto.


Example 5—The surgical tool assembly of Example 4, wherein the shaft assembly further comprises a distal closure member movably coupled to the proximal closure member for selective axial travel therewith, the distal closure member operably interfacing with the second jaw to apply the closure motions thereto.


Example 6—The surgical tool assembly of Examples 1 or 2, wherein the surgical tool assembly further comprises means for preventing buckling of the distal end of the shaft assembly when an axial actuation motion is applied to the proximal end of the shaft assembly.


Example 7—The surgical tool assembly of Examples 3, 4, or 5, wherein the surgical tool assembly further comprises means for preventing buckling of the distal end of the shaft assembly when an axial actuation motion is applied to the proximal end of the shaft assembly.


Example 8—The surgical tool assembly of Example 7, wherein the means for preventing buckling comprises at least one alignment member protruding from the proximal closure member and extending into a corresponding axial slot in the spine assembly.


Example 9—The surgical tool assembly of Example 8, wherein the at least one alignment member comprises at least one first alignment member protruding from the proximal closure member at a first location and extending into a corresponding first axial slot in the spine assembly for axial travel therein and at least one second alignment member protruding from the proximal closure member at a second location that is diametrically opposed to the first location. The second alignment member extends into a corresponding second axial slot in the spine assembly.


Example 10—The surgical tool assembly of Examples 8 or 9, wherein at least one of the at least one alignment member has an L-shaped cross-sectional shape.


Example 11—A surgical tool assembly comprising a surgical end effector movably coupled to a shaft assembly by an articulation joint. The articulation joint is configured to facilitate selective articulation of the surgical end effector relative to the shaft assembly about an articulation axis. The articulation axis is transverse to a shaft axis that is defined by the shaft assembly. The shaft assembly comprises a proximal portion including an uninterrupted outer proximal perimeter and a distal portion extending from the proximal portion and operably coupled to the articulation joint. The distal portion includes a distal outer perimeter, which includes a discontinuous distal portion that is located on one lateral side of the shaft axis.


Example 12—The surgical tool assembly of Example 11, wherein the articulation joint is configured to restrict articulation of the surgical end effector about the articulation axis to the one lateral side of the shaft axis.


Example 13—The surgical tool assembly of Examples 11 or 12, wherein the shaft assembly comprises a spine assembly comprising a distal spine end operably coupled to the articulation joint and a proximal closure member supported on the spine assembly for selective axial travel relative thereto. The discontinuous distal portion comprises an elongate closure member notch in the proximal closure member on the one lateral side of the shaft axis.


Example 14—The surgical tool assembly of Example 13, wherein the surgical tool assembly further comprises an elongate closure member notch.


Example 15—The surgical tool assembly of Examples 13 or 14, wherein the surgical tool assembly further comprises means for preventing buckling of the distal end of the shaft assembly when an axial actuation motion is applied to the proximal portion of the shaft assembly.


Example 16—The surgical tool assembly of Example 15, wherein the means for preventing buckling comprises at least one alignment member protruding from the proximal closure member and extending into a corresponding axial slot in the spine assembly.


Example 17—The surgical tool assembly of Example 16, wherein the at least one alignment member comprises at least one first alignment member protruding from the proximal closure member at a first location and extending into a corresponding first axial slot in the spine assembly for axial travel therein and at least one second alignment member protruding from the proximal closure member at a second location that is diametrically opposed to the first location. The second alignment member extends into a corresponding second axial slot in the spine assembly.


Example 18—The surgical tool assembly of Examples 16 or 17, wherein at least one of the at least one alignment member has an L-shaped cross-sectional shape.


Example 19—The surgical tool assembly of Examples 11, 12, 13, 14, 15, 16, 17, or 18, wherein the distal portion includes a distal axial length. The proximal portion includes a proximal axial length, and the proximal axial length is greater than the distal axial length.


Example 20—A surgical tool assembly comprising a surgical end effector movably coupled to a shaft assembly by an articulation joint. The articulation joint is configured to facilitate selective articulation of the surgical end effector relative to the shaft assembly about an articulation axis. The articulation axis is transverse to a shaft axis that is defined by the shaft assembly. The shaft assembly comprises a proximal end, a distal end operably coupled to the articulation joint, an elongate notch, and an axially displaceable firing member axially aligned with the shaft axis. The elongate notch is in the shaft assembly on one lateral side of the shaft axis and located adjacent to the distal end.


Example 21—A surgical tool assembly comprising a shaft assembly, a surgical end effector, and a protective cap member. The shaft assembly comprises an axially movable closure member and an axially movable firing member selectively axially movable between an unfired position and a fired position. The surgical end effector comprises a first jaw and a second jaw comprising a mounting portion including a pair of mounting walls. The mounting walls are configured to movably engage a portion of the first jaw to movably support the second jaw on the first jaw. The mounting portion defines a cam area configured for engagement by the axially movable closure member to move the second jaw from an open position to a closed position relative to the first jaw. The mounting walls define an open topped parking area therebetween for accommodating the firing member therein when the firing member is in the unfired position. The protective cap member is attached to the mounting walls and covers at least a portion of the open topped parking area.


Example 22—The surgical tool assembly of Example 21, wherein each of the mounting walls are configured to pivotally engage corresponding portions of the first jaw to facilitate pivotal travel of the second jaw relative to the first jaw about a pivot axis.


Example 23—The surgical tool assembly of Example 22, wherein each of the mounting walls protrude proximally from the cam area. The protective cap comprises a transition portion configured to cover at least a portion of the open topped parking area proximal to the cam area and forming a pre-closure cam surface that is proximal to the cam area and at least one attachment portion extending from the transition portion to couple the protective cap to at least one of the mounting walls.


Example 24—The surgical tool assembly of Example 23, wherein the at least one attachment member comprises a first leg extending downward from the transition portion and being configured to retainingly engage a corresponding one of the mounting walls and a second leg extending downward from the transition portion and being configured to retainingly engage a corresponding another one of the mounting walls.


Example 25—The surgical tool assembly of Example 24, wherein the first and second legs are removably attachable to the mounting walls.


Example 26—The surgical tool assembly of Example 25, wherein the first leg comprises a first attachment opening configured to retainingly receive therein a first attachment lug formed on the corresponding one of the mounting walls. The second leg comprises a second attachment opening configured to retainingly receive therein a second attachment lug formed on the corresponding other one of the mounting walls.


Example 27—The surgical tool assembly of Examples 23, 24, 25, or 26, wherein the closure member comprises a distal camming surface configured to cammingly engage the pre-closure cam surface on the protective cap as well as the cam area on the mounting portion to move the second jaw from the open position to the closed position.


Example 28—The surgical tool assembly of Examples 22, 23, 24, 25, 26, or 27, wherein the surgical tool assembly further comprises means for biasing the second jaw to the open position.


Example 29—The surgical tool assembly of Example 28, wherein the surgical tool assembly further comprises means for preventing the second jaw from being opened beyond a maximum open position.


Example 30—The surgical tool assembly of Examples 22, 23, 24, 25, 26, 27, 28, or 29, wherein the second jaw is configured to be selectively pivotal about a pivot axis relative to the first jaw, and wherein at least a portion of the open topped parking area is proximal to the pivot axis.


Example 31—The surgical tool assembly of Examples 22, 23, 24, 25, 26, 27, 28, 29, or 30, wherein the second jaw comprises a pair of trunnions pivotally supported in the mounting walls.


Example 32—The surgical tool assembly of Example 31, wherein the pair of trunnions comprises a first trunnion configured to be pivotally supported in a first transverse pivot hole in a first one of the mounting walls and a second trunnion configured to be pivotally supported in a second transverse pivot hole in a second one of the mounting walls. The first and second trunnions define a pivot axis about which the second jaw is pivotable.


Example 33—The surgical tool assembly of Example 32, wherein the surgical tool assembly further comprises a first installation slot in the first one of the mounting walls and a second installation slot in the second one of the mounting walls. The first installation slot extends transversely to the first transverse pivot hole from a first top edge of the first one of the mounting walls to the first transverse pivot hole. The second installation slot extends transversely to second transverse pivot hole from a second top edge of said second one of said mounting walls to said second transverse pivot hole.


Example 34—A surgical tool assembly comprising a shaft assembly, a surgical end effector, and a protective cap member. The shaft assembly comprises an axially movable closure member and an axially movable firing member selectively axially movable between an unfired position and a fired position. The surgical end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and an anvil comprising an anvil mounting portion. The anvil mounting portion includes a pair of anvil mounting walls pivotally supported on the elongate channel for selective pivotal travel relative thereto about a pivot axis. The anvil mounting portion defines a cam area configured for engagement by the axially movable closure member to move the anvil from an open position to a closed position relative to the elongate channel. The anvil mounting walls define an open topped parking area therebetween for accommodating the firing member therein when the firing member is in the unfired position. The protective cap member is attached to the anvil mounting walls and covers at least a portion of the open topped parking area.


Example 35—The surgical tool assembly of Example 34, wherein at least a portion of the open topped parking area is proximal to the pivot axis.


Example 36—The surgical tool assembly of Examples 34 or 35, wherein the firing member comprises a vertically extending firing body comprising a tissue cutting edge, top anvil engaging tabs, and bottom channel engaging tabs. The top anvil engaging tabs extend laterally from a top end of the firing body and are configured to engage the anvil as the firing member is axially advanced from the unfired position to the fired position. The bottom channel engaging tabs extend laterally from a bottom portion of the firing body and configured to engage the channel as the firing member is axially advanced from the unfired position to the fired position to retain an underside of the anvil a desired distance from a cartridge deck of a surgical staple cartridge supported in the elongate channel.


Example 37—The surgical tool assembly of Examples 34, 35, or 36, wherein each of the mounting walls protrude proximally from the cam area. The protective cap comprises a transition portion configured to cover at least a portion of the open topped parking area proximal to the cam area and form a pre-closure cam surface that is proximal to the cam area and at least one attachment portion extending from the transition portion to couple the protective cap to at least one of the anvil mounting walls.


Example 38—The surgical tool assembly of Example 37, wherein the at least one attachment portion comprises a first leg extending downward from the transition portion and is configured to retainingly engage a corresponding one of the anvil mounting walls and a second leg extending downward from the transition portion and is configured to retainingly engage a corresponding another one of the anvil mounting walls.


Example 39—The surgical tool assembly of Examples 34, 35, 36, 37, or 38, wherein the surgical tool assembly further comprises means for biasing the anvil to the open position when the closure member is in a starting position.


Example 40—A surgical tool assembly comprising a shaft assembly and a surgical end effector. The shaft assembly comprises an axially movable closure member and an axially movable firing member selectively axially movable between an unfired position and a fired position. The surgical end effector comprises a first jaw and a second jaw comprising a mounting portion. The mounting portion includes a pair of mounting walls configured to movably engage a portion of the first jaw to movably support the second jaw on the first jaw. The mounting portion defines a cam area configured for engagement by the axially movable closure member to move the second jaw from an open position to a closed position relative to the first jaw. The mounting walls define an open topped parking area therebetween for accommodating the firing member therein when the firing member is in the unfired position. The surgical tool assembly further comprises means for at least partially covering at least a portion of the open topped parking area and defining a pre-closure cam surface that is proximal to the cam area.


Example 41—A surgical tool assembly comprising a first jaw, a second jaw, and a shaft assembly. The second jaw is movably supported on the first jaw for selective movement relative to the first jaw between an open position and a closed position about a fixed pivot axis. The shaft assembly is configured to apply an initial closure motion to a cam surface on the second jaw in a first closure direction that is normal to the cam surface and an additional closure motion to the cam surface in a second closure direction that is parallel to the shaft axis as the closure member is axially advanced on the cam surface.


Example 42—The surgical tool assembly of Example 41, wherein the cam surface is formed on a second jaw mounting portion, and wherein the second jaw further comprises first and second mounting walls that are each pivotally attached to the first jaw for selective pivotal travel about the pivot axis.


Example 43—The surgical tool assembly of Examples 41 or 42, wherein the axially movable closure member comprises a distal closure tube comprising a distal end surface and a distal camming surface configured to cammingly engage the cam surface on the second jaw.


Example 44—The surgical tool assembly of Example 43, wherein the distal end surface is configured to apply the initial closure motion to the cam surface and the distal camming surface is configured to apply the additional closure motion to the cam surface.


Example 45—The surgical tool assembly of Example 44, wherein the distal end surface comprises a portion of a cross-sectional thickness of the closure tube and wherein the camming surface extends from the distal end surface and comprises another portion of the cross-sectional thickness of the closure tube.


Example 46—The surgical tool assembly of Example 45, wherein the closure tube comprises an outer surface, an inner surface, and a distal end defining the distal end surface. The distal camming surface extends from the distal end surface to the inner surface at an obtuse angle relative to the distal end surface.


Example 47—The surgical tool assembly of Example 42, wherein the shaft assembly further comprises an axially movable firing member selectively axially movable between the first and second mounting walls between a starting position and an ending position.


Example 48—The surgical tool assembly of Example 47, wherein at least a portion of the firing member is proximal to the cam surface when the firing member is in the starting position.


Example 49—A surgical tool assembly comprising an end effector and a shaft assembly. The end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and an anvil. The anvil comprises an anvil mounting portion movably supported on the elongate channel for selective movement relative to the elongate channel about a fixed pivot axis between an open position and closed positions. The shaft assembly defines a shaft axis and comprises an axially movable closure member that is configured to apply an initial closure motion to a cam surface on the anvil mounting portion in a first closure direction that is normal to the cam surface and an additional closure motion to the cam surface in a second closure direction that is parallel to the shaft axis as the closure member is axially advanced on the cam surface.


Example 50—The surgical tool assembly of Example 49, wherein the anvil further comprises first and second anvil mounting walls that are each pivotally attached to the elongate channel for selective pivotal travel about the pivot axis.


Example 51—The surgical tool assembly of Examples 49 or 50, wherein the axially movable closure member comprises a distal closure tube comprising a distal end surface and a distal camming surface configured to cammingly engage the cam surface on the anvil mounting portion.


Example 52—The surgical tool assembly of Example 51, wherein the distal end surface is configured to apply the initial closure motion to the cam surface, and the distal camming surface is configured to apply the additional closure motion to the cam surface.


Example 53—The surgical tool assembly of Example 52, wherein the distal end surface comprises a portion of a cross-sectional thickness of the closure tube, and wherein the camming surface extends from the distal end surface and comprises another portion of the cross-sectional thickness of the closure tube.


Example 54—The surgical tool assembly of Example 50, wherein the shaft assembly further comprises an axially movable firing member that is selectively axially movable between the first and second anvil mounting walls between a starting position and an ending position.


Example 55—The surgical tool assembly of Example 54, wherein at least a portion of the firing member is proximal to the cam surface when the firing member is in the starting position.


Example 56—A surgical tool assembly comprising an end effector and a shaft assembly defining a shaft axis and comprising an axially movable closure member. The end effector comprises an elongate channel configured to operably support a surgical cartridge therein and an anvil movably comprising an anvil mounting portion supported on the elongate channel for selective movement relative to the elongate channel between an open position and a closed position. The surgical tool assembly further comprises first closure means on the closure member for applying an initial closure motion to a cam surface on the anvil mounting portion in a first closure direction that is normal to the cam surface and second closure means on the closure member for applying additional closure motion to the cam surface in a second closure direction that is parallel to the shaft axis as the closure member is axially advanced on the cam surface.


Example 57—The surgical tool assembly of Example 56, wherein the first closure means comprises a distal cam surface on a portion of a distal end of the closure member, and wherein the second closure means comprises a distal camming surface on another portion of the distal end and extending from the distal cam surface at an obtuse angle relative thereto.


Example 58—The surgical tool assembly of Examples 56 or 57, wherein the cam surface is formed on an anvil mounting portion, and wherein the anvil further comprises first and second mounting walls that are each pivotally attached to the elongate channel for selective pivotal travel about the pivot axis.


Example 59—The surgical tool assembly of Example 58, wherein the shaft assembly further comprises an axially movable firing member selectively axially movable between the first and second mounting walls between a starting position and an ending position.


Example 60—The surgical tool assembly of Example 59, wherein at least a portion of the firing member is proximal to the cam surface when the firing member is in the starting position.


Example 61—A surgical tool assembly comprising a surgical end effector and a closure member axially movable in response to closing and opening motions applied thereto. The surgical end effector comprises a first jaw and a second jaw comprising a second jaw body portion and a second jaw mounting portion. The second jaw mounting portion is movably coupled to the first jaw for selective movement relative thereto between an open position and closed positions. The closure member comprises at least one opening cam formed thereon, and the at least one opening cam is configured to movably engage a corresponding cam surface formed on the second jaw body portion such that upon application of the opening motion to the closure member, the at least one opening cam movably engages the corresponding cam surface to move the second jaw to the open position. Upon application of the closure motion to the closure member, the closure member engages the second jaw to move the second jaw to one of the closed positions.


Example 62—The surgical tool assembly of Example 61, wherein the at least one opening cam comprises a first hook portion extending distally from a distal end of the closure member and being configured to cammingly engage a first one of the cam surfaces formed on the second jaw body portion and a second hook portion extending distally from the distal end of the closure member and being configured to cammingly engage a second one of the cam surfaces formed on the second jaw body portion.


Example 63—The surgical tool assembly of Examples 61 or 62, wherein the cam surface comprises a downwardly extending ramp surface formed on the second jaw body portion.


Example 64—The surgical tool assembly of Example 63, wherein each of the at least one opening cam comprises a camming end formed thereon configured to cammingly engage the corresponding ramp surface upon application of the opening motion to the closure member.


Example 65—The surgical tool assembly of Example 64, wherein each ramp surface comprises a ramp surface end, and wherein each camming end is configured to engage the ramp surface end of the corresponding ramp surface to retain the second jaw in a fully open position relative to the first jaw.


Example 66—The surgical tool assembly of Examples 61, 62, 63, 64, or 65, wherein the surgical tool assembly further comprises secondary jaw opening means for applying additional opening motion to the second jaw.


Example 67—The surgical tool assembly of Example 66, wherein the secondary jaw opening means comprises at least one secondary jaw opening member on the closure member configured to engage a corresponding jaw opening feature on the second jaw to apply the additional opening motion to the second jaw as the opening motion is applied to the closure member.


Example 68—The surgical tool assembly of Example 67, wherein the secondary jaw opening feature comprises at least one first jaw opening tab integrally formed in the closure member and configured to contact a corresponding one of the corresponding jaw opening feature and at least one second jaw opening tab integrally formed in the closure member and configured to contact another corresponding one of the corresponding jaw opening feature.


Example 69—The surgical tool assembly of Examples 66, 67, or 68, wherein the secondary jaw opening means comprises at least one biasing member configured to apply additional opening motion to the second jaw.


Example 70—The surgical tool assembly of Examples 62, 63, 64, 65, 66, 67, 68, or 69, wherein the first and second hook portions each comprise a compliant portion thereon.


Example 71—The surgical tool assembly of Example 70, wherein the compliant portion comprises a compliant material attached to each of the first and second hook portions.


Example 72—The surgical tool assembly of Examples 70 or 71, wherein the at least one biasing member comprises a spring corresponding to each of the first and second hook portions and being attached thereto.


Example 73—A surgical tool assembly comprising a surgical end effector and a closure member axially movable in response to closing and opening motions applied thereto. The surgical end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and an anvil comprising an anvil body and an anvil mounting portion, the anvil mounting portion pivotally supported on the elongate channel for selective movement relative thereto between an open position and closed positions. The closure member comprises at least one opening cam formed thereon, wherein the at least one opening cam is configured to movably engage a corresponding cam surface formed on the anvil body portion such that upon application of the opening motion to the closure member. The at least one opening cam movably engages the corresponding cam surface to move the anvil to the open position and upon application of the closure motion to the closure member, the closure member engages the anvil to move the anvil to one of the closed positions.


Example 74—The surgical tool assembly of Example 73, wherein the surgical tool assembly further comprises at least one tissue stop formed on the anvil body and wherein the at least one cam surface is located proximal to the at least one tissue stop.


Example 75—The surgical tool assembly of Examples 73 or 74, wherein the at least one opening cam comprises a first hook portion extending distally from a distal end of the closure member and being configured to cammingly engage a first one of the cam surfaces formed on the anvil body and a second hook portion extending distally from the distal end of the closure member and being configured to cammingly engage a second one of the cam surfaces formed on the anvil body.


Example 76—The surgical tool assembly of Example 75, wherein the first and second hook portions each comprise a compliant portion thereon.


Example 77—The surgical tool assembly of Examples 73 or 74, wherein the first and second hook portions each comprise a compliant portion thereon.


Example 78—The surgical tool assembly of Examples 73, 74, 75, 76, or 77, wherein the surgical tool assembly further comprises secondary anvil opening means for applying additional opening motion to the second jaw.


Example 79—The surgical tool assembly of Example 78, wherein the anvil is pivotally coupled to the elongate channel for selective pivotal travel between the open and closed positions about a pivot axis. The secondary anvil opening means is located proximal to the pivot axis.


Example 80—A surgical tool assembly comprising a surgical end effector and a closure member. The surgical end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and an anvil comprising an anvil body and an anvil mounting portion. The anvil mounting portion is pivotally supported on the elongate channel for selective movement relative thereto between an open position and closed positions. The closure member is axially movable between a fully actuated position corresponding to a fully closed one of the closed positions and an unactuated position corresponding to the open position. The closure member comprises a closure system configured to sequentially apply initial opening motions to the anvil and additional secondary motions to the anvil as the closure member is moved from the fully actuated position to the unactuated position.


Example 81—A surgical end effector comprising a first jaw configured to operably support a surgical staple cartridge therein, a second jaw movably supported relative to the first jaw for selective movement between open and closed positions, a firing member, and a firing member lockout system. The firing member is supported for axial movement within the first jaw along a shaft axis between a starting position and an ending position upon applications of firing and retraction motions thereto. The firing member lockout system is movable by second jaw between an unactuated position and a locking position wherein when the firing member is initially distally advanced from the starting position, the firing member lockingly engages the firing member lockout system to prevent further distal advancement of the firing member unless an unfired surgical staple cartridge comprising a cam assembly that is located in an unfired position is supported within the first jaw.


Example 82—The surgical end effector of Example 81, wherein the firing member lockout system comprises a lock member mounted to the first jaw.


Example 83—The surgical end effector of Example 82, wherein the lock member further comprises a spring tab configured to support the lock member on the first jaw and bias the lock member into the unlocked position.


Example 84—The surgical end effector of Examples 82 or 83, wherein the lock member comprises at least one laterally movable locking portion configured to lockingly engage a portion of the firing member upon the initial distal advancement of the firing member when the second jaw is in the closed position unless the unfired surgical staple cartridge is supported within the first jaw.


Example 85—The surgical end effector of Example 84, wherein the firing member comprises a firing member body comprising a lock protrusion that corresponds to each of the laterally movable locking portions, each lock protrusion oriented for locking engagement with the corresponding laterally movable locking portion upon the initial distal advancement of the firing member when the second jaw is in the closed position unless the unfired surgical staple cartridge is supported within the first jaw.


Example 86—The surgical end effector of Example 85, wherein the cam assembly comprises an unlocking feature corresponding to each laterally movable locking portion to laterally bias each of the corresponding laterally movable locking portions out of locking engagement with the corresponding lock protrusion when the unfired surgical staple cartridge is supported in the first jaw and the cam assembly thereof is in the unfired position.


Example 87—The surgical end effector of Examples 85 or 86, wherein each of the laterally movable locking portions comprises a locking window configured to lockingly receive a portion of the corresponding lock protrusion when the laterally movable locking portion is in the locking engagement with the corresponding lock protrusion.


Example 88—The surgical end effector of Examples 81, 82, 83, 84, 85, 86, or 87, wherein the firing member lockout system comprises at least one lock member movably coupled to said second jaw for travel along a corresponding lock axis that is transverse to said shaft axis when said anvil is in said closed position.


Example 89—The surgical end effector of Examples 81, 82, 83, 84, 85, 86, 87, or 88, wherein the firing member lockout system comprises a locking member movably supported for travel between the unlocked position and the locking position wherein upon the initial distal advancement of the firing member, at least a portion of the locking member is configured to hookingly engage a corresponding portion of the firing member to prevent the firing member from being advanced from the starting position to the ending position.


Example 90—A surgical end effector comprising an elongate channel configured to operably support a surgical staple cartridge therein, an anvil supported relative to the elongate channel such that the anvil is selectively movable relative to the elongate channel between open and closed positions, a firing member, and a firing member lockout system. The firing member is supported for axial movement within the elongate channel along a shaft axis between a starting position and an ending position upon applications of firing and retraction motions thereto. The firing member lockout system is movably by the anvil between an unactuated position and a locking position, wherein when the firing member is initially distally advanced from the starting position, the firing member lockingly engages the firing member lockout system to prevent further distal advancement of the firing member unless an unfired surgical staple cartridge comprising a cam assembly that is located in an unfired position is supported within the elongate channel. The firing member lockout system is configured to be moved from the unactuated position to the locking position when the anvil is moved to the closed position.


Example 91—The surgical end effector of Example 90, wherein the firing member lockout system comprises a lock member. The lock member comprises a pair of laterally movable locking portions, a mounting portion configured to support the lock member on the surgical end effector and bias the lock member into the unactuated position, and at least one anvil tab on the lock member for contact by a corresponding portion of the anvil as the anvil is moved to the closed position.


Example 92—The surgical end effector of Example 91, wherein each laterally movable locking portion comprises a locking window configured to retainingly engage a corresponding portion of the firing member when the lock member is in the locking position unless an unfired surgical staple cartridge is supported within the elongate channel.


Example 93—The surgical end effector of Example 92, wherein each corresponding portion of the firing member comprises a laterally protruding lock lug corresponding to each of the lock windows of the corresponding laterally movable locking portions and sized to be retainingly received therein in locking engagement therewith when the lock member is in the locking position unless an unfired surgical staple cartridge comprising a cam assembly that is located in an unfired position is supported within the elongate channel.


Example 94—The surgical end effector of Example 93, wherein the cam assembly comprises an unlocking feature corresponding to each laterally movable locking portion to laterally bias each of the corresponding laterally movable locking portions out of locking engagement with the corresponding lock lug when the unfired surgical staple cartridge is supported in the elongate channel and the cam assembly thereof is in the unfired position.


Example 95—The surgical end effector of Examples 90, 91, 92, 93, or 94, wherein the firing member lockout system comprises at least one lock member and wherein the anvil comprises an anvil body and an anvil mounting portion comprising a pair of spaced anvil mounting walls, each anvil mounting wall being pivotally supported on the elongate channel, and wherein each anvil mounting wall movably supports a corresponding one of the lock members therein.


Example 96—The surgical end effector of Examples 90, 91, 92, 93, 94, or 95, wherein the firing member lockout system comprises at least one lock member movably coupled to the anvil for travel along a corresponding lock axis that is transverse to the shaft axis when the anvil is in the closed position.


Example 97—The surgical end effector of Examples 90, 91, 92, 93, 94, 95, or 96, wherein the surgical end effector further comprises a tissue cutting surface on the firing member.


Example 98—A surgical instrument comprising an elongate shaft defining a shaft axis, an elongate channel operably coupled to the elongate shaft and being configured to operably support a surgical staple cartridge therein, and an anvil supported relative to the elongate channel such that the anvil is selectively movable relative to the elongate channel between open and closed positions. The surgical instrument further comprises a firing member supported for axial travel within the elongate channel between a starting position and an ending position upon applications of firing and retraction motions thereto and means for preventing the firing member from moving from the starting to the ending position unless the anvil is in the closed position and an unfired surgical staple cartridge comprising a cam assembly that is located in an unfired position is supported within the elongate channel.


Example 99—The surgical instrument of Example 98, wherein the anvil comprises an anvil body and a pair of anvil mounting walls extending from the anvil body portion. Each anvil mounting wall is pivotally coupled to the elongate channel such that the anvil is selectively movable relative to the elongate channel between the open and closed positions upon application of closing and opening motions to the anvil by a closure portion of the elongate shaft assembly.


Example 100—The surgical instrument of Examples 98 or 99, wherein the means for preventing comprises a locking member movably supported for travel between the unlocked position and the locked position, wherein at least a portion is configured to hookingly engage a corresponding portion of the firing member to prevent the firing member from being advanced from the starting position to the ending position and means for biasing the firing member to the unlocked position.


Example 101—A surgical instrument comprising a surgical end effector, an elongate shaft defining a shaft axis, a closure member, and an articulation joint. The surgical end effector comprises a first jaw and a second just movably supported on the first jaw for selective travel between open and closed positions relative to the first jaw. The closure member is movably supported on the elongate shaft and is configured to selectively move in a closing direction from an open position to closed positions and in an opening direction from the closed positions to the open position. The articulation joint couples the surgical end effector to the elongate shaft such that the surgical end effector is selectively articulatable relative thereto about an articulation axis that is transverse to the shaft axis. The articulation joint comprises an articulation lock arrangement configured to move from a locked configuration, wherein the surgical end effector is prevented from articulating about the articulation axis and an unlocked configuration wherein the surgical end effector is articulatable about the articulation axis. The articulation lock arrangement moves from the locked configuration to the unlocked configuration when the closure member is moved from the open position in the closing direction. The surgical instrument further comprises means for applying an articulation motion to the surgical end effector when the articulation lock arrangement is in the unlocked configuration.


Example 102—The surgical instrument of Example 101, wherein the articulation lock arrangement comprises at least one locking member movable between a first position corresponding to the unlocked configuration and a second position wherein the at least one locking member is in frictional engagement with a mounting portion of the surgical end effector and a distal end portion of the elongate shaft. The at least one locking member operably interfaces with the closure member such that the initial movement of the closure member in the closing direction causes the at least one locking member to move from the first position to the second position.


Example 103—The surgical instrument of Example 102, wherein the mounting portion of the surgical end effector comprises an upstanding mounting column including a plurality of column sides, and wherein the at least one locking member comprises a locking member corresponding to each of the column sides.


Example 104—The surgical instrument of Example 103, wherein the distal end portion of the elongate shaft comprises a pivot hole that defines the articulation axis, and wherein the upstanding mounting column extends into the pivot hole such that each of the locking members is movably supported within the pivot hole between the corresponding column side and an internal wall of the pivot hole.


Example 105—The surgical instrument of Example 104, wherein the upstanding mounting column is configured to move the plurality of locking members into frictional engagement with the internal wall of the pivot hole and the corresponding column side when the closure member is moved in the closing direction.


Example 106—The surgical instrument of Example 105, wherein the closure member comprises a proximal closure member interfacing with a source of closing and opening motions to move the proximal closure member in the closing and opening directions and a distal closure member pivotally coupled to the proximal closure member by a linkage arrangement, wherein a portion of the linkage arrangement is configured to interface with the upstanding mounting column so as to cause the upstanding mounting column to move the plurality of locking members into frictional engagement with the internal wall of the pivot hole and the corresponding column sidewalls when the closure member is initially moved in the closing direction.


Example 107—The surgical instrument of Example 106, wherein the linkage arrangement comprises an upper double pivot link pivotally coupled to the proximal closure member and the distal closure member and extending therebetween and a lower double pivot link pivotally coupled to the proximal closure member and the distal closure member and extending therebetween. The lower double pivot link is configured to operably interface with the upstanding mounting column to apply a locking motion thereto when the lower double pivot link is initially moved in the closing direction.


Example 108—The surgical instrument of Example 107, wherein the upstanding mounting column comprises a first end portion attached to a mounting based adjacent the lower double pivot link, the upstanding column tapering to a free end, wherein a cross-sectional area of the free end is smaller than another cross-sectional area of the first end portion of the column.


Example 109—The surgical instrument of Examples 101, 102, 103, 104, 105, 106, 107, or 108, wherein the first jaw comprises an elongate channel configured to operably support a surgical staple cartridge therein and wherein the second jaw comprises an anvil.


Example 110—The surgical instrument of Examples 101, 102, 103, 104, 105, 106, 107, 108, or 109, wherein the means for applying an articulation motion to the surgical end effector comprises means for applying a first articulation motion to the surgical end effector to cause the surgical end effector to articulate about the articulation axis in a first articulation direction and means for applying a second articulation motion to the surgical end effector to cause the surgical end effector to articulate about the articulation axis in a second articulation direction.


Example 111—A surgical instrument comprising an elongate shaft comprising a distal end portion and defining a shaft axis, a surgical end effector, an articulation lock arrangement, and an articulation member. The surgical end effector comprises an end effector mounting portion, wherein one of the distal end portion of the elongate shaft and the end effector mounting portion comprises a pivot hole and the other of the distal end portion of the elongate shaft and the end effector mounting portion defines an articulation pin pivotally received within the pivot hole and defining an articulation axis that is transverse to the shaft axis about which the surgical end effector is articulatable relative to the elongate shaft upon application of articulation motions to the surgical end effector. The articulation lock arrangement is supported within the pivot hole between the articulation pin and an inner wall of the pivot hole. The articulation lock arrangement is movable from a first locked configuration wherein the articulation lock arrangement frictionally engages the articulation pin and the inner wall of the pivot hole to prevent relative pivotal travel of the articulation pin and the distal end portion of the elongate shaft and an unlocked configuration wherein the articulation pin and the distal end portion are pivotable relative to each other. The articulation member interfaces with the surgical end effector such that actuation of the articulation member causes the articulation member to apply the articulation motions to the surgical end effector. The articulation member interfaces with the articulation lock arrangement such that an initial actuation of the articulation member causes the articulation lock arrangement to move from the locked configuration to the unlocked configuration and upon deactivation of the articulation member, the articulation lock arrangement moves from the unlocked configuration to the locked configuration.


Example 112—The surgical instrument of Example 111, wherein the articulation lock arrangement comprises a torsion spring supported between the articulation pin and the inner wall of the pivot hole.


Example 113—The surgical instrument of Example 112, wherein the torsion spring is rotatable from a first position wherein the torsion spring frictionally engages the articulation pin and the inner wall of the pivot hole to prevent relative pivotal travel of the distal end portion of the elongate shaft and the surgical end effector and positions wherein the torsion spring does not prevent the relative pivotal travel.


Example 114—The surgical instrument of Examples 111, 112, or 113, wherein the articulation lock arrangement comprises at least one locking ball movably supported between the articulation pin and the inner wall of the pivot hole between a first position, wherein each locking ball frictionally engages the articulation pin and the inner wall of the pivot hole to prevent relative pivotal travel of the distal end portion of the elongate shaft and the surgical end effector and positions wherein each said locking ball does not prevent said relative pivotal travel.


Example 115—The surgical instrument of Examples 111, 112, 113, or 114, wherein the surgical end effector comprises a first jaw and a second jaw supported for movable travel relative to the first jaw.


Example 116—The surgical instrument of Example 115, wherein the first jaw comprises an elongate channel configured to operably support a surgical staple cartridge therein and wherein the second jaw comprises an anvil.


Example 117—The surgical instrument of Examples 111, 112, 113, 114, 115, or 116, wherein the articulation member comprises an axially movable articulation member that is pivotally linked to the surgical end effector such that axial movement thereof in a first axial direction causes the surgical end effector to articulate in a first articulation direction about the articulation axis and movement of the axially movable articulation member in a second axial direction causes the surgical end effector to articulate in a second articulation direction about the articulation axis.


Example 118—A surgical instrument comprising a surgical end effector, an elongate shaft defining a shaft axis, closure means, and an articulation joint. The surgical end effector comprises a first jaw movably coupled to the elongate shaft for selective articulation relative thereto about an articulation axis that is transverse to the shaft axis and a second jaw movably supported on the first jaw for selective travel between open and closed positions relative to the first jaw. The closure means selectively moves the second jaw from the open position to the closed positions, the closure means being further configured to selectively move the second jaw from the closed positions to the open position. The articulation joint couples the surgical end effector to the elongate shaft such that the surgical end effector is selectively articulatable relative thereto about an articulation axis that is transverse to the shaft axis. The articulation joint comprises an articulation lock arrangement configured to move from a locked configuration, wherein the surgical end effector is prevented from articulating about the articulation axis and an unlocked configuration wherein the surgical end effector is articulatable about the articulation axis. The articulation lock arrangement moves from the locked configuration to the unlocked configuration when the closure means moves the second jaw from the open position towards the closed positions. The surgical instrument further comprises means for applying an articulation motion to the surgical end effector when the articulation lock arrangement is in the unlocked configuration.


Example 119—The surgical instrument of Example 118, wherein the first jaw comprises an elongate channel configured to operably support a surgical staple cartridge therein and wherein the second jaw comprises an anvil.


Example 120—The surgical instrument of Examples 119 or 120, wherein the articulation lock arrangement comprises at least one locking member movable between a first position corresponding to the unlocked configuration and a second position wherein the at least one locking member is in frictional engagement with a mounting portion of the first jaw and a distal end portion of the elongate shaft. The at least one locking member operably interfaces with the closure member such that the initial movement of the closure member in the closing direction causes the at least one locking member to move from the first position to the second position.


Example 121—A surgical instrument comprising an elongate shaft defining a shaft axis, a surgical end effector, at least one articulation link, and an articulation lock arrangement. The surgical end effector is coupled to the elongate shaft for selective articulation relative to the elongate shaft about an articulation axis that is transverse to the shaft axis. The at least one articulation link operably interfaces with a source of articulation motions and is coupled to the surgical end effector for applying the articulation motions thereto. The articulation lock arrangement comprises an articulation lock member corresponding to each articulation link, each articulation lock member is configured to laterally move into locking engagement with the corresponding articulation link from an unlocked position that is laterally adjacent to the corresponding articulation link. The surgical instrument further comprises actuation means operably interfacing with each of the articulation lock members to selectively laterally move each articulation lock member from the unlocked position into locking engagement with the corresponding articulation link.


Example 122—The surgical instrument of Example 121, wherein each at least one articulation link comprises an articulation gear rack, and wherein the articulation lock member corresponding thereto comprises a locking gear rack corresponding to each articulation gear rack and is oriented relative thereto in a lateral confronting relationship for the meshing engagement therewith when the corresponding articulation lock member is laterally advanced toward the articulation link.


Example 123—The surgical instrument of Examples 121 or 122, wherein the at least one articulation link comprises an axially movable right articulation link including a right articulation gear rack thereon and an axially movable left articulation link including a left articulation gear rack thereon. The articulation lock member comprises a right articulation lock member including a right locking gear rack that is in lateral confronting relationship with the right articulation gear rack for meshing engagement therewith when the right articulation lock member is laterally advanced toward the right articulation link and a left articulation lock member including a left locking gear rack that is in lateral confronting relationship with the left articulation gear rack for meshing engagement therewith when the left articulation lock member is laterally advanced toward the left articulation link.


Example 124—The surgical instrument of Example 123, wherein the actuation means comprises a locking actuator movably positioned relative to the right articulation lock member and the left articulation lock member such that axial movement of the locking actuator in a first axial direction causes the right articulation lock member to move laterally toward the right articulation link so as to bring the right locking gear rack into locking engagement with the right articulation gear rack and the left articulation lock member to move laterally toward the left articulation link so as to bring the left locking gear rack into locking engagement with the left articulation gear rack.


Example 125—The surgical instrument of Examples 121, 122, 123, or 124, wherein the source of articulations motions comprises an axially movable firing actuator configured to selectively apply firing motions to a corresponding portion of the surgical end effector and an articulation transmission operably interfacing with the axially movable firing actuator and the at least one articulation link such that actuation of the axially movable firing actuator in a first axial firing direction moves the at least one articulation link in a first axial articulation direction and movement of the axially movable firing actuator in a second axial retraction direction moves the at least one articulation link in a second axial articulation direction.


