Articulatable surgical instrument comprising a firing drive

Information

  • Patent Grant
  • 10758233
  • Patent Number
    10,758,233
  • Date Filed
    Wednesday, March 23, 2016
    8 years ago
  • Date Issued
    Tuesday, September 1, 2020
    4 years ago
Abstract
In various embodiments, a surgical stapling instrument can comprise a plurality of magnetic elements configured to articulate an end effector of the surgical instrument. The surgical instrument can comprise at least one electromagnet which can be selectively activated, or polarized, to generate a magnetic field sufficient to motivate a second magnetic element, such as a permanent magnet and/or an iron core, for example, mounted to the end effector. In certain embodiments, a surgical stapling instrument can comprise a plurality of magnetic elements configured to open and/or close an end effector of the surgical instrument. In at least one embodiment, a surgical stapling instrument can comprise a plurality of magnetic elements configured to advance and/or retract a firing bar, cutting member, and/or staple sled within the surgical instrument in order to incise and/or staple tissue positioned within an end effector of the surgical instrument.
Description
BACKGROUND
i. Technical Field

The present invention relates, in general, to surgical instruments and, more particularly, to surgical stapling instruments.


ii. Background of the Related Art

Surgical stapling instruments have been used to simultaneously make an incision in tissue and apply lines of staples on opposing sides of the incision. Such instruments commonly include a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparascopic applications, are capable of passing through a cannula passageway. In various embodiments, one of the jaw members can receive a staple cartridge having at least two laterally spaced rows of staples. The other jaw member can define an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument can further include a plurality of wedges, or a staple sled, which, when driven distally, passes through openings in the staple cartridge and engages drivers supporting the staples in order to effect the firing of the staples toward the anvil. The simultaneous severing of tissue while forming rows of staples on each side of the cut can reduce bleeding and simplify various surgical procedures. In certain circumstances, however, the force required to form the staples and incise the tissue simultaneously may be significant.


Previous surgical stapling instruments have included a handle assembly, an elongate shaft extending from the handle assembly, and an end effector movably mounted to the elongate shaft, wherein the end effector can be articulated relative to the elongate shaft. Often, a surgeon is required to use both hands in order to articulate the end effector relative to the shaft, i.e., the surgeon is often required to use one hand to hold the handle assembly of the surgical instrument, for example, and use their other hand to operate a lever, for example, which articulates the end effector. While such surgical instruments can be suitable in many circumstances, a surgeon may not have a hand free to perform another step in the surgical procedure. The foregoing discussion is intended only to illustrate some of the shortcomings present in the field of the invention at the time, and should not be taken as a disavowal of claim scope.


SUMMARY

In one general aspect, a surgical instrument can comprise a plurality of magnetic elements configured to articulate an end effector of the surgical instrument. The surgical instrument can comprise at least one electromagnet which can be selectively activated, or polarized, to generate a magnetic field sufficient to motivate at least one second magnetic element, such as a permanent magnet and/or an iron core, for example, mounted to the end effector. In various embodiments, a surgical instrument can comprise a first electromagnet configured to generate a first magnetic field which rotates an end effector in a first direction and, in addition, a second electromagnet configured to generate a second magnetic field which rotates the end effector in a second direction. In certain embodiments, a surgical instrument can comprise at least one solenoid which can be configured to pivot an end effector of the surgical instrument.


In one general aspect, a surgical instrument can comprise a motor which can be configured to pivot an end effector of the surgical instrument. In certain embodiments, the motor can comprise windings which can be selectively energized to rotate an iron core. In at least one embodiment, the motor can comprise at least one electromagnet which can be configured to rotate a shaft having at least one magnetic element mounted thereto. In various embodiments, a surgical instrument can further comprise a lock and/or brake which can be configured to prevent, or at least inhibit, the articulation of the end effector of the surgical instrument. In certain embodiments, a lock can comprise at least one solenoid, motor, and/or electromagnet which can be configured to move a locking element between locked and unlocked positions in order to engage and disengage the locking element with the end effector.


In one general aspect, a surgical instrument can comprise a plurality of magnetic elements configured to open and close an end effector of the surgical instrument. In certain embodiments, the surgical instrument can comprise at least one electromagnet which can be selectively activated, or polarized, to generate a magnetic field sufficient to motivate at least one second magnetic element, such as a permanent magnet and/or an iron core, for example, mounted to an anvil of the end effector. In another general aspect, a surgical stapling instrument can comprise a plurality of magnetic elements configured to advance and/or retract a firing bar, cutting member, and/or staple sled within the surgical instrument in order to incise and/or staple tissue positioned within an end effector of the surgical instrument. In certain embodiments, the cutting element can comprise at least one electromagnet mounted thereto which can be configured to generate a magnetic field configured to interact with one or more permanent magnets, for example, mounted to the end effector.


This Summary is intended to briefly outline certain embodiments of the subject application. It should be understood that the subject application is not limited to the embodiments disclosed in this Summary, and is intended to cover modifications that are within its spirit and scope, as defined by the claims. It should be further understood that this Summary should not be read or construed in a manner that will act to narrow the scope of the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1A is a perspective view of a surgical stapling instrument comprising a handle assembly, an elongate shaft extending from the handle assembly, and an articulatable end effector extending from the elongate shaft;



FIG. 1B is an exploded view of the end effector of the surgical instrument of FIG. 1;



FIG. 2 is a perspective view of an articulation joint connecting an end effector and an elongate shaft of a surgical instrument in accordance with at least one embodiment of the present invention, the articulation joint being illustrated with some components removed;



FIG. 3 is across-sectional view of the end effector of FIG. 2 illustrating a solenoid positioned within the elongate shaft of the surgical instrument, wherein the solenoid is configured to articulate the end effector;



FIG. 4 is a partial perspective view of the end effector, articulation joint, and elongate shaft of FIG. 2 illustrated with some components removed;



FIG. 5 is a side cross-sectional view of an articulation joint connecting an end effector and an elongate shaft of a surgical instrument in accordance with at least one embodiment of the present invention;



FIG. 6 is a bottom cross-sectional view of the surgical instrument of FIG. 5 taken along line 6-6 in FIG. 5 illustrating a solenoid-driven articulation lock;



FIG. 7 is a cross-sectional view of an articulation joint connecting an end effector and an elongate shaft of a surgical instrument in accordance with at least one embodiment of the present invention;



FIG. 8 is a detail view of the articulation joint of FIG. 7 illustrating a motor configured to articulate the end effector;



FIG. 9 is a cross-sectional view of an articulation joint connecting an end effector and an elongate shaft of a surgical instrument in accordance with at least one embodiment of the present invention;



FIG. 10 is a partial perspective view of the end effector, the articulation joint, and the elongate shaft of FIG. 9 illustrating a motor operably engaged with a worm gear configured to articulate the end effector;



FIG. 11 is another partial perspective view of the end effector, the articulation joint, and the elongate shaft of FIG. 9 illustrated with some components removed;



FIG. 12 is a partial perspective view of an articulation joint connecting an end effector and an elongate shaft of a surgical instrument in accordance with at least one embodiment of the present invention;



FIG. 13 is a cross-sectional view of the end effector, the articulation joint, and the elongate shaft of FIG. 12 illustrating a motor driven tube configured to articulate the end effector;



FIG. 14 is another partial perspective view of the end effector, the articulation joint, and the elongate shaft of FIG. 12 with some components removed and others illustrated in phantom lines;



FIG. 15 is an exploded view of the articulation joint of FIG. 12;



FIG. 16 is a perspective view of a surgical instrument having an articulation knob for articulating an end effector of the surgical instrument and a rotation knob for rotating the end effector;



FIG. 17 is a side cross-sectional view of a handle portion of the surgical instrument of FIG. 16;



FIG. 18 is a perspective cross-sectional view of the handle portion of FIG. 17;



FIG. 19 is an exploded view of the handle portion of FIG. 17;



FIG. 20 is a perspective view of a surgical instrument in accordance with at least one embodiment of the present invention comprising an articulation switch and a rotation switch;



FIG. 21 is a cross-sectional view of a handle portion of the surgical instrument of FIG. 20;



FIG. 22 is a perspective view of an articulation joint connecting an end effector and an elongate shaft of a surgical instrument in accordance with at least one embodiment of the present invention illustrated with some components removed;



FIG. 23 is a schematic illustrating electromagnets positioned within the elongate shaft of FIG. 22 configured to apply a magnetic force to permanent magnets mounted to the end effector of FIG. 22;



FIG. 24 is a cross-sectional view of the elongate shaft of FIG. 22;



FIG. 25 is a perspective view of an articulation joint connecting an end effector and an elongate shaft of a surgical instrument in accordance with at least one embodiment of the present invention with some components removed;



FIG. 26 is a cross-sectional view of the end effector of FIG. 25 illustrating a plurality of electromagnets;



FIG. 27 is a perspective view of an articulation joint connecting an end effector and an elongate shaft of a surgical instrument in accordance with at least one embodiment of the present invention illustrated with some components removed;



FIG. 28 is a cross-sectional view of the articulation joint of FIG. 27 illustrating a system of permanent magnets and electromagnets configured to articulate the end effector of the surgical instrument and another system of permanent magnets and electromagnets configured to lock the end effector in position relative to the elongate shaft of the surgical instrument;



FIG. 29 is a disassembled view of the articulation joint of FIG. 27 illustrated with some components removed;



FIG. 30 is an exploded view of the articulation joint of FIG. 27;



FIG. 31 is a cross-sectional view of the articulation joint of FIG. 27 illustrating the system of permanent magnets and electromagnets for articulating the end effector of the surgical instrument;



FIG. 32 is a cross-sectional view of the articulation joint of FIG. 27 illustrating the system of permanent magnets and electromagnets for locking the end effector in position;



FIG. 33 is a perspective view of a surgical instrument comprising a handle assembly, an elongate shaft, and an end effector articulatable relative to the elongate shaft in accordance with at least one embodiment of the present invention;



FIG. 34 is a cross-sectional view of an articulation joint connecting the elongate shaft and the end effector of FIG. 33, wherein the articulation joint comprises a plurality of discs;



FIG. 35 is a cross-sectional view of the articulation joint of FIG. 34 illustrating the articulation joint in an articulated configuration;



FIG. 36 is a cross-sectional perspective view of a disc of the articulation joint of FIG. 34 illustrating electromagnets positioned within a first set of apertures and wires extending through another set of apertures, the wires electrically coupling the electromagnets with a power source;



FIG. 37 is another cross-sectional perspective view of the disc of FIG. 36;



FIG. 38 is an assembly view of the disc of FIG. 36 and a second disc positioned adjacent thereto, wherein the second disc comprises a plurality of permanent magnets positioned within a first set of apertures and another set of apertures configured to permit the wires of FIG. 36 to extend therethrough;



FIG. 39 is an exploded view of the disc of FIG. 36;



FIG. 40 is an electrical schematic of the permanent magnets and electromagnets of the articulation joint of FIG. 34;



FIG. 41 is a partial perspective view of an articulation joint of a surgical instrument in accordance with at least one alternative embodiment of the present invention illustrated with some components removed and others shown in cross-section;



FIG. 42 is a cross-sectional view of the articulation joint of FIG. 41 illustrating alternating first and second discs of the articulation joint;



FIG. 43 is a cross-sectional view of the articulation joint of FIG. 41 illustrated in an articulated configuration;



FIG. 44 is an end view of the articulation joint of FIG. 41;



FIG. 45 is another cross-sectional view of the articulation joint of FIG. 41 illustrating the expanded and contracted configurations of electromagnet wires positioned within the discs of the articulation joint;



FIG. 46 is a cross-sectional view of an end effector of a surgical instrument in accordance with at least one embodiment of the present invention illustrating a plurality of permanent magnets positioned within an anvil of the end effector;



FIG. 47 is an elevational view of the anvil of FIG. 46;



FIG. 48 is an elevational view of a cutting member of the end effector of FIG. 46 comprising a plurality of electromagnets configured to cooperate with permanent magnets positioned in the end effector of the surgical instrument and advance and/or retract the cutting member within the end effector;



FIG. 49 is a perspective view of the cutting member of FIG. 48;



FIG. 50 is another cross-sectional view of the end effector of FIG. 46;



FIGS. 51A-51C illustrate distal, middle, and proximal portions of an elongate shaft of a surgical instrument and a movable firing bar positioned within the elongate shaft in accordance with at least one embodiment of the present invention;



FIG. 51A is a cross-sectional view of the distal portion of the elongate shaft and the movable firing bar illustrating an array of electromagnets positioned within the elongate shaft;



FIG. 51B is a cross-sectional view of the middle portion of the elongate shaft and the movable firing bar of FIG. 51A illustrating permanent magnets mounted to the firing bar and electromagnets positioned within the shaft;



FIG. 51C is a cross-sectional view of the proximal portion of the elongate shaft and the movable firing bar of FIG. 51A;



FIG. 52 is a cross-sectional view of the elongate shaft and the movable firing bar of FIGS. 51A-C;



FIG. 53 is another cross-sectional view of the distal portion of the elongate shaft and the movable firing bar of FIG. 51A illustrating the firing bar in a fired position;



FIG. 54 is a cross-sectional view of an elongate shaft of a surgical instrument according to at least one embodiment of the present invention illustrating a firing bar in an unfired position; and



FIG. 55 is a cross-sectional view of the surgical instrument of FIG. 54 illustrating the firing bar moved into a fired position by an electromagnetic coil.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate preferred embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.