Example 126—The surgical instrument of Examples 123 or 124, wherein the source of articulation motions comprises an axially movable firing actuator configured to selectively apply firing motions to a corresponding portion of the surgical end effector and an articulation transmission operably interfacing with the right and left articulation links and the axially movable firing member such that actuation of the axially movable firing actuator in a first axial firing direction moves the right articulation link in the first axial direction and the left articulation link in a second axial direction and movement of the axially movable firing actuator in the second axial direction moves the right articulation link in the second axial direction and the left articulation link in the first axial direction.


Example 127—The surgical instrument of Example 126, wherein the articulation lock arrangement further comprises a locking actuator movably positioned relative to the right articulation lock member and the left articulation lock member such that axial movement of the locking actuator in the first axial direction causes the right articulation lock member to move laterally toward the right articulation link so as to bring the right locking gear rack into locking engagement with the right articulation gear rack and the left articulation lock member to move laterally toward the left articulation link so as to bring the left locking gear into locking engagement with the left articulation gear rack.


Example 128—The surgical instrument of Example 127, wherein the articulation transmission comprises a gear assembly in meshing engagement with the right and left articulation links and a shifter configured for selective meshing engagement with the gear assembly and the axially movable firing actuator. The shifter is configured for selective operable engagement with the locking actuator such that when the shifter is in operable engagement with the locking actuator, the shifter is moved into meshing engagement with the axially movable firing actuator and the gear assembly and movement of the shifter out of operable engagement with the locking actuator also moves the shifter out of meshing engagement with the gear assembly and the axially movable firing actuator.


Example 129—The surgical instrument of Example 125, wherein the corresponding portion of the surgical end effector comprises a firing member attached to the axially movable firing actuator. The firing member is supported for axial travel through the surgical end effector between a starting and ending position therein.


Example 130—A surgical instrument comprising an elongate shaft defining a shaft axis, a surgical end effector, a firing actuator, at least one articulation link configured for selective operable engagement with the firing actuator, and an articulation lock arrangement. The surgical end effector is coupled to the elongate shaft for selective articulation relative to the elongate shaft about an articulation axis that is transverse to the shaft axis. The firing actuator is selectively axially movable in first and second axial directions to apply firing motions to a firing member operably supported in the surgical end effector. Axial movement of the firing actuator is transmitted to each of the at least one articulation links. The articulation lock arrangement is configured to laterally move between a locked configuration, wherein each of the at least one articulation links are non-movably locked in position and an unlocked configuration, and wherein each of the at least one articulation links are movable in response to movement of the firing actuator. The articulation lock arrangement interfaces with the firing actuator such that when the articulation lock arrangement is in the unlocked configuration, the firing actuator is in operable engagement with each of the at least one articulation links and when the articulation lock arrangement is in the locked configuration, each of the at least one articulation links is prevented from operable engagement with the firing actuator.


Example 131—The surgical instrument of Example 130, wherein the articulation lock arrangement comprises an articulation lock member corresponding to each articulation link. Each articulation lock member is configured to laterally move into locking engagement with the corresponding articulation link from an unlocked position that is laterally adjacent to the corresponding articulation link.


Example 132—The surgical instrument of Example 131, wherein each of the at least one articulation link comprises an articulation gear rack and wherein each corresponding articulation lock member comprises a locking gear rack oriented relative to the articulation gear rack of the corresponding articulation link in lateral confronting relationship relative thereto for meshing engagement therewith when the articulation lock member is laterally advanced toward the corresponding articulation link.


Example 133—The surgical instrument of Example 132, wherein the at least one articulation link comprises an axially movable right articulation link including a right articulation gear rack thereon and an axially movable left articulation link including a left articulation gear rack thereon. The articulation lock member comprises a right articulation lock member including a right locking gear rack that is in lateral confronting relationship with the right articulation gear rack for meshing engagement therewith when the right articulation lock member is laterally advanced toward the right articulation link and a left articulation lock member including a left locking gear rack that is in lateral confronting relationship with the left articulation gear rack for meshing engagement therewith when the left articulation lock member is laterally advanced toward the left articulation link.


Example 134—The surgical instrument of Examples 130, 131, 132, or 133, wherein the surgical end effector comprises a firing member coupled to the firing actuator and supported for axial travel through the surgical end effector.


Example 135—The surgical instrument of Example 134, wherein the surgical end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and an anvil movably supported on the elongate channel for selective movement between open and closed positions. The elongate channel is coupled to the elongate shaft for selective articulation relative thereto about the articulation axis. The firing member comprises a tissue cutting feature.


Example 136—The surgical instrument of Example 133, wherein the surgical instrument further comprises an articulation transmission operably interfacing with the right and left articulation links and the axially movable firing actuator such that actuation of the axially movable firing actuator in a first axial firing direction moves the right articulation link in the first axial direction and the left articulation link in a second axial direction and movement of the axially movable firing actuator in the second axial direction moves the right articulation link in the second axial direction and the left articulation link in the first axial direction.


Example 137—The surgical instrument of Examples 133 or 136, wherein the articulation lock arrangement further comprises a locking actuator movably positioned relative to the right articulation lock member and the left articulation lock member such that axial movement of the locking actuator in a first axial direction causes the right articulation lock member to move laterally toward the right articulation link so as to bring the right locking gear rack into locking engagement with the right articulation gear rack and the left articulation lock member to move laterally toward the left articulation link so as to bring the left locking gear into locking engagement with the left articulation gear rack.


Example 138—The surgical instrument of Example 136, wherein the articulation transmission comprises a gear assembly in meshing engagement with the right and left articulation links and a shifter configured for selective meshing engagement with the gear assembly and the axially movable firing actuator. The shifter is configured for selective operable engagement with the locking actuator such that when the shifter is in operable engagement with the locking actuator, the shifter is moved into meshing engagement with the axially movable firing actuator and the gear assembly. When the shifter is out of operable engagement with the locking actuator, the shifter is moved out of meshing engagement with the gear assembly and the axially movable firing actuator.


Example 139—A surgical instrument comprising an elongate shaft defining a shaft axis, a surgical end effector coupled to the elongate shaft for selective articulation relative to the elongate shaft about an articulation axis that is transverse to the shaft axis, means for generating axial firing motions, and articulation means. The articulation means interface with the means for generating and the articulation means are configured to apply articulation motions to the surgical end effector in response to the axial firing motions generated by the means for generating. The surgical instrument further comprises means for selectively locking the articulation means in a non-movable configuration and unlocking the articulation means and operably coupling the articulation means with the means for generating such that the means for generating may apply the axial firing motions to the articulation means.


Example 140—The surgical instrument of Example 139, wherein the surgical end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and an anvil movably supported on the elongate channel for selective movement between open and closed positions. The elongate channel is coupled to the elongate shaft for selective articulation relative thereto about the articulation axis. The firing member comprises a tissue cutting feature.


Example 141—A surgical tool assembly comprising an elongate shaft defining a shaft axis, a surgical end effector coupled to the elongate shaft for selective articulation relative to the elongate shaft about an articulation axis that is transverse to the shaft axis, a first articulation link, a second articulation link, and an articulation stroke multiplier. The first articulation link operably interfaces with a source of articulation motions to selectively axially move the first articulation link a first axial distance in a first articulation direction. The second articulation link operably interfaces with the surgical end effector to apply articulation motions thereto. The articulation stroke multiplier operably interfaces with the first articulation link and the second articulation link such that when the first articulation link is axially moved the first axial distance in the first axial direction, the articulation stroke multiplier moves the second articulation link another first axial distance in the first axial direction that is greater than the first axial distance.


Example 142—The surgical tool assembly of Example 141, wherein the source of articulation motions is configured to additionally axially move the first articulation link a second axial distance in a second axial direction and wherein when the first articulation link is moved the second axial distance in the second axial direction, the articulation stroke multiplier moves the second articulation link another second axial distance in the second axial direction that is greater than the second axial distance.


Example 143—The surgical tool assembly of Examples 141 or 142, wherein the first articulation link comprises a first articulation gear rack, wherein the second articulation link comprises a second articulation gear rack, and wherein the articulation stroke multiplier comprises at least one gear set in meshing engagement with the first and second articulation gear racks.


Example 144—The surgical tool assembly of Example 143, wherein each of the at least one gear set comprises a first gear rotatably supported in meshing engagement with the first articulation gear rack and a first gear rotatably supported in meshing engagement with the first articulation gear rack.


Example 145—The surgical tool assembly of Examples 141, 142, 143, or 144, wherein the second articulation link operably interfaces with an articulation lock assembly that is operably coupled to the surgical end effector.


Example 146—The surgical tool assembly of Examples 141, 142, 143, 144, or 145, wherein the first articulation link comprises a first articulation gear rack and wherein the articulation stroke multiplier comprises a swing gear in meshing engagement with the first articulation gear rack and slidably coupled to the second articulation link.


Example 147—The surgical tool assembly of Examples 141, 142, 143, 144, 145, or 146, wherein the swing gear is supported for rotational travel about a swing gear mounting axis that is transverse to the first and second articulation links.


Example 148—The surgical tool assembly of Examples 146 or 147, wherein the second articulation link comprises a slotted distal end slidably engaging a portion of the swing gear therein.


Example 149—The surgical tool assembly of Examples 146, 147, or 148, wherein the swing gear has a slot therein configured to slidably engage a distal end portion of the second articulation link.


Example 150—A surgical tool assembly comprising an elongate shaft defining a shaft axis, a surgical end effector, a first articulation link, a second articulation link, and an articulation stroke multiplier. The surgical end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and coupled to the elongate shaft for selective articulation relative to the elongate shaft about an articulation axis that is transverse to the shaft axis and an anvil movably supported on the elongate channel. The first articulation link operably interfaces with a source of articulation motions to selectively axially move the first articulation link a first axial distance in a first articulation direction. The second articulation link operably interfaces with the surgical end effector to apply articulation motions thereto. The articulation stroke multiplier operably interfaces with the first articulation link and the second articulation link such that when the first articulation link is axially moved the first axial distance in the first axial direction. The articulation stroke multiplier moves the second articulation link another first axial distance in the first axial direction that is greater than the first axial distance.


Example 151—The surgical tool assembly of Example 150, wherein the source of articulation motions comprises a firing member assembly operably interfacing with a firing member that is supported for axial travel within the elongate channel and a clutch assembly operably interfacing with the first articulation link and the firing member assembly and being selectively configurable between a firing mode, wherein axial movement of the firing member assembly is applied to the firing member and an articulation mode, and wherein the axial movement of the firing member assembly is applied to the first articulation link.


Example 152—The surgical tool assembly of Example 151, wherein when the clutch assembly is in the articulation mode, the firing member assembly is configured to additionally axially move the first articulation link a second axial distance in a second axial direction and wherein when the first articulation link is moved the second axial distance in the second axial direction, the articulation stroke multiplier moves the second articulation link another second axial distance in the second axial direction that is greater than the secondary axial distance.


Example 153—The surgical tool assembly of Examples 151 or 152, wherein the first articulation link comprises a first articulation gear rack, wherein the second articulation link comprises a second articulation gear rack, and wherein the articulation stroke multiplier comprises at least one gear set in meshing engagement with the first and second articulation gear racks.


Example 154—The surgical tool assembly of Example 153, wherein each of the at least one gear set comprises a first gear rotatably supported in meshing engagement with the first articulation gear rack and a second gear attached to the first gear for rotation therewith. The second gear has a larger diameter than a diameter of the first gear, and the second gear is in meshing engagement with the second articulation gear rack.


Example 155—The surgical tool assembly of Examples 151, 152, 153, or 154, wherein the second articulation link operably interfaces with an articulation lock assembly that is operably coupled to the surgical end effector.


Example 156—The surgical tool assembly of Examples 151, 152, 153, 154, or 155, wherein the first articulation link comprises a first articulation gear rack and wherein the articulation stroke multiplier comprises a swing gear in meshing engagement with the first articulation gear rack and slidably coupled to the second articulation link.


Example 157—The surgical tool assembly of Example 156, wherein the swing gear is supported for rotational travel about a swing gear mounting axis that is transverse to the first and second articulation links.


Example 158—The surgical tool assembly of Examples 156 or 157, wherein the second articulation link comprises a slotted distal end slidably engaging a portion of the swing gear therein.


Example 159—The surgical tool assembly of Examples 156, 157, or 158, wherein the swing gear has a slot therein configured to slidably engage a distal end portion of the second articulation link.


Example 160—A surgical tool assembly comprising an elongate shaft defining a shaft axis, a surgical end effector, a first articulation link, a second articulation link, and an articulation stroke multiplying means. The surgical end effector is coupled to the elongate shaft for selective articulation relative to the elongate shaft about an articulation axis that is transverse to the shaft axis. A first articulation link operably interfaces with a source of articulation motions to selectively axially move the first articulation link a first axial distance in a first articulation direction. A second articulation link operably interfaces with the surgical end effector to apply articulation motions thereto. The articulation stroke multiplying means operably interfaces with the first articulation link and the second articulation link to move the second articulation a second axial distance in response to movement of the first articulation link a first axial distance that is less than the second axial distance.


Example 161—A surgical tool assembly comprising an elongate shaft assembly defining a shaft axis, a surgical end effector, and a distal articulation member. The surgical end effector is movably coupled to the elongate shaft assembly by a distal support link that is pivotally coupled to the surgical end effector to define an articulation axis that is transverse to the shaft axis. The distal support link is pivotally and axially movably coupled to the elongate shaft assembly to facilitate selective articulation of the surgical end effector relative to the elongate shaft assembly about the articulation axis between a first unarticulated position, wherein the surgical end effector is aligned with the elongate shaft assembly along the shaft axis and articulation positions located on one side of the shaft axis. The distal articulation member operably interfaces with a source of articulation motions and is pivotally coupled to the surgical end effector to apply the articulation motions thereto.


Example 162—The surgical tool assembly of Example 161, wherein the distal articulation member is configured to axially move on the one side of the shaft axis in response to the articulation motions applied thereto and wherein the distal support link is configured to axially move relative to the elongate shaft assembly along the shaft axis.


Example 163—The surgical tool assembly of Examples 161 or 162, wherein the distal support link comprises a distal end pivotally coupled to the surgical end effector for pivotal travel about the articulation axis and a proximal end comprising a proximal axial slot configured to receive a corresponding articulation pin therein that is attached to a distal end of elongate shaft assembly.


Example 164—The surgical tool assembly of Examples 161, 162, or 163, wherein the surgical tool assembly further comprises a proximal articulation member operably interfacing with the source of articulation motions and an articulation lock assembly operably coupled to the proximal articulation member and a proximal end of the distal articulation member to selectively lock the distal articulation member in an axial position.


Example 165—The surgical tool assembly of Example 164, wherein the proximal end of the distal articulation member is pivotally coupled to the articulation lock assembly.


Example 166—The surgical tool assembly of Examples 161, 162, 163, 164, or 165, wherein the distal support link is pivotally and axially movably coupled to a distal spine member of the elongate shaft assembly.


Example 167—The surgical tool assembly of Examples 161, 162, 163, 164, 165, or 166, wherein the surgical end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and an anvil movably supported on the elongate channel for selective movement relative thereto between an open position and closed positions.


Example 168—The surgical tool assembly of Example 167 wherein the elongate channel is pivotally coupled to the distal support link by an end effector mounting assembly coupled to the elongate channel.


Example 169—The surgical tool assembly of Examples 161, 162, 163, 164, 165, 166, 167, or 168, wherein the distal articulation member is configured to axially move in first and second axial directions such that when the distal articulation member is moved in the first axial direction, the surgical end effector is articulated in a first articulation direction from the first unarticulated position to any one of the articulation positions, and when the distal articulation member is axially moved in the second axial direction, the surgical end effector is moved in a second articulation direction from any one of the articulation positions to the first unarticulated position.


Example 170—The surgical tool assembly of Example 169, wherein the surgical tool assembly further comprises means for preventing movement of the surgical end effector in the second articulation direction beyond the first unarticulated position when the distal articulation member is moved in the second axial direction.


Example 171—A surgical tool assembly comprising an elongate shaft assembly defining a shaft axis, a surgical end effector, a distal support link, and a distal articulation member. The surgical end effector comprises an elongate channel configured to operably support a surgical staple cartridge therein and an anvil supported for movable travel relative to the surgical staple cartridge. The distal support link is pivotally coupled to the elongate channel to define an articulation axis that is transverse to the shaft axis and about which the elongate channel may articulate relative to the elongate shaft assembly. The distal support link is attached to a distal end of the elongate shaft assembly for axial and pivotal travel relative thereto along the shaft axis. The distal articulation member is supported for axial travel on one side of the shaft axis, the distal articulation member being pivotally coupled to the elongate channel and operably interfacing with a source of articulation motions.


Example 172—The surgical tool assembly of Example 171, wherein a proximal end of the distal support link comprises a proximal axial slot that is configured to receive a corresponding articulation pin therein that is attached to the distal end of said elongate shaft assembly.


Example 173—The surgical tool assembly of Examples 171 or 172, wherein the surgical tool assembly further comprises a proximal articulation member operably interfacing with the source of articulation motions and an articulation lock assembly operably coupled to the proximal articulation member and a proximal end of the distal articulation member to selectively lock the distal articulation member in an axial position.


Example 174—The surgical tool assembly of Example 173, wherein the proximal end of the distal articulation member is pivotally coupled to the articulation lock assembly.


Example 175—The surgical tool assembly of Examples 171, 172, 173, or 174, wherein the distal support link is pivotally and axially movably coupled to a distal spine member of the elongate shaft assembly.


Example 176—The surgical tool assembly of Examples 171, 172, 173, 174, or 175, wherein the distal articulation member is configured to move in first and second axial directions such that when the distal articulation member is moved in the first axial direction, the surgical end effector is articulated in a first articulation direction from the first unarticulated position to any one of the articulation positions and when the distal articulation member is moved in the second axial direction, the surgical end effector is moved in a second articulation direction from any one of the articulation positions to the first unarticulated position.


Example 177—The surgical tool assembly of Example 176, wherein the surgical tool assembly further comprises means for preventing movement of the surgical end effector in the second articulation direction beyond the first unarticulated position when the distal articulation member is moved in the second axial direction.


Example 178—A surgical tool assembly comprising an elongate shaft assembly defining a shaft axis, means for coupling a surgical end effector to a distal end of the elongate shaft assembly such that the surgical end effector may be selectively articulated about an articulation axis that is transverse to the shaft axis between an unarticulated position wherein the surgical end effector is aligned with the elongate shaft along the shaft axis and articulation positions located on one side of the shaft axis, and means for applying articulation motions to the surgical end effector. The means for coupling are coupled to the elongate shaft assembly for axial and pivotal travel relative thereto.


Example 179—The surgical tool assembly of Example 178, wherein the means for applying is pivotally coupled to the surgical end effector at a location that is laterally offset from the shaft axis.


Example 180—The surgical tool assembly of Examples 178 or 179, wherein the means for applying further comprises means for selectively locking the surgical end effector in any one of the articulation positions.


Example 181—A surgical staple cartridge is configured to be supported within a jaw of a surgical end effector wherein at least one jaw of the surgical end effector is movable relative to a second jaw of the surgical end effector between open and closed positions. The surgical end effector includes a lock member that is moved from an unlocked configuration to a locked configuration when the at least one jaw is moved to the closed position to prevent axial travel of a firing member through the surgical end effector. The surgical end effector comprises a cartridge body sized to be seated within the surgical end effector, the cartridge body operably supporting a plurality of surgical staples arranged in staple lines therein and a cam assembly. The cam assembly is movable between a starting position and an ending position within the cartridge body, the cam assembly defining a central axis and a plurality of cam features thereon wherein each cam feature corresponds to at least one of the staple lines. The cam assembly further comprises at least one unlocking feature thereon that is laterally offset from the central axis and is configured to unlockingly engage a corresponding portion of the lock member when the cartridge body is seated within the surgical end effector and the cam assembly is in the starting position to thereby prevent the locking member from attaining the locked configuration when the at least one jaw is moved to the closed position.


Example 182—The surgical staple cartridge of Example 181, wherein the at least one unlocking feature comprises a first unlocking ramp formed on a proximal end of the cam assembly in a position that is laterally offset to one side of the central axis and a second unlocking ramp formed on the proximal end of the cam assembly in another position that is laterally offset on an opposite side of the central axis.


Example 183—The surgical staple cartridge of Examples 181 or 182, wherein each unlocking feature is configured to bias the lock member into the unlocked configuration.


Example 184—The surgical staple cartridge of Example 182, wherein the proximal end of the cam assembly defines a central contact area located between the first and second unlocking ramps that is configured for engagement by the firing member as the firing member is axially advanced through the surgical end effector.


Example 185—A surgical end effector comprising a first jaw, an anvil, a firing member, a lock member, and a surgical staple cartridge. The anvil is supported relative to the first jaw for selective movement relative to the first jaw between an open position and a closed position relative to each other. The firing member is supported for axial movement within the end effector between a beginning position and an ending position upon applications of firing and retraction motions thereto. The lock member is movable between a locked configuration wherein the firing member is prevented from axial travel through the surgical end effector and an unlocked configuration wherein the firing member is axially advanceable through the surgical end effector. The surgical staple cartridge comprises a cartridge body and a cam assembly. The cartridge body is sized to be seated within the first jaw, the cartridge body operably supporting a plurality of surgical staples arranged in staple lines therein. The cam assembly is movable between a starting position and an end position within the cartridge body, the cam assembly defining a central axis and comprising a plurality of cam features thereon wherein each cam feature corresponds to at least one of the staple lines. The cam assembly further comprises at least one unlocking feature thereon laterally offset from the central axis and being configured to unlockingly engage a corresponding portion of the lock member when the cartridge body is seated within the first jaw and the cam assembly is in the starting position to thereby prevent the lock member from attaining the locked configuration when the anvil is moved to the closed position.


Example 186—The surgical end effector of Example 185, wherein the at least one unlocking feature comprises a first unlocking ramp formed on a proximal end of the cam assembly in a position that is laterally offset to one side of the central axis and a second unlocking ramp formed on the proximal end of the cam assembly in another position that is laterally offset on an opposite side of the central axis.


Example 187—The surgical end effector of Examples 185 or 186, wherein the anvil is configured to move the lock member in a first direction into locking engagement with the firing member when the anvil is moved to the closed position and wherein each unlocking feature is configured to bias the corresponding portion of the lock member in a second direction that is opposite to the first direction.


Example 188—The surgical end effector of Example 186, wherein the proximal end of the cam assembly defines a central contact area located between the first and second unlocking ramps that is configured for engagement by the firing member as the firing member is axially advanced through the surgical end effector.


Example 189—The surgical end effector of Examples 181, 182, 183, or 184, wherein the surgical staple cartridge comprises an elongate slot configured to slidably receive the firing member therein as the firing member is moved between the beginning and ending positions and wherein the lock member is configured to axially align the firing member with the elongate slot.


Example 190—The surgical end effector of Examples 185, 186, 187, or 188, wherein the firing member comprises two lateral sides and wherein the lock member is configured to retainingly engage each lateral side of the firing member when the lock member is in the locked configuration.


Example 191—The surgical end effector of Example 190, wherein the lock member comprises a spring arm corresponding to each lateral side of the firing member and a lock notch in each spring arm configured to releasably engage a corresponding lock lug on each lateral side of the firing member.


Example 192—The surgical end effector of Examples 185, 186, 187, 188, 190, or 191, wherein the surgical end effector further comprises a tissue cutting surface on the firing member.


Example 193—The surgical end effector of Examples 185, 186, 187, 188, 190, 191, or 192, wherein the anvil comprises an anvil body, an axial slot in the anvil body to permit a portion of the firing member to axially pass therethrough, and an axial passage within the anvil body on each side of the axial slot.


Example 194—The surgical end effector of Example 193, wherein the firing member comprises a foot configured to slidably pass within a corresponding passage within the first jaw and laterally extending anvil engagement features extending laterally from a top portion of the firing member body and configured to pass through a corresponding one of the axial passages within the anvil body and wherein the first and second engagement features are located between the foot and the anvil engagement features.


Example 195—A surgical staple cartridge is configured to be supported within a jaw of a surgical end effector that defines a shaft axis and wherein at least one jaw of the surgical end effector is movable relative to a second jaw of the surgical end effector between open and closed positions. The surgical end effector includes a lock member that is movable between a locked configuration wherein a firing member is prevented from axial travel through the surgical end effector and an unlocked configuration wherein the firing member is axially advanceable through the surgical end effector. The surgical staple cartridge comprises a cartridge body sized to be seated within the one jaw of the surgical end effector, the cartridge body operably supporting a plurality of surgical staples arranged in staple rows therein and staple camming means for camming the staples out of the cartridge body as the camming means is axially moved within the cartridge body from a starting position to an ending position. The staple camming means is configured to unlockingly engage at least one corresponding portion of the lock member that is laterally offset from the shaft axis when the cartridge body is seated within the jaw of the surgical end effector and the staple camming means is in the starting position to thereby prevent the locking member from attaining the locked configuration when the at least one jaw is moved to the closed position.


Example 196—A method comprises obtaining a first staple cartridge having a first row of staples and obtaining a second staple cartridge having a second row of staples, wherein the first row of staples and the second row of staples comprise the same length. The method further comprises inserting the first staple cartridge into a channel comprising a keyed profile, wherein complete insertion of the first staple cartridge into the channel is prevented by an interference between the keyed profile and the channel and inserting the second staple cartridge into the channel, wherein complete insertion of the second staple cartridge into the channel is permitted by the keyed profile.


Example 197—The method of Example 196, wherein inserting the second staple cartridge into the channel further comprises aligning key features on the second staple cartridge with the keyed profile on the channel.


Example 198—The method of Examples 196 or 197, wherein the method further comprises a bottom surface of the first staple cartridge being spaced apart from the channel when the first staple cartridge is inserted into the channel.


Example 199—The method of Example 198, wherein the method further comprises a bottom surface of the second staple cartridge being positioned against the channel when the second staple cartridge is inserted into the channel.


Example 200—The method of Examples 196, 197, 198, or 199, wherein the method further comprises a proximal portion of the first staple cartridge obstructing clamping of an anvil against a distal portion of the first staple cartridge when the first staple cartridge is inserted into the channel.


Example 201—The method of Examples 196, 197, 198, 199, or 200, wherein the method further comprises a firing lockout of the first staple cartridge preventing a firing stroke when the first staple cartridge is inserted into the channel.


Example 202—A method comprising obtaining a first staple cartridge comprising a first quantity of staples and obtaining a second staple cartridge comprising the first quantity of staples. The method further comprises inserting the first staple cartridge into a channel comprising a keyed profile, wherein the complete insertion of the first staple cartridge into the channel is prevented by the keyed profile and inserting the first staple cartridge into a channel comprising a keyed profile, wherein the complete insertion of the first staple cartridge into the channel is prevented by the keyed profile.


Example 203—The method of Example 202, wherein inserting the second staple cartridge into the channel further comprises aligning key features on the second staple cartridge with the keyed profile on the channel.


Example 204—The method of Examples 202 or 203, wherein the method further comprises a bottom surface of the first staple cartridge being spaced apart from the channel when the first staple cartridge is inserted into the channel.


Example 205—The method of Example 204, wherein the method further comprises a bottom surface of the first staple cartridge being spaced apart from the channel when the first staple cartridge is inserted into the channel.


Example 206—The method of Examples 202, 203, 204, or 205, wherein the method further comprises the first staple cartridge obstructing clamping of an anvil against the first staple cartridge when the first staple cartridge is inserted into the channel.


Example 207—The method of Examples 202, 203, 204, 205, or 206, wherein the method further comprises a firing lockout of the first staple cartridge preventing a firing stroke when the first staple cartridge is inserted into the channel.


Example 208—A method comprises obtaining a channel, obtaining a compatible staple cartridge comprising a proximal alignment protrusion and a distal alignment protrusion, and aligning the proximal alignment protrusion with a corresponding proximal alignment feature in a channel. The method further comprises aligning the distal alignment protrusion with a corresponding distal alignment feature in the channel and inserting the compatible staple cartridge into the channel such that the proximal alignment protrusion interlocks with the corresponding proximal alignment feature and the distal alignment protrusion interlocks with the corresponding distal alignment feature.


Example 209—The method of Example 208, wherein the method further comprises a bottom surface of the compatible staple cartridge being positioned against the channel when the compatible staple cartridge is inserted into the channel.


Example 210—The method of Examples 208 or 209, wherein the method further comprises a firing lockout of the compatible staple cartridge preventing a firing stroke until the compatible staple cartridge is inserted into the channel.


Example 211—The method of Examples 208, 209, or 210, wherein the method further comprises attempting to insert an incompatible staple cartridge into the channel, wherein the incompatible staple cartridge further comprises an interference feature relative to the corresponding proximal alignment feature on the channel.


Example 212—The method of Example 211, wherein the method further comprises a bottom surface of the incompatible staple cartridge being spaced apart from the channel when the incompatible staple cartridge is inserted into the channel.


Example 213—The method of Example 212, wherein the method further comprises a proximal portion of the incompatible staple cartridge obstructing clamping of an anvil against a distal portion of the incompatible staple cartridge when the incompatible staple cartridge is inserted into the channel.


Example 214—The method of Examples 211, 212, or 213, wherein the method further comprises a lockout preventing at least one surgical function when the incompatible staple cartridge is positioned in the channel.


Example 215—The method of Examples 208, 209, 210, 211, 212, 213, or 214, wherein the channel comprises a jaw of an end effector, and the method further comprises matching a classifying indication on the end effector with a classifying indication on the compatible staple cartridge.


Example 216—A system comprising a replaceable staple cartridge and a channel configured to receive the replaceable staple cartridge. The replaceable staple cartridge comprises a plurality of staples, a first downwardly-protruding tab, and a second downwardly-protruding tab. The channel comprises a first receptacle positioned and dimensioned to receive the first downwardly-protruding tab and a second receptacle positioned and dimensioned to receive the second downwardly-protruding tab.


Example 217—The system of Example 216, wherein the replaceable staple cartridge further comprises a cartridge body and a pan positioned around a portion of the cartridge body, wherein the pan further comprises a base, and wherein the first downwardly-protruding tab and the second downwardly-protruding tab protrude from the base.


Example 218—The system of Example 217, wherein the first downwardly-protruding tab and the second downwardly-protruding tab are comprised of metal.


Example 219—The system of Examples 216, 217, or 218, wherein the replaceable staple cartridge further comprises a first laterally-extending lug and a second laterally-extending lug.


Example 220—The system of Example 219, wherein the replaceable staple cartridge further comprises a first sidewall comprising a first cutout, wherein the first cutout is positioned and dimensioned to receive the first laterally-extending lug and a second sidewall comprising a second cutout, wherein the second cutout is positioned and dimensioned to receive the second laterally-extending lug.


Example 221—The system of Example 220, wherein the replaceable staple cartridge further comprises a molded cartridge body, and wherein the first laterally-extending lug and the second laterally-extending lug are molded features of the molded cartridge body.


Example 222—The system of Example 221, wherein the cartridge body is comprised of a plastic material.


Example 223—The system of Examples 219, 220, 221, or 222, wherein the first laterally-extending lug and the second laterally-extending lug are located distal to the first downwardly-protruding tab and second downwardly-protruding tab.


Example 224—A system comprising a replaceable staple cartridge and a channel configured to receive the replaceable staple cartridge. The replaceable staple cartridge comprises a plurality of staples and an outer surface comprising a plurality of ribs. The channel comprises a plurality of slots, wherein each of the slots is configured to receive one of the ribs.


Example 225—The system of Example 224, wherein the plurality of ribs comprises a first rib and a second rib.


Example 226—The system of Example 225, wherein the plurality of slots comprises a first slot and a second slot, and wherein the channel further comprises a first sidewall comprising the first slot and a second sidewall comprising the second slot.


Example 227—The system of Examples 224, 225, or 226, wherein the replaceable staple cartridge further comprises a molded cartridge body, and wherein the ribs are molded features of the molded cartridge body.


Example 228—The system of Examples 224, 225, 226, or 227, wherein the replaceable staple cartridge further comprises a first laterally-extending lug and a second laterally-extending lug.


Example 229—The system of Examples 224, 225, 226, 227, or 228, wherein the channel further comprises a first sidewall comprising a first cutout, wherein the first cutout is positioned and dimensioned to receive the first laterally-extending lug and a second sidewall comprising a second cutout, wherein the second cutout is positioned and dimensioned to receive the second laterally-extending lug.


Example 230—The system of Example 229, wherein the replaceable staple cartridge further comprises a molded cartridge body, and wherein the first laterally-extending lug and the second laterally-extending lug are molded in the molded cartridge body.


Example 231—The system of Example 230, wherein the molded cartridge body is comprised of a plastic material.


Example 232—The system of Example 231, wherein the first laterally-extending lug and the second laterally-extending lug are located distal to the rubs.


Example 233—A system comprising a compatible staple cartridge comprising a plurality of staples and a channel. The system further comprises means for permitting complete insertion of the compatible staple cartridge and for preventing an incompatible staple cartridge from being completely inserted in the channel, wherein the incompatible staple cartridge and the compatible staple cartridge comprise the same length and the same width.


Example 234—The system of Example 233, wherein the means comprises proximal and distal alignment keys.


Example 235—The system of Examples 233 or 234, wherein the system further comprises a second channel, and wherein the incompatible staple cartridge is compatible with the second channel.


Example 236—A system comprising a replaceable staple cartridge and a channel configured to receive the replaceable staple cartridge. The replaceable staple cartridge comprises a plurality of staples, a proximal laterally-protruding lug, and a distal laterally-protruding lug. The channel comprises a sidewall comprising a proximal receptacle positioned and dimensioned to receive the proximal laterally-protruding lug and a distal receptacle positioned and dimensioned to receive the distal laterally-protruding lug.


Example 237—The system of Example 236, wherein the channel further comprises an obstruction, and wherein the replaceable staple cartridge further comprises a complementary anti-obstruction positioned and dimensioned to overcome the obstruction.


Example 238—The system of Example 237, wherein the system further comprises a second replaceable staple cartridge comprising a non-complementary anti-obstruction positioned and dimensioned to interfere with the obstruction.


Example 239—The system of Examples 236, 237, or 238, wherein the proximal receptacle defines a cutout in the sidewall, and wherein the cutout comprises a depression and a projection.


Example 240—The system of Example 239, wherein the projection is positioned within the depression.


Example 241—The system of Examples 236, 237, 238, 239, or 240, wherein the system further comprises a second replaceable staple cartridge comprising a second plurality of staples, a second proximal laterally-protruding lug, and a second distal laterally-protruding lug.


Example 242—The system of Example 241, wherein the second distal laterally-protruding lug is spaced apart from the second proximal laterally-protruding lug by a distance, and wherein the distance is different than a first distance between the proximal laterally-protruding lug and the distal laterally-protruding lug of the replaceable staple cartridge.


Example 243—The system of Examples 241 or 242, wherein the second distal laterally-protruding lug matches the distal laterally-protruding lug, and wherein the second proximal laterally-protruding lug is different than the proximal laterally protruding-lug.


Example 244—The system of Examples 241, 242, or 243, wherein the second replaceable staple cartridge further comprises a deck, wherein the channel further comprises a bottom surface, and wherein the deck is obliquely oriented relative to the bottom surface when the second replaceable staple cartridge is positioned in the channel.


Example 245—The system of Examples 241, 242, 243, or 244, wherein the replaceable staple cartridge and the second replaceable staple cartridge comprise the same width and the same length.


Example 246—The system of Examples 241, 242, 243, 244, or 245, wherein the plurality of staples and the second plurality of staples comprise the same quantity of staples.


Example 247—The system of Examples 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, or 246, wherein the distal laterally-protruding lug comprises a different geometry than the proximal laterally-protruding lug.


Example 248—The system of Example 247, wherein the proximal laterally-protruding lug comprises a wedge.


Example 249—The system of Examples 247 or 248, wherein the proximal laterally-protruding lug comprises a cutout that matches a projection in the proximal receptacle.


Example 250—The system of Examples 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, or 249, wherein the proximal laterally-protruding lug protrudes from a first side of the replaceable staple cartridge, and wherein the distal laterally-protruding lug protrudes from a second side of the replaceable staple cartridge.


Example 251—The system of Examples 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, or 250, wherein the replaceable staple cartridge further comprises a deck, wherein the channel further comprises a bottom surface, and wherein the deck is parallel to the bottom surface when the replaceable staple cartridge is positioned in the channel.


Example 252—A system comprising a channel comprising an obstruction, a compatible staple cartridge comprising a complementary anti-obstruction positioned and dimensioned to complement the obstruction when the compatible staple cartridge is received in said channel, and an incompatible staple cartridge comprising a non-complementary anti-obstruction positioned and dimensioned to interfere with the obstruction when the incompatible staple cartridge is received in the channel.


Example 253—The system of Example 252, wherein the compatible staple cartridge and the incompatible staple cartridge comprise rows of staples of the same length.


Example 254—The system of Examples 252 or 253, wherein the compatible staple cartridge and the incompatible staple cartridge comprise the same quantity of staples.


Example 255—The system of Examples 252, 253, or 254, wherein the obstruction further comprises a cutout comprising a depression and a projection.


Example 256—A system comprising a compatible staple cartridge comprising a first quantity of staples, an incompatible staple cartridge comprising the first quantity of staples, and a channel comprising means for permitting complete insertion of the compatible staple cartridge and for preventing the incompatible staple cartridge from being completely inserted into the channel.


Example 257—A system comprising an end effector configured to receive a compatible replaceable staple cartridge, wherein the end effector comprises a first outer surface, and wherein a classifying identification of the end effector is inscribed on the first outer surface, and the compatible replaceable staple cartridge comprising a second outer surface, wherein a classifying identification of the compatible replaceable staple cartridge is inscribed on the second outer surface, and wherein the classifying identification of the compatible replaceable staple cartridge corresponds to the classifying identification of the end effector.


Example 258—The system of Example 257, wherein the system further comprises an incompatible replaceable staple cartridge, wherein the incompatible replaceable staple cartridge comprises a third outer surface, wherein a classifying identification of the incompatible replaceable staple cartridge is positioned on the third outer surface, and wherein the classifying identification of the compatible replaceable staple cartridge is different than the classifying identification of the end effector.


Example 259—The system of Examples 257 or 258, wherein the end effector further comprises a distal portion, and wherein the classifying identification of the end effector is positioned on the distal portion.


Example 260—The system of Example 259, wherein the end effector further comprises an anvil, and wherein the classifying identification of the end effector is positioned at a distal end of the anvil.


Example 261—The system of Examples 257, 258, 259, or 260, wherein the end effector further comprises an anvil comprising a pair of tissue stops, and wherein a secondary classifying identification of the end effector is positioned on each of the tissue stops.


Example 262—The system of Examples 257, 258, 259, 260, or 261, wherein the compatible replaceable staple cartridge further comprises a wedge-shaped distal nose, and wherein the classifying identification of the compatible replaceable staple cartridge is positioned on the wedge-shaped distal nose.


Example 263—The system of Examples 257, 258, 259, 260, 261, or 262, wherein the classifying identification of the end effector and the classifying identification of the compatible replaceable staple cartridge comprise the same alphanumeric characters.


Example 264—The system of Example 263, wherein the same alphanumeric characters indicates a length of a resultant staple line fired from the compatible replaceable staple cartridge.


Example 265—The system of Example 264, wherein the same alphanumeric character indicates a type of end effector.


Example 266—The system of Examples 257, 258, 259, 260, 261, 262, 263, 264, or 265, wherein the classifying identification of the end effector and the classifying identification of the compatible replaceable staple cartridge comprise the same shape.


Example 267—The system of Examples 257, 258, 259, 260, 261, 262, 263, 264, 265, or 266, wherein the classifying identification of the end effector and the classifying identification of the compatible replaceable staple cartridge comprise the same color.


Example 268—The system of Examples 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, or 267, wherein the system further comprises a lockout configured to prevent at least one surgical function unless the compatible replaceable staple cartridge is positioned in the end effector.


Example 269—A system comprising an end effector configured to receive a compatible replaceable staple cartridge, wherein the end effector comprises a first distal end comprising a cartridge compatibility indicator and the compatible replaceable staple cartridge comprising a plurality of staples, wherein the compatible replaceable staple cartridge comprises a second distal end comprising an end effector compatibility indicator.


Example 270—The system of Example 269, wherein the cartridge compatibility indicator is embossed on an outer surface of the end effector.


Example 271—The system of Example 270, wherein the end effector compatibility indicator is embossed on an outer surface of the compatible replaceable staple cartridge.


Example 272—The system of Examples 269, 270, or 271, wherein the cartridge compatibility indicator longitudinally overlaps the end effector compatibility indicator when the compatible replaceable staple cartridge is positioned in the end effector.


Example 273—A system comprising an end effector configured to receive a compatible replaceable staple cartridge, wherein the end effector comprises a first outer surface comprising a first code and the compatible replaceable staple cartridge comprising a plurality of staples and a second outer surface, wherein the second outer surface comprises a second code, and wherein the second code matches the first code.


Example 274—The system of Example 273, wherein the first code is embossed on the first outer surface, and wherein the second code is embossed on the second outer surface.


Example 275—The system of Examples 273 or 274, wherein the first code and the second code indicate a length of the compatible replaceable staple cartridge.


Example 276—The system of Examples 273, 274, or 275, wherein the first code and the second code include at least one number and at least one letter.


Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Patent Application Publication No. 2012/0298719, for example, discloses several examples of a robotic surgical instrument system in greater detail.


The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.


The entire disclosures of:


U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;


U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;


U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;


U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;


U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;


U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;


U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;


U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES; now U.S. Pat. No. 7,845,537;


U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;


U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;


U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;


U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;


U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009; now U.S. Pat. No. 8,220,688;


U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;


U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;


U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;


U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012; now U.S. Pat. No. 9,101,358;


U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263551;


U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;


U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and


U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.


Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one ore more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.