The disclosures of the following commonly-owned, U.S. Patent Applications are incorporated herein by reference in their entirety:


(1) U.S. patent application Ser. No. 12/366,514, entitled SURGICAL STAPLING INSTRUMENT COMPRISING AN ARTICULATION JOINT, now U.S. Pat. No. 8,485,413; and


(2) U.S. patent application Ser. No. 12/366,539, entitled SURGICAL STAPLING INSTRUMENT, now U.S. Patent Application Publication No. 2010/0193566.


In various embodiments, referring to FIGS. 1A and 1B, a surgical instrument, such as surgical instrument 100, for example, can comprise a handle assembly 102, an elongate shaft 104 extending from handle assembly 102, and an end effector 106 which can be moved, or articulated, relative to elongate shaft 104 as described in greater detail further below. In at least one embodiment, handle assembly 102 can comprise a closure trigger 108 which can be configured to open and close end effector 106. More particularly, end effector 106 can comprise anvil 114 and, in addition, elongate shaft 104 can comprise closure tube 112 wherein the actuation of closure trigger 108 can displace closure tube 112 longitudinally in order to rotate anvil 114 between opened and closed positions relative to staple cartridge channel 113 and staple cartridge 115. In at least one embodiment, closure tube 112 can be configured to slide relative to a stationary portion of elongate shaft 104, such as spine 116 (FIG. 1B), for example. In certain embodiments, end effector 106 can further comprise a tube portion, such as distal tube portion 118, for example, which can be displaced by closure tube 112 in order open and/or close anvil 114. In at least one embodiment, surgical instrument 100 can further comprise one or more pivot links 211 (FIGS. 2 and 3) which can be configured to connect closure tube 112 to distal tube portion 118 and permit distal tube portion 118 to articulate relative to closure tube 112 when end effector 106 articulates relative to elongate shaft 104. In any event, once anvil 114 has been closed, firing trigger 110 of handle assembly 112 can be actuated to move a cutting and/or stapling member through end effector 106 in order to incise and/or staple tissue captured within end effector 106. After the tissue has been sufficiently incised and/or stapled, closure trigger 108 can be released in order to move closure tube 112 in an opposite longitudinal direction and open anvil 114. Other surgical instruments are disclosed in U.S. Pat. No. 7,441,685, entitled SURGICAL STAPLING INSTRUMENT WITH A RETURN MECHANISM, which issued on Oct. 28, 2008, the entire disclosure of which is hereby incorporated by reference herein. Further surgical instruments are disclosed in U.S. patent application Ser. No. 12/008,303, entitled SURGICAL STAPLING INSTRUMENT WITH A GEARED RETURN MECHANISM, which was filed on Jan. 10, 2008, now U.S. Pat. No. 7,658,311, and U.S. patent application Ser. No. 12/008,266, entitled SURGICAL STAPLING INSTRUMENT WITH A FIRING MEMBER RETURN MECHANISM, which was filed on Jan. 10, 2008, now U.S. Pat. No. 7,954,684, the entire disclosures of which are hereby incorporated by reference herein.


In various embodiments, referring once again to FIGS. 1A and 1B, a surgical instrument can further comprise an articulation joint, such as articulation joint 120, for example, which can be configured to permit end effector 106 to move relative to elongate shaft 104. In at least one embodiment, end effector 106 can further comprise a pivot plate 122 which can be retained within staple cartridge channel 113 by channel pin 124. As illustrated in FIG. 1B, channel pin 124 can be inserted, press-fit, and/or snap-fit into and/or through apertures 111 in cartridge channel 113 and aperture 121 in pivot plate 122 in order to secure pivot plate 122 to cartridge channel 113. In certain embodiments, pivot plate 122 can be immovably retained within staple cartridge channel 113. Further to the above, elongate shaft 104 can further comprise pin insert plate 126 which can be secured in position by spine 116 wherein, in at least one embodiment, pin insert plate 126 can be immovably retained within elongate shaft 104. Referring primarily to FIG. 1B, pivot plate 122 can further comprise pin aperture 123 which can be configured to receive articulation pin 127 extending from pin insert plate 126. In various embodiments, pin 127 and pin aperture 123 can be sized and configured to define an axis, such as axis 128, for example, about which staple cartridge channel 113 and pivot plate 122 can rotate relative to pin insert plate 126. As a result of the above, end effector 106 can be articulated relative to elongate shaft 104 in order to suitably position end effector 106 within a surgical site, for example. Once suitably positioned, end effector 106 can be locked in position relative to shaft 104. In certain embodiments, elongate shaft 104 can further comprise a lock or brake, such as lock 130, for example, which can be configured to selectively engage pivot plate 122, for example, and hold it in position relative to pin insert plate 126. In at least one such embodiment, pivot plate 122 can include one or more teeth 125 which can be captured within, or meshed with, one or more grooves 131 in the distal end of lock 130 such that relative movement between teeth 125 and grooves 131 is prevented, or at least limited.


In use, lock 130 can be disengaged from pivot plate 122 such that end effector 106 can be rotated relative to elongate shaft 104. Once lock 130 has been disengaged from pivot plate 122, in at least one such embodiment, end effector 106 can be placed against a cavity wall within a surgical site, such as the peritoneal cavity wall, for example, and a longitudinal force can be applied to shaft 104 via handle assembly 102 in order to rotate end effector 106 relative to elongate shaft 104. In certain circumstances, such articulation can be referred to as passive articulation. In any event, once end effector 106 has been suitably articulated, lock 130 can be re-engaged with pivot plate 122 and closure tube 112 can be advanced longitudinally by trigger 108 in order to close anvil 114 as described above. The reader will note that, when end effector 106 is moved between a straight position, i.e., a position in which it is aligned or at least substantially aligned with elongate shaft 104, and an articulated position, distal tube portion 118 can be moved between a first angle with respect to closure tube 112 and a second, or different, angle with respect to closure tube 112. In order to accommodate such relative movement, referring to FIGS. 2 and 3, pivot links 211 can be pivotably connected to distal tube portion 118 and closure tube 112 via pin projections 109 extending from pivot links 211 and via apertures 107 within tube portion 118 and closure tube 112. Pin projections 109 and pin apertures 107 can be configured such that pivot links 211 can provide at least one degree of freedom between distal tube portion 118 and closure tube 112. In such embodiments, pivot links 211 can permit distal tube 118 to articulate relative to closure tube 112 even though at least a portion of closure tube 112 has been advanced distally past articulation joint 120. In any event, once anvil 114 has been suitably closed, trigger 110 can be actuated to advance a firing bar distally into end effector 106. Although a firing bar is not illustrated in FIGS. 1A and 1B, surgical instrument 200, referring to FIGS. 2-4, includes a suitable firing bar 250 and cutting member 252 which can be configured to be advanced into and/or within end effector 106. In at least one embodiment, the elongate shaft and/or end effector of surgical instrument 100, for example, can include one or more slots configured for receiving and/or guiding firing bar 250 and/or cutting member 252 when they are advanced and/or retracted within the shaft and/or end effector of surgical instrument 100.