While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials do not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A surgical tool assembly, comprising: a surgical end effector movably coupled to a shaft assembly by an articulation joint that is configured to facilitate selective articulation of said surgical end effector relative to said shaft assembly about an articulation axis that is transverse to a shaft axis that is defined by said shaft assembly, wherein said shaft assembly comprises a first lateral side and a second lateral side, wherein said first lateral side and said second lateral side are on opposing sides of said shaft axis, wherein said articulation joint is configured to permit articulation of said surgical end effector about said articulation axis through an articulation angle only on said first lateral side of said shaft axis, wherein said articulation angle is greater than zero degrees, and wherein said shaft assembly comprises:a spine member comprising a proximal spine end and a distal spine end, wherein said distal spine end comprises a portion of said articulation joint; anda hollow outer tubular member movably supported on said spine member for selective axial travel on said spine member relative to said surgical end effector, wherein said hollow outer tubular member is configured to apply control motions to said surgical end effector, wherein said hollow outer tubular member comprises an elongate outer notch in an outer wall of said hollow outer tubular member on said second lateral side of said shaft axis, wherein said elongate outer notch is located adjacent said articulation joint, wherein said elongate outer notch comprises an axial length and a width, and wherein said axial length is greater than said width.
  • 2. The surgical tool assembly of claim 1, wherein said hollow outer tubular member comprises a hollow proximal closure member supported on said spine member for selective axial travel relative thereto, wherein said hollow proximal closure member comprises a proximal outer wall, and wherein said elongate outer notch extends through said proximal outer wall, wherein said spine member further comprises an elongate spine notch in said distal spine end on said second lateral side of said shaft axis, and wherein said elongate outer notch is configured for axial alignment with said elongate spine notch.
  • 3. The surgical tool assembly of claim 2, wherein said surgical end effector comprises: a first jaw comprising another portion of said articulation joint; anda second jaw supported for selective movable travel relative to said first jaw in response to closure motions applied thereto.
  • 4. The surgical tool assembly of claim 3, wherein said shaft assembly further comprises a distal closure member movably coupled to said hollow proximal closure member for selective axial travel therewith relative to said surgical end effector, and wherein said distal closure member operably interfaces with said second jaw to apply said closure motions thereto.
  • 5. The surgical tool assembly of claim 1, further comprising means for preventing buckling of a distal end of said hollow outer tubular member when an axial actuation motion is applied to a proximal end of said hollow outer tubular member.
  • 6. The surgical tool assembly of claim 2, further comprising means for preventing buckling of a distal end of said hollow proximal closure member when an axial actuation motion is applied to a proximal end of said hollow proximal closure member.
  • 7. The surgical tool assembly of claim 6, wherein said means for preventing buckling comprises at least one alignment member protruding from said hollow proximal closure member and extending into a corresponding axial slot in said spine member.
  • 8. The surgical tool assembly of claim 7, wherein said at least one alignment member comprises: at least one first alignment member protruding from said hollow proximal closure member at a first location and extending into a corresponding first axial slot in said spine member for axial travel therein; andat least one second alignment member protruding from said hollow proximal closure member at a second location that is diametrically opposed to said first location, said second alignment member extending into a corresponding second axial slot in said spine member.
  • 9. The surgical tool assembly of claim 7, wherein at least one of said at least one alignment member has an L-shaped cross-sectional shape.
  • 10. A surgical tool assembly, comprising: a surgical end effector movably coupled to a shaft assembly by an articulation joint that is configured to facilitate selective articulation of said surgical end effector relative to said shaft assembly about an articulation axis that is transverse to a shaft axis that is defined by said shaft assembly, wherein said shaft assembly comprises a first lateral side and a second lateral side, wherein said first lateral side and second lateral side are on opposing sides of said shaft axis, wherein said articulation joint is configured to permit articulation of said surgical end effector about said articulation axis through an articulation angle only on said first lateral side of said shaft axis, wherein said articulation angle is greater than zero degrees, and wherein said shaft assembly comprises:a spine member comprising a proximal spine end and a distal spine end, wherein said distal spine end is operably coupled to said articulation joint; anda hollow outer tubular member movably supported on said spine member for selective axial travel on said spine member relative to said surgical end effector to apply control motions thereto, wherein said hollow outer tubular member comprises: a proximal outer portion including an uninterrupted, annular outer proximal perimeter; anda distal outer portion comprising a distal annular outer perimeter that comprises a discontinuous distal portion that is located on said second lateral side of said shaft axis, wherein said discontinuous distal portion comprises an axial length and a width, wherein said axial length is greater than said width.
  • 11. The surgical tool assembly of claim 10, wherein said hollow outer tubular member comprises a proximal closure member supported on said spine member for selective axial travel relative thereto, and wherein said discontinuous distal portion comprises an elongate closure member notch in said proximal closure member on said second lateral side of said shaft axis.
  • 12. The surgical tool assembly of claim 11, wherein said spine member further comprises an elongate spine notch, wherein said discontinuous distal portion is configured for axial alignment with said elongate spine notch.
  • 13. The surgical tool assembly of claim 11, further comprising means for preventing buckling of said hollow outer tubular member when an axial actuation motion is applied to said proximal closure member.
  • 14. The surgical tool assembly of claim 13, wherein said means for preventing buckling comprises at least one alignment member protruding from said proximal closure member and extending into a corresponding axial slot in said spine member.
  • 15. The surgical tool assembly of claim 14, wherein said at least one alignment member comprises: at least one first alignment member protruding from said proximal closure member at a first location and extending into a corresponding first axial slot in said spine member for axial travel therein; andat least one second alignment member protruding from said proximal closure member at a second location that is diametrically opposed to said first location, said second alignment member extending into a corresponding second axial slot in said spine member.
  • 16. The surgical tool assembly of claim 14, wherein at least one of said at least one alignment member has an L-shaped cross-sectional shape.
  • 17. The surgical tool assembly of claim 10, wherein said discontinuous distal portion includes a distal axial length and wherein said proximal outer portion includes a proximal axial length and wherein said proximal axial length is greater than said distal axial length.
  • 18. A surgical tool assembly, comprising: a surgical end effector movably coupled to a shaft assembly by an articulation joint that is configured to facilitate selective articulation of said surgical end effector relative to said shaft assembly about an articulation axis that is transverse to a shaft axis that is defined by said shaft assembly, wherein said shaft assembly comprises a first lateral side and a second lateral side, wherein said first lateral side and said second lateral side are on opposing sides of said shaft axis, wherein said articulation joint is configured to permit articulation of said surgical end effector about said articulation axis through an articulation angle only on said first lateral side of said shaft axis, wherein said articulation angle is greater than zero degrees, and wherein said shaft assembly comprises:a spine member comprising a proximal spine end and a distal spine end operably coupled to said articulation joint;a hollow outer tubular member movably supported on said spine member for selective axial travel on said spine member relative to said surgical end effector to apply control motions thereto, wherein said hollow outer tubular member comprises an elongate outer notch in an outer wall thereof on said second lateral side of said shaft axis, wherein said elongate outer notch is located adjacent said articulation joint, wherein said elongate outer notch comprises an axial length and a width, and wherein said axial length is greater than said width; andan axially displaceable firing member axially aligned with said shaft axis.
  • 19. The surgical tool assembly of claim 18, wherein said surgical end effector comprises: a first jaw; anda second jaw supported for selective movable travel relative to said first jaw in response to closure motions applied thereto by said hollow outer tubular member.
  • 20. The surgical tool assembly of claim 19 wherein said hollow outer tubular member is configured to move said second jaw from an open position to a closed position relative to said first jaw without axially moving said firing member.
  • 21. The surgical tool assembly of claim 20, wherein said firing member comprises a tissue cutting feature.
  • 22. The surgical tool assembly of claim 2, wherein said elongate spine notch comprises another axial length and another width, and wherein said another axial length is greater than said another width.
  • 23. The surgical tool assembly of claim 22, wherein said another axial length is at least as long as said axial length.
  • 24. The surgical tool assembly of claim 3, wherein said control motions comprise said closure motions.
US Referenced Citations (6810)
Number Name Date Kind
66052 Smith Jun 1867 A
662587 Blake Nov 1900 A
670748 Weddeler Mar 1901 A
719487 Minor Feb 1903 A
804229 Hutchinson Nov 1905 A
951393 Hahn Mar 1910 A
1188721 Bittner Jun 1916 A
1306107 Elliott Jun 1919 A
1314601 McCaskey Sep 1919 A
1677337 Grove Jul 1928 A
1794907 Kelly Mar 1931 A
1849427 Hook Mar 1932 A
1944116 Stratman Jan 1934 A
1954048 Jeffrey et al. Apr 1934 A
2028635 Wappler Jan 1936 A
2037727 La Chapelle Apr 1936 A
2132295 Hawkins Oct 1938 A
2161632 Nattenheimer Jun 1939 A
D120434 Gold May 1940 S
2211117 Hess Aug 1940 A
2214870 West Sep 1940 A
2224882 Peck Dec 1940 A
2318379 Davis et al. May 1943 A
2329440 La Place Sep 1943 A
2377581 Shaffrey Jun 1945 A
2406389 Lee Aug 1946 A
2441096 Happe May 1948 A
2448741 Scott et al. Sep 1948 A
2450527 Smith Oct 1948 A
2507872 Unsinger May 1950 A
2526902 Rublee Oct 1950 A
2527256 Jackson Oct 1950 A
2578686 Fish Dec 1951 A
2638901 Sugarbaker May 1953 A
2674149 Benson Apr 1954 A
2701489 Osborn Feb 1955 A
2711461 Happe Jun 1955 A
2742955 Dominguez Apr 1956 A
2804848 O'Farrell et al. Sep 1957 A
2808482 Zanichkowsky et al. Oct 1957 A
2853074 Olson Sep 1958 A
2856192 Schuster Oct 1958 A
2887004 Stewart May 1959 A
2957353 Lewis Oct 1960 A
2959974 Emrick Nov 1960 A
3032769 Palmer May 1962 A
3060972 Sheldon Oct 1962 A
3075062 Iaccarino Jan 1963 A
3078465 Bobrov Feb 1963 A
3079606 Bobrov et al. Mar 1963 A
3080564 Strekopitov et al. Mar 1963 A
3166072 Sullivan, Jr. Jan 1965 A
3180236 Beckett Apr 1965 A
3196869 Scholl Jul 1965 A
3204731 Bent et al. Sep 1965 A
3266494 Brownrigg et al. Aug 1966 A
3269630 Fleischer Aug 1966 A
3269631 Takaro Aug 1966 A
3275211 Hirsch et al. Sep 1966 A
3317103 Cullen et al. May 1967 A
3317105 Astafjev et al. May 1967 A
3357296 Lefever Dec 1967 A
3359978 Smith, Jr. Dec 1967 A
3377893 Shorb Apr 1968 A
3480193 Ralston Nov 1969 A
3490675 Green et al. Jan 1970 A
3494533 Green et al. Feb 1970 A
3499591 Green Mar 1970 A
3503396 Pierie et al. Mar 1970 A
3509629 Kidokoro May 1970 A
3551987 Wilkinson Jan 1971 A
3568675 Harvey Mar 1971 A
3572159 Tschanz Mar 1971 A
3583393 Takahashi Jun 1971 A
3589589 Akopov Jun 1971 A
3598943 Barrett Aug 1971 A
3608549 Merrill Sep 1971 A
3618842 Bryan Nov 1971 A
3638652 Kelley Feb 1972 A
3640317 Panfili Feb 1972 A
3643851 Green et al. Feb 1972 A
3650453 Smith, Jr. Mar 1972 A
3661666 Foster et al. May 1972 A
3662939 Bryan May 1972 A
3688966 Perkins et al. Sep 1972 A
3695646 Mommsen Oct 1972 A
3709221 Riely Jan 1973 A
3717294 Green Feb 1973 A
3726755 Shannon Apr 1973 A
3727904 Gabbey Apr 1973 A
3734207 Fishbein May 1973 A
3740994 De Carlo, Jr. Jun 1973 A
3744495 Johnson Jul 1973 A
3746002 Haller Jul 1973 A
3747603 Adler Jul 1973 A
3747692 Davidson Jul 1973 A
3751902 Kingsbury et al. Aug 1973 A
3752161 Bent Aug 1973 A
3799151 Fukaumi et al. Mar 1974 A
3808452 Hutchinson Apr 1974 A
3815476 Green et al. Jun 1974 A
3819100 Noiles et al. Jun 1974 A
3821919 Knohl Jul 1974 A
3826978 Kelly Jul 1974 A
3836171 Hayashi et al. Sep 1974 A
3837555 Green Sep 1974 A
3841474 Maier Oct 1974 A
3851196 Hinds Nov 1974 A
3863639 Kleaveland Feb 1975 A
3863940 Cummings Feb 1975 A
3883624 McKenzie et al. May 1975 A
3885491 Curtis May 1975 A
3892228 Mitsui Jul 1975 A
3894174 Cartun Jul 1975 A
3902247 Fleer et al. Sep 1975 A
3940844 Colby et al. Mar 1976 A
3944163 Hayashi et al. Mar 1976 A
3950686 Randall Apr 1976 A
3952747 Kimmell, Jr. Apr 1976 A
3955581 Spasiano et al. May 1976 A
3959879 Sellers Jun 1976 A
RE28932 Noiles et al. Aug 1976 E
3972734 King Aug 1976 A
3981051 Brumlik Sep 1976 A
4025216 Hives May 1977 A
4027746 Kine Jun 1977 A
4034143 Sweet Jul 1977 A
4038987 Komiya Aug 1977 A
4054108 Gill Oct 1977 A
4060089 Noiles Nov 1977 A
4066133 Voss Jan 1978 A
4085337 Moeller Apr 1978 A
4100820 Evett Jul 1978 A
4106446 Yamada et al. Aug 1978 A
4106620 Brimmer et al. Aug 1978 A
4108211 Tanaka Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4127227 Green Nov 1978 A
4129059 Van Eck Dec 1978 A
4132146 Uhlig Jan 1979 A
4135517 Reale Jan 1979 A
4154122 Severin May 1979 A
4169990 Lerdman Oct 1979 A
4180285 Reneau Dec 1979 A
4185701 Boys Jan 1980 A
4190042 Sinnreich Feb 1980 A
4198734 Brumlik Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4213562 Garrett et al. Jul 1980 A
4226242 Jarvik Oct 1980 A
4239431 Davini Dec 1980 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4250436 Weissman Feb 1981 A
4261244 Becht et al. Apr 1981 A
4272002 Moshofsky Jun 1981 A
4272662 Simpson Jun 1981 A
4274304 Curtiss Jun 1981 A
4274398 Scott, Jr. Jun 1981 A
4275813 Noiles Jun 1981 A
4278091 Borzone Jul 1981 A
4282573 Imai et al. Aug 1981 A
4289131 Mueller Sep 1981 A
4289133 Rothfuss Sep 1981 A
4290542 Fedotov et al. Sep 1981 A
D261356 Robinson Oct 1981 S
4293604 Campbell Oct 1981 A
4296654 Mercer Oct 1981 A
4296881 Lee Oct 1981 A
4304236 Conta et al. Dec 1981 A
4305539 Korolkov et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4312685 Riedl Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4319576 Rothfuss Mar 1982 A
4321002 Froehlich Mar 1982 A
4321746 Grinage Mar 1982 A
4328839 Lyons et al. May 1982 A
4331277 Green May 1982 A
4340331 Savino Jul 1982 A
4347450 Colligan Aug 1982 A
4348603 Huber Sep 1982 A
4349028 Green Sep 1982 A
4350151 Scott Sep 1982 A
4353371 Cosman Oct 1982 A
4357940 Muller Nov 1982 A
4361057 Kochera Nov 1982 A
4366544 Shima et al. Dec 1982 A
4369013 Abildgaard et al. Jan 1983 A
4373147 Carlson, Jr. Feb 1983 A
4376380 Burgess Mar 1983 A
4379457 Gravener et al. Apr 1983 A
4380312 Landrus Apr 1983 A
4382326 Rabuse May 1983 A
4383634 Green May 1983 A
4393728 Larson et al. Jul 1983 A
4394613 Cole Jul 1983 A
4396139 Hall et al. Aug 1983 A
4397311 Kanshin et al. Aug 1983 A
4402445 Green Sep 1983 A
4406621 Bailey Sep 1983 A
4408692 Sigel et al. Oct 1983 A
4409057 Molenda et al. Oct 1983 A
4415112 Green Nov 1983 A
4416276 Newton et al. Nov 1983 A
4417890 Dennehey et al. Nov 1983 A
4423456 Zaidenweber Dec 1983 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4430997 DiGiovanni et al. Feb 1984 A
4434796 Karapetian et al. Mar 1984 A
4438659 Desplats Mar 1984 A
4442964 Becht Apr 1984 A
4448194 DiGiovanni et al. May 1984 A
4451743 Suzuki et al. May 1984 A
4452376 Klieman et al. Jun 1984 A
4454887 Kruger Jun 1984 A
4459519 Erdman Jul 1984 A
4461305 Cibley Jul 1984 A
4467805 Fukuda Aug 1984 A
4468597 Baumard et al. Aug 1984 A
4469481 Kobayashi Sep 1984 A
4470414 Imagawa et al. Sep 1984 A
4471780 Menges et al. Sep 1984 A
4471781 Di Giovanni et al. Sep 1984 A
4473077 Noiles et al. Sep 1984 A
4475679 Fleury, Jr. Oct 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480641 Failla et al. Nov 1984 A
4483562 Schoolman Nov 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4486928 Tucker et al. Dec 1984 A
4488523 Shichman Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4493983 Taggert Jan 1985 A
4494057 Hotta Jan 1985 A
4499895 Takayama Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
D278081 Green Mar 1985 S
4503842 Takayama Mar 1985 A
4505272 Utyamyshev et al. Mar 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506671 Green Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4520817 Green Jun 1985 A
4522327 Korthoff et al. Jun 1985 A
4526174 Froehlich Jul 1985 A
4527724 Chow et al. Jul 1985 A
4530357 Pawloski et al. Jul 1985 A
4530453 Green Jul 1985 A
4531522 Bedi et al. Jul 1985 A
4532927 Miksza, Jr. Aug 1985 A
4540202 Amphoux et al. Sep 1985 A
4548202 Duncan Oct 1985 A
4556058 Green Dec 1985 A
4560915 Soultanian Dec 1985 A
4565109 Tsay Jan 1986 A
4565189 Mabuchi Jan 1986 A
4566620 Green et al. Jan 1986 A
4569346 Poirier Feb 1986 A
4569469 Mongeon et al. Feb 1986 A
4571213 Ishimoto Feb 1986 A
4573468 Conta et al. Mar 1986 A
4573469 Golden et al. Mar 1986 A
4573622 Green et al. Mar 1986 A
4576165 Green et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4580712 Green Apr 1986 A
4585153 Failla et al. Apr 1986 A
4586501 Claracq May 1986 A
4586502 Bedi et al. May 1986 A
4589416 Green May 1986 A
4589582 Bilotti May 1986 A
4589870 Citrin et al. May 1986 A
4591085 Di Giovanni May 1986 A
RE32214 Schramm Jul 1986 E
4597753 Turley Jul 1986 A
4600037 Hatten Jul 1986 A
4604786 Howie, Jr. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4607636 Kula et al. Aug 1986 A
4607638 Crainich Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
D286180 Korthoff Oct 1986 S
D286442 Korthoff et al. Oct 1986 S
4617893 Donner et al. Oct 1986 A
4617914 Ueda Oct 1986 A
4619262 Taylor Oct 1986 A
4619391 Sharkany et al. Oct 1986 A
D287278 Spreckelmeier Dec 1986 S
4628459 Shinohara et al. Dec 1986 A
4628636 Folger Dec 1986 A
4629107 Fedotov et al. Dec 1986 A
4632290 Green et al. Dec 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4634419 Kreizman et al. Jan 1987 A
4635638 Weintraub et al. Jan 1987 A
4641076 Linden Feb 1987 A
4642618 Johnson et al. Feb 1987 A
4643173 Bell et al. Feb 1987 A
4643731 Eckenhoff Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4646745 Noiles Mar 1987 A
4651734 Doss et al. Mar 1987 A
4652820 Maresca Mar 1987 A
4654028 Suma Mar 1987 A
4655222 Florez et al. Apr 1987 A
4662555 Thornton May 1987 A
4663874 Sano et al. May 1987 A
4664305 Blake, III et al. May 1987 A
4665916 Green May 1987 A
4667674 Korthoff et al. May 1987 A
4669647 Storace Jun 1987 A
4671278 Chin Jun 1987 A
4671280 Dorband et al. Jun 1987 A
4671445 Barker et al. Jun 1987 A
4672964 Dee et al. Jun 1987 A
4675944 Wells Jun 1987 A
4676245 Fukuda Jun 1987 A
4679460 Yoshigai Jul 1987 A
4679719 Kramer Jul 1987 A
4684051 Akopov et al. Aug 1987 A
4688555 Wardle Aug 1987 A
4691703 Auth et al. Sep 1987 A
4693248 Failla Sep 1987 A
4698579 Richter et al. Oct 1987 A
4700703 Resnick et al. Oct 1987 A
4705038 Sjostrom et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4709120 Pearson Nov 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4721099 Chikama Jan 1988 A
4722340 Takayama et al. Feb 1988 A
4724840 McVay et al. Feb 1988 A
4727308 Huljak et al. Feb 1988 A
4728020 Green et al. Mar 1988 A
4728876 Mongeon et al. Mar 1988 A
4729260 Dudden Mar 1988 A
4730726 Holzwarth Mar 1988 A
4741336 Failla et al. May 1988 A
4743214 Tai-Cheng May 1988 A
4744363 Hasson May 1988 A
4747820 Hornlein et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4755070 Cerutti Jul 1988 A
4761326 Barnes et al. Aug 1988 A
4763669 Jaeger Aug 1988 A
4767044 Green Aug 1988 A
D297764 Hunt et al. Sep 1988 S
4773420 Green Sep 1988 A
4777780 Holzwarth Oct 1988 A
4781186 Simpson et al. Nov 1988 A
4784137 Kulik et al. Nov 1988 A
4787387 Burbank, III et al. Nov 1988 A
4788485 Kawagishi et al. Nov 1988 A
D298967 Hunt Dec 1988 S
4790225 Moody et al. Dec 1988 A
4790314 Weaver Dec 1988 A
4805617 Bedi et al. Feb 1989 A
4805823 Rothfuss Feb 1989 A
4807628 Peters et al. Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4815460 Porat et al. Mar 1989 A
4817643 Olson Apr 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4827911 Broadwin et al. May 1989 A
4828542 Hermann May 1989 A
4828944 Yabe et al. May 1989 A
4830855 Stewart May 1989 A
4832158 Farrar et al. May 1989 A
4833937 Nagano May 1989 A
4834096 Oh et al. May 1989 A
4834720 Blinkhorn May 1989 A
4838859 Strassmann Jun 1989 A
4844068 Arata et al. Jul 1989 A
4848637 Pruitt Jul 1989 A
4856078 Konopka Aug 1989 A
4860644 Kohl et al. Aug 1989 A
4862891 Smith Sep 1989 A
4863423 Wallace Sep 1989 A
4865030 Polyak Sep 1989 A
4868530 Ahs Sep 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4873977 Avant et al. Oct 1989 A
4875486 Rapoport et al. Oct 1989 A
4880015 Nierman Nov 1989 A
4890613 Golden et al. Jan 1990 A
4892244 Fox et al. Jan 1990 A
4893622 Green et al. Jan 1990 A
4894051 Shiber Jan 1990 A
4896584 Stoll et al. Jan 1990 A
4896678 Ogawa Jan 1990 A
4900303 Lemelson Feb 1990 A
4903697 Resnick et al. Feb 1990 A
4909789 Taguchi et al. Mar 1990 A
4915100 Green Apr 1990 A
4919679 Averill et al. Apr 1990 A
4921479 Grayzel May 1990 A
4925082 Kim May 1990 A
4928699 Sasai May 1990 A
4930503 Pruitt Jun 1990 A
4930674 Barak Jun 1990 A
4931047 Broadwin et al. Jun 1990 A
4931737 Hishiki Jun 1990 A
4932960 Green et al. Jun 1990 A
4933800 Yang Jun 1990 A
4933843 Scheller et al. Jun 1990 A
D309350 Sutherland et al. Jul 1990 S
4938408 Bedi et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4943182 Hoblingre Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4946067 Kelsall Aug 1990 A
4948327 Crupi, Jr. Aug 1990 A
4949707 LeVahn et al. Aug 1990 A
4951860 Peters et al. Aug 1990 A
4951861 Schulze et al. Aug 1990 A
4954960 Lo et al. Sep 1990 A
4955959 Tompkins et al. Sep 1990 A
4957212 Duck et al. Sep 1990 A
4962877 Hervas Oct 1990 A
4964559 Deniega et al. Oct 1990 A
4964863 Kanshin et al. Oct 1990 A
4965709 Ngo Oct 1990 A
4970656 Lo et al. Nov 1990 A
4973274 Hirukawa Nov 1990 A
4973302 Armour et al. Nov 1990 A
4978049 Green Dec 1990 A
4978333 Broadwin et al. Dec 1990 A
4979952 Kubota et al. Dec 1990 A
4984564 Yuen Jan 1991 A
4986808 Broadwin et al. Jan 1991 A
4987049 Komamura et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
4995877 Ams et al. Feb 1991 A
4995959 Metzner Feb 1991 A
4996975 Nakamura Mar 1991 A
5001649 Lo et al. Mar 1991 A
5002543 Bradshaw et al. Mar 1991 A
5002553 Shiber Mar 1991 A
5005754 Van Overloop Apr 1991 A
5009661 Michelson Apr 1991 A
5012411 Policastro et al. Apr 1991 A
5014898 Heidrich May 1991 A
5014899 Presty et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5018515 Gilman May 1991 A
5018657 Pedlick et al. May 1991 A
5024652 Dumenek et al. Jun 1991 A
5024671 Tu et al. Jun 1991 A
5025559 McCullough Jun 1991 A
5027834 Pruitt Jul 1991 A
5030226 Green et al. Jul 1991 A
5031814 Tompkins et al. Jul 1991 A
5035040 Kerrigan et al. Jul 1991 A
5037018 Matsuda et al. Aug 1991 A
5038109 Goble et al. Aug 1991 A
5038247 Kelley et al. Aug 1991 A
5040715 Green et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5060658 Dejter, Jr. et al. Oct 1991 A
5061269 Muller Oct 1991 A
5062491 Takeshima et al. Nov 1991 A
5062563 Green et al. Nov 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5077506 Krause Dec 1991 A
5079006 Urquhart Jan 1992 A
5080556 Carreno Jan 1992 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5089606 Cole et al. Feb 1992 A
5094247 Hernandez et al. Mar 1992 A
5098004 Kerrigan Mar 1992 A
5098360 Hirota Mar 1992 A
5100042 Gravener et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5104397 Vasconcelos et al. Apr 1992 A
5104400 Berguer et al. Apr 1992 A
5106008 Tompkins et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5109722 Hufnagle et al. May 1992 A
5111987 Moeinzadeh et al. May 1992 A
5116349 Aranyi May 1992 A
D327323 Hunt Jun 1992 S
5119009 McCaleb et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5124990 Williamson Jun 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5141144 Foslien et al. Aug 1992 A
5142932 Moya et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5155941 Takahashi et al. Oct 1992 A
5156315 Green et al. Oct 1992 A
5156609 Nakao et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5158222 Green et al. Oct 1992 A
5158567 Green Oct 1992 A
D330699 Gill Nov 1992 S
5163598 Peters et al. Nov 1992 A
5168605 Bartlett Dec 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171253 Klieman Dec 1992 A
5173053 Swanson et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5176688 Narayan et al. Jan 1993 A
5181514 Solomon et al. Jan 1993 A
5187422 Izenbaard et al. Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5188111 Yates et al. Feb 1993 A
5190517 Zieve et al. Mar 1993 A
5190544 Chapman et al. Mar 1993 A
5190560 Woods et al. Mar 1993 A
5190657 Heagle et al. Mar 1993 A
5192288 Thompson et al. Mar 1993 A
5193731 Aranyi Mar 1993 A
5195505 Josefsen Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5197970 Green et al. Mar 1993 A
5200280 Karasa Apr 1993 A
5201750 Hocherl et al. Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5207672 Roth et al. May 1993 A
5207697 Carusillo et al. May 1993 A
5209747 Knoepfler May 1993 A
5209756 Seedhom et al. May 1993 A
5211649 Kohler et al. May 1993 A
5211655 Hasson May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217478 Rexroth Jun 1993 A
5219111 Bilotti et al. Jun 1993 A
5220269 Chen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5221281 Klicek Jun 1993 A
5222945 Basnight Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5222975 Crainich Jun 1993 A
5222976 Yoon Jun 1993 A
5223675 Taft Jun 1993 A
D338729 Sprecklemeier et al. Aug 1993 S
5234447 Kaster et al. Aug 1993 A
5236269 Handy Aug 1993 A
5236424 Imran Aug 1993 A
5236440 Hlavacek Aug 1993 A
5239981 Anapliotis Aug 1993 A
5240163 Stein et al. Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5253793 Green et al. Oct 1993 A
5258007 Spetzler et al. Nov 1993 A
5258008 Wilk Nov 1993 A
5258009 Conners Nov 1993 A
5258010 Green et al. Nov 1993 A
5258012 Luscombe et al. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5259835 Clark et al. Nov 1993 A
5260637 Pizzi Nov 1993 A
5261135 Mitchell Nov 1993 A
5261877 Fine et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5263937 Shipp Nov 1993 A
5263973 Cook Nov 1993 A
5264218 Rogozinski Nov 1993 A
5268622 Philipp Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5275322 Brinkerhoff et al. Jan 1994 A
5275323 Schulze et al. Jan 1994 A
5275608 Forman et al. Jan 1994 A
5279416 Malec et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5282806 Haber et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5282829 Hermes Feb 1994 A
5284128 Hart Feb 1994 A
5285381 Iskarous et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5286253 Fucci Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290271 Jernberg Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292053 Bilotti et al. Mar 1994 A
5293024 Sugahara et al. Mar 1994 A
5297714 Kramer Mar 1994 A
5304204 Bregen Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5309387 Mori et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green May 1994 A
5312024 Grant et al. May 1994 A
5312329 Beaty et al. May 1994 A
5313935 Kortenbach et al. May 1994 A
5313967 Lieber et al. May 1994 A
5314424 Nicholas May 1994 A
5314445 Heidmueller nee Degwitz et al. May 1994 A
5314466 Stern et al. May 1994 A
5318221 Green et al. Jun 1994 A
5320627 Sorensen et al. Jun 1994 A
D348930 Olson Jul 1994 S
5326013 Green et al. Jul 1994 A
5329923 Lundquist Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5333422 Warren et al. Aug 1994 A
5333772 Rothfuss et al. Aug 1994 A
5333773 Main et al. Aug 1994 A
5334183 Wuchinich Aug 1994 A
5336130 Ray Aug 1994 A
5336229 Noda Aug 1994 A
5336232 Green et al. Aug 1994 A
5338317 Hasson et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5341724 Vatel Aug 1994 A
5341807 Nardella Aug 1994 A
5341810 Dardel Aug 1994 A
5342380 Hood Aug 1994 A
5342381 Tidemand Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5343382 Hale et al. Aug 1994 A
5343391 Mushabac Aug 1994 A
5344059 Green et al. Sep 1994 A
5344060 Gravener et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5346504 Ortiz et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350355 Sklar Sep 1994 A
5350388 Epstein Sep 1994 A
5350391 Iacovelli Sep 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5352235 Koros et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5353798 Sieben Oct 1994 A
5354250 Christensen Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5356006 Alpern et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5359231 Flowers et al. Oct 1994 A
D352780 Glaeser et al. Nov 1994 S
5359993 Slater et al. Nov 1994 A
5360305 Kerrigan Nov 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5361902 Abidin et al. Nov 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5366134 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368015 Wilk Nov 1994 A
5368592 Stern et al. Nov 1994 A
5369565 Chen et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5372602 Burke Dec 1994 A
5374277 Hassler Dec 1994 A
5375588 Yoon Dec 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381649 Webb Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5383882 Buess et al. Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5388568 van der Heide Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389102 Green et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391180 Tovey et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395384 Duthoit et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5404106 Matsuda Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5404960 Wada et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5405073 Porter Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5407293 Crainich Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5409703 McAnalley et al. Apr 1995 A
D357981 Green et al. May 1995 S
5411481 Allen et al. May 1995 A
5411508 Bessler et al. May 1995 A
5413107 Oakley et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5413268 Green et al. May 1995 A
5413272 Green et al. May 1995 A
5413573 Koivukangas May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417203 Tovey et al. May 1995 A
5417361 Williamson, IV May 1995 A
5419766 Chang et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5422567 Matsunaga Jun 1995 A
5423471 Mastri et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423835 Green et al. Jun 1995 A
5425355 Kulick Jun 1995 A
5425745 Green et al. Jun 1995 A
5427298 Tegtmeier Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5431654 Nic Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437681 Meade et al. Aug 1995 A
5438302 Goble Aug 1995 A
5438997 Sieben et al. Aug 1995 A
5439155 Viola Aug 1995 A
5439156 Grant et al. Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5441191 Linden Aug 1995 A
5441193 Gravener Aug 1995 A
5441483 Avitall Aug 1995 A
5441494 Ortiz Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443197 Malis et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5444113 Sinclair et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5445604 Lang Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5446646 Miyazaki Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5447417 Kuhl et al. Sep 1995 A
5447513 Davison et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5454378 Palmer et al. Oct 1995 A
5454822 Schob et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456401 Green et al. Oct 1995 A
5456917 Wise et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5458579 Chodorow et al. Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464013 Lemelson Nov 1995 A
5464144 Guy et al. Nov 1995 A
5464300 Crainich Nov 1995 A
5465819 Weilant et al. Nov 1995 A
5465894 Clark et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5466020 Page et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5468253 Bezwada et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5471129 Mann Nov 1995 A
5472132 Savage et al. Dec 1995 A
5472442 Klicek Dec 1995 A
5473204 Temple Dec 1995 A
5474057 Makower et al. Dec 1995 A
5474223 Viola et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5474570 Kockerling et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5476481 Schondorf Dec 1995 A
5478003 Green et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5480409 Riza Jan 1996 A
5482197 Green et al. Jan 1996 A
5483952 Aranyi Jan 1996 A
5484095 Green et al. Jan 1996 A
5484398 Stoddard Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5489256 Adair Feb 1996 A
5489290 Furnish Feb 1996 A
5490819 Nicholas et al. Feb 1996 A
5492671 Krafft Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5497933 DeFonzo et al. Mar 1996 A
5498164 Ward et al. Mar 1996 A
5498838 Furman Mar 1996 A
5501654 Failla et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503635 Sauer et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5505363 Green et al. Apr 1996 A
5507425 Ziglioli Apr 1996 A
5507426 Young et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5511564 Wilk Apr 1996 A
5514129 Smith May 1996 A
5514149 Green et al. May 1996 A
5514157 Nicholas et al. May 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5520609 Moll et al. May 1996 A
5520634 Fox et al. May 1996 A
5520678 Heckele et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5522831 Sleister et al. Jun 1996 A
5527264 Moll et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
D372086 Grasso et al. Jul 1996 S
5531305 Roberts et al. Jul 1996 A
5531744 Nardella et al. Jul 1996 A
5531856 Moll et al. Jul 1996 A
5533521 Granger Jul 1996 A
5533581 Barth et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5542594 McKean et al. Aug 1996 A
5542945 Fritzsch Aug 1996 A
5542949 Yoon Aug 1996 A
5543119 Sutter et al. Aug 1996 A
5543695 Culp et al. Aug 1996 A
5544802 Crainich Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5549583 Sanford et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5549627 Kieturakis Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5551622 Yoon Sep 1996 A
5553624 Francese et al. Sep 1996 A
5553675 Pitzen et al. Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554148 Aebischer et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5556020 Hou Sep 1996 A
5556416 Clark et al. Sep 1996 A
5558533 Hashizawa et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5558671 Yates Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5561881 Klinger et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562690 Green et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5563481 Krause Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569161 Ebling et al. Oct 1996 A
5569270 Weng Oct 1996 A
5569284 Young et al. Oct 1996 A
5571090 Sherts Nov 1996 A
5571100 Goble et al. Nov 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5571488 Beerstecher et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5574431 McKeown et al. Nov 1996 A
5575054 Klinzing et al. Nov 1996 A
5575789 Bell et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5575805 Li Nov 1996 A
5577654 Bishop Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5582907 Pall Dec 1996 A
5583114 Barrows et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5591187 Dekel Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599151 Daum et al. Feb 1997 A
5599279 Slotman et al. Feb 1997 A
5599344 Paterson Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5599852 Scopelianos et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601604 Vincent Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5607095 Smith et al. Mar 1997 A
5607433 Polla et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5607474 Athanasiou et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5611709 McAnulty Mar 1997 A
5613499 Palmer et al. Mar 1997 A
5613937 Garrison et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5614887 Buchbinder Mar 1997 A
5615820 Viola Apr 1997 A
5618294 Aust et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5620289 Curry Apr 1997 A
5620326 Younker Apr 1997 A
5620452 Yoon Apr 1997 A
5624398 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628446 Geiste et al. May 1997 A
5628743 Cimino May 1997 A
5628745 Bek May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5630782 Adair May 1997 A
5631973 Green May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5633374 Humphrey et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5638582 Klatt et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
D381077 Hunt Jul 1997 S
5643291 Pier et al. Jul 1997 A
5643293 Kogasaka et al. Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5643319 Green et al. Jul 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649956 Jensen et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5651762 Bridges Jul 1997 A
5651821 Uchida Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653677 Okada et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5653748 Strecker Aug 1997 A
5655698 Yoon Aug 1997 A
5657417 Di Troia Aug 1997 A
5657429 Wang et al. Aug 1997 A
5657921 Young et al. Aug 1997 A
5658238 Suzuki et al. Aug 1997 A
5658281 Heard Aug 1997 A
5658298 Vincent et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658307 Exconde Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5667527 Cook Sep 1997 A
5667864 Landoll Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5672945 Krause Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5674184 Hassler, Jr. Oct 1997 A
5674286 D'Alessio et al. Oct 1997 A
5678748 Plyley et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5681341 Lunsford et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5686090 Schilder et al. Nov 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693020 Rauh Dec 1997 A
5693042 Boiarski et al. Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5695502 Pier et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700276 Benecke Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704087 Strub Jan 1998 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5709335 Heck Jan 1998 A
5709680 Yates et al. Jan 1998 A
5709706 Kienzle et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5711960 Shikinami Jan 1998 A
5712460 Carr et al. Jan 1998 A
5713128 Schrenk et al. Feb 1998 A
5713505 Huitema Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5713896 Nardella Feb 1998 A
5713920 Bezwada et al. Feb 1998 A
5715604 Lanzoni Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5718548 Cotellessa Feb 1998 A
5718714 Livneh Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5724025 Tavori Mar 1998 A
5725536 Oberlin Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728113 Sherts Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732821 Stone et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5733308 Daugherty et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5735848 Yates et al. Apr 1998 A
5735874 Measamer et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5738629 Moll et al. Apr 1998 A
5738648 Lands et al. Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5747953 Philipp May 1998 A
5749889 Bacich et al. May 1998 A
5749893 Vidal et al. May 1998 A
5749896 Cook May 1998 A
5749968 Melanson et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5752965 Francis et al. May 1998 A
5752970 Yoon May 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5765565 Adair Jun 1998 A
5766188 Igaki Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769748 Eyerly et al. Jun 1998 A
5769791 Benaron et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772379 Evensen Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5773991 Chen Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5778939 Hok-Yin Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782748 Palmer et al. Jul 1998 A
5782749 Riza Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5784934 Izumisawa Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5787897 Kieturakis Aug 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5792162 Jolly et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792573 Pitzen et al. Aug 1998 A
5794834 Hamblin et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797637 Ervin Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5797906 Rhum et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5800423 Jensen Sep 1998 A
5804726 Geib et al. Sep 1998 A
5804936 Brodsky et al. Sep 1998 A
5806676 Wasgien Sep 1998 A
5807376 Viola et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5809441 McKee Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5812188 Adair Sep 1998 A
5813813 Daum et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830598 Patterson Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5839369 Chatterjee et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5841284 Takahashi Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843096 Igaki et al. Dec 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843122 Riza Dec 1998 A
5843132 Ilvento Dec 1998 A
5843169 Taheri Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5847566 Marritt et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5849020 Long et al. Dec 1998 A
5849023 Mericle Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860975 Goble et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5865638 Trafton Feb 1999 A
5868361 Rinderer Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5868790 Vincent et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873885 Weidenbenner Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878607 Nunes et al. Mar 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5881777 Bassi et al. Mar 1999 A
5891094 Masterson et al. Apr 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5891558 Bell et al. Apr 1999 A
5893506 Powell Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893878 Pierce Apr 1999 A
5894979 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899824 Kurtz et al. May 1999 A
5899914 Zirps et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5903117 Gregory May 1999 A
5904647 Ouchi May 1999 A
5904693 Dicesare et al. May 1999 A
5904702 Ek et al. May 1999 A
5906577 Beane et al. May 1999 A
5906625 Bito et al. May 1999 A
5907211 Hall et al. May 1999 A
5908402 Blythe Jun 1999 A
5908427 McKean et al. Jun 1999 A
5909062 Krietzman Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5921956 Grinberg et al. Jul 1999 A
5924864 Loge et al. Jul 1999 A
5928137 Green Jul 1999 A
5928256 Riza Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5931853 McEwen et al. Aug 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5944172 Hannula Aug 1999 A
5944715 Goble et al. Aug 1999 A
5946978 Yamashita Sep 1999 A
5947984 Whipple Sep 1999 A
5947996 Logeman Sep 1999 A
5948030 Miller et al. Sep 1999 A
5948429 Bell et al. Sep 1999 A
5951301 Younker Sep 1999 A
5951516 Bunyan Sep 1999 A
5951552 Long et al. Sep 1999 A
5951574 Stefanchik et al. Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5957831 Adair Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5971916 Koren Oct 1999 A
5973221 Collyer et al. Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976122 Madhani et al. Nov 1999 A
5977746 Hershberger et al. Nov 1999 A
5980248 Kusakabe et al. Nov 1999 A
5984949 Levin Nov 1999 A
5988479 Palmer Nov 1999 A
5990379 Gregory Nov 1999 A
5993466 Yoon Nov 1999 A
5997528 Bisch et al. Dec 1999 A
5997552 Person et al. Dec 1999 A
6001108 Wang et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007521 Bidwell et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6010513 Tormala et al. Jan 2000 A
6010520 Pattison Jan 2000 A
6012494 Balazs Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019745 Gray Feb 2000 A
6022352 Vandewalle Feb 2000 A
6023641 Thompson Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033105 Barker et al. Mar 2000 A
6033378 Lundquist et al. Mar 2000 A
6033399 Gines Mar 2000 A
6033427 Lee Mar 2000 A
6036641 Taylor et al. Mar 2000 A
6036667 Manna et al. Mar 2000 A
6037724 Buss et al. Mar 2000 A
6037927 Rosenberg Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6039734 Goble Mar 2000 A
6042601 Smith Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6043626 Snyder et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6047861 Vidal et al. Apr 2000 A
6049145 Austin et al. Apr 2000 A
6050172 Corves et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6050989 Fox et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6053899 Slanda et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
6054142 Li et al. Apr 2000 A
6055062 Dina et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6056735 Okada et al. May 2000 A
6056746 Goble et al. May 2000 A
6059806 Hoegerle May 2000 A
6062360 Shields May 2000 A
6063020 Jones et al. May 2000 A
6063025 Bridges et al. May 2000 A
6063050 Manna et al. May 2000 A
6063095 Wang et al. May 2000 A
6063097 Oi et al. May 2000 A
6063098 Houser et al. May 2000 A
6065679 Levie et al. May 2000 A
6065919 Peck May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6072299 Kurle et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6075441 Maloney Jun 2000 A
6077280 Fossum Jun 2000 A
6077286 Cuschieri et al. Jun 2000 A
6077290 Marini Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080181 Jensen et al. Jun 2000 A
6082577 Coates et al. Jul 2000 A
6083191 Rose Jul 2000 A
6083223 Baker Jul 2000 A
6083234 Nicholas et al. Jul 2000 A
6083242 Cook Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090106 Goble et al. Jul 2000 A
6093186 Goble Jul 2000 A
D429252 Haitani et al. Aug 2000 S
6099537 Sugai et al. Aug 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6104162 Sainsbury et al. Aug 2000 A
6104304 Clark et al. Aug 2000 A
6106511 Jensen Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110187 Donlon Aug 2000 A
6113618 Nic Sep 2000 A
6117148 Ravo et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120433 Mizuno et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6123241 Walter et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126058 Adams et al. Oct 2000 A
6126359 Dittrich et al. Oct 2000 A
6126670 Walker et al. Oct 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6132368 Cooper Oct 2000 A
6134962 Sugitani Oct 2000 A
6139546 Koenig et al. Oct 2000 A
6142149 Steen Nov 2000 A
6142933 Longo et al. Nov 2000 A
6147135 Yuan et al. Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6151323 O'Connell et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6155473 Tompkins et al. Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6157169 Lee Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6159224 Yoon Dec 2000 A
6162208 Hipps Dec 2000 A
6162220 Nezhat Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6167185 Smiley et al. Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171305 Sherman Jan 2001 B1
6171316 Kovac et al. Jan 2001 B1
6171330 Benchetrit Jan 2001 B1
6173074 Russo Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6175290 Forsythe et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6181105 Cutolo et al. Jan 2001 B1
6182673 Kindermann et al. Feb 2001 B1
6185356 Parker et al. Feb 2001 B1
6186142 Schmidt et al. Feb 2001 B1
6186957 Milam Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6206894 Thompson et al. Mar 2001 B1
6206897 Jamiolkowski et al. Mar 2001 B1
6206903 Ramans Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6209414 Uneme Apr 2001 B1
6210403 Klicek Apr 2001 B1
6211626 Lys et al. Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6220368 Ark et al. Apr 2001 B1
6221007 Green Apr 2001 B1
6221023 Matsuba et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6223835 Habedank et al. May 2001 B1
6224617 Saadat et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6228089 Wahrburg May 2001 B1
6228098 Kayan et al. May 2001 B1
6231565 Tovey et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238384 Peer May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6241723 Heim et al. Jun 2001 B1
6245084 Mark et al. Jun 2001 B1
6248116 Chevillon et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6249105 Andrews et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6251485 Harris et al. Jun 2001 B1
D445745 Norman Jul 2001 S
6254534 Butler et al. Jul 2001 B1
6254619 Garabet et al. Jul 2001 B1
6254642 Taylor Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6261246 Pantages et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261679 Chen et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6264617 Bales et al. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6270916 Sink et al. Aug 2001 B1
6273252 Mitchell Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6293927 McGuckin, Jr. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296640 Wampler et al. Oct 2001 B1
6302311 Adams et al. Oct 2001 B1
6302743 Chiu et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6306149 Meade Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6315184 Whitman Nov 2001 B1
6319510 Yates Nov 2001 B1
6320123 Reimers Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6324339 Hudson et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6328498 Mersch Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6331761 Kumar et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6346077 Taylor et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6349868 Mattingly et al. Feb 2002 B1
D454951 Bon Mar 2002 S
6352503 Matsui et al. Mar 2002 B1
6352532 Kramer et al. Mar 2002 B1
6355699 Vyakarnam et al. Mar 2002 B1
6356072 Chass Mar 2002 B1
6358224 Tims et al. Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6358459 Ziegler et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6366441 Ozawa et al. Apr 2002 B1
6370981 Watarai Apr 2002 B2
6371114 Schmidt et al. Apr 2002 B1
6373152 Wang et al. Apr 2002 B1
6377011 Ben-Ur Apr 2002 B1
6383201 Dong May 2002 B1
6387092 Burnside et al. May 2002 B1
6387113 Hawkins et al. May 2002 B1
6387114 Adams May 2002 B2
6391038 Vargas et al. May 2002 B2
6392854 O'Gorman May 2002 B1
6394998 Wallace et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6398797 Bombard et al. Jun 2002 B2
6402766 Bowman et al. Jun 2002 B2
6406440 Stefanchik Jun 2002 B1
6406472 Jensen Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6412639 Hickey Jul 2002 B1
6413274 Pedros Jul 2002 B1
6415542 Bates et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6423079 Blake, III Jul 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
RE37814 Allgeyer Aug 2002 E
6428070 Takanashi et al. Aug 2002 B1
6428487 Burdorff et al. Aug 2002 B1
6429611 Li Aug 2002 B1
6430298 Kettl et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6436115 Beaupre Aug 2002 B1
6436122 Frank et al. Aug 2002 B1
6439439 Rickard et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6440146 Nicholas et al. Aug 2002 B2
6441577 Blumenkranz et al. Aug 2002 B2
D462758 Epstein et al. Sep 2002 S
6443973 Whitman Sep 2002 B1
6445530 Baker Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6447799 Ullman Sep 2002 B1
6447864 Johnson et al. Sep 2002 B2
6450391 Kayan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6454781 Witt et al. Sep 2002 B1
6457625 Tormala et al. Oct 2002 B1
6458077 Boebel et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6458147 Cruise et al. Oct 2002 B1
6460627 Below et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6468286 Mastri et al. Oct 2002 B2
6471106 Reining Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6478210 Adams et al. Nov 2002 B2
6482200 Shippert Nov 2002 B2
6482217 Pintor et al. Nov 2002 B1
6485490 Wampler et al. Nov 2002 B2
6485503 Jacobs et al. Nov 2002 B2
6485667 Tan Nov 2002 B1
6486286 McGall et al. Nov 2002 B1
6488196 Fenton, Jr. Dec 2002 B1
6488197 Whitman Dec 2002 B1
6488659 Rosenman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491702 Heilbrun et al. Dec 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494882 Lebouitz et al. Dec 2002 B1
6494885 Dhindsa Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6494896 D'Alessio et al. Dec 2002 B1
6498480 Manara Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500194 Benderev et al. Dec 2002 B2
D468749 Friedman Jan 2003 S
6503139 Coral Jan 2003 B2
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6506197 Rollero et al. Jan 2003 B1
6510854 Goble Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6512360 Goto et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6516073 Schulz et al. Feb 2003 B1
6517528 Pantages et al. Feb 2003 B1
6517535 Edwards Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6520971 Perry et al. Feb 2003 B1
6520972 Peters Feb 2003 B2
6522101 Malackowski Feb 2003 B2
6524180 Simms et al. Feb 2003 B1
6525499 Naganuma Feb 2003 B2
D471206 Buzzard et al. Mar 2003 S
6527782 Hogg et al. Mar 2003 B2
6527785 Sancoff et al. Mar 2003 B2
6530942 Fogarty et al. Mar 2003 B2
6532958 Buan et al. Mar 2003 B1
6533157 Whitman Mar 2003 B1
6533723 Lockery et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6539297 Weiberle et al. Mar 2003 B2
D473239 Cockerill Apr 2003 S
6539816 Kogiso et al. Apr 2003 B2
6540737 Bacher et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6550546 Thurler et al. Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6554861 Knox et al. Apr 2003 B2
6555770 Kawase Apr 2003 B2
6558378 Sherman et al. May 2003 B2
6558379 Batchelor et al. May 2003 B1
6558429 Taylor May 2003 B2
6561187 Schmidt et al. May 2003 B2
6565560 Goble et al. May 2003 B1
6566619 Gillman et al. May 2003 B2
6569085 Kortenbach et al. May 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6582441 He et al. Jun 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6586898 King et al. Jul 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6588277 Giordano et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6588931 Betzner et al. Jul 2003 B2
6589118 Soma et al. Jul 2003 B1
6589164 Flaherty Jul 2003 B1
6592538 Hotchkiss et al. Jul 2003 B1
6592572 Suzuta Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6596296 Nelson et al. Jul 2003 B1
6596304 Bayon et al. Jul 2003 B1
6596432 Kawakami et al. Jul 2003 B2
6599295 Tornier et al. Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
D478665 Isaacs et al. Aug 2003 S
D478986 Johnston et al. Aug 2003 S
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6603050 Heaton Aug 2003 B2
6605078 Adams Aug 2003 B2
6605669 Awokola et al. Aug 2003 B2
6605911 Klesing Aug 2003 B1
6607475 Doyle et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6613069 Boyd et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620111 Stephens et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6625517 Bogdanov et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
H2086 Amsler Oct 2003 H
6629630 Adams Oct 2003 B2
6629974 Penny et al. Oct 2003 B2
6629988 Weadock Oct 2003 B2
6635838 Kornelson Oct 2003 B1
6636412 Smith Oct 2003 B2
6638108 Tachi Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
RE38335 Aust et al. Nov 2003 E
6641528 Torii Nov 2003 B2
6644532 Green et al. Nov 2003 B2
6645201 Utley et al. Nov 2003 B1
6646307 Yu et al. Nov 2003 B1
6648816 Irion et al. Nov 2003 B2
6648901 Fleischman et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
D484243 Ryan et al. Dec 2003 S
D484595 Ryan et al. Dec 2003 S
D484596 Ryan et al. Dec 2003 S
6656177 Truckai et al. Dec 2003 B2
6656193 Grant et al. Dec 2003 B2
6659940 Adler Dec 2003 B2
6660008 Foerster et al. Dec 2003 B1
6663623 Oyama et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6667825 Lu et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6670806 Wendt et al. Dec 2003 B2
6671185 Duval Dec 2003 B2
D484977 Ryan et al. Jan 2004 S
6676660 Wampler et al. Jan 2004 B2
6677687 Ho et al. Jan 2004 B2
6679269 Swanson Jan 2004 B2
6679410 Wursch et al. Jan 2004 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6682544 Mastri et al. Jan 2004 B2
6685698 Morley et al. Feb 2004 B2
6685727 Fisher et al. Feb 2004 B2
6689153 Skiba Feb 2004 B1
6692507 Pugsley et al. Feb 2004 B2
6692692 Stetzel Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6695774 Hale et al. Feb 2004 B2
6695849 Michelson Feb 2004 B2
6696814 Henderson et al. Feb 2004 B2
6697048 Rosenberg et al. Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6699214 Gellman Mar 2004 B2
6699235 Wallace et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6705503 Pedicini et al. Mar 2004 B1
6709445 Boebel et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6716215 David et al. Apr 2004 B1
6716223 Leopold et al. Apr 2004 B2
6716232 Vidal et al. Apr 2004 B1
6716233 Whitman Apr 2004 B1
6720734 Norris Apr 2004 B2
6722550 Ricordi et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6723087 O'Neill et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6723106 Charles et al. Apr 2004 B1
6723109 Solingen Apr 2004 B2
6726651 Robinson et al. Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6729119 Schnipke et al. May 2004 B2
6731976 Penn et al. May 2004 B2
6736810 Hoey et al. May 2004 B2
6736825 Blatter et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743230 Lutze et al. Jun 2004 B2
6744385 Kazuya et al. Jun 2004 B2
6747121 Gogolewski Jun 2004 B2
6747300 Nadd et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749600 Levy Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6754959 Guiette, III et al. Jun 2004 B1
6755195 Lemke et al. Jun 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756705 Pulford, Jr. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6762339 Klun et al. Jul 2004 B1
6763307 Berg et al. Jul 2004 B2
6764445 Ramans et al. Jul 2004 B2
6766957 Matsuura et al. Jul 2004 B2
6767352 Field et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6770027 Banik et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6770072 Truckai et al. Aug 2004 B1
6770078 Bonutti Aug 2004 B2
6773409 Truckai et al. Aug 2004 B2
6773437 Ogilvie et al. Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6777838 Miekka et al. Aug 2004 B2
6778846 Martinez et al. Aug 2004 B1
6780151 Grabover et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6783524 Anderson et al. Aug 2004 B2
6784775 Mandell et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6790173 Saadat et al. Sep 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793661 Hamilton et al. Sep 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793669 Nakamura et al. Sep 2004 B2
6796921 Buck et al. Sep 2004 B1
6799669 Fukumura et al. Oct 2004 B2
6802822 Dodge Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6802844 Ferree Oct 2004 B2
6805273 Bilotti et al. Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6806867 Arruda et al. Oct 2004 B1
6808525 Latterell et al. Oct 2004 B2
6810359 Sakaguchi Oct 2004 B2
6814154 Chou Nov 2004 B2
6814741 Bowman et al. Nov 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818018 Sawhney Nov 2004 B1
6820791 Adams Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6827712 Tovey et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6828902 Casden Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6831629 Nishino et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6834001 Myono Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6836611 Popovic et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6838493 Williams et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6841967 Kim et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6843789 Goble Jan 2005 B2
6843793 Brock et al. Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6847190 Schaefer et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6850817 Green Feb 2005 B1
6852122 Rush Feb 2005 B2
6852330 Bowman et al. Feb 2005 B2
6853879 Sunaoshi Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
6859882 Fung Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
D502994 Blake, III Mar 2005 S
6861142 Wilkie et al. Mar 2005 B1
6861954 Levin Mar 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863694 Boyce et al. Mar 2005 B1
6863924 Ranganathan et al. Mar 2005 B2
6866178 Adams et al. Mar 2005 B2
6866668 Giannetti et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6869430 Balbierz et al. Mar 2005 B2
6869435 Blake, III Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6876850 Maeshima et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6878106 Herrmann Apr 2005 B1
6882127 Konigbauer Apr 2005 B2
6883199 Lundell et al. Apr 2005 B1
6884392 Malkin et al. Apr 2005 B2
6884428 Binette et al. Apr 2005 B2
6886730 Fujisawa et al. May 2005 B2
6887710 Call et al. May 2005 B2
6889116 Jinno May 2005 B2
6893435 Goble May 2005 B2
6894140 Roby May 2005 B2
6895176 Archer et al. May 2005 B2
6899538 Matoba May 2005 B2
6899593 Moeller et al. May 2005 B1
6899705 Niemeyer May 2005 B2
6899915 Yelick et al. May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905498 Hooven Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6913579 Truckai et al. Jul 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6921412 Black et al. Jul 2005 B1
6923093 Ullah Aug 2005 B2
6923803 Goble Aug 2005 B2
6923819 Meade et al. Aug 2005 B2
6925849 Jairam Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6928902 Eyssallenne Aug 2005 B1
6929641 Goble et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6931830 Liao Aug 2005 B2
6932218 Kosann et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6936948 Bell et al. Aug 2005 B2
D509297 Wells Sep 2005 S
D509589 Wells Sep 2005 S
6938706 Ng Sep 2005 B2
6939358 Palacios et al. Sep 2005 B2
6942662 Goble et al. Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6945444 Gresham et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6951562 Zwirnmann Oct 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6957758 Aranyi Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
D511525 Hernandez et al. Nov 2005 S
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960107 Schaub et al. Nov 2005 B1
6960163 Ewers et al. Nov 2005 B2
6960220 Marino et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6968908 Tokunaga et al. Nov 2005 B2
6969385 Moreyra Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6971988 Orban, III Dec 2005 B2
6972199 Lebouitz et al. Dec 2005 B2
6974435 Daw et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6981978 Gannoe Jan 2006 B2
6984203 Tartaglia et al. Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6989034 Hammer et al. Jan 2006 B2
6990731 Haytayan Jan 2006 B2
6990796 Schnipke et al. Jan 2006 B2
6991146 Sinisi et al. Jan 2006 B2
6993200 Tastl et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994708 Manzo Feb 2006 B2
6995729 Govari et al. Feb 2006 B2
6996433 Burbank et al. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997935 Anderson et al. Feb 2006 B2
6998736 Lee et al. Feb 2006 B2
6998816 Wieck et al. Feb 2006 B2
6999821 Jenney et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7000911 McCormick et al. Feb 2006 B2
7001380 Goble Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7007176 Goodfellow et al. Feb 2006 B2
7008433 Voellmicke et al. Mar 2006 B2
7008435 Cummins Mar 2006 B2
7009039 Yayon et al. Mar 2006 B2
7011213 Clark et al. Mar 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014640 Kemppainen et al. Mar 2006 B2
7018357 Emmons Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7021669 Lindermeir et al. Apr 2006 B1
7022131 Derowe et al. Apr 2006 B1
7023159 Gorti et al. Apr 2006 B2
7025064 Wang et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7025774 Freeman et al. Apr 2006 B2
7025775 Gadberry et al. Apr 2006 B2
7028570 Ohta et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029439 Roberts et al. Apr 2006 B2
7030904 Adair et al. Apr 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7033378 Smith et al. Apr 2006 B2
7035716 Harris et al. Apr 2006 B2
7035762 Menard et al. Apr 2006 B2
7036680 Flannery May 2006 B1
7037314 Armstrong May 2006 B2
7037344 Kagan et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7041868 Greene et al. May 2006 B2
7043852 Hayashida et al. May 2006 B2
7044350 Kameyama et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7046082 Komiya et al. May 2006 B2
7048165 Haramiishi May 2006 B2
7048687 Reuss et al. May 2006 B1
7048716 Kucharczyk et al. May 2006 B1
7048745 Tierney et al. May 2006 B2
7052454 Taylor May 2006 B2
7052494 Goble et al. May 2006 B2
7052499 Steger et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056123 Gregorio et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059331 Adams et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7063671 Couvillon, Jr. Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7064509 Fu et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7067038 Trokhan et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7070559 Adams et al. Jul 2006 B2
7070597 Truckai et al. Jul 2006 B2
7071287 Rhine et al. Jul 2006 B2
7075770 Smith Jul 2006 B1
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083073 Yoshie et al. Aug 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083626 Hart et al. Aug 2006 B2
7086267 Dworak et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7091191 Laredo et al. Aug 2006 B2
7091412 Wang et al. Aug 2006 B2
7093492 Treiber et al. Aug 2006 B2
7094202 Nobis et al. Aug 2006 B2
7094247 Monassevitch et al. Aug 2006 B2
7094916 DeLuca et al. Aug 2006 B2
7096972 Orozco, Jr. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7097644 Long Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7098794 Lindsay et al. Aug 2006 B2
7100949 Williams et al. Sep 2006 B2
7101187 Deconinck et al. Sep 2006 B1
7101371 Dycus et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7104741 Krohn Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7108701 Evens et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111768 Cummins et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
D530339 Hernandez et al. Oct 2006 S
7114642 Whitman Oct 2006 B2
7116100 Mock et al. Oct 2006 B1
7118020 Lee et al. Oct 2006 B2
7118528 Piskun Oct 2006 B1
7118563 Weckwerth et al. Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7119534 Butzmann Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7121773 Mikiya et al. Oct 2006 B2
7122028 Looper et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7126879 Snyder Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7133601 Phillips et al. Nov 2006 B2
7134364 Kageler et al. Nov 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7135027 Delmotte Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7139016 Squilla et al. Nov 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7146191 Kerner et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7147637 Goble Dec 2006 B2
7147648 Lin Dec 2006 B2
7147650 Lee Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7161036 Oikawa et al. Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7162758 Skinner Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7166117 Hellenkamp Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7170910 Chen et al. Jan 2007 B2
7171279 Buckingham et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7172593 Trieu et al. Feb 2007 B2
7172615 Morriss et al. Feb 2007 B2
7174202 Bladen et al. Feb 2007 B2
7174636 Lowe Feb 2007 B2
7177533 McFarlin et al. Feb 2007 B2
7179223 Motoki et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7182763 Nardella Feb 2007 B2
7183737 Kitagawa Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188758 Viola et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7190147 Gileff et al. Mar 2007 B2
7193199 Jang Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7196911 Takano et al. Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7199537 Okamura et al. Apr 2007 B2
7199545 Oleynikov et al. Apr 2007 B2
7202576 Dechene et al. Apr 2007 B1
7202653 Pai Apr 2007 B2
7204404 Nguyen et al. Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7207233 Wadge Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7207556 Saitoh et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210609 Leiboff et al. May 2007 B2
7211081 Goble May 2007 B2
7211084 Goble et al. May 2007 B2
7211092 Hughett May 2007 B2
7211979 Khatib et al. May 2007 B2
7213736 Wales et al. May 2007 B2
7214224 Goble May 2007 B2
7215517 Takamatsu May 2007 B2
7217285 Vargas et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7220272 Weadock May 2007 B2
7225959 Patton et al. Jun 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226450 Athanasiou et al. Jun 2007 B2
7228505 Shimazu et al. Jun 2007 B2
7229408 Douglas et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235072 Sartor et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7235302 Jing et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7238195 Viola Jul 2007 B2
7238901 Kim et al. Jul 2007 B2
7239657 Gunnarsson Jul 2007 B1
7241288 Braun Jul 2007 B2
7241289 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7249267 Chapuis Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252660 Kunz Aug 2007 B2
7255012 Hedtke Aug 2007 B2
7255696 Goble et al. Aug 2007 B2
7256695 Hamel et al. Aug 2007 B2
7258262 Mastri et al. Aug 2007 B2
7258546 Beier et al. Aug 2007 B2
7260431 Libbus et al. Aug 2007 B2
7265374 Lee et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7272002 Drapeau Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552623 Vong et al. Oct 2007 S
7275674 Racenet et al. Oct 2007 B2
7276044 Ferry et al. Oct 2007 B2
7276068 Johnson et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7278949 Bader Oct 2007 B2
7278994 Goble Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7283096 Geisheimer et al. Oct 2007 B2
7286850 Frielink et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7289139 Amling et al. Oct 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7295893 Sunaoshi Nov 2007 B2
7295907 Lu et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300373 Jinno et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7303502 Thompson Dec 2007 B2
7303556 Metzger Dec 2007 B2
7306597 Manzo Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311238 Liu Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314473 Jinno et al. Jan 2008 B2
7322859 Evans Jan 2008 B2
7322975 Goble et al. Jan 2008 B2
7322994 Nicholas et al. Jan 2008 B2
7324572 Chang Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7326213 Benderev et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7330004 DeJonge et al. Feb 2008 B2
7331340 Barney Feb 2008 B2
7331343 Schmidt et al. Feb 2008 B2
7331403 Berry et al. Feb 2008 B2
7331406 Wottreng, Jr. et al. Feb 2008 B2
7331969 Inganas et al. Feb 2008 B1
7334717 Rethy et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335199 Goble et al. Feb 2008 B2
7335401 Finke et al. Feb 2008 B2
7336045 Clermonts Feb 2008 B2
7336048 Lohr Feb 2008 B2
7336184 Smith et al. Feb 2008 B2
7337774 Webb Mar 2008 B2
7338505 Belson Mar 2008 B2
7338513 Lee et al. Mar 2008 B2
7341554 Sekine et al. Mar 2008 B2
7341555 Ootawara et al. Mar 2008 B2
7341591 Grinberg Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
7346344 Fontaine Mar 2008 B2
7346406 Brotto et al. Mar 2008 B2
7348763 Reinhart et al. Mar 2008 B1
7348875 Hughes et al. Mar 2008 B2
RE40237 Bilotti et al. Apr 2008 E
7351258 Ricotta et al. Apr 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7354502 Polat et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7361168 Makower et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7362062 Schneider et al. Apr 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7368124 Chun et al. May 2008 B2
7371210 Brock et al. May 2008 B2
7371403 McCarthy et al. May 2008 B2
7375493 Calhoon et al. May 2008 B2
7377918 Amoah May 2008 B2
7377928 Zubik et al. May 2008 B2
7378817 Calhoon et al. May 2008 B2
RE40388 Gines Jun 2008 E
D570868 Hosokawa et al. Jun 2008 S
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7384403 Sherman Jun 2008 B2
7384417 Cucin Jun 2008 B2
7386365 Nixon Jun 2008 B2
7386730 Uchikubo Jun 2008 B2
7388217 Buschbeck et al. Jun 2008 B2
7388484 Hsu Jun 2008 B2
7391173 Schena Jun 2008 B2
7394190 Huang Jul 2008 B2
7396356 Mollenauer Jul 2008 B2
7397364 Govari Jul 2008 B2
7398707 Morley et al. Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7400107 Schneider et al. Jul 2008 B2
7400752 Zacharias Jul 2008 B2
7401000 Nakamura Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404449 Bermingham et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7404822 Viart et al. Jul 2008 B2
D575793 Ording Aug 2008 S
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7408310 Hong et al. Aug 2008 B2
7410085 Wolf et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7418078 Blanz et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419321 Tereschouk Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422138 Bilotti et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7427607 Suzuki Sep 2008 B2
D578644 Shumer et al. Oct 2008 S
7430772 Van Es Oct 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431230 McPherson et al. Oct 2008 B2
7431694 Stefanchik et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7438718 Milliman et al. Oct 2008 B2
7439354 Lenges et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7442201 Pugsley et al. Oct 2008 B2
7443547 Moreno et al. Oct 2008 B2
7446131 Liu et al. Nov 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7450010 Gravelle et al. Nov 2008 B1
7450991 Smith et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7455687 Saunders et al. Nov 2008 B2
D582934 Byeon Dec 2008 S
7461767 Viola et al. Dec 2008 B2
7462187 Johnston et al. Dec 2008 B2
7464845 Chou Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7467849 Silverbrook et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473221 Ewers et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7476237 Taniguchi et al. Jan 2009 B2
7479147 Honeycutt et al. Jan 2009 B2
7479608 Smith Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7485124 Kuhns et al. Feb 2009 B2
7485133 Cannon et al. Feb 2009 B2
7485142 Milo Feb 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7489055 Jeong et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7491232 Bolduc et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7494460 Haarstad et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7501198 Barley et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507202 Schoellhorn Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7513407 Chang Apr 2009 B1
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7527632 Houghton et al. May 2009 B2
7530984 Sonnenschein et al. May 2009 B2
7530985 Takemoto et al. May 2009 B2
7533906 Luettgen et al. May 2009 B2
7534259 Lashinski et al. May 2009 B2
7540867 Jinno et al. Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544197 Kelsch et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547287 Boecker et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549563 Mather et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7553173 Kowalick Jun 2009 B2
7553275 Padget et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7556647 Drews et al. Jul 2009 B2
7559449 Viola Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7561637 Jonsson et al. Jul 2009 B2
7562910 Kertesz et al. Jul 2009 B2
7563269 Hashiguchi Jul 2009 B2
7563862 Sieg et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7566300 Devierre et al. Jul 2009 B2
7567045 Fristedt Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7568619 Todd et al. Aug 2009 B2
7572285 Frey et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7578825 Huebner Aug 2009 B2
D600712 LaManna et al. Sep 2009 S
7583063 Dooley Sep 2009 B2
7584880 Racenet et al. Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7591783 Boulais et al. Sep 2009 B2
7591818 Bertolero et al. Sep 2009 B2
7593766 Faber et al. Sep 2009 B2
7595642 Doyle Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7597693 Garrison Oct 2009 B2
7597699 Rogers Oct 2009 B2
7598972 Tomita Oct 2009 B2
7600663 Green Oct 2009 B2
7604118 Iio et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7604668 Farnsworth et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
D604325 Ebeling et al. Nov 2009 S
7611038 Racenet et al. Nov 2009 B2
7611474 Hibner et al. Nov 2009 B2
7615003 Stefanchik et al. Nov 2009 B2
7615006 Abe Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
D605201 Lorenz et al. Dec 2009 S
D606992 Liu et al. Dec 2009 S
D607010 Kocmick Dec 2009 S
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625370 Hart et al. Dec 2009 B2
7625388 Boukhny et al. Dec 2009 B2
7630841 Comisky et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635922 Becker Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7638958 Philipp et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641092 Kruszynski et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644783 Roberts et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645230 Mikkaichi et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7648457 Stefanchik et al. Jan 2010 B2
7648519 Lee et al. Jan 2010 B2
7650185 Maile et al. Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7651498 Shifrin et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7655288 Bauman et al. Feb 2010 B2
7655584 Biran et al. Feb 2010 B2
7656131 Embrey et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7658705 Melvin et al. Feb 2010 B2
7659219 Biran et al. Feb 2010 B2
7661448 Kim et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666195 Kelleher et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7674253 Fisher et al. Mar 2010 B2
7674255 Braun Mar 2010 B2
7674263 Ryan Mar 2010 B2
7674270 Layer Mar 2010 B2
7678121 Knodel Mar 2010 B1
7682307 Danitz et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682686 Curro et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7690547 Racenet et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7691106 Schenberger et al. Apr 2010 B2
7694864 Okada et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7695493 Saadat et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699844 Utley et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7699856 Van Wyk et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7699860 Huitema et al. Apr 2010 B2
7699868 Frank et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7705559 Powell et al. Apr 2010 B2
7708180 Murray et al. May 2010 B2
7708181 Cole et al. May 2010 B2
7708182 Viola May 2010 B2
7708758 Lee et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7712182 Zeiler et al. May 2010 B2
7713190 Brock et al. May 2010 B2
7713542 Xu et al. May 2010 B2
7714239 Smith May 2010 B2
7714334 Lin May 2010 B2
7717312 Beetel May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7717873 Swick May 2010 B2
7717915 Miyazawa May 2010 B2
7717926 Whitfield et al. May 2010 B2
7718180 Karp May 2010 B2
7718556 Matsuda et al. May 2010 B2
7721930 McKenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shalton, IV et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7722610 Viola et al. May 2010 B2
7725214 Diolaiti May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7727954 McKay Jun 2010 B2
7728553 Carrier et al. Jun 2010 B2
7729742 Govari Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7736254 Schena Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744624 Bettuchi Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7747146 Milano et al. Jun 2010 B2
7748587 Haramiishi et al. Jul 2010 B2
7748632 Coleman et al. Jul 2010 B2
7749204 Dhanaraj et al. Jul 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7751870 Whitman Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7758594 Lamson et al. Jul 2010 B2
7758612 Shipp Jul 2010 B2
7758613 Whitman Jul 2010 B2
7762462 Gelbman Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
D622286 Umezawa Aug 2010 S
7766207 Mather et al. Aug 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766821 Brunnen et al. Aug 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7770658 Ito et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7771396 Stefanchik et al. Aug 2010 B2
7772720 McGee et al. Aug 2010 B2
7772725 Siman-Tov Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7776065 Griffiths et al. Aug 2010 B2
7778004 Nerheim et al. Aug 2010 B2
7779737 Newman, Jr. et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7780309 McMillan et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7787256 Chan et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789875 Brock et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7799044 Johnston et al. Sep 2010 B2
7799965 Patel et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810691 Boyden et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811275 Birk et al. Oct 2010 B2
7814816 Alberti et al. Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7815662 Spivey et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7819884 Lee et al. Oct 2010 B2
7819885 Cooper Oct 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7824401 Manzo et al. Nov 2010 B2
7824422 Benchetrit Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7828794 Sartor Nov 2010 B2
7828808 Hinman et al. Nov 2010 B2
7829416 Kudou et al. Nov 2010 B2
7831292 Quaid et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7833234 Bailly et al. Nov 2010 B2
7835823 Sillman et al. Nov 2010 B2
7836400 May et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7837425 Saeki et al. Nov 2010 B2
7837685 Weinberg et al. Nov 2010 B2
7837687 Harp Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7838789 Stoffers et al. Nov 2010 B2
7839109 Carmen, Jr. et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7842025 Coleman et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7843158 Prisco Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7846085 Silverman et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7848066 Yanagishima Dec 2010 B2
7850623 Griffin et al. Dec 2010 B2
7850642 Moll et al. Dec 2010 B2
7850982 Stopek et al. Dec 2010 B2
7853813 Lee Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
7854736 Ryan Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7862502 Pool et al. Jan 2011 B2
7862546 Conlon et al. Jan 2011 B2
7862579 Ortiz et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7871418 Thompson et al. Jan 2011 B2
7871440 Schwartz et al. Jan 2011 B2
7875055 Cichocki, Jr. Jan 2011 B2
7879063 Khosravi Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883461 Albrecht et al. Feb 2011 B2
7883465 Donofrio et al. Feb 2011 B2
7883540 Niwa et al. Feb 2011 B2
7886951 Hessler Feb 2011 B2
7886952 Scirica et al. Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7887536 Johnson et al. Feb 2011 B2
7887563 Cummins Feb 2011 B2
7891531 Ward Feb 2011 B1
7891532 Mastri et al. Feb 2011 B2
7892200 Birk et al. Feb 2011 B2
7892245 Liddicoat et al. Feb 2011 B2
7893586 West et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7896215 Adams et al. Mar 2011 B2
7896671 Kim et al. Mar 2011 B2
7896869 DiSilvestro et al. Mar 2011 B2
7896877 Hall et al. Mar 2011 B2
7896895 Boudreaux et al. Mar 2011 B2
7896897 Gresham et al. Mar 2011 B2
7896900 Frank et al. Mar 2011 B2
7898198 Murphree Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7901381 Birk et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7905889 Catanese, III et al. Mar 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7905902 Huitema et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909191 Baker et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914521 Wang et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7914551 Ortiz et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7918845 Saadat et al. Apr 2011 B2
7918848 Lau et al. Apr 2011 B2
7918861 Brock et al. Apr 2011 B2
7918867 Dana et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7923144 Kohn et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7926692 Racenet et al. Apr 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7928281 Augustine Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7930065 Larkin et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7931695 Ringeisen Apr 2011 B2
7931877 Steffens et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7934896 Schnier May 2011 B2
7935130 Williams May 2011 B2
7935773 Hadba et al. May 2011 B2
7936142 Otsuka et al. May 2011 B2
7938307 Bettuchi May 2011 B2
7939152 Haskin et al. May 2011 B2
7941865 Seman, Jr. et al. May 2011 B2
7942303 Shah May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7944175 Mori et al. May 2011 B2
7945792 Cherpantier May 2011 B2
7945798 Carlson et al. May 2011 B2
7946453 Voegele et al. May 2011 B2
7947011 Birk et al. May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7950562 Beardsley et al. May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7954688 Argentine et al. Jun 2011 B2
7955253 Ewers et al. Jun 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955322 Devengenzo et al. Jun 2011 B2
7955327 Sartor et al. Jun 2011 B2
7955380 Chu et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7959052 Sonnenschein et al. Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7963913 Devengenzo et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7963964 Santilli et al. Jun 2011 B2
7964206 Suokas et al. Jun 2011 B2
7966236 Noriega et al. Jun 2011 B2
7966269 Bauer et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7967791 Franer et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7972315 Birk et al. Jul 2011 B2
7976213 Bertolotti et al. Jul 2011 B2
7976563 Summerer Jul 2011 B2
7979137 Tracey et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981102 Patel et al. Jul 2011 B2
7981132 Dubrul et al. Jul 2011 B2
7987405 Turner et al. Jul 2011 B2
7988015 Mason, II et al. Aug 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7988779 Disalvo et al. Aug 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7993360 Hacker et al. Aug 2011 B2
7994670 Ji Aug 2011 B2
7997054 Bertsch et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002696 Suzuki Aug 2011 B2
8002784 Jinno et al. Aug 2011 B2
8002785 Weiss et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006365 Levin et al. Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8007370 Hirsch et al. Aug 2011 B2
8007465 Birk et al. Aug 2011 B2
8007479 Birk et al. Aug 2011 B2
8007511 Brock et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8008598 Whitman et al. Aug 2011 B2
8010180 Quaid et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016849 Wenchell Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8016881 Furst Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8025896 Malaviya et al. Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8028885 Smith et al. Oct 2011 B2
8029510 Hoegerle Oct 2011 B2
8031069 Cohn et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033439 Racenet et al. Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8034337 Simard Oct 2011 B2
8034363 Li et al. Oct 2011 B2
8035487 Malackowski Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8038686 Huitema et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8043328 Hahnen et al. Oct 2011 B2
8044536 Nguyen et al. Oct 2011 B2
8044604 Hagino et al. Oct 2011 B2
8047236 Perry Nov 2011 B2
8048503 Farnsworth et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8057508 Shelton, IV Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8060250 Reiland et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8061576 Cappola Nov 2011 B2
8062236 Soltz Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8063619 Zhu et al. Nov 2011 B2
8066158 Vogel et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066168 Vidal et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
D650789 Arnold Dec 2011 S
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8070743 Kagan et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074859 Kostrzewski Dec 2011 B2
8074861 Ehrenfels et al. Dec 2011 B2
8075476 Vargas Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8079989 Birk et al. Dec 2011 B2
8080004 Downey et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8084001 Burns et al. Dec 2011 B2
8084969 David et al. Dec 2011 B2
8085013 Wei et al. Dec 2011 B2
8087562 Manoux et al. Jan 2012 B1
8087563 Milliman et al. Jan 2012 B2
8089509 Chatenever et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091756 Viola Jan 2012 B2
8092443 Bischoff Jan 2012 B2
8092932 Phillips et al. Jan 2012 B2
8093572 Kuduvalli Jan 2012 B2
8096458 Hessler Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097017 Viola Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8100824 Hegeman et al. Jan 2012 B2
8100872 Patel Jan 2012 B2
8102138 Sekine et al. Jan 2012 B2
8102278 Deck et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8105350 Lee et al. Jan 2012 B2
8107925 Natsuno et al. Jan 2012 B2
8108033 Drew et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8110208 Hen Feb 2012 B1
8113405 Milliman Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8114017 Bacher Feb 2012 B2
8114100 Smith et al. Feb 2012 B2
8118206 Zand et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8122128 Burke, II et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8123523 Carron et al. Feb 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8125168 Johnson et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8128624 Couture et al. Mar 2012 B2
8128643 Aranyi et al. Mar 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8128662 Altarac et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8133500 Ringeisen et al. Mar 2012 B2