In various embodiments, referring to FIGS. 2-4, a surgical instrument, such as surgical instrument 200, for example, can include an elongate shaft 204 and an end effector 206, wherein end effector 206 can be configured to articulate relative to elongate shaft 204 about articulation joint 220. Similar to surgical instrument 100, end effector 206 can comprise a pivot plate 222 retained within a staple cartridge channel 213, wherein pivot plate 222 can comprise a pin aperture 223 configured to receive articulation pin 227 extending from pin insert plate 226. In various embodiments, referring primarily to FIG. 4, elongate shaft 204 can further comprise one or more actuators which can be configured to rotate, or pivot, end effector 206 relative to shaft 204. In at least one such embodiment, elongate shaft 204 can further comprise first solenoid 240 and second solenoid 242 mounted therein which can be operably engaged with pivot plate 222 such that the actuation of first solenoid 240 and/or second solenoid 242 can rotate pivot plate 222 about an axis, for example. In certain embodiments, first solenoid 240 can comprise a piston and/or rod 241 sufficiently mounted to pivot plate 222 such that pivot plate 222 can be pushed distally and/or pulled proximally by first solenoid 240 in order to rotate end effector 206 in clockwise (CW) and/or counter-clockwise (CCW) directions. In certain circumstances, such articulation can be referred to as active articulation.


In various embodiments, further to the above, rod 241 can be advanced distally in a direction indicated by arrow “D” in order to rotate end effector 206 in a clockwise direction indicated by arrow “CW”. In order to rotate end effector 206 in a counter-clockwise direction indicated by arrow “CCW”, rod 241 can be retracted proximally in a direction indicated by arrow “P”. In certain embodiments, rod 241 can include a distal end 245 which can be positioned within an aperture 246 in pivot plate 222 such that rod 241 can pivot relative pivot plate 222. In at least one embodiment, rod 241 can be suitably flexible to accommodate relative movement between pivot plate 222 and solenoid 240. In certain embodiments, solenoid 240 can be slidably and/or rotatably mounted within elongate shaft 204 such that rod 241 does not unsuitably bend or bind when it is extended or retracted to drive pivot plate 222 about an axis. In any event, referring to FIG. 3, solenoid 240 can include coils or windings 247 which can be energized by an electrical current and/or voltage in order to create a sufficient magnetic field to move rod 241 in a distal and/or proximal direction, depending on the direction in which the current is flowing through, and/or the polarity of the voltage applied to, the windings. In at least one such embodiment, piston and/or rod 241 can comprise an iron core, for example, which can be configured to interact with the magnetic field produced by the solenoid windings 247.


In certain embodiments, further to the above, elongate shaft 204 can include at least one additional solenoid, such as solenoid 242, for example, which can be configured to rotate pivot plate 222 contemporaneously with, and/or independently of, solenoid 240. In at least one such embodiment, solenoid 242 can comprise a piston and/or rod 243 which can be advanced distally and/or proximally in order to rotate end effector 206 in a clockwise and/or clockwise direction. Conversely to solenoid 240, rod 243 can be extended distally to rotate pivot plate 222 in a counter-clockwise direction and/or retracted proximally to rotate pivot plate 222 in a clockwise direction. Similar to solenoid 240, rod 243 can include a distal end 245 which can be pivotably mounted within an aperture 246 in pivot plate 222. Also similar to solenoid 240, solenoid 242 can be rotatably and/or slidably mounted within elongate shaft 204 in order to add at least one degree of freedom to a system of linkages comprising pivot plate 222, pin insert plate 226, solenoid 242, and rod 243 in order to permit articulation between end effector 206 and shaft 204.


As described above, an end effector of a surgical instrument can be locked into position once the end effector has been suitably articulated. In various embodiments, referring to FIGS. 5 and 6, a surgical instrument, such as surgical instrument 300, for example, can include an elongate shaft 304 and an end effector 306, wherein end effector 306 can be configured to articulate relative to elongate shaft 304 about articulation joint 320. Similar to surgical instrument 100, end effector 306 can comprise a pivot plate 322 retained within a staple cartridge channel 313, wherein pivot plate 322 can comprise a pin aperture 323 configured to receive articulation pin 327 extending from a pin insert plate 326 retained within elongate shaft 304. In certain embodiments, elongate shaft 304 can further comprise a lock, or brake, and a lock actuator which can be configured to engage the lock with pivot plate 322 and, as a result, hold pivot plate 322 in position relative to elongate shaft 304. In at least one embodiment, elongate shaft 304 can comprise lock actuator 332 which can be configured to move lock 330 distally to engage lock 330 with plate 322 and/or move lock 330 proximally to disengage lock 330 from plate 322. In at least one such embodiment, lock actuator 332 can comprise a solenoid mounted within elongate shaft 304 wherein the solenoid can comprise a piston and/or rod 333 which can be extended distally and/or retracted proximally by coils or windings 334. In certain embodiments, lock 330 can be mounted to rod 333 such that the displacement of rod 333 can displace lock 330 toward and/or away from pivot plate 322. Similar to the above, lock 330 can be biased into contact with pivot plate 322 such that groove 331 in the distal end of lock 330 can engage, or mesh with, a projection, or tooth, 325 extending from pivot plate 322. In at least one embodiment, lock actuator 332 can further comprise a biasing element, such as spring 335, for example, which can be configured to bias lock 330 into engagement with pivot plate 322. In at least one such embodiment, the solenoid of lock actuator 332 can overcome the biasing force applied by spring 335 in order to disengage lock 330 from pivot plate 322. In certain embodiments, spring 335 can be compressed between a flange 336 extending from lock 330 and a stationary, or at least substantially stationary, flange 337 in elongate shaft 306 such that spring 335 can apply a biasing force to lock 330. In at least one embodiment, spring 335 can comprise a linear spring wherein the force in which it applies can be proportional to the distance in which it is compressed.


In various embodiments, referring to FIGS. 7 and 8, a surgical instrument, such as surgical instrument 400, for example, can include one or more motors configured to articulate an end effector of the surgical instrument. In such embodiments, a motor can comprise an induction motor, a brushless DC motor, a stepper motor, and/or a synchronous motor, for example. In certain embodiments, surgical instrument 400 can comprise an elongate shaft 404 and an end effector 406, wherein end effector 406 can be configured to articulate relative to elongate shaft 404 about articulation joint 420. Similar to surgical instrument 100, end effector 406 can comprise a pivot plate 422 retained within a staple cartridge channel 413, wherein pivot plate 422 can comprise a pin aperture 423 configured to receive articulation pin 427 extending from a pin insert plate 426 retained within elongate shaft 404. In at least one embodiment, elongate shaft 404 can further comprise a motor, such as motor 440, for example, mounted therein which can be operably engaged with pivot plate 422 in order to rotate, or articulate, end effector 406 relative to shaft 404. More particularly, in at least one such embodiment, motor 440 can be configured to rotate a gear, such as spur gear 439, for example, which can be meshingly engaged with one or more teeth, such as teeth 429, for example, on pivot plate 422 such that the rotation of spur gear 439 can be transmitted to pivot plate 422. In at least one such embodiment, teeth 429 can be arranged in an at least partially annular array around the perimeter of pivot plate 422. In various embodiments, elongate shaft 404 can further comprise a gear box, such as gear box 441, for example, for reducing, and/or increasing, the gear ratio between an input shaft driven by motor 440 and an output shaft which drives spur gear 439.