8134306 Drader et al. Mar 2012 B2
8136711 Beardsley et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8137339 Jinno et al. Mar 2012 B2
8140417 Shibata Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8141763 Milliman Mar 2012 B2
8142200 Crunkilton et al. Mar 2012 B2
8142425 Eggers Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8142515 Therin et al. Mar 2012 B2
8143520 Cutler Mar 2012 B2
8146790 Milliman Apr 2012 B2
8147421 Farquhar et al. Apr 2012 B2
8147456 Fisher et al. Apr 2012 B2
8147485 Wham et al. Apr 2012 B2
8152041 Kostrzewski Apr 2012 B2
8152756 Webster et al. Apr 2012 B2
8154239 Katsuki et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8157793 Omori et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162138 Bettenhausen et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8162668 Toly Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8162965 Reschke et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167622 Zhou May 2012 B2
8167895 D'Agostino et al. May 2012 B2
8167898 Schaller et al. May 2012 B1
8170241 Roe et al. May 2012 B2
8172004 Ho May 2012 B2
8172120 Boyden et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8177776 Humayun et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8179705 Chapuis May 2012 B2
8180458 Kane et al. May 2012 B2
8181839 Beetel May 2012 B2
8181840 Milliman May 2012 B2
8182422 Bayer et al. May 2012 B2
8182444 Uber, III et al. May 2012 B2
8183807 Tsai et al. May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186558 Sapienza May 2012 B2
8186560 Hess et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8192350 Ortiz et al. Jun 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8192651 Young et al. Jun 2012 B2
8193129 Tagawa et al. Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8197501 Shadeck et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8202549 Stucky et al. Jun 2012 B2
8205779 Ma et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210415 Ward Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8210721 Chen et al. Jul 2012 B2
8211125 Spivey Jul 2012 B2
8214019 Govari et al. Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8215532 Marczyk Jul 2012 B2
8215533 Viola et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8221402 Francischelli et al. Jul 2012 B2
8221424 Cha Jul 2012 B2
8221433 Lozier et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8226553 Shelton, IV et al. Jul 2012 B2
8226635 Petrie et al. Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8226715 Hwang et al. Jul 2012 B2
8227946 Kim Jul 2012 B2
8228020 Shin et al. Jul 2012 B2
8228048 Spencer Jul 2012 B2
8229549 Whitman et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8236011 Harris et al. Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8237388 Jinno et al. Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241308 Kortenbach et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245594 Rogers et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8245901 Stopek Aug 2012 B2
8246608 Omori et al. Aug 2012 B2
8246637 Viola et al. Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8257251 Shelton, IV et al. Sep 2012 B2
8257356 Bleich et al. Sep 2012 B2
8257386 Lee et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8257634 Scirica Sep 2012 B2
8258745 Smith et al. Sep 2012 B2
8261958 Knodel Sep 2012 B1
8262560 Whitman Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8266232 Piper et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267849 Wazer et al. Sep 2012 B2
8267924 Zemlok et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8267951 Whayne et al. Sep 2012 B2
8268344 Ma et al. Sep 2012 B2
8269121 Smith Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8272918 Lam Sep 2012 B2
8273404 Dave et al. Sep 2012 B2
8276594 Shah Oct 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8276802 Kostrzewski Oct 2012 B2
8277473 Sunaoshi et al. Oct 2012 B2
8281446 Moskovich Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8281974 Hessler et al. Oct 2012 B2
8282654 Ferrari et al. Oct 2012 B2
8285367 Hyde et al. Oct 2012 B2
8286723 Puzio et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8287487 Estes Oct 2012 B2
8287522 Moses et al. Oct 2012 B2
8287561 Nunez et al. Oct 2012 B2
8288984 Yang Oct 2012 B2
8289403 Dobashi et al. Oct 2012 B2
8290883 Takeuchi et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8292801 Dejima et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8294399 Suzuki et al. Oct 2012 B2
8298161 Vargas Oct 2012 B2
8298189 Fisher et al. Oct 2012 B2
8298233 Mueller Oct 2012 B2
8298677 Wiesner et al. Oct 2012 B2
8302323 Fortier et al. Nov 2012 B2
8303621 Miyamoto et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308659 Scheibe et al. Nov 2012 B2
8308725 Bell et al. Nov 2012 B2
8310188 Nakai Nov 2012 B2
8313496 Sauer et al. Nov 2012 B2
8313499 Magnusson et al. Nov 2012 B2
8313509 Kostrzewski Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8317074 Ortiz et al. Nov 2012 B2
8317437 Merkley et al. Nov 2012 B2
8317744 Kirschenman Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8319002 Daniels et al. Nov 2012 B2
D672784 Clanton et al. Dec 2012 S
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8322590 Patel et al. Dec 2012 B2
8322901 Michelotti Dec 2012 B2
8323271 Humayun et al. Dec 2012 B2
8323789 Rozhin et al. Dec 2012 B2
8324585 McBroom et al. Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8333691 Schaaf Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8343150 Artale Jan 2013 B2
8347978 Forster et al. Jan 2013 B2
8348118 Segura Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8348837 Wenchell Jan 2013 B2
8348959 Wolford et al. Jan 2013 B2
8348972 Soltz et al. Jan 2013 B2
8349987 Kapiamba et al. Jan 2013 B2
8352004 Mannheimer et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357144 Whitman et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8357161 Mueller Jan 2013 B2
8359174 Nakashima et al. Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8361501 DiTizio et al. Jan 2013 B2
D676866 Chaudhri Feb 2013 S
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365975 Manoux et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8366559 Papenfuss et al. Feb 2013 B2
8366719 Markey et al. Feb 2013 B2
8366787 Brown et al. Feb 2013 B2
8368327 Benning et al. Feb 2013 B2
8369056 Senriuchi et al. Feb 2013 B2
8371393 Higuchi et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8371494 Racenet et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377029 Nagao et al. Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8381828 Whitman et al. Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8382790 Uenohara et al. Feb 2013 B2
D677273 Randall et al. Mar 2013 S
8387848 Johnson et al. Mar 2013 B2
8388633 Rousseau et al. Mar 2013 B2
8389588 Ringeisen et al. Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397832 Blickle et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8397973 Hausen Mar 2013 B1
8398633 Mueller Mar 2013 B2
8398669 Kim Mar 2013 B2
8398673 Hinchliffe et al. Mar 2013 B2
8398674 Prestel Mar 2013 B2
8400851 Byun Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403195 Beardsley et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
D680646 Hunt et al. Apr 2013 S
8408439 Huang et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409079 Okamoto et al. Apr 2013 B2
8409174 Omori Apr 2013 B2
8409175 Lee et al. Apr 2013 B2
8409211 Baroud Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8411500 Gapihan et al. Apr 2013 B2
8413661 Rousseau et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8414469 Diolaiti Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8414598 Brock et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8418909 Kostrzewski Apr 2013 B2
8419635 Shelton, IV et al. Apr 2013 B2
8419717 Diolaiti et al. Apr 2013 B2
8419747 Hinman et al. Apr 2013 B2
8419754 Laby et al. Apr 2013 B2
8419755 Deem et al. Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8425600 Maxwell Apr 2013 B2
8427430 Lee et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444549 Viola et al. May 2013 B2
8449536 Selig May 2013 B2
8449560 Roth et al. May 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454495 Kawano et al. Jun 2013 B2
8454551 Allen et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8454640 Johnston et al. Jun 2013 B2
8457757 Cauller et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8464924 Gresham et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8465475 Isbell, Jr. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8465515 Drew et al. Jun 2013 B2
8469254 Czernik et al. Jun 2013 B2
8469946 Sugita Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8470355 Skalla et al. Jun 2013 B2
D686240 Lin Jul 2013 S
D686244 Moriya et al. Jul 2013 S
8474677 Woodard, Jr. et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8475454 Alshemari Jul 2013 B1
8475474 Bombard et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8483509 Matsuzaka Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8487199 Palmer et al. Jul 2013 B2
8487487 Dietz et al. Jul 2013 B2
8490851 Blier et al. Jul 2013 B2
8490852 Viola Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8491581 Deville et al. Jul 2013 B2
8491603 Yeung et al. Jul 2013 B2
8496153 Demmy et al. Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8498691 Moll et al. Jul 2013 B2
8499673 Keller Aug 2013 B2
8499992 Whitman et al. Aug 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8500721 Jinno Aug 2013 B2
8500762 Sholev et al. Aug 2013 B2
8502091 Palmer et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506557 Zemlok et al. Aug 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8506581 Wingardner, III et al. Aug 2013 B2
8511308 Hecox et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8518024 Williams et al. Aug 2013 B2
8521273 Kliman Aug 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8523787 Ludwin et al. Sep 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8523900 Jinno et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8529819 Ostapoff et al. Sep 2013 B2
8532747 Nock et al. Sep 2013 B2
8534527 Brendel et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8535304 Sklar et al. Sep 2013 B2
8535340 Allen Sep 2013 B2
8539866 Nayak et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540646 Mendez-Coll Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8540735 Mitelberg et al. Sep 2013 B2
8550984 Takemoto Oct 2013 B2
8551076 Duval et al. Oct 2013 B2
8555660 Takenaka et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8556935 Knodel et al. Oct 2013 B1
8560147 Taylor et al. Oct 2013 B2
8561617 Lindh et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8568416 Schmitz et al. Oct 2013 B2
8568425 Ross et al. Oct 2013 B2
D692916 Granchi et al. Nov 2013 S
8573459 Smith et al. Nov 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574199 von Bulow et al. Nov 2013 B2
8574263 Mueller Nov 2013 B2
8575880 Grantz Nov 2013 B2
8575895 Garrastacho et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8584921 Scirica Nov 2013 B2
8585583 Sakaguchi et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8590760 Cummins et al. Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8597745 Farnsworth et al. Dec 2013 B2
8599450 Kubo et al. Dec 2013 B2
8602125 King Dec 2013 B2
8602287 Yates et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8603110 Maruyama et al. Dec 2013 B2
8603135 Mueller Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8622275 Baxter, III et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627994 Zemlok et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8628518 Blumenkranz et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8628545 Cabrera et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8631992 Hausen et al. Jan 2014 B1
8631993 Kostrzewski Jan 2014 B2
8632462 Yoo et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636191 Meagher Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8639936 Hu et al. Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8646674 Schulte et al. Feb 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652151 Lehman et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657175 Sonnenschein et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8657482 Malackowski et al. Feb 2014 B2
8657808 McPherson et al. Feb 2014 B2
8657814 Werneth et al. Feb 2014 B2
8657821 Palermo Feb 2014 B2
D701238 Lai et al. Mar 2014 S
8662370 Takei Mar 2014 B2
8663106 Stivoric et al. Mar 2014 B2
8663192 Hester et al. Mar 2014 B2
8663245 Francischelli et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8663270 Donnigan et al. Mar 2014 B2
8664792 Rebsdorf Mar 2014 B2
8668129 Olson Mar 2014 B2
8668130 Hess et al. Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672922 Loh et al. Mar 2014 B2
8672935 Okada et al. Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8673210 Deshays Mar 2014 B2
8675820 Baic et al. Mar 2014 B2
8678263 Viola Mar 2014 B2
8678994 Sonnenschein et al. Mar 2014 B2
8679093 Farra Mar 2014 B2
8679098 Hart Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8679154 Smith et al. Mar 2014 B2
8679156 Smith et al. Mar 2014 B2
8679454 Guire et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8684962 Kirschenman et al. Apr 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690893 Deitch et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8706316 Hoevenaar Apr 2014 B1
8708210 Zemlok et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708212 Williams Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714352 Farascioni et al. May 2014 B2
8714429 Demmy May 2014 B2
8714430 Natarajan et al. May 2014 B2
8715256 Greener May 2014 B2
8715302 Ibrahim et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8721666 Schroeder et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727199 Wenchell May 2014 B2
8727200 Roy May 2014 B2
8727961 Ziv May 2014 B2
8728099 Cohn et al. May 2014 B2
8728119 Cummins May 2014 B2
8733470 Matthias et al. May 2014 B2
8733611 Milliman May 2014 B2
8733612 Ma May 2014 B2
8733613 Huitema et al. May 2014 B2
8733614 Ross et al. May 2014 B2
8734336 Bonadio et al. May 2014 B2
8734359 Ibanez et al. May 2014 B2
8734478 Widenhouse et al. May 2014 B2
8734831 Kim et al. May 2014 B2
8739033 Rosenberg May 2014 B2
8739417 Tokunaga et al. Jun 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740037 Shelton, IV et al. Jun 2014 B2
8740038 Shelton, IV et al. Jun 2014 B2
8740987 Geremakis et al. Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746533 Whitman et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747441 Konieczynski et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752699 Morgan et al. Jun 2014 B2
8752747 Shelton, IV et al. Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753664 Dao et al. Jun 2014 B2
8757287 Mak et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758235 Jaworek Jun 2014 B2
8758366 McLean et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8758438 Boyce et al. Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8763876 Kostrzewski Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8764732 Hartwell Jul 2014 B2
8765942 Feraud et al. Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8770460 Belzer Jul 2014 B2
8771169 Whitman et al. Jul 2014 B2
8771260 Conlon et al. Jul 2014 B2
8777004 Shelton, IV et al. Jul 2014 B2
8777082 Scirica Jul 2014 B2
8777083 Racenet et al. Jul 2014 B2
8777898 Suon et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8784304 Mikkaichi et al. Jul 2014 B2
8784404 Doyle et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8790658 Cigarini et al. Jul 2014 B2
8790684 Dave et al. Jul 2014 B2
D711905 Morrison et al. Aug 2014 S
8794496 Scirica Aug 2014 B2
8794497 Zingman Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795308 Valin Aug 2014 B2
8795324 Kawai et al. Aug 2014 B2
8796995 Cunanan et al. Aug 2014 B2
8800681 Rousson et al. Aug 2014 B2
8800837 Zemlok Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8801801 Datta et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808161 Gregg et al. Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8808274 Hartwell Aug 2014 B2
8808294 Fox et al. Aug 2014 B2
8808308 Boukhny et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8808325 Hess et al. Aug 2014 B2
8810197 Juergens Aug 2014 B2
8811017 Fujii et al. Aug 2014 B2
8813866 Suzuki Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8814836 Ignon et al. Aug 2014 B2
8815594 Harris et al. Aug 2014 B2
8818523 Olson et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820606 Hodgkinson Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8821514 Aranyi Sep 2014 B2
8822934 Sayeh et al. Sep 2014 B2
8825164 Tweden et al. Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8831779 Ortmaier et al. Sep 2014 B2
8833219 Pierce Sep 2014 B2
8833630 Milliman Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8834353 Dejima et al. Sep 2014 B2
8834465 Ramstein et al. Sep 2014 B2
8834498 Byrum et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8840609 Stuebe Sep 2014 B2
8840876 Eemeta et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8844790 Demmy et al. Sep 2014 B2
8851215 Goto Oct 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852174 Burbank Oct 2014 B2
8852185 Twomey Oct 2014 B2
8852199 Deslauriers et al. Oct 2014 B2
8852218 Hughett, Sr. et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8858538 Belson et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8864010 Williams Oct 2014 B2
8864750 Ross et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8870912 Brisson et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8876857 Burbank Nov 2014 B2
8876858 Braun Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8888688 Julian et al. Nov 2014 B2
8888695 Piskun et al. Nov 2014 B2
8888792 Harris et al. Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8894647 Beardsley et al. Nov 2014 B2
8894654 Anderson Nov 2014 B2
8899460 Wojcicki Dec 2014 B2
8899461 Farascioni Dec 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8899466 Baxter, III et al. Dec 2014 B2
8900267 Woolfson et al. Dec 2014 B2
8905287 Racenet et al. Dec 2014 B2
8905977 Shelton et al. Dec 2014 B2
8910846 Viola Dec 2014 B2
8911426 Coppeta et al. Dec 2014 B2
8911448 Stein Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8911471 Spivey et al. Dec 2014 B2
8912746 Reid et al. Dec 2014 B2
8920368 Sandhu et al. Dec 2014 B2
8920433 Barrier et al. Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8922163 Macdonald Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8925783 Zemlok et al. Jan 2015 B2
8925788 Hess et al. Jan 2015 B2
8926506 Widenhouse et al. Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931576 Iwata Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931680 Milliman Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8944069 Miller et al. Feb 2015 B2
8945095 Blumenkranz et al. Feb 2015 B2
8945163 Voegele et al. Feb 2015 B2
8955732 Zemlok et al. Feb 2015 B2
8956342 Russo et al. Feb 2015 B1
8956390 Shah et al. Feb 2015 B2
8958860 Banerjee et al. Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8960521 Kostrzewski Feb 2015 B2
8961191 Hanshew Feb 2015 B2
8961504 Hoarau et al. Feb 2015 B2
8963714 Medhal et al. Feb 2015 B2
D725674 Jung et al. Mar 2015 S
8967443 McCuen Mar 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967448 Carter et al. Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968308 Homer et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968340 Chowaniec et al. Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8968358 Reschke Mar 2015 B2
8970507 Holbein et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8973805 Scirica et al. Mar 2015 B2
8974440 Farritor et al. Mar 2015 B2
8974542 Fujimoto et al. Mar 2015 B2
8974932 McGahan et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8982195 Claus et al. Mar 2015 B2
8985240 Winnard Mar 2015 B2
8985429 Balek et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992042 Eichenholz Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992565 Brisson et al. Mar 2015 B2
8996165 Wang et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
8998059 Smith et al. Apr 2015 B2
8998060 Bruewer et al. Apr 2015 B2
8998061 Williams et al. Apr 2015 B2
8998939 Price et al. Apr 2015 B2
9000720 Stulen et al. Apr 2015 B2
9002518 Manzo et al. Apr 2015 B2
9004339 Park Apr 2015 B1
9005230 Yates et al. Apr 2015 B2
9005238 DeSantis et al. Apr 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010611 Ross et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011439 Shalaby et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9017331 Fox Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017369 Renger et al. Apr 2015 B2
9017371 Whitman et al. Apr 2015 B2
D729274 Clement et al. May 2015 S
9021684 Lenker et al. May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9023069 Kasvikis et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9026347 Gadh et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9028510 Miyamoto et al. May 2015 B2
9028511 Weller et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9030166 Kano May 2015 B2
9030169 Christensen et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9034505 Detry et al. May 2015 B2
9038881 Schaller et al. May 2015 B1
9039690 Kersten et al. May 2015 B2
9039694 Ross et al. May 2015 B2
9039720 Madan May 2015 B2
9043027 Durant et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044229 Scheib et al. Jun 2015 B2
9044230 Morgan et al. Jun 2015 B2
9044241 Barner et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9044281 Pool et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9050100 Yates et al. Jun 2015 B2
9050120 Swarup et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050176 Datta et al. Jun 2015 B2
9050192 Mansmann Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9055942 Balbierz et al. Jun 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9060794 Kang et al. Jun 2015 B2
9060894 Wubbeling Jun 2015 B2
9061392 Forgues et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9078654 Whitman et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9084602 Gleiman Jul 2015 B2
9086875 Harrat et al. Jul 2015 B2
9089326 Krumanaker et al. Jul 2015 B2
9089330 Widenhouse et al. Jul 2015 B2
9089338 Smith et al. Jul 2015 B2
9089352 Jeong Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9091588 Lefler Jul 2015 B2
D736792 Brinda et al. Aug 2015 S
9095339 Moore et al. Aug 2015 B2
9095346 Houser et al. Aug 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9098153 Shen et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9099877 Banos et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9101475 Wei et al. Aug 2015 B2
9101621 Zeldis Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9110587 Kim et al. Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113865 Shelton, IV et al. Aug 2015 B2
9113868 Felder et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113874 Shelton, IV et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113879 Felder et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9113881 Scirica Aug 2015 B2
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9113887 Behnke, II et al. Aug 2015 B2
9119615 Felder et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119898 Bayon et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9123286 Park Sep 2015 B2
9124097 Cruz Sep 2015 B2
9125651 Mandakolathur Vasudevan et al. Sep 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9126317 Lawton et al. Sep 2015 B2
9131835 Widenhouse et al. Sep 2015 B2
9131940 Huitema et al. Sep 2015 B2
9131950 Matthew Sep 2015 B2
9131957 Skarbnik et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9144455 Kennedy et al. Sep 2015 B2
D740414 Katsura Oct 2015 S
D741882 Shmilov et al. Oct 2015 S
9149274 Spivey et al. Oct 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9153994 Wood et al. Oct 2015 B2
9161753 Prior Oct 2015 B2
9161769 Stoddard et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9161807 Garrison Oct 2015 B2
9161855 Rousseau et al. Oct 2015 B2
9164271 Ebata et al. Oct 2015 B2
9168038 Shelton, IV et al. Oct 2015 B2
9168039 Knodel Oct 2015 B1
9168042 Milliman Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168144 Rivin et al. Oct 2015 B2
9171244 Endou et al. Oct 2015 B2
9179911 Morgan et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9180223 Yu et al. Nov 2015 B2
9182244 Luke et al. Nov 2015 B2
9186046 Ramamurthy et al. Nov 2015 B2
9186137 Farascioni et al. Nov 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186142 Fanelli et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9186148 Felder et al. Nov 2015 B2
9186221 Burbank Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9192430 Rachlin et al. Nov 2015 B2
9192434 Twomey et al. Nov 2015 B2
9193045 Saur et al. Nov 2015 B2
9197079 Yip et al. Nov 2015 B2
D744528 Agrawal Dec 2015 S
9198642 Storz Dec 2015 B2
9198644 Balek et al. Dec 2015 B2
9198661 Swensgard Dec 2015 B2
9198662 Barton et al. Dec 2015 B2
9198683 Friedman et al. Dec 2015 B2
9204830 Zand et al. Dec 2015 B2
9204877 Whitman et al. Dec 2015 B2
9204878 Hall et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204880 Baxter, III et al. Dec 2015 B2
9204881 Penna Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9204924 Marczyk et al. Dec 2015 B2
9211120 Scheib et al. Dec 2015 B2
9211121 Hall et al. Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9216013 Scirica et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9216020 Zhang et al. Dec 2015 B2
9216030 Fan et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9220502 Zemlok et al. Dec 2015 B2
9220508 Dannaher Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9220570 Kim et al. Dec 2015 B2
D746854 Shardlow et al. Jan 2016 S
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226754 D'Agostino et al. Jan 2016 B2
9226761 Burbank Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9233610 Kim et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237895 McCarthy et al. Jan 2016 B2
9237900 Boudreaux et al. Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9239064 Helbig et al. Jan 2016 B2
9240740 Zeng et al. Jan 2016 B2
9241711 Ivanko Jan 2016 B2
9241712 Zemlok et al. Jan 2016 B2
9241714 Timm et al. Jan 2016 B2
9241716 Whitman Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9244524 Inoue et al. Jan 2016 B2
D748668 Kim et al. Feb 2016 S
D749128 Perez et al. Feb 2016 S
D749623 Gray et al. Feb 2016 S
D750122 Shardlow et al. Feb 2016 S
D750129 Kwon Feb 2016 S
9254131 Soltz et al. Feb 2016 B2
9254170 Parihar et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9259274 Prisco Feb 2016 B2
9259275 Burbank Feb 2016 B2
9261172 Solomon et al. Feb 2016 B2
9265500 Sorrentino et al. Feb 2016 B2
9265516 Casey et al. Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9271718 Milad et al. Mar 2016 B2
9271727 McGuckin, Jr. et al. Mar 2016 B2
9271753 Butler et al. Mar 2016 B2
9271799 Shelton, IV et al. Mar 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9274095 Humayun et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9277922 Carter et al. Mar 2016 B2
9277969 Brannan et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283028 Johnson Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289206 Hess et al. Mar 2016 B2
9289207 Shelton, IV Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289211 Williams et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9293757 Toussaint et al. Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9295465 Farascioni Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9295467 Scirica Mar 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9295565 McLean Mar 2016 B2
9295784 Eggert et al. Mar 2016 B2
D753167 Yu et al. Apr 2016 S
9301691 Hufnagel et al. Apr 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301755 Shelton, IV et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307987 Swensgard et al. Apr 2016 B2
9307988 Shelton, IV Apr 2016 B2
9307989 Shelton, IV et al. Apr 2016 B2
9307994 Gresham et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308011 Chao et al. Apr 2016 B2
9308646 Lim et al. Apr 2016 B2
9313915 Niu et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9314247 Shelton, IV et al. Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314339 Mansmann Apr 2016 B2
9314908 Tanimoto et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320520 Shelton, IV et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9320523 Shelton, IV et al. Apr 2016 B2
9325516 Pera et al. Apr 2016 B2
D755196 Meyers et al. May 2016 S
D756373 Raskin et al. May 2016 S
D756377 Connolly et al. May 2016 S
D757028 Goldenberg et al. May 2016 S
9326767 Koch, Jr. et al. May 2016 B2
9326768 Shelton, IV May 2016 B2
9326769 Shelton, IV et al. May 2016 B2
9326770 Shelton, IV et al. May 2016 B2
9326771 Baxter, III et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9326812 Waaler et al. May 2016 B2
9326824 Inoue et al. May 2016 B2
9327061 Govil et al. May 2016 B2
9331721 Martinez Nuevo et al. May 2016 B2
9332890 Ozawa May 2016 B2
9332974 Henderson et al. May 2016 B2
9332984 Weaner et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9333040 Shellenberger et al. May 2016 B2
9333082 Wei et al. May 2016 B2
9337668 Yip May 2016 B2
9339226 van der Walt et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345479 (Tarinelli) Racenet et al. May 2016 B2
9345480 Hessler et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345503 Ishida et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351728 Sniffin et al. May 2016 B2
9351730 Schmid et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
D758433 Lee et al. Jun 2016 S
D759063 Chen Jun 2016 S
9358003 Hall et al. Jun 2016 B2
9358004 Sniffin et al. Jun 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9358031 Manzo Jun 2016 B2
9364217 Kostrzewski et al. Jun 2016 B2
9364219 Olson et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364226 Zemlok et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364231 Wenchell Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9368991 Qahouq Jun 2016 B2
9370341 Ceniccola et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370362 Petty et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9375206 Vidal et al. Jun 2016 B2
9375218 Wheeler et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375255 Houser et al. Jun 2016 B2
D761309 Lee et al. Jul 2016 S
9381058 Houser et al. Jul 2016 B2
9383881 Day et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386985 Koch, Jr. et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9387003 Kaercher et al. Jul 2016 B2
9393015 Laurent et al. Jul 2016 B2
9393017 Flanagan et al. Jul 2016 B2
9393018 Wang et al. Jul 2016 B2
9396669 Karkanias et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
D763277 Ahmed et al. Aug 2016 S
D764498 Capela et al. Aug 2016 S
9402604 Williams et al. Aug 2016 B2
9402625 Coleman et al. Aug 2016 B2
9402626 Ortiz et al. Aug 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9402679 Ginnebaugh et al. Aug 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9411370 Benni et al. Aug 2016 B2
9413128 Tien et al. Aug 2016 B2
9414838 Shelton, IV et al. Aug 2016 B2
9414849 Nagashimada Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9420967 Zand et al. Aug 2016 B2
9421003 Williams et al. Aug 2016 B2
9421014 Ingmanson et al. Aug 2016 B2
9421030 Cole et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9421062 Houser et al. Aug 2016 B2
9427223 Park et al. Aug 2016 B2
9427231 Racenet et al. Aug 2016 B2
D767624 Lee et al. Sep 2016 S
9433411 Racenet et al. Sep 2016 B2
9433414 Chen et al. Sep 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439650 McGuckin, Jr. et al. Sep 2016 B2
9439651 Smith et al. Sep 2016 B2
9439668 Timm et al. Sep 2016 B2
9445808 Woodard, Jr. et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9445816 Swayze et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9446226 Zilberman Sep 2016 B2
9451938 Overes et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
D768152 Gutierrez et al. Oct 2016 S
D768156 Frincke Oct 2016 S
D768167 Jones et al. Oct 2016 S
D769315 Scotti Oct 2016 S
D769930 Agrawal Oct 2016 S
9461340 Li et al. Oct 2016 B2
9463040 Jeong et al. Oct 2016 B2
9463260 Stopek Oct 2016 B2
9468438 Baber et al. Oct 2016 B2
9468447 Aman et al. Oct 2016 B2
9470297 Aranyi et al. Oct 2016 B2
9471969 Zeng et al. Oct 2016 B2
9474506 Magnin et al. Oct 2016 B2
9474523 Meade et al. Oct 2016 B2
9474540 Stokes et al. Oct 2016 B2
9475180 Eshleman et al. Oct 2016 B2
D770476 Jitkoff et al. Nov 2016 S
D770515 Cho et al. Nov 2016 S
D771116 Dellinger et al. Nov 2016 S
D772905 Ingenlath Nov 2016 S
9480476 Aldridge et al. Nov 2016 B2
9480492 Aranyi et al. Nov 2016 B2
9483095 Tran et al. Nov 2016 B2
9486186 Fiebig et al. Nov 2016 B2
9486213 Altman et al. Nov 2016 B2
9486214 Shelton, IV Nov 2016 B2
9486302 Boey et al. Nov 2016 B2
9488197 Wi Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492167 Shelton, IV et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9492189 Williams et al. Nov 2016 B2
9492192 To et al. Nov 2016 B2
9492237 Kang et al. Nov 2016 B2
9498213 Marczyk et al. Nov 2016 B2
9498219 Moore et al. Nov 2016 B2
9498231 Haider et al. Nov 2016 B2
9504455 Whitman et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504521 Deutmeyer et al. Nov 2016 B2
D774547 Capela et al. Dec 2016 S
D775336 Shelton, IV et al. Dec 2016 S
9510827 Kostrzewski Dec 2016 B2
9510828 Yates et al. Dec 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9510846 Sholev et al. Dec 2016 B2
9510895 Houser et al. Dec 2016 B2
9510925 Hotter et al. Dec 2016 B2
9517063 Swayze et al. Dec 2016 B2
9517068 Shelton, IV et al. Dec 2016 B2
9517326 Hinman et al. Dec 2016 B2
9521996 Armstrong Dec 2016 B2
9522003 Weir et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526481 Storz et al. Dec 2016 B2
9526499 Kostrzewski et al. Dec 2016 B2
9526563 Twomey Dec 2016 B2
9526564 Rusin Dec 2016 B2
D776683 Gobinski et al. Jan 2017 S
D777773 Shi Jan 2017 S
9532783 Swayze et al. Jan 2017 B2
9539060 Lightcap et al. Jan 2017 B2
9539726 Simaan et al. Jan 2017 B2
9545253 Worrell et al. Jan 2017 B2
9545258 Smith et al. Jan 2017 B2
9549732 Yates et al. Jan 2017 B2
9549735 Shelton, IV et al. Jan 2017 B2
9554794 Baber et al. Jan 2017 B2
9554796 Kostrzewski Jan 2017 B2
9554812 Inkpen et al. Jan 2017 B2
9559624 Philipp Jan 2017 B2
9561013 Tsuchiya Feb 2017 B2
9561029 Scheib et al. Feb 2017 B2
9561030 Zhang et al. Feb 2017 B2
9561031 Heinrich et al. Feb 2017 B2
9561032 Shelton, IV et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9561045 Hinman et al. Feb 2017 B2
9566061 Aronhalt et al. Feb 2017 B2
9566062 Boudreaux Feb 2017 B2
9566065 Knodel Feb 2017 B2
9566067 Milliman et al. Feb 2017 B2
9572574 Shelton, IV et al. Feb 2017 B2
9572576 Hodgkinson et al. Feb 2017 B2
9572577 Lloyd et al. Feb 2017 B2
9572592 Price et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9579088 Farritor et al. Feb 2017 B2
9579143 Ullrich et al. Feb 2017 B2
9579158 Brianza et al. Feb 2017 B2
D780803 Gill et al. Mar 2017 S
D781879 Butcher et al. Mar 2017 S
D782530 Paek et al. Mar 2017 S
9585550 Abel et al. Mar 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9585658 Shelton, IV Mar 2017 B2
9585659 Viola et al. Mar 2017 B2
9585660 Laurent et al. Mar 2017 B2
9585662 Shelton, IV et al. Mar 2017 B2
9585663 Shelton, IV et al. Mar 2017 B2
9585672 Bastia Mar 2017 B2
9590433 Li Mar 2017 B2
9592050 Schmid et al. Mar 2017 B2
9592052 Shelton, IV Mar 2017 B2
9592053 Shelton, IV et al. Mar 2017 B2
9592054 Schmid et al. Mar 2017 B2
9597073 Sorrentino et al. Mar 2017 B2
9597075 Shelton, IV et al. Mar 2017 B2
9597078 Scirica et al. Mar 2017 B2
9597080 Milliman et al. Mar 2017 B2
9597104 Nicholas et al. Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603595 Shelton, IV et al. Mar 2017 B2
9603598 Shelton, IV et al. Mar 2017 B2
9603599 Miller et al. Mar 2017 B2
9603991 Shelton, IV et al. Mar 2017 B2
D783658 Hurst et al. Apr 2017 S
9610068 Kappel et al. Apr 2017 B2
9610079 Kamei et al. Apr 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9614258 Takahashi et al. Apr 2017 B2
9615826 Shelton, IV et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9622746 Simms et al. Apr 2017 B2
9629623 Lytle, IV et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9629627 Kostrzewski et al. Apr 2017 B2
9629628 Aranyi Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9629632 Linder et al. Apr 2017 B2
9629652 Mumaw et al. Apr 2017 B2
9629814 Widenhouse et al. Apr 2017 B2
D785794 Magno, Jr. May 2017 S
D786280 Ma May 2017 S
D786896 Kim et al. May 2017 S
D787547 Basargin et al. May 2017 S
D788123 Shan et al. May 2017 S
D788140 Hemsley et al. May 2017 S
9636091 Beardsley et al. May 2017 B2
9636111 Wenchell May 2017 B2
9636113 Wenchell May 2017 B2
9636850 Stopek (nee Prommersberger) et al. May 2017 B2
9641122 Romanowich et al. May 2017 B2
9642620 Baxter, III et al. May 2017 B2
9649096 Sholev May 2017 B2
9649110 Parihar et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649190 Mathies May 2017 B2
9655613 Schaller May 2017 B2
9655614 Swensgard et al. May 2017 B2
9655615 Knodel et al. May 2017 B2
9655616 Aranyi May 2017 B2
9655624 Shelton, IV et al. May 2017 B2
9662108 Williams May 2017 B2
9662110 Huang et al. May 2017 B2
9662116 Smith et al. May 2017 B2
9662131 Omori et al. May 2017 B2
D788792 Alessandri et al. Jun 2017 S
D789384 Lin et al. Jun 2017 S
D790570 Butcher et al. Jun 2017 S
9668728 Williams et al. Jun 2017 B2
9668729 Williams et al. Jun 2017 B2
9668732 Patel et al. Jun 2017 B2
9668733 Williams Jun 2017 B2
9668734 Kostrzewski et al. Jun 2017 B2
9668735 Beetel Jun 2017 B2
9675344 Combrowski et al. Jun 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9675354 Weir et al. Jun 2017 B2
9675355 Shelton, IV et al. Jun 2017 B2
9675368 Guo et al. Jun 2017 B2
9675372 Laurent et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9675405 Trees et al. Jun 2017 B2
9675819 Dunbar et al. Jun 2017 B2
9681870 Baxter, III et al. Jun 2017 B2
9681873 Smith et al. Jun 2017 B2
9681884 Clem et al. Jun 2017 B2
9687230 Leimbach et al. Jun 2017 B2
9687231 Baxter, III et al. Jun 2017 B2
9687232 Shelton, IV et al. Jun 2017 B2
9687233 Fernandez et al. Jun 2017 B2
9687236 Leimbach et al. Jun 2017 B2
9687237 Schmid et al. Jun 2017 B2
9687253 Detry et al. Jun 2017 B2
9689466 Kanai et al. Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9693774 Gettinger et al. Jul 2017 B2
9693775 Agarwal et al. Jul 2017 B2
9693777 Schellin et al. Jul 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700310 Morgan et al. Jul 2017 B2
9700312 Kostrzewski et al. Jul 2017 B2
9700314 Marczyk Jul 2017 B2
9700317 Aronhalt et al. Jul 2017 B2
9700318 Scirica et al. Jul 2017 B2
9700319 Motooka et al. Jul 2017 B2
9700320 Dinardo et al. Jul 2017 B2
9700321 Shelton, IV et al. Jul 2017 B2
9706674 Collins et al. Jul 2017 B2
9706981 Nicholas et al. Jul 2017 B2
9706991 Hess et al. Jul 2017 B2
9706993 Hessler et al. Jul 2017 B2
9707003 Hoell, Jr. et al. Jul 2017 B2
9707005 Strobl et al. Jul 2017 B2
9707026 Malackowski et al. Jul 2017 B2
9707033 Parihar et al. Jul 2017 B2
9707043 Bozung Jul 2017 B2
9707684 Ruiz Morales et al. Jul 2017 B2
9713468 Harris et al. Jul 2017 B2
9713470 Scirica et al. Jul 2017 B2
9713474 Lorenz Jul 2017 B2
D795919 Bischoff et al. Aug 2017 S
9717497 Zerkle et al. Aug 2017 B2
9717498 Aranyi et al. Aug 2017 B2
9718190 Larkin et al. Aug 2017 B2
9722236 Sathrum Aug 2017 B2
9724091 Shelton, IV et al. Aug 2017 B2
9724092 Baxter, III et al. Aug 2017 B2
9724094 Baber et al. Aug 2017 B2
9724095 Gupta et al. Aug 2017 B2
9724096 Thompson et al. Aug 2017 B2
9724098 Baxter, III et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724163 Orban Aug 2017 B2
9730692 Shelton, IV et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9730697 Morgan et al. Aug 2017 B2
9730717 Katsuki et al. Aug 2017 B2
9731410 Hirabayashi et al. Aug 2017 B2
9733663 Leimbach et al. Aug 2017 B2
9737297 Racenet et al. Aug 2017 B2
9737299 Yan Aug 2017 B2
9737301 Baber et al. Aug 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9737365 Hegeman et al. Aug 2017 B2
9743927 Whitman Aug 2017 B2
9743928 Shelton, IV et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
D798319 Bergstrand et al. Sep 2017 S
9750498 Timm et al. Sep 2017 B2
9750499 Leimbach et al. Sep 2017 B2
9750501 Shelton, IV et al. Sep 2017 B2
9750502 Scirica et al. Sep 2017 B2
9750639 Barnes et al. Sep 2017 B2
9757123 Giordano et al. Sep 2017 B2
9757124 Schellin et al. Sep 2017 B2
9757126 Cappola Sep 2017 B2
9757128 Baber et al. Sep 2017 B2
9757129 Williams Sep 2017 B2
9757130 Shelton, IV Sep 2017 B2
9763662 Shelton, IV et al. Sep 2017 B2
9763668 Whitfield et al. Sep 2017 B2
9770245 Swayze et al. Sep 2017 B2
9770274 Pool et al. Sep 2017 B2
D798886 Prophete et al. Oct 2017 S
D800742 Rhodes Oct 2017 S
D800744 Jitkoff et al. Oct 2017 S
D800766 Park et al. Oct 2017 S
D800904 Leimbach et al. Oct 2017 S
9775608 Aronhalt et al. Oct 2017 B2
9775609 Shelton, IV et al. Oct 2017 B2
9775610 Nicholas et al. Oct 2017 B2
9775611 Kostrzewski Oct 2017 B2
9775613 Shelton, IV et al. Oct 2017 B2
9775614 Shelton, IV et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9775635 Takei Oct 2017 B2
9775678 Lohmeier Oct 2017 B2
9782169 Kimsey et al. Oct 2017 B2
9782170 Zemlok et al. Oct 2017 B2
9782180 Smith et al. Oct 2017 B2
9782187 Zergiebel et al. Oct 2017 B2
9782193 Thistle Oct 2017 B2
9782214 Houser et al. Oct 2017 B2
9788834 Schmid et al. Oct 2017 B2
9788835 Morgan et al. Oct 2017 B2
9788836 Overmyer et al. Oct 2017 B2
9788847 Jinno Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9788902 Inoue et al. Oct 2017 B2
9795379 Leimbach et al. Oct 2017 B2
9795380 Shelton, IV et al. Oct 2017 B2
9795381 Shelton, IV Oct 2017 B2
9795382 Shelton, IV Oct 2017 B2
9795383 Aldridge et al. Oct 2017 B2
9795384 Weaner et al. Oct 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
9801626 Parihar et al. Oct 2017 B2
9801627 Harris et al. Oct 2017 B2
9801628 Harris et al. Oct 2017 B2
9801634 Shelton, IV et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9804618 Leimbach et al. Oct 2017 B2
D803234 Day et al. Nov 2017 S
D803235 Markson et al. Nov 2017 S
D803850 Chang et al. Nov 2017 S
9808244 Leimbach et al. Nov 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808247 Shelton, IV et al. Nov 2017 B2
9808248 Hoffman Nov 2017 B2
9808249 Shelton, IV Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814462 Woodard, Jr. et al. Nov 2017 B2
9814463 Williams et al. Nov 2017 B2
9814530 Weir et al. Nov 2017 B2
9814561 Forsell Nov 2017 B2
9820445 Simpson et al. Nov 2017 B2
9820737 Beardsley et al. Nov 2017 B2
9820738 Lytle, IV et al. Nov 2017 B2
9820741 Kostrzewski Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9825455 Sandhu et al. Nov 2017 B2
9826976 Parihar et al. Nov 2017 B2
9826977 Leimbach et al. Nov 2017 B2
9826978 Shelton, IV et al. Nov 2017 B2
9829698 Haraguchi et al. Nov 2017 B2
D806108 Day Dec 2017 S
9833236 Shelton, IV et al. Dec 2017 B2
9833238 Baxter, III et al. Dec 2017 B2
9833239 Yates et al. Dec 2017 B2
9833241 Huitema et al. Dec 2017 B2
9833242 Baxter, III et al. Dec 2017 B2
9839420 Shelton, IV et al. Dec 2017 B2
9839421 Zerkle et al. Dec 2017 B2
9839422 Schellin et al. Dec 2017 B2
9839423 Vendely et al. Dec 2017 B2
9839427 Swayze et al. Dec 2017 B2
9839428 Baxter, III et al. Dec 2017 B2
9839429 Weisenburgh, II et al. Dec 2017 B2
9839480 Pribanic et al. Dec 2017 B2
9844368 Boudreaux et al. Dec 2017 B2
9844369 Huitema et al. Dec 2017 B2
9844372 Shelton, IV et al. Dec 2017 B2
9844373 Swayze et al. Dec 2017 B2
9844374 Lytle, IV et al. Dec 2017 B2
9844375 Overmyer et al. Dec 2017 B2
9844376 Baxter, III et al. Dec 2017 B2
9844379 Shelton, IV et al. Dec 2017 B2
9848871 Harris et al. Dec 2017 B2
9848873 Shelton, IV Dec 2017 B2
9848875 Aronhalt et al. Dec 2017 B2
9848877 Shelton, IV et al. Dec 2017 B2
9850994 Schena Dec 2017 B2
D808989 Ayvazian et al. Jan 2018 S
9855039 Racenet et al. Jan 2018 B2
9855040 Kostrzewski Jan 2018 B2
9855662 Ruiz Morales et al. Jan 2018 B2
9861261 Shahinian Jan 2018 B2
9861359 Shelton, IV et al. Jan 2018 B2
9861361 Aronhalt et al. Jan 2018 B2
9861362 Whitman et al. Jan 2018 B2
9861366 Aranyi Jan 2018 B2
9861382 Smith et al. Jan 2018 B2
9861446 Lang Jan 2018 B2
9867612 Parihar et al. Jan 2018 B2
9867613 Marczyk et al. Jan 2018 B2
9867615 Fanelli et al. Jan 2018 B2
9867618 Hall et al. Jan 2018 B2
9867620 Fischvogt et al. Jan 2018 B2
9868198 Nicholas et al. Jan 2018 B2
9872682 Hess et al. Jan 2018 B2
9872683 Hopkins et al. Jan 2018 B2
9872684 Hall et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9877721 Schellin et al. Jan 2018 B2
9877723 Hall et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
D810099 Riedel Feb 2018 S
9883843 Garlow Feb 2018 B2
9883860 Leimbach et al. Feb 2018 B2
9883861 Shelton, IV et al. Feb 2018 B2
9884456 Schellin et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888921 Williams et al. Feb 2018 B2
9888924 Ebersole et al. Feb 2018 B2
9889230 Bennett et al. Feb 2018 B2
9895147 Shelton, IV Feb 2018 B2
9895148 Shelton, IV et al. Feb 2018 B2
9895813 Blumenkranz et al. Feb 2018 B2
9901339 Farascioni Feb 2018 B2
9901341 Kostrzewski Feb 2018 B2
9901342 Shelton, IV et al. Feb 2018 B2
9901344 Moore et al. Feb 2018 B2
9901345 Moore et al. Feb 2018 B2
9901346 Moore et al. Feb 2018 B2
9901406 State et al. Feb 2018 B2
9901412 Lathrop et al. Feb 2018 B2