Similar to the above, a surgical instrument, such as surgical instrument 500, for example, can include one or more motors configured to articulate an end effector of the surgical instrument using a worm drive arrangement. In various embodiments, surgical instrument 500 can comprise an elongate shaft 504 and an end effector 506, wherein end effector 506 can be configured to articulate relative to elongate shaft 504 about articulation joint 520. Similar to surgical instrument 400, end effector 506 can comprise a pivot plate 522 retained within a staple cartridge channel 513, wherein pivot plate 522 can comprise a pin aperture 523 configured to receive an articulation pin extending from a pin insert plate 526 retained within elongate shaft 504. In at least one embodiment, elongate shaft 504 can further comprise a motor, such as motor 540, for example, mounted therein which can be operably engaged with pivot plate 522 in order to rotate, or articulate, end effector 506 relative to shaft 504. More particularly, in at least one such embodiment, motor 540 can be configured to rotate a worm, such as worm 539, for example, which can be meshingly engaged with a worm gear, or concave worm wheel portion, 529 on pivot plate 522 such that the rotation of worm 539 can be transmitted to pivot plate 522. A worm drive arrangement, such as the one described above, for example, can provide a very large gear ratio such that a gear box is not required to reduce the speed of the motor, although a gear box can be used. In certain embodiments, a worm drive arrangement can be self-locking. More particularly, the lead angle of the helical thread on worm 539 can be such that end effector 506 and worm gear portion 529 cannot be rotated in order to drive worm 539 and motor 540 in reverse. Stated another way, worm gear portion 529 and worm 539 can be configured such that they are friction-locked together if a rotational force is applied to end effector 506. In certain embodiments, as a result, the articulation of end effector 506 relative to elongate shaft 504 can only be controlled by the selective rotation of worm 539 by motor 540 in clockwise and counter-clockwise directions in order to rotate end effector 506 in left and right directions, for example, about articulation joint 520. In at least one such embodiment, a separate articulation lock, such as those described above, for example, may not be required, although they can be used.


In various embodiments, at least a portion of an elongate shaft of a surgical instrument, such as surgical instrument 600, for example, can comprise a motor configured to articulate an end effector of a surgical instrument. In various embodiments, referring to FIGS. 12-15, surgical instrument 600 can comprise an elongate shaft 604 and an end effector 606, wherein end effector 606 can be configured to articulate relative to elongate shaft 604 about articulation joint 620. In various embodiments, end effector 606 can further comprise a pivot member 622 mounted therein wherein, in at least some embodiments, pivot member 622 can be immovably mounted within end effector 606. In addition, elongate shaft 604 can comprise one or more motors, such as motor 640, for example, which can be configured to rotate pivot member 622 about an axis defined by pivot pins 627a and 627b. In at least one embodiment, motor 640 can comprise a spine portion 616 mounted within elongate shaft 604 and, in addition, a pivot pin member 626 mounted to spine portion 616, wherein spine portion 616 and pivot pin member 626 can be immovably mounted within elongate shaft 604. Referring to FIG. 15, pivot pin member 626 can comprise upper and lower tines 626a, 626b extending therefrom, wherein pivot pins 627a and 627b can extend from tines 626a and 626b, respectively, and can be mounted within apertures 627c within tines 626a and 626b in any suitable manner such as by a press-fit relationship and/or an adhesive, for example. In various embodiments, pivot member 622 can include one or more apertures, such as aperture 623, for example, configured to closely receive pivot pins 627a and 627b such that pivot member 622 and end effector 606 can be rotated or articulated about an axis as described above.


In various embodiments, further to the above, spine portion 616 and/or pivot pin member 626 can include one or more apertures or recesses, such as apertures 651, for example, which can be configured to receive one or more electromagnets, such as electromagnets 647, for example, mounted therein. Although not illustrated, surgical instrument 600 can further comprise one or more conductors, such as insulated wires, for example, which can be configured to conduct an electrical current through the wires when a current source and/or voltage source, such as a battery, for example, is operably coupled with the conductors. In at least one such embodiment, the conductors can extend from a handle assembly of the surgical instrument, such as handle assembly 102, for example, to the distal end of elongate shaft 606, wherein the conductors can be wrapped or coiled around ferromagnetic cores, which can be comprised of iron and/or cobalt, for example, to comprise electromagnets 647a and 647b. In use, in at least one embodiment, a surgical instrument can further include a switch, or actuator, which can be operated to selectively couple the current source and/or voltage source to the conductors. In certain embodiments, when electrical current is not flowing through the conductors, electromagnets 647a, 647b may not generate a magnetic field and, when sufficient electrical current is flowing through the conductors, the electrical current can generate one or more magnetic fields which can be utilized to rotate driver 639. Referring primarily to FIG. 15, driver 639 can include one or more magnetic elements mounted thereto which, when exposed to the magnetic field, or fields, created by electromagnets 647, can interact with the magnetic field, or fields, and cause driver 639 to rotate. In at least one such embodiment, driver 639 can comprise one or more apertures ore recesses, such as apertures 648, for example, which can be configured to receive one or more permanent magnets 649 therein.


In various embodiments, further to the above, permanent magnets 649 can comprise a magnetic polarity regardless of whether they are present in a magnetic field. In at least one embodiment, each permanent magnet 649 can comprise a positive, or north, pole 649n and a negative, or south, pole 649s, wherein poles 649n and 649s can be arranged such that, when the magnetic field, or fields, produced by the electromagnets 647a and 647b are selectively produced, such magnetic fields can interact with magnetic fields produced by permanent magnets 649 and, as a result, rotate driver 639. In various embodiments, driver 639 can be closely received and rotatably supported within aperture 654 in spine 616 such that driver 639 can be rotated about an axis when permanent magnets 649 are displaced within the magnetic field produced by electromagnets 647a, 647b. As outlined above, electromagnets 647a and 647b can be selectively energized to create a magnetic field which, owing to the polarity of permanent magnets 649, causes permanent magnets 649 to be displaced within the magnetic field(s). In various embodiments, electromagnets 647a and 647b can be energized such that electromagnets 647a have a different polarity than the polarity of electromagnets 647b. In at least one embodiment, electromagnets 647a and 647b can be energized such that they have opposite polarities, or different positive (north) and negative (south) poles, and such that the poles of electromagnets 647a and 647b are arranged in an alternating fashion. In various embodiments, the direction of current flowing through the conductors wrapped around the cores of electromagnets 647a, 647b can determine the polarity of the magnetic field(s) generated by the electromagnets. In use, the direction of the current flowing through the conductors as described above can be repeatedly switched, or alternated, such that the polarities of one or more of the electromagnets 647a and 647b can be repeatedly switched, or alternated, in order to attract and/or repel permanent magnets 649 in a manner such that driver 639 can be continuously rotated in clockwise and/or counter-clockwise directions, for example.


As described above, the operation of permanent magnets 647a, 647b can rotate driver 639 in a clockwise and/or counter-clockwise direction. In various embodiments, driver 639 can further comprise one or more gear portions, or drive teeth, which can be configured to engage or mate with a corresponding gear portion, or drive teeth, on pivot member 622. More particularly, in at least one embodiment, driver 639 can include a first gear portion 639a extending therefrom which can be configured to engage a first gear portion 629a extending from pivot member 622 such that, when driver 639 is rotated as described above, first gear portion 639a can drive first gear portion 629a to pivot or articulate pivot member 622 and, correspondingly, end effector 606 about pivot pins 627a and 627b. In at leAst one such embodiment, referring primarily to FIG. 14, driver 639 can be rotated in a first direction indicated by arrow D1 in order to rotate end effector 606 in a clockwise direction indicated by arrow CW and, in addition, driver 639 can be rotated in a second direction indicated by arrow D2 in order to rotate end effector 606 in a counter-clockwise direction indicated by arrow CCW. In at least one embodiment, as a result, driver 639 can be rotated about a first axis and end effector 606 can be rotated about a second axis, wherein the first axis and the second axis can be perpendicular, or at least substantially perpendicular, to each other. In other embodiments, the first and second axes may be non-parallel, transverse, and/or skew to one another. In various embodiments, referring again to FIG. 14, driver 639 can further include a second gear portion 639b which can be operably engaged with a second gear portion 629b of pivot member 622 via a transmission gear 653. In at least one such embodiment, transmission gear 653 can be rotatably mounted to pivot pin member 626 by a pin, such as pin 655, for example, such that, when driver 639 is rotated in direction D1 as described above, second gear portion 639b can assist first gear portion 639a in rotating pivot member 622 in a clockwise direction CW, for example.


As outlined above, a surgical instrument can include a handle assembly for operating the surgical instrument. In various embodiments, referring now to FIGS. 16 and 17, a surgical instrument, such as surgical instrument 700, for example, can comprise a frame 701, a closure trigger 108 pivotably mounted to frame 701, and, in addition, a firing trigger 110 also pivotably mounted to frame 701. Similar to surgical instrument 100, the operation of closure trigger 108, and the closure drive associated therewith, can displace closure tube 712 longitudinally along elongate shaft 704 in order to open and close anvil 114. In certain embodiments, referring primarily now to FIG. 17, the closure drive can comprise a retaining collar 108b slidably positioned within frame 701 and, in addition, a closure link 108a pivotably mounted to retaining collar 108b and trigger 108. In at least one such embodiment, at least a portion of closure tube 712 can be retained within retaining collar 108b such that the rotation of closure trigger 108 toward pistol grip 103 can displace closure link 108a, retaining collar 108b, and closure tube 712 distally, i.e., in a direction indicated by arrow D.


In addition to the closure drive described above, handle assembly 702 can further comprise an articulation system configured to rotate a driver, such as driver 739, for example, in order to articulate end effector 706 relative to elongate shaft 704. In at least one such embodiment, handle assembly 702 can further comprise articulation knob 760 which can be moved between locked and unlocked positions wherein, in certain embodiments, referring primarily to FIG. 17, articulation knob 760 can be slid between a first, or distal, position in which it is locked to rotation knob 770 and a second, or proximal, position in which it is unlocked from rotation knob 770. Referring primarily to FIG. 19, articulation knob 760 can comprise one or more locking teeth, or projections, 761 which can be configured to be engaged with one or more locking teeth, or projections, 771 on rotation knob 770 such that articulation knob 760 cannot be rotated relative to rotation knob 770 when articulation knob 760 is positioned in its locked, or distal, position. In at least one such embodiment, as a result, articulation knob 760 cannot be utilized to rotate driver 739 and articulate end effector 706 when articulation knob 760 is in its locked position.


Further to the above, when articulation knob 760 is moved into its unlocked, or proximal, position, locking teeth 761 can be sufficiently disengaged from locking teeth 771 such that articulation knob 760 can be rotated relative to rotation knob 770. In at least one such embodiment, referring again to FIG. 16, articulation knob 760 can be rotated in a first direction indicated by arrow D1 in order to rotate end effector 706 in a clockwise direction indicated by arrow CW and, correspondingly, articulation knob 760 can be rotated in a second direction indicated by arrow D2 in order to rotate end effector 706 in a counter-clockwise direction indicated by arrow CCW, for example. Referring primarily to FIG. 18, articulation knob 760 can be operably engaged with spline ring 763 such that, when articulation knob 760 is rotated, spline ring 763 can be rotated by articulation knob 760. In at least one such embodiment, referring to FIG. 18, spline ring 763 can include one or more splines 764 which can be configured to permit articulation knob 760 to be slid between its locked and unlocked positions, yet transmit rotational motion to spline ring 763. In various embodiments, referring now to FIG. 19, spline ring 763 can comprise two or more portions which can be assembled together such that spline ring 763 encompasses at least a portion of closure tube 712. In at least one such embodiment, closure tube 712 can include an aperture, or window, 765 which can be configured to permit at least a portion of spline ring 763 to extend through closure tube 712 and operably engage driver 739. More particularly, spline ring 763 can further comprise one or more projections, or keys, 766 extending therefrom which can be received within one or more apertures 767 in driver 739 such that, when spline ring 763 is rotated by articulation knob 760, spline ring 763 can rotate driver 739. In various embodiments, as a result, articulation knob 760 and driver 739 can be rotated relative to closure tube 712 and spine member 716 when articulation knob 760 is in its unlocked position.


In use, as outlined above, articulation knob 760 can be pulled proximally to disengage locking teeth 761 from locking teeth 771 of rotation knob 770. In various embodiments, referring generally to FIG. 16, articulation knob 760 can further comprise lip 769 extending therefrom wherein, in at least one embodiment, lip 769 can be configured to allow a surgeon to grasp lip 769 with one or more fingers and pull articulation knob 760 proximally. In such circumstances, referring to FIG. 17, articulation knob 760 can compress a biasing member, such as spring 768, for example, positioned intermediate articulation knob 760 and rotation knob 770. In certain embodiments, articulation knob 760, driver 739, and end effector 706 can be configured such that, when articulation knob 760 is rotated substantially 10 degrees in direction D1, for example, end effector 706 can be rotated substantially 10 degrees in direction CW. Such embodiments can be referred to as having a 1:1 gear ratio, although other embodiments are envisioned which can have a smaller gear ratio or a larger gear ratio. In any event, once end effector 706 has been satisfactorily articulated, the surgeon can release articulation knob 760 such that spring 768 can move articulation knob 760 from its unlocked position into its locked position once again. Referring to FIG. 19, lock teeth 761 and/or lock teeth 771 can each comprise an array of teeth which can be configured such that at least some of lock teeth 761 and 771 can intermesh, or be interlocked, regardless of the degree in which articulation knob 760 is rotated relative to rotation knob 770. In the illustrated embodiment, teeth 761 and teeth 771 are each arranged in an annular, or at least substantially annular, and a concentric, or at least substantially concentric, array.