D813899 Erant et al. Mar 2018 S
9907456 Miyoshi Mar 2018 B2
9907553 Cole et al. Mar 2018 B2
9907600 Stulen et al. Mar 2018 B2
9907620 Shelton, IV et al. Mar 2018 B2
9913641 Takemoto et al. Mar 2018 B2
9913642 Leimbach et al. Mar 2018 B2
9913644 McCuen Mar 2018 B2
9913646 Shelton, IV Mar 2018 B2
9913647 Weisenburgh, II et al. Mar 2018 B2
9913648 Shelton, IV et al. Mar 2018 B2
9913694 Brisson Mar 2018 B2
9913733 Piron et al. Mar 2018 B2
9918704 Shelton, IV et al. Mar 2018 B2
9918714 Gibbons, Jr. Mar 2018 B2
9918715 Menn Mar 2018 B2
9918716 Baxter, III et al. Mar 2018 B2
9918717 Czernik Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9924941 Burbank Mar 2018 B2
9924942 Swayze et al. Mar 2018 B2
9924944 Shelton, IV et al. Mar 2018 B2
9924945 Zheng et al. Mar 2018 B2
9924946 Vendely et al. Mar 2018 B2
9924947 Shelton, IV et al. Mar 2018 B2
9924961 Shelton, IV et al. Mar 2018 B2
9931106 Au et al. Apr 2018 B2
9931116 Racenet et al. Apr 2018 B2
9931118 Shelton, IV et al. Apr 2018 B2
9931120 Chen et al. Apr 2018 B2
9936949 Measamer et al. Apr 2018 B2
9936950 Shelton, IV et al. Apr 2018 B2
9936951 Hufnagel et al. Apr 2018 B2
9936954 Shelton, IV et al. Apr 2018 B2
9937626 Rockrohr Apr 2018 B2
9943309 Shelton, IV et al. Apr 2018 B2
9943310 Harris et al. Apr 2018 B2
9943312 Posada et al. Apr 2018 B2
9953193 Butler et al. Apr 2018 B2
D819072 Clediere May 2018 S
9955954 Destoumieux et al. May 2018 B2
9955965 Chen et al. May 2018 B2
9955966 Zergiebel May 2018 B2
9962129 Jerebko et al. May 2018 B2
9962157 Sapre May 2018 B2
9962158 Hall et al. May 2018 B2
9962159 Heinrich et al. May 2018 B2
9962161 Scheib et al. May 2018 B2
9968354 Shelton, IV et al. May 2018 B2
9968355 Shelton, IV et al. May 2018 B2
9968356 Shelton, IV et al. May 2018 B2
9968397 Taylor et al. May 2018 B2
9974529 Shelton, IV et al. May 2018 B2
9974538 Baxter, III et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9974541 Calderoni May 2018 B2
9974542 Hodgkinson May 2018 B2
9980713 Aronhalt et al. May 2018 B2
9980724 Farascioni et al. May 2018 B2
9980729 Moore et al. May 2018 B2
9980769 Trees et al. May 2018 B2
D819680 Nguyen Jun 2018 S
D819682 Howard et al. Jun 2018 S
D819684 Dart Jun 2018 S
D820307 Jian et al. Jun 2018 S
D820867 Dickens et al. Jun 2018 S
9987000 Shelton, IV et al. Jun 2018 B2
9987003 Timm et al. Jun 2018 B2
9987006 Morgan et al. Jun 2018 B2
9987095 Chowaniec et al. Jun 2018 B2
9987097 van der Weide et al. Jun 2018 B2
9987099 Chen et al. Jun 2018 B2
9993248 Shelton, IV et al. Jun 2018 B2
9993258 Shelton, IV et al. Jun 2018 B2
9999408 Boudreaux et al. Jun 2018 B2
9999423 Schuckmann et al. Jun 2018 B2
9999426 Moore et al. Jun 2018 B2
9999431 Shelton, IV et al. Jun 2018 B2
9999472 Weir et al. Jun 2018 B2
10004497 Overmyer et al. Jun 2018 B2
10004498 Morgan et al. Jun 2018 B2
10004500 Shelton, IV et al. Jun 2018 B2
10004501 Shelton, IV et al. Jun 2018 B2
10004505 Moore et al. Jun 2018 B2
10004506 Shelton, IV et al. Jun 2018 B2
D822206 Shelton, IV et al. Jul 2018 S
10010322 Shelton, IV et al. Jul 2018 B2
10010324 Huitema et al. Jul 2018 B2
10013049 Leimbach et al. Jul 2018 B2
10016199 Baber et al. Jul 2018 B2
10016656 Devor et al. Jul 2018 B2
10022125 (Prommersberger) Stopek Jul 2018 B2
10024407 Aranyi et al. Jul 2018 B2
10028742 Shelton, IV et al. Jul 2018 B2
10028743 Shelton, IV et al. Jul 2018 B2
10028744 Shelton, IV et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10029108 Powers et al. Jul 2018 B2
10029125 Shapiro et al. Jul 2018 B2
10034344 Yoshida Jul 2018 B2
10034668 Ebner Jul 2018 B2
D826405 Shelton, IV et al. Aug 2018 S
10039440 Fenech et al. Aug 2018 B2
10039529 Kerr et al. Aug 2018 B2
10039532 Srinivas et al. Aug 2018 B2
10039545 Sadowski et al. Aug 2018 B2
10041822 Zemlok Aug 2018 B2
10045769 Aronhalt et al. Aug 2018 B2
10045776 Shelton, IV et al. Aug 2018 B2
10045778 Yates et al. Aug 2018 B2
10045779 Savage et al. Aug 2018 B2
10045781 Cropper et al. Aug 2018 B2
10045782 Murthy Aravalli Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10052099 Morgan et al. Aug 2018 B2
10052100 Morgan et al. Aug 2018 B2
10052102 Baxter, III et al. Aug 2018 B2
10052104 Shelton, IV et al. Aug 2018 B2
10052164 Overmyer Aug 2018 B2
10058317 Fan et al. Aug 2018 B2
10058327 Weisenburgh, II et al. Aug 2018 B2
10058373 Takashino et al. Aug 2018 B2
10058395 Devengenzo et al. Aug 2018 B2
10058963 Shelton, IV et al. Aug 2018 B2
10064620 Gettinger et al. Sep 2018 B2
10064621 Kerr et al. Sep 2018 B2
10064624 Shelton, IV et al. Sep 2018 B2
10064639 Ishida et al. Sep 2018 B2
10064649 Golebieski et al. Sep 2018 B2
10064688 Shelton, IV et al. Sep 2018 B2
10070861 Spivey et al. Sep 2018 B2
10070863 Swayze et al. Sep 2018 B2
10071452 Shelton, IV et al. Sep 2018 B2
10076325 Huang et al. Sep 2018 B2
10076326 Yates et al. Sep 2018 B2
10076340 Belagali et al. Sep 2018 B2
D831209 Huitema et al. Oct 2018 S
D831676 Park et al. Oct 2018 S
D832301 Smith Oct 2018 S
10085624 Isoda et al. Oct 2018 B2
10085643 Bandic et al. Oct 2018 B2
10085728 Jogasaki et al. Oct 2018 B2
10085748 Morgan et al. Oct 2018 B2
10085749 Cappola et al. Oct 2018 B2
10085750 Zergiebel et al. Oct 2018 B2
10085751 Overmyer et al. Oct 2018 B2
10085754 Sniffin et al. Oct 2018 B2
10085806 Hagn et al. Oct 2018 B2
10092290 Yigit et al. Oct 2018 B2
10092292 Boudreaux et al. Oct 2018 B2
10098635 Burbank Oct 2018 B2
10098636 Shelton, IV et al. Oct 2018 B2
10098640 Bertolero et al. Oct 2018 B2
10098642 Baxter, III et al. Oct 2018 B2
10099303 Yoshida et al. Oct 2018 B2
10101861 Kiyoto Oct 2018 B2
10105128 Cooper et al. Oct 2018 B2
10105136 Yates et al. Oct 2018 B2
10105139 Yates et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10105142 Baxter, III et al. Oct 2018 B2
10106932 Anderson et al. Oct 2018 B2
10111657 McCuen Oct 2018 B2
10111660 Hemmann Oct 2018 B2
10111679 Baber et al. Oct 2018 B2
10111698 Scheib et al. Oct 2018 B2
10111702 Kostrzewski Oct 2018 B2
10117649 Baxter, III et al. Nov 2018 B2
10117650 Nicholas et al. Nov 2018 B2
10117652 Schmid et al. Nov 2018 B2
10117653 Leimbach et al. Nov 2018 B2
10117654 Ingmanson et al. Nov 2018 B2
10123798 Baxter, III et al. Nov 2018 B2
10124493 Rothfuss et al. Nov 2018 B2
10130352 Widenhouse et al. Nov 2018 B2
10130359 Hess et al. Nov 2018 B2
10130361 Yates et al. Nov 2018 B2
10130363 Huitema et al. Nov 2018 B2
10130366 Shelton, IV et al. Nov 2018 B2
10130367 Cappola et al. Nov 2018 B2
10130738 Shelton, IV et al. Nov 2018 B2
10130830 Miret Carceller et al. Nov 2018 B2
10133248 Fitzsimmons et al. Nov 2018 B2
10135242 Baber et al. Nov 2018 B2
10136879 Ross et al. Nov 2018 B2
10136887 Shelton, IV et al. Nov 2018 B2
10136889 Shelton, IV et al. Nov 2018 B2
10136890 Shelton, IV et al. Nov 2018 B2
10136891 Shelton, IV et al. Nov 2018 B2
D835659 Anzures et al. Dec 2018 S
D836124 Fan Dec 2018 S
10143474 Bucciaglia et al. Dec 2018 B2
10149679 Shelton, IV et al. Dec 2018 B2
10149680 Parihar et al. Dec 2018 B2
10149682 Shelton, IV et al. Dec 2018 B2
10149683 Smith et al. Dec 2018 B2
10149712 Manwaring et al. Dec 2018 B2
10154841 Weaner et al. Dec 2018 B2
10159481 Whitman et al. Dec 2018 B2
10159482 Swayze et al. Dec 2018 B2
10159483 Beckman et al. Dec 2018 B2
10159506 Boudreaux et al. Dec 2018 B2
10163065 Koski et al. Dec 2018 B1
10163589 Zergiebel et al. Dec 2018 B2
D837244 Kuo et al. Jan 2019 S
D837245 Kuo et al. Jan 2019 S
10166023 Vendely et al. Jan 2019 B2
10166025 Leimbach et al. Jan 2019 B2
10166026 Shelton, IV et al. Jan 2019 B2
10172611 Shelton, IV et al. Jan 2019 B2
10172615 Marczyk et al. Jan 2019 B2
10172616 Murray et al. Jan 2019 B2
10172617 Shelton, IV et al. Jan 2019 B2
10172619 Harris et al. Jan 2019 B2
10172620 Harris et al. Jan 2019 B2
10172636 Stulen et al. Jan 2019 B2
10175127 Collins et al. Jan 2019 B2
10178992 Wise et al. Jan 2019 B2
10180463 Beckman et al. Jan 2019 B2
10182813 Leimbach et al. Jan 2019 B2
10182815 Williams et al. Jan 2019 B2
10182816 Shelton, IV et al. Jan 2019 B2
10182818 Hensel et al. Jan 2019 B2
10182819 Shelton, IV Jan 2019 B2
10188385 Kerr et al. Jan 2019 B2
10188393 Smith et al. Jan 2019 B2
10188394 Shelton, IV et al. Jan 2019 B2
D839900 Gan Feb 2019 S
D841667 Coren Feb 2019 S
10194801 Elhawary et al. Feb 2019 B2
10194904 Viola et al. Feb 2019 B2
10194907 Marczyk et al. Feb 2019 B2
10194908 Duque et al. Feb 2019 B2
10194910 Shelton, IV et al. Feb 2019 B2
10194913 Nalagatla et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194992 Robinson Feb 2019 B2
10201348 Scheib et al. Feb 2019 B2
10201349 Leimbach et al. Feb 2019 B2
10201363 Shelton, IV Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201381 Zergiebel et al. Feb 2019 B2
10206605 Shelton, IV et al. Feb 2019 B2
10206676 Shelton, IV Feb 2019 B2
10206677 Harris et al. Feb 2019 B2
10206678 Shelton, IV et al. Feb 2019 B2
10206748 Burbank Feb 2019 B2
10210244 Branavan et al. Feb 2019 B1
10211586 Adams et al. Feb 2019 B2
10213198 Aronhalt et al. Feb 2019 B2
10213201 Shelton, IV et al. Feb 2019 B2
10213202 Flanagan et al. Feb 2019 B2
10213203 Swayze et al. Feb 2019 B2
10213262 Shelton, IV et al. Feb 2019 B2
D842328 Jian et al. Mar 2019 S
10219811 Haider et al. Mar 2019 B2
10219832 Bagwell et al. Mar 2019 B2
10220522 Rockrohr Mar 2019 B2
10226239 Nicholas et al. Mar 2019 B2
10226249 Jaworek et al. Mar 2019 B2
10226250 Beckman et al. Mar 2019 B2
10226251 Scheib et al. Mar 2019 B2
10226274 Worrell et al. Mar 2019 B2
10231634 Zand et al. Mar 2019 B2
10231653 Bohm et al. Mar 2019 B2
10231734 Thompson et al. Mar 2019 B2
10231794 Shelton, IV et al. Mar 2019 B2
10238385 Yates et al. Mar 2019 B2
10238386 Overmyer et al. Mar 2019 B2
10238387 Yates et al. Mar 2019 B2
10238389 Yates et al. Mar 2019 B2
10238390 Harris et al. Mar 2019 B2
10238391 Leimbach et al. Mar 2019 B2
D844666 Espeleta et al. Apr 2019 S
D844667 Espeleta et al. Apr 2019 S
D845342 Espeleta et al. Apr 2019 S
D847199 Whitmore Apr 2019 S
10244991 Shademan et al. Apr 2019 B2
10245027 Shelton, IV et al. Apr 2019 B2
10245028 Shelton, IV et al. Apr 2019 B2
10245029 Hunter et al. Apr 2019 B2
10245030 Hunter et al. Apr 2019 B2
10245032 Shelton, IV Apr 2019 B2
10245033 Overmyer et al. Apr 2019 B2
10245034 Shelton, IV et al. Apr 2019 B2
10245035 Swayze et al. Apr 2019 B2
10245038 Hopkins et al. Apr 2019 B2
10245058 Omori et al. Apr 2019 B2
10251648 Harris et al. Apr 2019 B2
10251649 Schellin et al. Apr 2019 B2
10251725 Valentine et al. Apr 2019 B2
10258322 Fanton et al. Apr 2019 B2
10258330 Shelton, IV et al. Apr 2019 B2
10258331 Shelton, IV et al. Apr 2019 B2
10258332 Schmid et al. Apr 2019 B2
10258333 Shelton, IV et al. Apr 2019 B2
10258336 Baxter, III et al. Apr 2019 B2
10258418 Shelton, IV et al. Apr 2019 B2
10264797 Zhang et al. Apr 2019 B2
10265065 Shelton, IV et al. Apr 2019 B2
10265067 Yates et al. Apr 2019 B2
10265068 Harris et al. Apr 2019 B2
10265072 Shelton, IV et al. Apr 2019 B2
10265073 Scheib et al. Apr 2019 B2
10265074 Shelton, IV et al. Apr 2019 B2
10265090 Ingmanson et al. Apr 2019 B2
10271844 Valentine et al. Apr 2019 B2
10271845 Shelton, IV Apr 2019 B2
10271846 Shelton, IV et al. Apr 2019 B2
10271847 Racenet et al. Apr 2019 B2
10271849 Vendely et al. Apr 2019 B2
10271851 Shelton, IV et al. Apr 2019 B2
D847989 Shelton, IV et al. May 2019 S
D848473 Zhu et al. May 2019 S
D849046 Kuo et al. May 2019 S
10278696 Gurumurthy et al. May 2019 B2
10278697 Shelton, IV et al. May 2019 B2
10278702 Shelton, IV et al. May 2019 B2
10278703 Nativ et al. May 2019 B2
10278707 Thompson et al. May 2019 B2
10278722 Shelton, IV et al. May 2019 B2
10278780 Shelton, IV May 2019 B2
10285694 Viola et al. May 2019 B2
10285695 Jaworek et al. May 2019 B2
10285699 Vendely et al. May 2019 B2
10285705 Shelton, IV et al. May 2019 B2
10292701 Scheib et al. May 2019 B2
10292704 Harris et al. May 2019 B2
10292707 Shelton, IV et al. May 2019 B2
10293100 Shelton, IV et al. May 2019 B2
10293553 Racenet et al. May 2019 B2
10299787 Shelton, IV May 2019 B2
10299788 Heinrich et al. May 2019 B2
10299789 Marczyk et al. May 2019 B2
10299790 Beardsley May 2019 B2
10299792 Huitema et al. May 2019 B2
10299817 Shelton, IV et al. May 2019 B2
10299818 Riva May 2019 B2
10299878 Shelton, IV et al. May 2019 B2
D850617 Shelton, IV et al. Jun 2019 S
D851676 Foss et al. Jun 2019 S
D851762 Shelton, IV et al. Jun 2019 S
10307159 Harris et al. Jun 2019 B2
10307160 Vendely et al. Jun 2019 B2
10307161 Jankowski Jun 2019 B2
10307163 Moore et al. Jun 2019 B2
10307170 Parfett et al. Jun 2019 B2
10307202 Smith et al. Jun 2019 B2
10314559 Razzaque et al. Jun 2019 B2
10314577 Laurent et al. Jun 2019 B2
10314582 Shelton, IV et al. Jun 2019 B2
10314584 Scirica et al. Jun 2019 B2
10314587 Harris et al. Jun 2019 B2
10314588 Turner et al. Jun 2019 B2
10314589 Shelton, IV et al. Jun 2019 B2
10314590 Shelton, IV et al. Jun 2019 B2
10315566 Choi et al. Jun 2019 B2
10321907 Shelton, IV et al. Jun 2019 B2
10321909 Shelton, IV et al. Jun 2019 B2
10321927 Hinman Jun 2019 B2
10327743 St. Goar et al. Jun 2019 B2
10327764 Harris et al. Jun 2019 B2
10327765 Timm et al. Jun 2019 B2
10327767 Shelton, IV et al. Jun 2019 B2
10327769 Overmyer et al. Jun 2019 B2
10327776 Harris et al. Jun 2019 B2
10327777 Harris et al. Jun 2019 B2
D854032 Jones et al. Jul 2019 S
D854151 Shelton, IV et al. Jul 2019 S
10335144 Shelton, IV et al. Jul 2019 B2
10335145 Harris et al. Jul 2019 B2
10335147 Rector et al. Jul 2019 B2
10335148 Shelton, IV et al. Jul 2019 B2
10335149 Baxter, III et al. Jul 2019 B2
10335150 Shelton, IV Jul 2019 B2
10335151 Shelton, IV et al. Jul 2019 B2
10337148 Rouse et al. Jul 2019 B2
10342533 Shelton, IV et al. Jul 2019 B2
10342535 Scheib et al. Jul 2019 B2
10342541 Shelton, IV et al. Jul 2019 B2
10342543 Shelton, IV et al. Jul 2019 B2
10342623 Huelman et al. Jul 2019 B2
10349939 Shelton, IV et al. Jul 2019 B2
10349941 Marczyk et al. Jul 2019 B2
10349963 Fiksen et al. Jul 2019 B2
10350016 Burbank et al. Jul 2019 B2
10357246 Shelton, IV et al. Jul 2019 B2
10357247 Shelton, IV et al. Jul 2019 B2
10357248 Dalessandro et al. Jul 2019 B2
10357252 Harris et al. Jul 2019 B2
10363031 Alexander, III et al. Jul 2019 B2
10363033 Timm et al. Jul 2019 B2
10363036 Yates et al. Jul 2019 B2
10363037 Aronhalt et al. Jul 2019 B2
D855634 Kim Aug 2019 S
D856359 Huang et al. Aug 2019 S
10390830 Schulz Aug 2019 B2
10390897 Kostrzewski Aug 2019 B2
D860219 Rasmussen et al. Sep 2019 S
D861035 Park et al. Sep 2019 S
10398460 Overmyer Sep 2019 B2
10405932 Overmyer Sep 2019 B2
10405937 Black et al. Sep 2019 B2
10413370 Yates et al. Sep 2019 B2
10413373 Yates et al. Sep 2019 B2
10420548 Whitman et al. Sep 2019 B2
10420554 Collings et al. Sep 2019 B2
10420559 Marczyk et al. Sep 2019 B2
D861707 Yang Oct 2019 S
D862518 Niven et al. Oct 2019 S
D863343 Mazlish et al. Oct 2019 S
D864388 Barber Oct 2019 S
10426466 Contini et al. Oct 2019 B2
10426468 Contini et al. Oct 2019 B2
D865796 Xu et al. Nov 2019 S
10470767 Gleiman et al. Nov 2019 B2
10471282 Kirk et al. Nov 2019 B2
10471576 Totsu Nov 2019 B2
10478207 Lathrop Nov 2019 B2
D869655 Shelton, IV et al. Dec 2019 S
D870742 Cornell Dec 2019 S
10492851 Hughett, Sr. et al. Dec 2019 B2
10498269 Zemlok et al. Dec 2019 B2
10512461 Gupta et al. Dec 2019 B2
10517592 Shelton, IV et al. Dec 2019 B2
10537351 Shelton, IV et al. Jan 2020 B2
10542908 Mei et al. Jan 2020 B2
10542985 Zhan et al. Jan 2020 B2
10548673 Harris et al. Feb 2020 B2
10561432 Estrella et al. Feb 2020 B2
10561474 Adams et al. Feb 2020 B2
D879808 Harris et al. Mar 2020 S
D879809 Harris et al. Mar 2020 S
10595887 Shelton, IV et al. Mar 2020 B2
10595929 Boudreaux et al. Mar 2020 B2
10603117 Schings et al. Mar 2020 B2
10610236 Baril Apr 2020 B2
10617411 Williams Apr 2020 B2
10695081 Shelton, IV et al. Jun 2020 B2
D890784 Shelton, IV et al. Jul 2020 S
10772630 Wixey Sep 2020 B2
10772651 Shelton, IV et al. Sep 2020 B2
20010000531 Casscells et al. Apr 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20020014510 Richter et al. Feb 2002 A1
20020022810 Urich Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020022861 Jacobs et al. Feb 2002 A1
20020029032 Arkin Mar 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020042620 Julian et al. Apr 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020091374 Cooper Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020103494 Pacey Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020116063 Giannetti et al. Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020127265 Bowman et al. Sep 2002 A1
20020128633 Brock et al. Sep 2002 A1
20020134811 Napier et al. Sep 2002 A1
20020135474 Sylliassen Sep 2002 A1
20020143340 Kaneko Oct 2002 A1
20020151770 Noll et al. Oct 2002 A1
20020158593 Henderson et al. Oct 2002 A1
20020185514 Adams et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020188287 Zvuloni et al. Dec 2002 A1
20030009193 Corsaro Jan 2003 A1
20030011245 Fiebig Jan 2003 A1
20030012805 Chen et al. Jan 2003 A1
20030040670 Govari Feb 2003 A1
20030045835 Anderson et al. Mar 2003 A1
20030066858 Holgersson Apr 2003 A1
20030078647 Vallana et al. Apr 2003 A1
20030083648 Wang et al. May 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030094356 Waldron May 2003 A1
20030096158 Takano et al. May 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030121586 Mitra et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030149406 Martineau et al. Aug 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030163085 Tanner et al. Aug 2003 A1
20030164172 Chumas et al. Sep 2003 A1
20030181900 Long Sep 2003 A1
20030190584 Heasley Oct 2003 A1
20030195387 Kortenbach et al. Oct 2003 A1
20030205029 Chapolini et al. Nov 2003 A1
20030212005 Petito et al. Nov 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20040006335 Garrison Jan 2004 A1
20040006340 Latterell et al. Jan 2004 A1
20040007608 Ehrenfels et al. Jan 2004 A1
20040024457 Boyce et al. Feb 2004 A1
20040028502 Cummins Feb 2004 A1
20040030333 Goble Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040044295 Reinert et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040049121 Yaron Mar 2004 A1
20040049172 Root et al. Mar 2004 A1
20040059362 Knodel et al. Mar 2004 A1
20040068161 Couvillon Apr 2004 A1
20040068224 Couvillon et al. Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040070369 Sakakibara Apr 2004 A1
20040073222 Koseki Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040085180 Juang May 2004 A1
20040092992 Adams et al. May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040098040 Taniguchi et al. May 2004 A1
20040101822 Wiesner et al. May 2004 A1
20040102783 Sutterlin et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040110439 Chaikof et al. Jun 2004 A1
20040115022 Albertson et al. Jun 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040119185 Chen Jun 2004 A1
20040122419 Neuberger Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040133095 Dunki-Jacobs et al. Jul 2004 A1
20040133189 Sakurai Jul 2004 A1
20040143297 Ramsey Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20040158261 Vu Aug 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040166169 Malaviya et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040197367 Rezania et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040204735 Shiroff et al. Oct 2004 A1
20040218451 Said et al. Nov 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040225186 Horne et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040236352 Wang et al. Nov 2004 A1
20040243147 Lipow Dec 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040247415 Mangone Dec 2004 A1
20040249366 Kunz Dec 2004 A1
20040254455 Iddan Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Deli et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050006434 Wales Jan 2005 A1
20050010158 Brugger et al. Jan 2005 A1
20050010213 Stad et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050032511 Malone et al. Feb 2005 A1
20050033352 Zepf et al. Feb 2005 A1
20050051163 Deem et al. Mar 2005 A1
20050054946 Krzyzanowski Mar 2005 A1
20050057225 Marquet Mar 2005 A1
20050058890 Brazell et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050080342 Gilreath et al. Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125897 Wyslucha et al. Jun 2005 A1
20050129735 Cook et al. Jun 2005 A1
20050130682 Takara et al. Jun 2005 A1
20050131173 McDaniel et al. Jun 2005 A1
20050131211 Bayley et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131436 Johnston et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050139636 Schwemberger et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050145671 Viola Jul 2005 A1
20050150928 Kameyama et al. Jul 2005 A1
20050154258 Tartaglia et al. Jul 2005 A1
20050154406 Bombard et al. Jul 2005 A1
20050159778 Heinrich et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050177249 Kladakis et al. Aug 2005 A1
20050182298 Ikeda et al. Aug 2005 A1
20050182443 Jonn et al. Aug 2005 A1
20050184121 Heinrich Aug 2005 A1
20050186240 Ringeisen et al. Aug 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050209614 Fenter et al. Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050222587 Jinno et al. Oct 2005 A1
20050222611 Weitkamp Oct 2005 A1
20050222616 Rethy et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20050230453 Viola Oct 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050246881 Kelly et al. Nov 2005 A1
20050251063 Basude Nov 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050267455 Eggers et al. Dec 2005 A1
20050274034 Hayashida et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20050283226 Haverkost Dec 2005 A1
20060008787 Hayman et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060016853 Racenet Jan 2006 A1
20060020258 Strauss et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025812 Shelton Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052824 Ransick et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079735 Martone et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060086032 Valencic et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060089535 Raz et al. Apr 2006 A1
20060097699 Kamenoff May 2006 A1
20060100643 Laufer et al. May 2006 A1
20060100649 Hart May 2006 A1
20060106369 Desai et al. May 2006 A1
20060111711 Goble May 2006 A1
20060111723 Chapolini et al. May 2006 A1
20060116634 Shachar Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060144898 Bilotti et al. Jul 2006 A1
20060154546 Murphy et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060167471 Phillips Jul 2006 A1
20060173290 Lavallee et al. Aug 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060178556 Hasser et al. Aug 2006 A1
20060180633 Emmons Aug 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060185682 Marczyk Aug 2006 A1
20060190031 Wales Aug 2006 A1
20060199999 Ikeda et al. Sep 2006 A1
20060201989 Ojeda Sep 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060235368 Oz Oct 2006 A1
20060241666 Briggs et al. Oct 2006 A1
20060244460 Weaver Nov 2006 A1
20060252990 Kubach Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060258904 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060261763 Iott et al. Nov 2006 A1
20060263444 Ming et al. Nov 2006 A1
20060264831 Skwarek et al. Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060282064 Shimizu et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20060287576 Tsuji et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20060291981 Viola et al. Dec 2006 A1
20070009570 Kim et al. Jan 2007 A1
20070010702 Wang et al. Jan 2007 A1
20070010838 Shelton et al. Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070018958 Tavakoli et al. Jan 2007 A1
20070026039 Drumheller et al. Feb 2007 A1
20070026040 Crawley et al. Feb 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070027551 Farnsworth et al. Feb 2007 A1
20070043387 Vargas et al. Feb 2007 A1
20070049951 Menn Mar 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070073389 Bolduc et al. Mar 2007 A1
20070078328 Ozaki et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070088376 Zacharias Apr 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070103437 Rosenberg May 2007 A1
20070106113 Ravo May 2007 A1
20070106317 Shelton, IV May 2007 A1
20070134251 Ashkenazi et al. Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070152612 Chen et al. Jul 2007 A1
20070155010 Farnsworth et al. Jul 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070173687 Shima et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179477 Danger Aug 2007 A1
20070185545 Duke Aug 2007 A1
20070187453 Smith Aug 2007 A1
20070187857 Riley et al. Aug 2007 A1
20070190110 Pameijer et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070197954 Keenan Aug 2007 A1
20070198039 Jones et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070207010 Caspi Sep 2007 A1
20070208359 Hoffman Sep 2007 A1
20070208375 Nishizawa et al. Sep 2007 A1
20070213750 Weadock Sep 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070233163 Bombard et al. Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070244471 Malackowski Oct 2007 A1
20070244496 Hellenkamp Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070262592 Hwang et al. Nov 2007 A1
20070275035 Herman et al. Nov 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20070286892 Herzberg et al. Dec 2007 A1
20070290027 Maatta et al. Dec 2007 A1
20070296286 Avenell Dec 2007 A1
20080003196 Jonn et al. Jan 2008 A1
20080015598 Prommersberger Jan 2008 A1
20080021486 Oyola et al. Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080042861 Dacquay et al. Feb 2008 A1
20080051833 Gramuglia et al. Feb 2008 A1
20080064920 Bakos et al. Mar 2008 A1
20080064921 Larkin et al. Mar 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080077158 Haider et al. Mar 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080082114 McKenna et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080085296 Powell et al. Apr 2008 A1
20080086078 Powell et al. Apr 2008 A1
20080091072 Omori et al. Apr 2008 A1
20080105730 Racenet May 2008 A1
20080108443 Jinno et al. May 2008 A1
20080114250 Urbano et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080125749 Olson May 2008 A1
20080128469 Dalessandro et al. Jun 2008 A1
20080129253 Shiue et al. Jun 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080140115 Stopek Jun 2008 A1
20080140159 Bornhoft et al. Jun 2008 A1
20080147113 Nobis Jun 2008 A1
20080149682 Uhm Jun 2008 A1
20080154299 Livneh Jun 2008 A1
20080154335 Thrope et al. Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172087 Fuchs et al. Jul 2008 A1
20080177392 Williams et al. Jul 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080196253 Ezra et al. Aug 2008 A1
20080196419 Dube Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200835 Monson et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080206186 Butler et al. Aug 2008 A1
20080234709 Houser Sep 2008 A1
20080242939 Johnston Oct 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080249608 Dave Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255663 Akpek et al. Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080281171 Fennell et al. Nov 2008 A1
20080281332 Taylor Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080293910 Kapiamba et al. Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080298784 Kastner Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20080308605 Scirica Dec 2008 A1
20080312686 Ellingwood Dec 2008 A1
20080312687 Blier Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090004455 Gravagna et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012534 Madhani et al. Jan 2009 A1
20090015195 Loth-Krausser Jan 2009 A1
20090020958 Soul Jan 2009 A1
20090048583 Williams et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090081313 Aghion et al. Mar 2009 A1
20090088659 Graham et al. Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090092651 Shah et al. Apr 2009 A1
20090099579 Nentwick et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090112234 Crainich et al. Apr 2009 A1
20090118762 Crainch et al. May 2009 A1
20090119011 Kondo et al. May 2009 A1
20090131819 Ritchie et al. May 2009 A1
20090132400 Conway May 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090171147 Lee et al. Jul 2009 A1
20090177226 Reinprecht et al. Jul 2009 A1
20090181290 Baldwin et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090188965 Levin Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204108 Steffen Aug 2009 A1
20090204109 Grove et al. Aug 2009 A1
20090206124 Hall Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090221993 Sohi et al. Sep 2009 A1
20090227834 Nakamoto et al. Sep 2009 A1
20090234273 Lntoccia et al. Sep 2009 A1
20090236388 Cole Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090246873 Yamamoto et al. Oct 2009 A1
20090247368 Chiang Oct 2009 A1
20090247901 Zimmer Oct 2009 A1
20090248041 Williams et al. Oct 2009 A1
20090248100 Vaisnys et al. Oct 2009 A1
20090253959 Yoshie et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090261141 Stratton et al. Oct 2009 A1
20090262078 Pizzi Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090278406 Hoffman Nov 2009 A1
20090290016 Suda Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090306639 Nevo et al. Dec 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20090318557 Stockel Dec 2009 A1
20090325859 Ameer et al. Dec 2009 A1
20100005035 Carpenter et al. Jan 2010 A1
20100012703 Calabrese et al. Jan 2010 A1
20100015104 Fraser et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100017715 Balassanian Jan 2010 A1
20100023024 Zeiner et al. Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100065604 Weng Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100076483 Imuta Mar 2010 A1
20100076489 Stopek et al. Mar 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094083 Taylor Apr 2010 A1
20100094340 Stopek et al. Apr 2010 A1
20100100123 Bennett Apr 2010 A1
20100100124 Calabrese et al. Apr 2010 A1
20100116519 Gareis May 2010 A1
20100122339 Boccacci May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100137990 Apatsidis et al. Jun 2010 A1
20100138659 Carmichael et al. Jun 2010 A1
20100145146 Melder Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100179022 Shirokoshi Jul 2010 A1
20100180711 Kilibarda et al. Jul 2010 A1
20100191262 Harris et al. Jul 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100204717 Knodel Aug 2010 A1
20100204721 Young et al. Aug 2010 A1
20100217281 Matsuoka et al. Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100241137 Doyle et al. Sep 2010 A1
20100245102 Yokoi Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249947 Lesh et al. Sep 2010 A1
20100256675 Romans Oct 2010 A1
20100258327 Esenwein et al. Oct 2010 A1
20100267662 Fielder et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100292540 Hess et al. Nov 2010 A1
20100298636 Castro et al. Nov 2010 A1
20100301097 Scirica et al. Dec 2010 A1
20100310623 Laurencin et al. Dec 2010 A1
20100312261 Suzuki et al. Dec 2010 A1
20100318085 Austin et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110011916 Levine Jan 2011 A1
20110016960 Debrailly Jan 2011 A1
20110021871 Berkelaar Jan 2011 A1
20110022032 Zemlok et al. Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110025311 Chauvin et al. Feb 2011 A1
20110029270 Mueglitz Feb 2011 A1
20110034910 Ross et al. Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110046667 Culligan et al. Feb 2011 A1
20110052660 Yang et al. Mar 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110066156 McGahan et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110088921 Forgues et al. Apr 2011 A1
20110091515 Zilberman et al. Apr 2011 A1
20110095064 Taylor et al. Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110101794 Schroeder et al. May 2011 A1
20110112517 Peine et al. May 2011 A1
20110112530 Keller May 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110127945 Yoneda Jun 2011 A1
20110129706 Takahashi et al. Jun 2011 A1
20110144764 Bagga et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110172495 Armstrong Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110199225 Touchberry et al. Aug 2011 A1
20110218400 Ma et al. Sep 2011 A1
20110218550 Ma Sep 2011 A1
20110225105 Scholer et al. Sep 2011 A1
20110230713 Kleemann et al. Sep 2011 A1
20110238044 Main et al. Sep 2011 A1
20110241597 Zhu et al. Oct 2011 A1
20110256266 Orme et al. Oct 2011 A1
20110271186 Owens Nov 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276057 Conlon Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110290853 Shelton, IV Dec 2011 A1
20110290855 Moore Dec 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110290858 Whitman et al. Dec 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110313894 Dye et al. Dec 2011 A1
20110315413 Fisher et al. Dec 2011 A1
20120004636 Lo Jan 2012 A1
20120007442 Rhodes et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120016467 Chen et al. Jan 2012 A1
20120018326 Racenet Jan 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120033360 Hsu Feb 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120064483 Lint et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120086276 Sawyers Apr 2012 A1
20120095458 Cybulski et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116261 Mumaw et al. May 2012 A1
20120116262 Houser et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120118595 Pellenc May 2012 A1
20120123463 Jacobs May 2012 A1
20120125792 Cassivi May 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120132286 Lim et al. May 2012 A1
20120171539 Rejman et al. Jul 2012 A1
20120175398 Sandborn et al. Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120220990 Mckenzie et al. Aug 2012 A1
20120234893 Schuckmann Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120239009 Mollere Sep 2012 A1
20120239068 Morris et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120251861 Liang et al. Oct 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120271285 Sholev Oct 2012 A1
20120271327 West et al. Oct 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120289811 Viola et al. Nov 2012 A1
20120289979 Eskaros et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120296342 Haglund Wendelschafer Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120301498 Altreuter et al. Nov 2012 A1
20120303002 Chowaniec et al. Nov 2012 A1
20120330329 Harris et al. Dec 2012 A1
20130006227 Takashino Jan 2013 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130018400 Milton et al. Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130023910 Solomon et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130030462 Keating et al. Jan 2013 A1
20130041292 Cunningham Feb 2013 A1
20130057162 Pollischansky Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130090534 Burns et al. Apr 2013 A1
20130096568 Justis Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130105552 Weir et al. May 2013 A1
20130106352 Nagamine May 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130123816 Hodgkinson et al. May 2013 A1
20130126202 Oomori et al. May 2013 A1
20130131476 Siu et al. May 2013 A1
20130131651 Strobl et al. May 2013 A1
20130136969 Yasui et al. May 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130158390 Tan et al. Jun 2013 A1
20130162198 Yokota et al. Jun 2013 A1
20130169217 Watanabe et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130211244 Nathaniel Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130215449 Yamasaki Aug 2013 A1
20130233906 Hess et al. Sep 2013 A1
20130238021 Gross et al. Sep 2013 A1
20130245704 Koltz et al. Sep 2013 A1
20130248578 Arteaga Gonzalez Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256379 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130267978 Trissel Oct 2013 A1
20130270322 Scheib et al. Oct 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130306704 Balbierz et al. Nov 2013 A1
20130317753 Kamen et al. Nov 2013 A1
20130324982 Smith et al. Dec 2013 A1
20130327552 Lovelass et al. Dec 2013 A1
20130333910 Tanimoto et al. Dec 2013 A1
20130334278 Kerr Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014705 Baxter, III Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140018832 Shelton, IV Jan 2014 A1
20140039549 Belsky et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140081176 Hassan Mar 2014 A1
20140094681 Valentine et al. Apr 2014 A1
20140100558 Schmitz et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110456 Taylor Apr 2014 A1
20140115229 Kothamasu et al. Apr 2014 A1
20140131418 Kostrzewski May 2014 A1
20140135832 Park et al. May 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140158747 Measamer et al. Jun 2014 A1
20140166723 Beardsley et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140171966 Giordano et al. Jun 2014 A1
20140175147 Manoux et al. Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140181710 Baalu et al. Jun 2014 A1
20140188091 Vidal et al. Jul 2014 A1
20140188159 Steege Jul 2014 A1
20140207124 Aldridge et al. Jul 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140209658 Skalla et al. Jul 2014 A1
20140213848 Moskowitz et al. Jul 2014 A1
20140224857 Schmid Aug 2014 A1
20140228632 Sholev et al. Aug 2014 A1
20140228867 Thomas et al. Aug 2014 A1
20140230595 Butt et al. Aug 2014 A1
20140236173 Scirica Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140248167 Sugimoto et al. Sep 2014 A1
20140249557 Koch, Jr. et al. Sep 2014 A1
20140249573 Arav Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140276730 Boudreaux et al. Sep 2014 A1
20140276967 Fischvogt Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140288460 Ouyang et al. Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303645 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140309666 Shelton, IV et al. Oct 2014 A1
20140330161 Swayze et al. Nov 2014 A1
20140330298 Arshonsky et al. Nov 2014 A1
20140330579 Cashman et al. Nov 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140374130 Nakamura et al. Dec 2014 A1
20140378950 Chiu Dec 2014 A1
20150002089 Rejman et al. Jan 2015 A1
20150008248 Giordano et al. Jan 2015 A1
20150025549 Kilroy et al. Jan 2015 A1
20150038961 Clark et al. Feb 2015 A1
20150053737 Leimbach et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150060518 Shelton, IV et al. Mar 2015 A1
20150060519 Shelton, IV et al. Mar 2015 A1
20150060520 Shelton, IV et al. Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150066000 An et al. Mar 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150076208 Shelton, IV Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076211 Irka et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150080868 Kerr Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083782 Scheib et al. Mar 2015 A1
20150088127 Craig et al. Mar 2015 A1
20150088547 Balram et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150108199 Shelton, IV et al. Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150127021 Harris et al. May 2015 A1
20150134077 Shelton, IV et al. May 2015 A1
20150148830 Stulen et al. May 2015 A1
20150150554 Soltz Jun 2015 A1
20150150620 Miyamoto et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150182220 Yates et al. Jul 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150196296 Swayze et al. Jul 2015 A1
20150196299 Swayze et al. Jul 2015 A1
20150196348 Yates et al. Jul 2015 A1
20150201918 Kumar et al. Jul 2015 A1
20150201932 Swayze et al. Jul 2015 A1
20150201936 Swayze et al. Jul 2015 A1
20150201937 Swayze et al. Jul 2015 A1
20150201938 Swayze et al. Jul 2015 A1
20150201939 Swayze et al. Jul 2015 A1
20150201940 Swayze et al. Jul 2015 A1
20150201941 Swayze et al. Jul 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150222212 Iwata Aug 2015 A1
20150223868 Brandt et al. Aug 2015 A1
20150230697 Phee et al. Aug 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150238118 Legassey et al. Aug 2015 A1
20150272557 Overmyer et al. Oct 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272582 Leimbach et al. Oct 2015 A1
20150272604 Chowaniec et al. Oct 2015 A1
20150297200 Fitzsimmons et al. Oct 2015 A1
20150297222 Huitema et al. Oct 2015 A1
20150297223 Huitema et al. Oct 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150297228 Huitema et al. Oct 2015 A1
20150297229 Schellin et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150297234 Schellin et al. Oct 2015 A1
20150297235 Harris et al. Oct 2015 A1
20150302539 Mazar et al. Oct 2015 A1
20150303417 Koeder et al. Oct 2015 A1
20150313594 Shelton, IV et al. Nov 2015 A1
20150324317 Collins et al. Nov 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20150336249 Iwata et al. Nov 2015 A1
20150351762 Vendely et al. Dec 2015 A1
20150352699 Sakai et al. Dec 2015 A1
20150366585 Lemay et al. Dec 2015 A1
20150372265 Morisaku et al. Dec 2015 A1
20150374361 Gettinger et al. Dec 2015 A1
20150374369 Yates et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374375 Shelton, IV et al. Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20160000430 Ming et al. Jan 2016 A1
20160000431 Giordano et al. Jan 2016 A1
20160000437 Giordano et al. Jan 2016 A1
20160000438 Swayze et al. Jan 2016 A1
20160000442 Shelton, IV Jan 2016 A1
20160000452 Yates et al. Jan 2016 A1
20160000453 Yates et al. Jan 2016 A1
20160023342 Koenig et al. Jan 2016 A1
20160030042 Heinrich et al. Feb 2016 A1
20160051257 Shelton, IV et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160058443 Yates et al. Mar 2016 A1
20160066913 Swayze et al. Mar 2016 A1
20160069449 Kanai et al. Mar 2016 A1
20160074040 Widenhouse et al. Mar 2016 A1
20160074103 Sartor Mar 2016 A1
20160082161 Zilberman et al. Mar 2016 A1
20160089137 Hess et al. Mar 2016 A1
20160089146 Harris et al. Mar 2016 A1
20160089149 Harris et al. Mar 2016 A1
20160089198 Arya et al. Mar 2016 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160106431 Shelton, IV et al. Apr 2016 A1
20160113653 Zingman Apr 2016 A1
20160120544 Shelton, IV et al. May 2016 A1
20160120545 Shelton, IV et al. May 2016 A1
20160135835 Onuma May 2016 A1
20160166248 Deville et al. Jun 2016 A1
20160166255 Fischvogt Jun 2016 A1
20160166256 Baxter, III et al. Jun 2016 A1
20160166308 Manwaring et al. Jun 2016 A1
20160174974 Schmid et al. Jun 2016 A1
20160183939 Shelton, IV et al. Jun 2016 A1
20160183943 Shelton, IV Jun 2016 A1
20160183944 Swensgard et al. Jun 2016 A1
20160192916 Shelton, IV et al. Jul 2016 A1
20160192917 Shelton, IV et al. Jul 2016 A1
20160192918 Shelton, IV et al. Jul 2016 A1
20160192960 Bueno et al. Jul 2016 A1
20160192977 Manwaring et al. Jul 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160199061 Shelton, IV et al. Jul 2016 A1
20160199063 Mandakolathur Vasudevan et al. Jul 2016 A1
20160199089 Hess et al. Jul 2016 A1
20160199956 Shelton, IV et al. Jul 2016 A1
20160206310 Shelton, IV Jul 2016 A1
20160206314 Scheib et al. Jul 2016 A1
20160220248 Timm et al. Aug 2016 A1
20160220266 Shelton, IV et al. Aug 2016 A1
20160235403 Shelton, IV et al. Aug 2016 A1
20160235404 Shelton, IV Aug 2016 A1
20160235405 Shelton, IV et al. Aug 2016 A1
20160235409 Shelton, IV et al. Aug 2016 A1
20160235467 Godara et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160242777 Shelton, IV et al. Aug 2016 A1
20160242781 Shelton, IV et al. Aug 2016 A1
20160242782 Shelton, IV et al. Aug 2016 A1
20160242783 Shelton, IV et al. Aug 2016 A1
20160249910 Shelton, IV et al. Sep 2016 A1
20160249922 Morgan et al. Sep 2016 A1
20160256071 Shelton, IV et al. Sep 2016 A1
20160256154 Shelton, IV et al. Sep 2016 A1
20160256159 Pinjala et al. Sep 2016 A1
20160256160 Shelton, IV et al. Sep 2016 A1
20160256185 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160262746 Shelton, IV et al. Sep 2016 A1
20160262921 Balbierz et al. Sep 2016 A1
20160270780 Hall et al. Sep 2016 A1
20160278765 Shelton, IV et al. Sep 2016 A1
20160278771 Shelton, IV et al. Sep 2016 A1
20160287250 Shelton, IV et al. Oct 2016 A1
20160287253 Shelton, IV et al. Oct 2016 A1
20160287265 Macdonald et al. Oct 2016 A1
20160287279 Bovay et al. Oct 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160314716 Grubbs Oct 2016 A1
20160331375 Shelton, IV et al. Nov 2016 A1
20160345976 Gonzalez et al. Dec 2016 A1
20160346034 Arya et al. Dec 2016 A1
20160354085 Shelton, IV et al. Dec 2016 A1
20160354088 Cabrera et al. Dec 2016 A1
20160367122 Ichimura et al. Dec 2016 A1
20160367246 Baxter et al. Dec 2016 A1
20160367255 Wise et al. Dec 2016 A1
20160374672 Bear et al. Dec 2016 A1
20160374675 Shelton, IV et al. Dec 2016 A1
20160374678 Becerra et al. Dec 2016 A1
20170000485 Shelton, IV et al. Jan 2017 A1
20170000553 Wiener et al. Jan 2017 A1
20170007236 Shelton, IV et al. Jan 2017 A1
20170007237 Yates et al. Jan 2017 A1
20170007238 Yates et al. Jan 2017 A1
20170007239 Shelton, IV Jan 2017 A1
20170007241 Shelton, IV et al. Jan 2017 A1
20170007243 Shelton, IV et al. Jan 2017 A1
20170007244 Shelton, IV et al. Jan 2017 A1
20170007245 Shelton, IV et al. Jan 2017 A1
20170007246 Shelton, IV et al. Jan 2017 A1
20170007247 Shelton, IV et al. Jan 2017 A1
20170007248 Shelton, IV et al. Jan 2017 A1
20170007249 Shelton, IV et al. Jan 2017 A1
20170007250 Shelton, IV et al. Jan 2017 A1
20170007251 Yates et al. Jan 2017 A1
20170007347 Jaworek et al. Jan 2017 A1
20170014125 Shelton, IV et al. Jan 2017 A1
20170027572 Nalagatla et al. Feb 2017 A1
20170027573 Nalagatla et al. Feb 2017 A1
20170027574 Nalagatla et al. Feb 2017 A1
20170049444 Schellin et al. Feb 2017 A1
20170049447 Barton et al. Feb 2017 A1
20170049448 Widenhouse et al. Feb 2017 A1
20170055819 Hansen et al. Mar 2017 A1
20170055986 Harris et al. Mar 2017 A1
20170055991 Kang Mar 2017 A1
20170055998 Baxter, III et al. Mar 2017 A1
20170055999 Baxter, III et al. Mar 2017 A1
20170056000 Nalagatla et al. Mar 2017 A1