In various embodiments, further to the above, rotation knob 770 can be configured to rotate end effector 706 about a longitudinal axis, such as longitudinal axis 799, for example. In at least one such embodiment, referring primarily to FIG. 17, rotation knob 770 can be moved between a locked, distal, position in which it is locked to frame 701 and an unlocked, proximal, position in which it is unlocked from frame 701. In various embodiments, referring to FIG. 17 once again, rotation knob 770 can further comprise lip 779 extending therefrom wherein, in at least one embodiment, lip 779 can be configured to allow a surgeon to grasp lip 779 with one or more fingers and pull rotation knob 770 proximally. Similar to the above, referring primarily to FIG. 19, rotation knob 770 can comprise one or more locking teeth, or projections, 772 which can be configured to be engaged with one or more locking teeth 773, or projections, on frame 701 such that rotation knob 770 cannot be rotated relative to frame 701 when rotation knob 770 is positioned in its locked, or distal, position. When rotation knob 770 is unlocked from frame 701, however, rotation knob 770 can be rotated relative to frame 701 in order to rotate end effector 706 about longitudinal axis 799. More particularly, in at least one embodiment, rotation knob 770 can further include one or more driver portions, such as flat driver portions 774, for example, which can be configured to transmit the rotation of rotation knob 770 to spine portion 716 via corresponding flat portions 775 on spine portion 716. In at least one such embodiment, referring primarily to FIG. 19, flat driver portions 774 can be configured to extend through window 765 in closure tube 712 and, in addition, window 776 in driver 739 such that flat driver portions 774 can directly engage flat portions 775 on spine 716.


In addition to the above, referring to FIG. 17, rotation knob 770 can be configured such that, when it is pulled proximally into its unlocked position as described above, locking teeth 771 can transmit the rotation of rotation knob 770 to articulation knob 760 via locking teeth 761. In at least one such embodiment, as a result, articulation knob 760 can turn synchronously with rotation knob 770 such that spine member 716 can turn synchronously with driver 739 when rotation knob 770 is in its unlocked position. In at least one embodiment, owing to the synchronous rotation of spine member 716 and driver 739, end effector 706 may not articulate relative to elongate shaft 704 when rotation knob 770 is rotated relative to handle frame 701. Stated another way, as rotation knob 770 is not being rotated relative to articulation knob 760 and driver 739 is not being rotated relative to spine 716, driver 739 may not be able to articulate end effector 706 relative to shaft 704. In any event, once end effector 706 has been properly rotated about axis 799, rotation knob 770 can be released in order to re-engage locking teeth 772 of rotation knob 770 with locking teeth 773 of handle frame 701. In at least one embodiment, referring to FIGS. 17-19, handle assembly 702 can further comprise a biasing member, such as spring 778, for example, positioned intermediate rotation knob 770 and frame 701, wherein spring 778 can be compressed between rotation knob 770 and frame 701 when rotation knob 770 is moved from its locked, distal, position into its unlocked, proximal, position and, when rotation knob 770 is released, as described above, spring 778 can bias rotation knob 770 away from frame 701 such that lock teeth 772 are re-engaged with lock teeth 773. Referring again to FIG. 19, lock teeth 772 and/or lock teeth 773 can each comprise an array of teeth which can be configured such that at least some of lock teeth 772 and 773 can intermesh, or be interlocked, regardless of the degree in which rotation knob 770 is rotated relative to frame 701. In the illustrated embodiment, lock teeth 772 and lock teeth 773 are each arranged in an annular, or at least substantially annular, and a concentric, or at least substantially concentric, array.


In various embodiments, further to the above, a surgeon can hold handle assembly 702 in one hand, such as their right hand, for example, and operate surgical instrument 700. In at least one embodiment, as outlined above, the surgeon can retract triggers 108 and 110 toward pistol grip 103 by positioning their thumb, for example, on the proximal side of pistol grip 103 and positioning one or more fingers of the same hand on the distal side of triggers 108 and 110 in order to apply a force thereto and pull them toward pistol grip 103. As also outlined above, a surgeon can extend one or more of their fingers of the same hand distally in order to grasp lip 769 of articulation knob 760 and/or lip 779 of rotation knob 770 and pull them proximally. Stated another way, a surgeon can open and close anvil 114 via closure trigger 108, incise and staple tissue via firing trigger 110, articulate end effector 706 relative to elongate shaft 704 about articulation joint 720, and, in addition, rotate end effector 706 about longitudinal axis 799 all with one hand. As a result, the surgeon can have their other hand available to perform other tasks during a surgery. In various circumstances, however, the operation of knobs 760 and 770 and triggers 108 and 110 may require a surgeon to use two hands to operate the surgical instrument, especially if the surgeon's hands are too small or are otherwise unable to perform the tasks set forth above, thereby defeating one or more possible advantages. In various alternative embodiments, referring now to FIGS. 20 and 21, a surgical instrument, such as surgical instrument 800, for example, may include a system of magnetic elements for articulating end effector 706 relative to elongate shaft 704 and, in addition, a system of magnetic elements for rotating end effector 706 about longitudinal axis 799. In various embodiments, surgical instrument 800 can further comprise additional systems of magnetic elements for moving articulation knob 760 and rotation knob 770 between their locked and unlocked positions. In any event, surgical instrument 800 can be similar to surgical instrument 700 in many respects although various differences are discussed in greater detail further below.