20170056002 Nalagatla et al. Mar 2017 A1
20170056005 Shelton, IV et al. Mar 2017 A1
20170056006 Shelton, IV et al. Mar 2017 A1
20170056007 Eckert et al. Mar 2017 A1
20170079642 Overmyer et al. Mar 2017 A1
20170086827 Vendely et al. Mar 2017 A1
20170086829 Vendely et al. Mar 2017 A1
20170086830 Yates et al. Mar 2017 A1
20170086831 Shelton, IV et al. Mar 2017 A1
20170086832 Harris et al. Mar 2017 A1
20170086836 Harris et al. Mar 2017 A1
20170086837 Vendely et al. Mar 2017 A1
20170086838 Harris et al. Mar 2017 A1
20170086842 Shelton, IV et al. Mar 2017 A1
20170086843 Vendely et al. Mar 2017 A1
20170086844 Vendely et al. Mar 2017 A1
20170086930 Thompson et al. Mar 2017 A1
20170095250 Kostrzewski et al. Apr 2017 A1
20170105733 Scheib et al. Apr 2017 A1
20170119386 Scheib et al. May 2017 A1
20170119388 Kostrzewski May 2017 A1
20170119390 Schellin et al. May 2017 A1
20170119392 Shelton, IV et al. May 2017 A1
20170119397 Harris et al. May 2017 A1
20170135695 Shelton, IV et al. May 2017 A1
20170135697 Mozdzierz et al. May 2017 A1
20170150983 Ingmanson et al. Jun 2017 A1
20170172382 Nir et al. Jun 2017 A1
20170172550 Mukherjee et al. Jun 2017 A1
20170172662 Panescu et al. Jun 2017 A1
20170172672 Bailey et al. Jun 2017 A1
20170182211 Raxworthy et al. Jun 2017 A1
20170189019 Harris et al. Jul 2017 A1
20170196554 Rousseau et al. Jul 2017 A1
20170196556 Shah et al. Jul 2017 A1
20170196558 Morgan et al. Jul 2017 A1
20170196561 Shelton, IV et al. Jul 2017 A1
20170196562 Shelton, IV et al. Jul 2017 A1
20170196631 Nagtegaal Jul 2017 A1
20170196637 Shelton, IV et al. Jul 2017 A1
20170196648 Ward et al. Jul 2017 A1
20170196649 Yates et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170202770 Friedrich et al. Jul 2017 A1
20170209145 Swayze et al. Jul 2017 A1
20170209146 Yates et al. Jul 2017 A1
20170209226 Overmyer et al. Jul 2017 A1
20170215881 Shelton, IV et al. Aug 2017 A1
20170215943 Allen, IV Aug 2017 A1
20170224330 Worthington et al. Aug 2017 A1
20170224331 Worthington et al. Aug 2017 A1
20170224332 Hunter et al. Aug 2017 A1
20170224334 Worthington et al. Aug 2017 A1
20170224335 Weaner et al. Aug 2017 A1
20170224339 Huang et al. Aug 2017 A1
20170224342 Worthington et al. Aug 2017 A1
20170224343 Baxter, III et al. Aug 2017 A1
20170231626 Shelton, IV et al. Aug 2017 A1
20170231627 Shelton, IV et al. Aug 2017 A1
20170231628 Shelton, IV et al. Aug 2017 A1
20170238928 Morgan et al. Aug 2017 A1
20170238929 Yates et al. Aug 2017 A1
20170238962 Hansen et al. Aug 2017 A1
20170245952 Shelton, IV et al. Aug 2017 A1
20170249431 Shelton, IV et al. Aug 2017 A1
20170258469 Shelton, IV et al. Sep 2017 A1
20170262110 Polishchuk et al. Sep 2017 A1
20170265774 Johnson et al. Sep 2017 A1
20170265856 Shelton, IV et al. Sep 2017 A1
20170281155 Shelton, IV et al. Oct 2017 A1
20170281162 Shelton, IV et al. Oct 2017 A1
20170281164 Harris et al. Oct 2017 A1
20170281166 Morgan et al. Oct 2017 A1
20170281167 Shelton, IV et al. Oct 2017 A1
20170281168 Shelton, IV et al. Oct 2017 A1
20170281169 Harris et al. Oct 2017 A1
20170281171 Shelton, IV et al. Oct 2017 A1
20170281172 Shelton, IV et al. Oct 2017 A1
20170281173 Shelton, IV et al. Oct 2017 A1
20170281174 Harris et al. Oct 2017 A1
20170281177 Harris et al. Oct 2017 A1
20170281179 Shelton, IV et al. Oct 2017 A1
20170281180 Morgan et al. Oct 2017 A1
20170281183 Miller et al. Oct 2017 A1
20170281184 Shelton, IV et al. Oct 2017 A1
20170281185 Miller et al. Oct 2017 A1
20170281186 Shelton, IV et al. Oct 2017 A1
20170281187 Shelton, IV et al. Oct 2017 A1
20170281189 Nalagatla et al. Oct 2017 A1
20170290584 Jasemian et al. Oct 2017 A1
20170290585 Shelton, IV et al. Oct 2017 A1
20170290586 Wellman Oct 2017 A1
20170296169 Yates et al. Oct 2017 A1
20170296170 Shelton, IV et al. Oct 2017 A1
20170296171 Shelton, IV et al. Oct 2017 A1
20170296172 Harris et al. Oct 2017 A1
20170296173 Shelton, IV et al. Oct 2017 A1
20170296177 Harris et al. Oct 2017 A1
20170296178 Miller et al. Oct 2017 A1
20170296179 Shelton, IV et al. Oct 2017 A1
20170296180 Harris et al. Oct 2017 A1
20170296185 Swensgard et al. Oct 2017 A1
20170296189 Vendely et al. Oct 2017 A1
20170296191 Shelton, IV et al. Oct 2017 A1
20170296213 Swensgard et al. Oct 2017 A1
20170311944 Morgan et al. Nov 2017 A1
20170311949 Shelton, IV Nov 2017 A1
20170311950 Shelton, IV et al. Nov 2017 A1
20170312041 Giordano et al. Nov 2017 A1
20170312042 Giordano et al. Nov 2017 A1
20170319201 Morgan et al. Nov 2017 A1
20170319207 Shelton, IV et al. Nov 2017 A1
20170319209 Morgan et al. Nov 2017 A1
20170325813 Aranyi et al. Nov 2017 A1
20170333034 Morgan et al. Nov 2017 A1
20170333035 Morgan et al. Nov 2017 A1
20170333070 Laurent et al. Nov 2017 A1
20170348010 Chiang Dec 2017 A1
20170348043 Wang et al. Dec 2017 A1
20170354413 Chen et al. Dec 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20170358052 Yuan Dec 2017 A1
20170360439 Chen et al. Dec 2017 A1
20170360441 Sgroi Dec 2017 A1
20170360442 Shelton, IV et al. Dec 2017 A1
20170364183 Xiao Dec 2017 A1
20170367695 Shelton, IV et al. Dec 2017 A1
20170367696 Shelton, IV et al. Dec 2017 A1
20170367697 Shelton, IV et al. Dec 2017 A1
20170367698 Shelton, IV et al. Dec 2017 A1
20170367699 Shelton, IV et al. Dec 2017 A1
20170367700 Leimbach et al. Dec 2017 A1
20170367991 Widenhouse et al. Dec 2017 A1
20180000483 Leimbach et al. Jan 2018 A1
20180000545 Giordano et al. Jan 2018 A1
20180008262 Whitman et al. Jan 2018 A1
20180008270 Moore et al. Jan 2018 A1
20180008271 Moore et al. Jan 2018 A1
20180008356 Giordano et al. Jan 2018 A1
20180008357 Giordano et al. Jan 2018 A1
20180028184 Shelton, IV et al. Feb 2018 A1
20180028185 Shelton, IV et al. Feb 2018 A1
20180042611 Swayze et al. Feb 2018 A1
20180049824 Harris et al. Feb 2018 A1
20180049883 Moskowitz et al. Feb 2018 A1
20180055513 Shelton, IV et al. Mar 2018 A1
20180055524 Shelton, IV et al. Mar 2018 A1
20180055525 Shelton, IV et al. Mar 2018 A1
20180055526 Shelton, IV et al. Mar 2018 A1
20180064437 Yates et al. Mar 2018 A1
20180064440 Shelton, IV et al. Mar 2018 A1
20180064441 Shelton, IV et al. Mar 2018 A1
20180064442 Shelton, IV et al. Mar 2018 A1
20180064443 Shelton, IV et al. Mar 2018 A1
20180070939 Giordano et al. Mar 2018 A1
20180070942 Shelton, IV et al. Mar 2018 A1
20180078248 Swayze et al. Mar 2018 A1
20180078268 Messerly et al. Mar 2018 A1
20180085116 Yates et al. Mar 2018 A1
20180085117 Shelton, IV et al. Mar 2018 A1
20180103952 Aronhalt et al. Apr 2018 A1
20180103953 Shelton, IV et al. Apr 2018 A1
20180103955 Shelton, IV et al. Apr 2018 A1
20180110516 Baxter, III et al. Apr 2018 A1
20180110518 Overmyer et al. Apr 2018 A1
20180110519 Lytle, IV et al. Apr 2018 A1
20180110520 Shelton, IV et al. Apr 2018 A1
20180110521 Shelton, IV et al. Apr 2018 A1
20180110522 Shelton, IV et al. Apr 2018 A1
20180110523 Shelton, IV Apr 2018 A1
20180110574 Shelton, IV et al. Apr 2018 A1
20180110575 Shelton, IV et al. Apr 2018 A1
20180114591 Pribanic et al. Apr 2018 A1
20180116658 Aronhalt, IV et al. May 2018 A1
20180116662 Shelton, IV et al. May 2018 A1
20180116665 Hall et al. May 2018 A1
20180125481 Yates et al. May 2018 A1
20180125484 Kostrzewski May 2018 A1
20180125487 Beardsley May 2018 A1
20180125488 Morgan et al. May 2018 A1
20180125489 Leimbach et al. May 2018 A1
20180125590 Giordano et al. May 2018 A1
20180125594 Beardsley May 2018 A1
20180126504 Shelton, IV et al. May 2018 A1
20180132845 Schmid et al. May 2018 A1
20180132849 Miller et al. May 2018 A1
20180132850 Leimbach et al. May 2018 A1
20180132851 Hall et al. May 2018 A1
20180132926 Asher et al. May 2018 A1
20180132952 Spivey et al. May 2018 A1
20180133856 Shelton, IV et al. May 2018 A1
20180140299 Weaner et al. May 2018 A1
20180140368 Shelton, IV et al. May 2018 A1
20180146960 Shelton, IV et al. May 2018 A1
20180150153 Yoon et al. May 2018 A1
20180153542 Shelton, IV et al. Jun 2018 A1
20180161034 Scheib et al. Jun 2018 A1
20180168575 Simms et al. Jun 2018 A1
20180168576 Hunter et al. Jun 2018 A1
20180168577 Aronhalt et al. Jun 2018 A1
20180168578 Aronhalt et al. Jun 2018 A1
20180168579 Aronhalt et al. Jun 2018 A1
20180168580 Hunter et al. Jun 2018 A1
20180168581 Hunter et al. Jun 2018 A1
20180168582 Swayze et al. Jun 2018 A1
20180168583 Hunter et al. Jun 2018 A1
20180168584 Harris et al. Jun 2018 A1
20180168585 Shelton, IV et al. Jun 2018 A1
20180168586 Shelton, IV et al. Jun 2018 A1
20180168589 Swayze et al. Jun 2018 A1
20180168590 Overmyer et al. Jun 2018 A1
20180168591 Swayze et al. Jun 2018 A1
20180168592 Overmyer et al. Jun 2018 A1
20180168593 Overmyer et al. Jun 2018 A1
20180168594 Shelton, IV et al. Jun 2018 A1
20180168595 Overmyer et al. Jun 2018 A1
20180168596 Beckman et al. Jun 2018 A1
20180168597 Fanelli et al. Jun 2018 A1
20180168598 Shelton, IV et al. Jun 2018 A1
20180168599 Bakos et al. Jun 2018 A1
20180168600 Shelton, IV et al. Jun 2018 A1
20180168601 Bakos et al. Jun 2018 A1
20180168602 Bakos et al. Jun 2018 A1
20180168603 Morgan et al. Jun 2018 A1
20180168604 Shelton, IV et al. Jun 2018 A1
20180168605 Baber et al. Jun 2018 A1
20180168606 Shelton, IV et al. Jun 2018 A1
20180168607 Shelton, IV et al. Jun 2018 A1
20180168608 Shelton, IV et al. Jun 2018 A1
20180168609 Fanelli et al. Jun 2018 A1
20180168610 Shelton, IV et al. Jun 2018 A1
20180168611 Shelton, IV et al. Jun 2018 A1
20180168612 Shelton, IV et al. Jun 2018 A1
20180168613 Shelton, IV et al. Jun 2018 A1
20180168614 Shelton, IV et al. Jun 2018 A1
20180168615 Shelton, IV et al. Jun 2018 A1
20180168616 Shelton, IV et al. Jun 2018 A1
20180168617 Shelton, IV et al. Jun 2018 A1
20180168618 Scott et al. Jun 2018 A1
20180168619 Scott et al. Jun 2018 A1
20180168620 Huang et al. Jun 2018 A1
20180168621 Shelton, IV et al. Jun 2018 A1
20180168622 Shelton, IV et al. Jun 2018 A1
20180168623 Simms et al. Jun 2018 A1
20180168624 Shelton, IV et al. Jun 2018 A1
20180168625 Posada et al. Jun 2018 A1
20180168626 Shelton, IV et al. Jun 2018 A1
20180168627 Weaner et al. Jun 2018 A1
20180168629 Shelton, IV et al. Jun 2018 A1
20180168630 Shelton, IV et al. Jun 2018 A1
20180168631 Harris et al. Jun 2018 A1
20180168632 Harris et al. Jun 2018 A1
20180168633 Shelton, IV et al. Jun 2018 A1
20180168634 Harris et al. Jun 2018 A1
20180168635 Shelton, IV et al. Jun 2018 A1
20180168636 Shelton, IV et al. Jun 2018 A1
20180168637 Harris et al. Jun 2018 A1
20180168638 Harris et al. Jun 2018 A1
20180168639 Shelton, IV et al. Jun 2018 A1
20180168640 Shelton, IV et al. Jun 2018 A1
20180168641 Harris et al. Jun 2018 A1
20180168642 Shelton, IV et al. Jun 2018 A1
20180168643 Shelton, IV et al. Jun 2018 A1
20180168644 Shelton, IV et al. Jun 2018 A1
20180168645 Shelton, IV et al. Jun 2018 A1
20180168646 Shelton, IV et al. Jun 2018 A1
20180168647 Shelton, IV et al. Jun 2018 A1
20180168648 Shelton, IV et al. Jun 2018 A1
20180168649 Shelton, IV et al. Jun 2018 A1
20180168650 Shelton, IV et al. Jun 2018 A1
20180168651 Shelton, IV et al. Jun 2018 A1
20180168715 Strobl Jun 2018 A1
20180199940 Zergiebel et al. Jul 2018 A1
20180206843 Yates et al. Jul 2018 A1
20180206906 Moua et al. Jul 2018 A1
20180214147 Merchant et al. Aug 2018 A1
20180221046 Demmy et al. Aug 2018 A1
20180221050 Kostrzewski et al. Aug 2018 A1
20180228490 Richard et al. Aug 2018 A1
20180242962 Walen et al. Aug 2018 A1
20180249999 Parihar et al. Sep 2018 A1
20180250001 Aronhalt et al. Sep 2018 A1
20180250020 Carusillo Sep 2018 A1
20180250086 Grubbs Sep 2018 A1
20180256184 Shelton, IV et al. Sep 2018 A1
20180271520 Shelton, IV et al. Sep 2018 A1
20180271604 Grout et al. Sep 2018 A1
20180273597 Stimson Sep 2018 A1
20180280020 Hess et al. Oct 2018 A1
20180280023 Timm et al. Oct 2018 A1
20180286274 Kamiguchi et al. Oct 2018 A1
20180289369 Shelton, IV et al. Oct 2018 A1
20180296211 Timm et al. Oct 2018 A1
20180296213 Strobl Oct 2018 A1
20180296215 Baxter, III et al. Oct 2018 A1
20180296216 Shelton, IV et al. Oct 2018 A1
20180296217 Moore et al. Oct 2018 A1
20180303481 Shelton, IV et al. Oct 2018 A1
20180303482 Shelton, IV et al. Oct 2018 A1
20180310931 Hall et al. Nov 2018 A1
20180310935 Wixey Nov 2018 A1
20180311002 Giordano et al. Nov 2018 A1
20180317907 Kostrzewski Nov 2018 A1
20180317916 Wixey Nov 2018 A1
20180317917 Huang et al. Nov 2018 A1
20180317918 Shelton, IV Nov 2018 A1
20180317919 Shelton, IV et al. Nov 2018 A1
20180325528 Windolf et al. Nov 2018 A1
20180325611 Robinson et al. Nov 2018 A1
20180333155 Hall et al. Nov 2018 A1
20180333169 Leimbach et al. Nov 2018 A1
20180344319 Shelton, IV et al. Dec 2018 A1
20180353170 Overmyer et al. Dec 2018 A1
20180353176 Shelton, IV et al. Dec 2018 A1
20180353177 Shelton, IV et al. Dec 2018 A1
20180353178 Shelton, IV et al. Dec 2018 A1
20180353179 Shelton, IV et al. Dec 2018 A1
20180360443 Shelton, IV et al. Dec 2018 A1
20180360444 Harris et al. Dec 2018 A1
20180360445 Shelton, IV et al. Dec 2018 A1
20180360446 Shelton, IV et al. Dec 2018 A1
20180360447 Shelton, IV et al. Dec 2018 A1
20180360448 Harris et al. Dec 2018 A1
20180360449 Shelton, IV et al. Dec 2018 A1
20180360450 Shelton, IV et al. Dec 2018 A1
20180360452 Shelton, IV et al. Dec 2018 A1
20180360454 Shelton, IV et al. Dec 2018 A1
20180360455 Shelton, IV et al. Dec 2018 A1
20180360456 Shelton, IV et al. Dec 2018 A1
20180360469 Shelton, IV et al. Dec 2018 A1
20180360471 Parfett et al. Dec 2018 A1
20180360472 Harris et al. Dec 2018 A1
20180360473 Shelton, IV et al. Dec 2018 A1
20180360549 Hares et al. Dec 2018 A1
20180368822 Shelton, IV et al. Dec 2018 A1
20180368833 Shelton, IV et al. Dec 2018 A1
20180368837 Morgan et al. Dec 2018 A1
20180368838 Shelton, IV et al. Dec 2018 A1
20180368839 Shelton, IV et al. Dec 2018 A1
20180368840 Shelton, IV et al. Dec 2018 A1
20180368841 Shelton, IV et al. Dec 2018 A1
20180368842 Shelton, IV et al. Dec 2018 A1
20180368843 Shelton, IV et al. Dec 2018 A1
20180368844 Bakos et al. Dec 2018 A1
20180368845 Bakos et al. Dec 2018 A1
20180368846 Shelton, IV et al. Dec 2018 A1
20180368847 Shelton, IV et al. Dec 2018 A1
20190000446 Shelton, IV et al. Jan 2019 A1
20190000447 Shelton, IV et al. Jan 2019 A1
20190000448 Shelton, IV et al. Jan 2019 A1
20190000450 Shelton, IV et al. Jan 2019 A1
20190000454 Swayze et al. Jan 2019 A1
20190000456 Shelton, IV et al. Jan 2019 A1
20190000457 Shelton, IV et al. Jan 2019 A1
20190000458 Shelton, IV et al. Jan 2019 A1
20190000459 Shelton, IV et al. Jan 2019 A1
20190000460 Shelton, IV et al. Jan 2019 A1
20190000461 Shelton, IV et al. Jan 2019 A1
20190000462 Shelton, IV et al. Jan 2019 A1
20190000463 Shelton, IV et al. Jan 2019 A1
20190000464 Shelton, IV et al. Jan 2019 A1
20190000465 Shelton, IV et al. Jan 2019 A1
20190000466 Shelton, IV et al. Jan 2019 A1
20190000467 Shelton, IV et al. Jan 2019 A1
20190000468 Adams et al. Jan 2019 A1
20190000469 Shelton, IV et al. Jan 2019 A1
20190000470 Yates et al. Jan 2019 A1
20190000471 Shelton, IV et al. Jan 2019 A1
20190000472 Shelton, IV et al. Jan 2019 A1
20190000473 Shelton, IV et al. Jan 2019 A1
20190000474 Shelton, IV et al. Jan 2019 A1
20190000475 Shelton, IV et al. Jan 2019 A1
20190000476 Shelton, IV et al. Jan 2019 A1
20190000477 Shelton, IV et al. Jan 2019 A1
20190000478 Messerly et al. Jan 2019 A1
20190000479 Harris et al. Jan 2019 A1
20190000525 Messerly et al. Jan 2019 A1
20190000528 Yates et al. Jan 2019 A1
20190000530 Yates et al. Jan 2019 A1
20190000531 Messerly et al. Jan 2019 A1
20190000534 Messerly et al. Jan 2019 A1
20190000538 Widenhouse et al. Jan 2019 A1
20190000565 Shelton, IV et al. Jan 2019 A1
20190003292 Balan et al. Jan 2019 A1
20190008509 Shelton, IV et al. Jan 2019 A1
20190008511 Kerr et al. Jan 2019 A1
20190015096 Shelton, IV et al. Jan 2019 A1
20190015102 Baber et al. Jan 2019 A1
20190015165 Giordano et al. Jan 2019 A1
20190029675 Yates et al. Jan 2019 A1
20190029676 Yates et al. Jan 2019 A1
20190029677 Yates et al. Jan 2019 A1
20190029678 Shelton, IV et al. Jan 2019 A1
20190029681 Swayze et al. Jan 2019 A1
20190029682 Huitema et al. Jan 2019 A1
20190029701 Shelton, IV et al. Jan 2019 A1
20190033955 Leimbach et al. Jan 2019 A1
20190038279 Shelton, IV et al. Feb 2019 A1
20190038281 Shelton, IV et al. Feb 2019 A1
20190038282 Shelton, IV et al. Feb 2019 A1
20190038283 Shelton, IV et al. Feb 2019 A1
20190038292 Zhang Feb 2019 A1
20190038371 Wixey et al. Feb 2019 A1
20190046181 McCuen Feb 2019 A1
20190046187 Yates et al. Feb 2019 A1
20190059886 Shelton, IV et al. Feb 2019 A1
20190076143 Smith Mar 2019 A1
20190090870 Shelton, IV et al. Mar 2019 A1
20190090871 Shelton, IV et al. Mar 2019 A1
20190091183 Tomat et al. Mar 2019 A1
20190099177 Yates et al. Apr 2019 A1
20190099178 Leimbach et al. Apr 2019 A1
20190099179 Leimbach et al. Apr 2019 A1
20190099180 Leimbach et al. Apr 2019 A1
20190099181 Shelton, IV et al. Apr 2019 A1
20190099182 Bakos et al. Apr 2019 A1
20190099183 Leimbach et al. Apr 2019 A1
20190099184 Setser et al. Apr 2019 A1
20190099224 Leimbach et al. Apr 2019 A1
20190099229 Spivey et al. Apr 2019 A1
20190102930 Leimbach et al. Apr 2019 A1
20190104919 Shelton, IV et al. Apr 2019 A1
20190105035 Shelton, IV et al. Apr 2019 A1
20190105036 Morgan et al. Apr 2019 A1
20190105037 Morgan et al. Apr 2019 A1
20190105038 Schmid et al. Apr 2019 A1
20190105039 Morgan et al. Apr 2019 A1
20190105043 Jaworek et al. Apr 2019 A1
20190105044 Shelton, IV et al. Apr 2019 A1
20190105049 Moore et al. Apr 2019 A1
20190110791 Shelton, IV et al. Apr 2019 A1
20190110792 Shelton, IV et al. Apr 2019 A1
20190110793 Parihar et al. Apr 2019 A1
20190117216 Overmyer et al. Apr 2019 A1
20190117217 Overmyer et al. Apr 2019 A1
20190117222 Shelton, IV et al. Apr 2019 A1
20190117224 Setser et al. Apr 2019 A1
20190117225 Moore et al. Apr 2019 A1
20190125320 Shelton, IV et al. May 2019 A1
20190125321 Shelton, IV et al. May 2019 A1
20190125335 Shelton, IV et al. May 2019 A1
20190125336 Deck et al. May 2019 A1
20190125337 Shelton, IV et al. May 2019 A1
20190125338 Shelton, IV et al. May 2019 A1
20190125339 Shelton, IV et al. May 2019 A1
20190125343 Wise et al. May 2019 A1
20190125344 DiNardo et al. May 2019 A1
20190125345 Baber et al. May 2019 A1
20190125347 Stokes et al. May 2019 A1
20190125348 Shelton, IV et al. May 2019 A1
20190125352 Shelton, IV et al. May 2019 A1
20190125353 Shelton, IV et al. May 2019 A1
20190125354 Deck et al. May 2019 A1
20190125355 Shelton, IV et al. May 2019 A1
20190125356 Shelton, IV et al. May 2019 A1
20190125357 Shelton, IV et al. May 2019 A1
20190125358 Shelton, IV et al. May 2019 A1
20190125359 Shelton, IV et al. May 2019 A1
20190125360 Shelton, IV et al. May 2019 A1
20190125361 Shelton, IV et al. May 2019 A1
20190125365 Parfett et al. May 2019 A1
20190125377 Shelton, IV May 2019 A1
20190125378 Shelton, IV et al. May 2019 A1
20190125379 Shelton, IV et al. May 2019 A1
20190125380 Hunter et al. May 2019 A1
20190125386 Shelton, IV et al. May 2019 A1
20190125387 Parihar et al. May 2019 A1
20190125388 Shelton, IV et al. May 2019 A1
20190125389 Shelton, IV et al. May 2019 A1
20190125430 Shelton, IV et al. May 2019 A1
20190125431 Shelton, IV et al. May 2019 A1
20190125432 Shelton, IV et al. May 2019 A1
20190125475 Wise et al. May 2019 A1
20190125476 Shelton, IV et al. May 2019 A1
20190133422 Nakamura May 2019 A1
20190133585 Smith et al. May 2019 A1
20190142421 Shelton, IV May 2019 A1
20190142449 Shelton, IV et al. May 2019 A1
20190159778 Shelton, IV et al. May 2019 A1
20190183490 Shelton, IV et al. Jun 2019 A1
20190183491 Shelton, IV et al. Jun 2019 A1
20190183492 Shelton, IV et al. Jun 2019 A1
20190183493 Shelton, IV et al. Jun 2019 A1
20190183494 Shelton, IV et al. Jun 2019 A1
20190183495 Shelton, IV et al. Jun 2019 A1
20190183496 Shelton, IV et al. Jun 2019 A1
20190183497 Shelton, IV et al. Jun 2019 A1
20190183498 Shelton, IV et al. Jun 2019 A1
20190183499 Shelton, IV et al. Jun 2019 A1
20190183500 Shelton, IV et al. Jun 2019 A1
20190183501 Shelton, IV et al. Jun 2019 A1
20190183502 Shelton, IV et al. Jun 2019 A1
20190183503 Shelton, IV et al. Jun 2019 A1
20190183504 Shelton, IV et al. Jun 2019 A1
20190183505 Vendely et al. Jun 2019 A1
20190183592 Shelton, IV et al. Jun 2019 A1
20190183594 Shelton, IV et al. Jun 2019 A1
20190183597 Shelton, IV et al. Jun 2019 A1
20190192137 Shelton, IV et al. Jun 2019 A1
20190192138 Shelton, IV et al. Jun 2019 A1
20190192141 Shelton, IV et al. Jun 2019 A1
20190192144 Parfett et al. Jun 2019 A1
20190192145 Shelton, IV et al. Jun 2019 A1
20190192146 Widenhouse et al. Jun 2019 A1
20190192147 Shelton, IV et al. Jun 2019 A1
20190192148 Shelton, IV et al. Jun 2019 A1
20190192149 Shelton, IV et al. Jun 2019 A1
20190192150 Widenhouse et al. Jun 2019 A1
20190192151 Shelton, IV et al. Jun 2019 A1
20190192152 Morgan et al. Jun 2019 A1
20190192153 Shelton, IV et al. Jun 2019 A1
20190192154 Shelton, IV et al. Jun 2019 A1
20190192155 Shelton, IV et al. Jun 2019 A1
20190192156 Simms et al. Jun 2019 A1
20190192157 Scott et al. Jun 2019 A1
20190192158 Scott et al. Jun 2019 A1
20190192159 Simms et al. Jun 2019 A1
20190192227 Shelton, IV et al. Jun 2019 A1
20190192235 Harris et al. Jun 2019 A1
20190192236 Shelton, IV et al. Jun 2019 A1
20190200844 Shelton, IV et al. Jul 2019 A1
20190200895 Shelton, IV et al. Jul 2019 A1
20190200981 Harris et al. Jul 2019 A1
20190200991 Moore et al. Jul 2019 A1
20190200992 Moore et al. Jul 2019 A1
20190200993 Moore et al. Jul 2019 A1
20190200994 Moore et al. Jul 2019 A1
20190200998 Shelton, IV et al. Jul 2019 A1
20190201025 Shelton, IV et al. Jul 2019 A1
20190201028 Shelton, IV et al. Jul 2019 A1
20190201045 Yates et al. Jul 2019 A1
20190201046 Shelton, IV et al. Jul 2019 A1
20190201047 Yates et al. Jul 2019 A1
20190201136 Shelton, IV et al. Jul 2019 A1
20190201137 Shelton, IV et al. Jul 2019 A1
20190201594 Shelton, IV et al. Jul 2019 A1
20190206562 Shelton, IV et al. Jul 2019 A1
20190206563 Shelton, IV et al. Jul 2019 A1
20190206564 Shelton, IV et al. Jul 2019 A1
20190206569 Shelton, IV et al. Jul 2019 A1
20190208641 Yates et al. Jul 2019 A1
20190209164 Timm et al. Jul 2019 A1
20190209165 Timm et al. Jul 2019 A1
20190209171 Shelton, IV et al. Jul 2019 A1
20190209172 Shelton, IV et al. Jul 2019 A1
20190209247 Giordano et al. Jul 2019 A1
20190209248 Giordano et al. Jul 2019 A1
20190209249 Giordano et al. Jul 2019 A1
20190209250 Giordano et al. Jul 2019 A1
20190216558 Giordano et al. Jul 2019 A1
20190223865 Shelton, IV et al. Jul 2019 A1
20190223871 Moore et al. Jul 2019 A1
20190261984 Nelson et al. Aug 2019 A1
20190261991 Beckman et al. Aug 2019 A1
20190267403 Li et al. Aug 2019 A1
20190269400 Mandakolathur Vasudevan et al. Sep 2019 A1
20190269402 Murray et al. Sep 2019 A1
20190269403 Baxter, III et al. Sep 2019 A1
20190269407 Swensgard et al. Sep 2019 A1
20190269428 Allen et al. Sep 2019 A1
20190274677 Shelton, IV Sep 2019 A1
20190274678 Shelton, IV Sep 2019 A1
20190274679 Shelton, IV Sep 2019 A1
20190274680 Shelton, IV Sep 2019 A1
20190274685 Olson et al. Sep 2019 A1
20190290263 Morgan et al. Sep 2019 A1
20190290264 Morgan et al. Sep 2019 A1
20190290265 Shelton, IV et al. Sep 2019 A1
20190290267 Baxter, III et al. Sep 2019 A1
20190290274 Shelton, IV Sep 2019 A1
20190290281 Aronhalt et al. Sep 2019 A1
20190298348 Harris et al. Oct 2019 A1
20190298360 Shelton, IV et al. Oct 2019 A1
20190298361 Shelton, IV et al. Oct 2019 A1
20190298362 Shelton, IV et al. Oct 2019 A1
20190307452 Shelton, IV et al. Oct 2019 A1
20190307453 Shelton, IV et al. Oct 2019 A1
20190307454 Shelton, IV et al. Oct 2019 A1
20190307455 Shelton, IV et al. Oct 2019 A1
20190307456 Shelton, IV et al. Oct 2019 A1
20190307476 Shelton, IV et al. Oct 2019 A1
20190307477 Shelton, IV et al. Oct 2019 A1
20190307478 Shelton, IV et al. Oct 2019 A1
20190307479 Shelton, IV et al. Oct 2019 A1
20190314016 Huitema et al. Oct 2019 A1
20190314017 Huitema et al. Oct 2019 A1
20190314018 Huitema et al. Oct 2019 A1
20190321039 Harris et al. Oct 2019 A1
20190321040 Shelton, IV Oct 2019 A1
20190321041 Shelton, IV Oct 2019 A1
20190328386 Harris et al. Oct 2019 A1
20190328387 Overmyer et al. Oct 2019 A1
20190328390 Harris et al. Oct 2019 A1
20190336128 Harris et al. Nov 2019 A1
20190343514 Shelton, IV et al. Nov 2019 A1
20190343515 Morgan et al. Nov 2019 A1
20190343518 Shelton, IV Nov 2019 A1
20190343525 Shelton, IV et al. Nov 2019 A1
20190350582 Shelton, IV et al. Nov 2019 A1
20190357909 Huitema et al. Nov 2019 A1
20190365384 Baxter et al. Dec 2019 A1
20190374224 Huitema et al. Dec 2019 A1
20190388089 Williams Dec 2019 A1
20200000461 Yates et al. Jan 2020 A1
20200000468 Shelton, IV et al. Jan 2020 A1
20200000469 Shelton, IV et al. Jan 2020 A1
20200000471 Shelton, IV et al. Jan 2020 A1
20200000531 Giordano et al. Jan 2020 A1
20200008800 Shelton, IV et al. Jan 2020 A1
20200008802 Aronhalt et al. Jan 2020 A1
20200008809 Shelton, IV et al. Jan 2020 A1
20200015815 Harris et al. Jan 2020 A1
20200015819 Shelton, IV et al. Jan 2020 A1
20200022702 Shelton, IV et al. Jan 2020 A1
20200029964 Overmyer et al. Jan 2020 A1
20200030050 Shelton, IV et al. Jan 2020 A1
20200038016 Shelton, IV et al. Feb 2020 A1
20200038018 Shelton, IV et al. Feb 2020 A1
20200038020 Yates et al. Feb 2020 A1
20200046348 Shelton, IV et al. Feb 2020 A1
20200046893 Shelton, IV et al. Feb 2020 A1
20200054320 Harris et al. Feb 2020 A1
20200054321 Harris et al. Feb 2020 A1
20200054322 Harris et al. Feb 2020 A1
20200054323 Harris et al. Feb 2020 A1
20200054324 Shelton, IV et al. Feb 2020 A1
20200054325 Harris et al. Feb 2020 A1
20200054326 Harris et al. Feb 2020 A1
20200054327 Harris et al. Feb 2020 A1
20200054328 Harris et al. Feb 2020 A1
20200054329 Shelton, IV et al. Feb 2020 A1
20200054330 Harris et al. Feb 2020 A1
20200054331 Harris et al. Feb 2020 A1
20200054332 Shelton, IV et al. Feb 2020 A1
20200054333 Shelton, IV et al. Feb 2020 A1
20200054334 Shelton, IV et al. Feb 2020 A1
20200054355 Laurent et al. Feb 2020 A1
20200060680 Shelton, IV et al. Feb 2020 A1
20200060681 Shelton, IV et al. Feb 2020 A1
20200060713 Leimbach et al. Feb 2020 A1
20200077994 Shelton, IV et al. Mar 2020 A1
20200078015 Miller et al. Mar 2020 A1
20200078016 Swayze et al. Mar 2020 A1
20200085427 Giordano et al. Mar 2020 A1
20200085431 Swayze et al. Mar 2020 A1
20200085435 Shelton, IV et al. Mar 2020 A1
20200085436 Beckman et al. Mar 2020 A1
20200085518 Giordano et al. Mar 2020 A1
20200093484 Shelton, IV et al. Mar 2020 A1
20200093485 Shelton, IV et al. Mar 2020 A1
20200093487 Baber et al. Mar 2020 A1
20200093488 Baber et al. Mar 2020 A1
20200093506 Leimbach et al. Mar 2020 A1
20200093550 Spivey et al. Mar 2020 A1
20200100699 Shelton, IV et al. Apr 2020 A1
20200100783 Yates et al. Apr 2020 A1
20200100787 Shelton, IV et al. Apr 2020 A1
20200107829 Shelton, IV et al. Apr 2020 A1
20200138434 Miller et al. May 2020 A1
20200138435 Shelton, IV et al. May 2020 A1
20200138436 Yates et al. May 2020 A1
20200138437 Vendely et al. May 2020 A1
20200146678 Leimbach et al. May 2020 A1
20200146741 Long et al. May 2020 A1
20200155151 Overmyer et al. May 2020 A1
20200155155 Shelton, IV et al. May 2020 A1
20200178958 Overmyer et al. Jun 2020 A1
20200178960 Overmyer et al. Jun 2020 A1
20200187943 Shelton, IV et al. Jun 2020 A1
20200214706 Vendely et al. Jul 2020 A1
20200214731 Shelton, IV et al. Jul 2020 A1
20200222047 Shelton, IV et al. Jul 2020 A1
20200229812 Parihar et al. Jul 2020 A1
20200229816 Bakos et al. Jul 2020 A1
20200237371 Huitema et al. Jul 2020 A1
20200246001 Ming et al. Aug 2020 A1
20200253605 Swayze et al. Aug 2020 A1
20200261106 Hess et al. Aug 2020 A1
20200268377 Schmid et al. Aug 2020 A1
20200268394 Parfett et al. Aug 2020 A1
20200275926 Shelton, IV et al. Sep 2020 A1
20200275927 Shelton, IV et al. Sep 2020 A1
20200275928 Shelton, IV et al. Sep 2020 A1
20200275930 Harris et al. Sep 2020 A1
20200281585 Timm et al. Sep 2020 A1
20200281587 Schmid et al. Sep 2020 A1
20200281590 Shelton, IV et al. Sep 2020 A1
20200297340 Hess et al. Sep 2020 A1
20200297341 Yates et al. Sep 2020 A1
20200297346 Shelton, IV et al. Sep 2020 A1
20200297438 Shelton, IV et al. Sep 2020 A1
20200305862 Yates et al. Oct 2020 A1
20200305863 Yates et al. Oct 2020 A1
20200305864 Yates et al. Oct 2020 A1
20200305865 Shelton, IV Oct 2020 A1
20200305868 Shelton, IV Oct 2020 A1
20200305869 Shelton, IV Oct 2020 A1
20200305870 Shelton, IV Oct 2020 A1
20200305871 Shelton, IV et al. Oct 2020 A1
20200305874 Huitema et al. Oct 2020 A1
Foreign Referenced Citations (436)
Number Date Country
2012200594 Feb 2012 AU
2012203035 Jun 2012 AU
2011218702 Jun 2013 AU
2012200178 Jul 2013 AU
112013027777 Jan 2017 BR
1015829 Aug 1977 CA
1125615 Jun 1982 CA
2520413 Mar 2007 CA
2725181 Nov 2007 CA
2851239 Nov 2007 CA
2664874 Nov 2009 CA
2813230 Apr 2012 CA
2940510 Aug 2015 CA
2698728 Aug 2016 CA
1163558 Oct 1997 CN
2488482 May 2002 CN
1634601 Jul 2005 CN
2716900 Aug 2005 CN
2738962 Nov 2005 CN
1777406 May 2006 CN
2796654 Jul 2006 CN
2868212 Feb 2007 CN
200942099 Sep 2007 CN
200984209 Dec 2007 CN
200991269 Dec 2007 CN
201001747 Jan 2008 CN
101143105 Mar 2008 CN
201029899 Mar 2008 CN
101378791 Mar 2009 CN
101507635 Aug 2009 CN
101522120 Sep 2009 CN
101669833 Mar 2010 CN
101721236 Jun 2010 CN
101828940 Sep 2010 CN
101873834 Oct 2010 CN
201719298 Jan 2011 CN
102038532 May 2011 CN
201879759 Jun 2011 CN
201949071 Aug 2011 CN
102217961 Oct 2011 CN
102217963 Oct 2011 CN
102247183 Nov 2011 CN
1 01779977 Dec 2011 CN
101912284 Jul 2012 CN
102125450 Jul 2012 CN
202313537 Jul 2012 CN
202397539 Aug 2012 CN
202426586 Sep 2012 CN
202489990 Oct 2012 CN
102228387 Nov 2012 CN
102835977 Dec 2012 CN
202568350 Dec 2012 CN
103037781 Apr 2013 CN
103505264 Jan 2014 CN
103584893 Feb 2014 CN
103690212 Apr 2014 CN
203564285 Apr 2014 CN
203564287 Apr 2014 CN
203597997 May 2014 CN
103829981 Jun 2014 CN
103829983 Jun 2014 CN
103908313 Jul 2014 CN
203693685 Jul 2014 CN
203736251 Jul 2014 CN
103981635 Aug 2014 CN
203815517 Sep 2014 CN
102783741 Oct 2014 CN
102973300 Oct 2014 CN
204092074 Jan 2015 CN
104337556 Feb 2015 CN
204158440 Feb 2015 CN
204158441 Feb 2015 CN
102469995 Mar 2015 CN
104586463 May 2015 CN
204636451 Sep 2015 CN
103860225 Mar 2016 CN
103750872 May 2016 CN
103648410 Oct 2016 CN
106344091 Jan 2017 CN
104349800 Nov 2017 CN
107635483 Jan 2018 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
19534043 Mar 1997 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
20016423 Feb 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
202004012389 Sep 2004 DE
10314072 Oct 2004 DE
102004014011 Oct 2005 DE
102004063606 Jul 2006 DE
202007003114 Jun 2007 DE
102010013150 Sep 2011 DE
102012213322 Jan 2014 DE
002220467-0008 Apr 2013 EM
0000756 Feb 1979 EP
0122046 Oct 1984 EP
0129442 Nov 1987 EP
0255631 Feb 1988 EP
0169044 Jun 1991 EP
0541950 May 1993 EP
0548998 Jun 1993 EP
0594148 Apr 1994 EP
0646357 Apr 1995 EP
0505036 May 1995 EP
0669104 Aug 1995 EP
0705571 Apr 1996 EP
0528478 May 1996 EP
0770355 May 1997 EP
0625335 Nov 1997 EP
0879742 Nov 1998 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0484677 Jul 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0726632 Oct 2000 EP
1053719 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
0806914 Sep 2001 EP
1234587 Aug 2002 EP
1284120 Feb 2003 EP
0717967 May 2003 EP
0869742 May 2003 EP
1374788 Jan 2004 EP
1407719 Apr 2004 EP
0996378 Jun 2004 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
1330989 Dec 2005 EP
1632191 Mar 2006 EP
1082944 May 2006 EP
1253866 Jul 2006 EP
1723914 Nov 2006 EP
1285633 Dec 2006 EP
1011494 Jan 2007 EP
1767163 Mar 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1599146 Oct 2007 EP
1330201 Jun 2008 EP
2039302 Mar 2009 EP
1719461 Jun 2009 EP
2116196 Nov 2009 EP
1769754 Jun 2010 EP
1627605 Dec 2010 EP
2316345 May 2011 EP
1962711 Feb 2012 EP
2486862 Aug 2012 EP
2486868 Aug 2012 EP
2517638 Oct 2012 EP
2606812 Jun 2013 EP
2649948 Oct 2013 EP
2649949 Oct 2013 EP
2668910 Dec 2013 EP
2687164 Jan 2014 EP
2713902 Apr 2014 EP
2743042 Jun 2014 EP
2764827 Aug 2014 EP
2777524 Sep 2014 EP
2842500 Mar 2015 EP
2853220 Apr 2015 EP
2298220 Jun 2016 EP
2510891 Jun 2016 EP
3031404 Jun 2016 EP
3047806 Jul 2016 EP
3078334 Oct 2016 EP
2364651 Nov 2016 EP
2747235 Nov 2016 EP
3095399 Nov 2016 EP
3120781 Jan 2017 EP
3135225 Mar 2017 EP
2789299 May 2017 EP
3225190 Oct 2017 EP
3363378 Aug 2018 EP
3275378 Jul 2019 EP
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2598905 Nov 1987 FR
2689749 Jul 1994 FR
2765794 Jan 1999 FR
2815842 May 2002 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2024012 Jan 1980 GB
2109241 Jun 1983 GB
2090534 Jun 1984 GB
2272159 May 1994 GB
2336214 Oct 1999 GB
2509523 Jul 2014 GB
930100110 Nov 1993 GR
S4711908 May 1972 JP
S5033988 Apr 1975 JP
55367286 Jun 1978 JP
S56112235 Sep 1981 JP
560113007 Jun 1985 JP
S62170011 Oct 1987 JP
S63270040 Nov 1988 JP
S63318824 Dec 1988 JP
H0129503 Jun 1989 JP
H0378514 Aug 1991 JP
H0385009 Aug 1991 JP
H04215747 Aug 1992 JP
H04131860 Dec 1992 JP
H0584252 Apr 1993 JP
H05123325 May 1993 JP
H 05226945 Sep 1993 JP
H0630945 Feb 1994 JP
H06237937 Aug 1994 JP
H06327684 Nov 1994 JP
H079622 Feb 1995 JP
H07124166 May 1995 JP
H07163573 Jun 1995 JP
H07255735 Oct 1995 JP
H07285089 Oct 1995 JP
H0833642 Feb 1996 JP
H08164141 Jun 1996 JP
H08182684 Jul 1996 JP
H08507708 Aug 1996 JP
H08229050 Sep 1996 JP
H08289895 Nov 1996 JP
H09-323068 Dec 1997 JP
H10118090 May 1998 JP
H10-200699 Jul 1998 JP
H 10296660 Nov 1998 JP
2000014632 Jan 2000 JP
2000033071 Feb 2000 JP
2000112002 Apr 2000 JP
2000166932 Jun 2000 JP
2000171730 Jun 2000 JP
2000271141 Oct 2000 JP
2000287987 Oct 2000 JP
2000325303 Nov 2000 JP
2001087272 Apr 2001 JP
2001514541 Sep 2001 JP
2001276091 Oct 2001 JP
2002051974 Feb 2002 JP
2002054903 Feb 2002 JP
2002085415 Mar 2002 JP
2002143078 May 2002 JP
2002153481 May 2002 JP
2002528161 Sep 2002 JP
2002314298 Oct 2002 JP
2003135473 May 2003 JP
2003521301 Jul 2003 JP
3442423 Sep 2003 JP
2003300416 Oct 2003 JP
2004147701 May 2004 JP
2004162035 Jun 2004 JP
2004229976 Aug 2004 JP
2005013573 Jan 2005 JP
2005080702 Mar 2005 JP
2005131163 May 2005 JP
2005131164 May 2005 JP
2005131173 May 2005 JP
2005131211 May 2005 JP
2005131212 May 2005 JP
2005137423 Jun 2005 JP
2005187954 Jul 2005 JP
2005211455 Aug 2005 JP
2005328882 Dec 2005 JP
2005335432 Dec 2005 JP
2005342267 Dec 2005 JP
3791856 Jun 2006 JP
2006187649 Jul 2006 JP
2006218228 Aug 2006 JP
2006281405 Oct 2006 JP
2006291180 Oct 2006 JP
2006346445 Dec 2006 JP
2007289715 Nov 2007 JP
D1322057 Feb 2008 JP
2008-220032 Sep 2008 JP
2009507526 Feb 2009 JP
2009189838 Aug 2009 JP
2009189846 Aug 2009 JP
2009207260 Sep 2009 JP
2009226028 Oct 2009 JP
2009538684 Nov 2009 JP
2009539420 Nov 2009 JP
D1383743 Feb 2010 JP
2010069307 Apr 2010 JP
2010069310 Apr 2010 JP
2010098844 Apr 2010 JP
2010214128 Sep 2010 JP
2011072574 Apr 2011 JP
4722849 Jul 2011 JP
4728996 Jul 2011 JP
2011524199 Sep 2011 JP
D1432094 Dec 2011 JP
2012115542 Jun 2012 JP
2012143283 Aug 2012 JP
5154710 Feb 2013 JP
2013099551 May 2013 JP
2013126430 Jun 2013 JP
D1481426 Sep 2013 JP
2013541983 Nov 2013 JP
D1492363 Feb 2014 JP
2014121599 Jul 2014 JP
1517663 Feb 2015 JP
2015512725 Apr 2015 JP
2015513956 May 2015 JP
2015513958 May 2015 JP
2015514471 May 2015 JP
2015521525 Jul 2015 JP
2016-512057 Apr 2016 JP
1601498 Apr 2018 JP
20100110134 Oct 2010 KR
20110003229 Jan 2011 KR
300631507 Mar 2012 KR
300747646 Jun 2014 KR
1814161 May 1993 RU
2008830 Mar 1994 RU
2052979 Jan 1996 RU
2066128 Sep 1996 RU
2069981 Dec 1996 RU
2098025 Dec 1997 RU
2104671 Feb 1998 RU
2110965 May 1998 RU
2141279 Nov 1999 RU
2144791 Jan 2000 RU
2161450 Jan 2001 RU
2181566 Apr 2002 RU
2187249 Aug 2002 RU
32984 Oct 2003 RU
2225170 Mar 2004 RU
42750 Dec 2004 RU
61114 Feb 2007 RU
61122 Feb 2007 RU
2430692 Oct 2011 RU
189517 Jan 1967 SU
297156 May 1971 SU
328636 Sep 1972 SU
511939 Apr 1976 SU
674747 Jul 1979 SU
728848 Apr 1980 SU
1009439 Apr 1983 SU
1271497 Nov 1986 SU
1333319 Aug 1987 SU
1377052 Feb 1988 SU
1377053 Feb 1988 SU
1443874 Dec 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
1814161 May 1993 SU
WO-9315648 Aug 1993 WO
WO-9420030 Sep 1994 WO
WO-9517855 Jul 1995 WO
WO-9520360 Aug 1995 WO
WO-9623448 Aug 1996 WO
WO-9635464 Nov 1996 WO
WO-9639086 Dec 1996 WO
WO-9639088 Dec 1996 WO
WO-9724073 Jul 1997 WO
WO-9734533 Sep 1997 WO
WO-9827870 Jul 1998 WO
WO-9903407 Jan 1999 WO
WO-9903409 Jan 1999 WO
WO-9948430 Sep 1999 WO
WO-0024322 May 2000 WO
WO-0024330 May 2000 WO
WO-0053112 Sep 2000 WO
WO-0024448 Oct 2000 WO
WO-0057796 Oct 2000 WO
WO-0105702 Jan 2001 WO
WO-0154594 Aug 2001 WO
WO-0158371 Aug 2001 WO
WO-0162164 Aug 2001 WO
WO-0162169 Aug 2001 WO
WO-0191646 Dec 2001 WO
WO-0219932 Mar 2002 WO
WO-0226143 Apr 2002 WO
WO-0236028 May 2002 WO
WO-02065933 Aug 2002 WO
WO-03055402 Jul 2003 WO
WO-03094747 Nov 2003 WO
WO-03079909 Mar 2004 WO
WO-2004019803 Mar 2004 WO
WO-2004032783 Apr 2004 WO
WO-2004047626 Jun 2004 WO
WO-2004047653 Jun 2004 WO
WO-2004056277 Jul 2004 WO
WO-2004078050 Sep 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004096015 Nov 2004 WO
WO-2006044581 Apr 2006 WO
WO-2006051252 May 2006 WO
WO-2006059067 Jun 2006 WO
WO-2006073581 Jul 2006 WO
WO-2006085389 Aug 2006 WO
WO-2007015971 Feb 2007 WO
WO-2007074430 Jul 2007 WO
WO-2007129121 Nov 2007 WO
WO-2007137304 Nov 2007 WO
WO-2007142625 Dec 2007 WO
WO-2008021969 Feb 2008 WO
WO-2008061566 May 2008 WO
WO-2008089404 Jul 2008 WO
WO-2009005969 Jan 2009 WO
WO-2009067649 May 2009 WO
WO-2009091497 Jul 2009 WO
WO-2010126129 Nov 2010 WO
WO-2010134913 Nov 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2012006306 Jan 2012 WO
WO-2012013577 Feb 2012 WO
WO-2012044606 Apr 2012 WO
WO-2012061725 May 2012 WO
WO-2012072133 Jun 2012 WO
WO-2012166503 Dec 2012 WO
WO-2013087092 Jun 2013 WO
WO-2013151888 Oct 2013 WO
WO-2014004209 Jan 2014 WO
WO-2014113438 Jul 2014 WO
WO-2015032797 Mar 2015 WO
WO-2015138760 Sep 2015 WO
WO-2015187107 Dec 2015 WO
WO-2016100682 Jun 2016 WO
WO-2016107448 Jul 2016 WO
Non-Patent Literature Citations (83)
Entry
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986).
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages).
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages).
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages).
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages).
“Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001)”, Mar. 1, 2001.
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached.
Covidien Brochure “iDrive™ Ultra Powered Stapling System,” (6 pages).
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en.
Data Sheet of LM4F230H5QR, 2007.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages.
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504.
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages).
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012.
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671.
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748.
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012.
Lyon et al. “The Relationship Between Current Load and Temperature for Quasi-Steady State and Transient Conditions,” SPIE—International Society for Optical Engineering. Proceedings, vol. 4020, (pp. 62-70), Mar. 30, 2000.
Anonymous: “Sense & Control Application Note Current Sensing Using Linear Hall Sensors,” Feb. 3, 2009, pp. 1-18. Retrieved from the Internet: URL: http://www.infineon.com/dgdl/Current_Sensing_Rev.1.1.pdf?fileId=db3a304332d040720132d939503e5f17 [retrieved on Oct. 18, 2016].
Mouser Electronics, “LM317M 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Mar. 31, 2014 (Mar. 31, 2014), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-8.
Mouser Electronics, “LM317 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Sep. 30, 2016 (Sep. 30, 2016), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-9.
Cuper et al., “The Use of Near-Infrared Light for Safe and Effective Visualization of Subsurface Blood Vessels to Facilitate Blood Withdrawal in Children,” Medical Engineering & Physics, vol. 35, No. 4, pp. 433-440 (2013).
Anonymous, Analog Devices Wiki, Chapter 11: The Current Mirror, Aug. 20, 2017, 22 pages. https://wiki.analog.com/university/courses/electronics/text/chapter-11?rev=1503222341.
Yan et al, Comparison of the effects of Mg—6Zn and Ti—3Al-2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages.
Yan et al., “Comparison of the effects of Mg—6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages.
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95.
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517.
Texas Instruments: “Current Recirculation and Decay Modes,” Application Report SLVA321—Mar. 2009; Retrieved from the Internet: URL:http://www.ti.com/lit/an/slva321/slva321 [retrieved on Apr. 25, 2017], 7 pages.
Qiu Li Loh et al.: “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size”, Tissue Engineering Part B-Reviews, vol. 19, No. 6, Dec. 1, 2013, pp. 485-502.
Gao et al., “Mechanical Signature Enhancement of Response Vibrations in the Time Lag Domain,” Fifth International Congress on Sound and Vibration, Dec. 15-18, 1997, pp. 1-8.
Trendafilova et al., “Vibration-based Methods for Structural and Machinery Fault Diagnosis Based on Nonlinear Dynamics Tools,” In: Fault Diagnosis in Robotic and Industrial Systems, IConcept Press Ltd, 2012, pp. 1-29.
Youtube.com; video by Fibran (retrieved from URL https://www.youtube.com/watch?v =vN2Qjt51gFQ); (Year: 2018).
“Foot and Ankle: Core Knowledge in Orthopaedics”; by DiGiovanni MD, Elsevier; (p. 27, left column, heading “Materials for Soft Orthoses”, 7th bullet point); (Year: 2007).
Lee, Youbok, “Antenna Circuit Design for RFID Applications,” 2003, pp. 1-50, DS00710C, Microchip Technology Inc., Available: http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf.
Kawamura, Atsuo, et al. “Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications,” Journal, May/Jun. 1996, pp. 503-508, vol. 32, No. 3, IEEE Transactions on Industry Applications.
Honda HS1332AT and ATD Model Info, powerequipment.honda.com [online], published on or before Mar. 22, 2016, [retrieved on May 31, 2019], retrieved from the Internet [URL: https://powerequipment.honda.com/snowblowers/models/hss1332at-hss1332atd] {Year: 2016).
Slow Safety Sign, shutterstock.com [online], published on or before May 9, 2017, [retrieved on May 31, 2019], retrieved from the https://www.shutterstock.com/image-victor/slow-safety-sign-twodimensional-turtle-symbolizing- . . . see PDF in file for full URL] (Year: 2017).
Warning Sign Beveled Buttons, by Peter, flarestock.com [online], published on or before Jan. 1, 2017, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.flarestock.com/stock-images/warning-sign-beveled-buttons/70257] (Year: 2017).
Arrow Sign Icon Next Button, by Blan-k, shutterstock.com [online], published on or before Aug. 6, 2014, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL:https://www.shutterstock.com/de/image-vector/arrow-sign-icon-next-button-navigation-207700303?irgwc=1&utm . . . see PDF in file for full URL] (Year: 2014).
Elite Icons, by smart/icons, iconfinder.com [online], published on Aug. 18, 2016, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.iconfinder.com/iconsets/elite] (Year: 2016).
“Tutorial overview of inductively coupled RFID Systems,” UPM, May 2003, pp. 1-7, UPM Rafsec,<http://cdn.mobiusconsulting.com/papers/rfidsystems.pdf>.
Schroeter, John, “Demystifying UHF Gen 2 RFID, HF RFID,” Online Article, Jun. 2, 2008, pp. 1-3, <https://www.edn.com/design/industrial-control/4019123/Demystifying-UHF-Gen-2-RFID-HF-RFID>.
Adeeb, et al., “An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications,” Research Article, Nov. 14, 2011, pp. 1-12, vol. 2012, Article ID. 879294, Hindawi Publishing Corporation.
“Pushing Pixels (GIF)”, published on dribble.com, 2013.
Sodium stearate C18H35NaO2, Chemspider Search and Share Chemistry, Royal Society of Chemistry, pp. 1-3, 2015, http://www.chemspider.com/Chemical-Structure.12639.html, accessed May 23, 2016.
NF Monographs: Sodium Stearate, U.S. Pharmacopeia, http://www.pharmacopeia.cn/v29240/usp29nf24s0_m77360.html, accessed May 23, 2016.
Fischer, Martin H, “Colloid-Chemical Studies on Soaps”, The Chemical Engineer, pp. 184-193, Aug. 1919.
V.K. Ahluwalia and Madhuri Goyal, A Textbook of Organic Chemistry, Section 19.11.3, p. 356, 2000.
A.V. Kasture and S.G. Wadodkar, Pharmaceutical Chemistry-II: Second Year Diploma in Pharmacy, Nirali Prakashan, p. 339, 2007.
Forum discussion regarding “Speed is Faster”, published on Oct. 1, 2014 and retrieved on Nov. 8, 2019 from URL https://english.stackexchange.com/questions/199018/how-is-that-correct-speed-is-faster-or-prices-are-cheaper (Year: 2014).
“Understanding the Requirements of ISO/IEC 14443 for Type B Proximity Contactless Identification Cards,” retrieved from https://www.digchip.com/application-notes/22/15746.php on Mar. 2, 2020, pp. 1-28 (Nov. 2005).
Jauchem, J.R., “Effects of low-level radio-frequency (3 kHz to 300 GHz) enery on human cardiovascular, reproductive, immune, and other systems: A review of the recent literatured,” Int. J. Hyg. Environ. Health 211 (2008) 1-29.
Ludois, Daniel C., “Capacitive Power Transfer for Rotor Field Current in Synchronous Machines,” IEEE Transactions on Power Electronics, Institute of Electrical and Electronics Engineers, USA, vol. 27, No. 11, Nov. 1, 2012, pp. 4638-4645.
Rotary Systems: Sealed Slip Ring Categories, Rotary Systems, May 22, 2017, retrieved from the internet: http://web.archive.org/we/20170522174710/http:/rotarysystems.com: 80/slip-rings/sealed/, retrieved on Aug. 12, 2020, pp. 1-2.
Sandvik, “Welding Handbook,” https://www.meting.rs/wp-content/uploads/2018/05/welding-handbook.pdf, retrieved on Jun. 22, 2020. pp. 5-6.
Related Publications (1)
Number Date Country
20180168628 A1 Jun 2018 US