Similar to articulation knob 760 of surgical instrument 700, referring now to FIG. 20, articulation knob 860 of surgical instrument 800 can be moved between a locked, distal, position and an unlocked, proximal, position. Also similar to articulation knob 760, referring to FIG. 21, articulation knob 860 can include lock teeth 761 which can be engaged and disengaged from lock teeth 762 on rotation knob 870 when articulation knob 860 is moved between its locked and unlocked positions, respectively. In various embodiments, articulation knob 860 can be pulled back, or proximally, by a system of electromagnets 881 and magnetic elements 882, for example. In at least one embodiment, referring again to FIG. 21, electromagnets 881 can be mounted to rotation knob 870 in a circular, or at least substantially circular array, which can be concentric, or at least substantially concentric, with a circular, or at least substantially circular, array of magnetic elements 882 mounted to articulation knob 860. In various embodiments, a surgeon can operate a switch on handle assembly 802, for example, in order to place a current source and/or voltage source in communication with electromagnets 881 such that electromagnets 881 can be sufficiently energized, or polarized, in order to attract magnetic elements 882 toward electromagnets 881 and, correspondingly, move articulation knob 860 proximally. In at least one such embodiment, electromagnets 881 can apply a sufficient magnetomotive force (mmf) to magnetic elements 882 in order to sufficiently displace articulation knob 860 and disengage lock teeth 761 from lock teeth 762 such that articulation knob 860 can be rotated relative to rotation knob 870, as described in greater detail further below. In various embodiments, similar to the above, a biasing member, such as spring 768, for example, can be positioned intermediate articulation knob 860 and rotation knob 870 such that spring 768 is compressed when articulation knob 860 is moved into, and held in, its proximal, unlocked position by electromagnets 881. After electromagnets 881 have been sufficiently de-energized, or de-polarized, spring 768 can be configured to bias articulation knob 860 back into its locked, distal position. In various embodiments, further to the above, magnetic elements 882 can be comprised of iron, and/or any suitable ferromagnetic material, for example, which can interact with a magnetic field. In at least some embodiments, magnetic elements 882 can comprise permanent magnets, such as neodymium magnets, samarium-cobalt magnets, and/or any suitable rare earth magnets, for example. In at least one such embodiment, magnetic elements 882 can be arranged and configured to attract, or repel, at least a portion of electromagnets 881 such that the mmf applied to electromagnets 881 can preload spring 768 and/or provide a resistive force to the proximal movement of articulation knob 860.


Once articulation knob 860 has been sufficiently unlocked, as described above, articulation knob 860 can be rotated relative to rotation knob 870 in order to articulate end effector 706 relative to elongate shaft 704. In various embodiments, articulation knob 860 can include one or more magnetic elements 849 which can be configured to interact with a magnetic field, or fields, produced by one or more electromagnets 847 mounted to rotation knob 870. In at least one such embodiment, magnetic elements 849 can be comprised of iron, and/or any other suitable ferromagnetic material, for example, and can be embedded within and/or otherwise suitably mounted to articulation knob 860. In various embodiments, electromagnets 847 can apply a magnetomotive force (mmf) to magnetic elements 849 in order to displace magnetic elements 849, and articulation knob 860, relative to electromagnets 847 and rotation knob 870. In at least one embodiment, the polarity of electromagnets 847 can be switched between first and second polarities in order to drive articulation knob 860 in a first direction indicated by arrow D1 (FIG. 20) and/or a second direction indicated by arrow D2. In use, referring to FIG. 20, a surgeon can actuate switch 869 to place a current source and/or voltage source in communication with electromagnets 847 such that electromagnets 847 can produce a magnetic field sufficient to displace articulation knob 860 relative to rotation knob 870 in a desired direction and, accordingly, articulate end effector 706 relative to elongate shaft 704 in the same manner, or an at least similar manner, as described above in connection with surgical instrument 700, for example.


Similar to rotation knob 770 of surgical instrument 700, rotation knob 870 of surgical instrument 800 can be moved between a distal position in which it is locked to frame 801 and a proximal position in which it is unlocked from frame 801. In various embodiments, further to the above, a system of electromagnets and magnetic elements, for example, can be utilized to move rotation knob 870 between its locked and unlocked positions. In at least one such embodiment, referring to FIG. 21, frame 801 can include a plurality or electromagnets 886 mounted thereto which are arranged in a circular, or at least substantially circular, array, wherein electromagnets 886 can be configured to generate a magnetic field, or fields, configured to attract and/or repel magnetic elements 887 mounted to rotation knob 870. Similar to the above, electromagnets 886 can be sufficiently energized, or polarized, in order to pull magnetic elements 887, and rotation knob 870, toward electromagnets 886 in order to disengage lock teeth 772 from lock teeth on frame 701. Once rotation knob 870 is in its unlocked position, rotation knob 870 can be rotated relative to frame 801 by another system of electromagnets and magnetic elements. In at least one such embodiment, referring again to FIG. 21, frame 801 can include a plurality of magnetic elements 880 mounted thereto which can be configured to interact with a magnetic field, or fields, produced by electromagnets 847. Similar to the above, referring to FIG. 20, a surgeon can operate a switch 879 in order to selectively energize, or polarize, magnetic elements 847 in order to produce a first magnetic field for rotating rotation knob 870 in a first direction and a second magnetic field for rotating rotation knob 870 in a second direction. In such embodiments, when rotation knob 870 is rotated, rotation knob 870 can rotate end effector 706 about longitudinal axis 799 in the same manner, or an at least similar manner, as described above in connection with surgical instrument 700, for example.


Although not illustrated, the reader will appreciate that the electromagnets of surgical instrument 800 can be powered by a common power source, such as a battery, for example, and/or different power sources. Referring once again to FIG. 21, surgical instrument 800 may further include one or more conductors, or wires, for placing the power source, or sources, in communication with the electromagnets of surgical instrument 800. In various embodiments, handle assembly 802 can further comprise one or more conductors, or wires, 883 which can supply current and/or apply voltage to electromagnets 847. In some embodiments, although not illustrated, conductors 883 can have sufficient flexibility and/or slack in order to accommodate relative movement between rotation knob 870 and frame 801. In other embodiments, referring to FIG. 21, handle assembly 802 can comprise one or more brushes 888 positioned intermediate frame 801 and rotation knob 870 which can be configured to conduct current between a power source and electromagnets 847 regardless of whether rotation knob 870 is moving relative to frame 801 and/or regardless of the degree of rotation between rotation knob 870 and frame 801. In at least one such embodiment, brushes 888 can be positioned in an annular, or at least substantially annular, array around frame 801 and rotation knob 870. In various embodiments, brushes 888 can comprise metal fiber brushes, such as braided copper brushes, for example, carbon brushes, and/or any other suitable brush. In at least one embodiment, a “brush” can comprise one or more blocks of material, such as a carbon block, for example, which can be configured to conduct current and permit relative sliding contact of an opposing “brush” across a face thereof. In certain embodiments, a “brush” can comprise any suitable compliant member. In any event, brushes 888 can be sufficiently resilient such that they can flex, or compress, when rotation knob 870 is pulled distally and re-expand when rotation knob 870 is moved back into its locked position.


In various embodiments, similar to the above, handle assembly 802 can further comprise one or more conductors, or wires, 884 which can supply current and/or apply voltage to electromagnets 881. In some embodiments, although not illustrated, conductors 884 can have sufficient flexibility and/or slack in order to accommodate relative movement between rotation knob 870 and frame 801. In other embodiments, similar to the above, handle assembly 802 can comprise one or more brushes 885 positioned intermediate rotation knob 870 and frame 801 which can be configured to conduct current between a power source and electromagnets 881 regardless of whether rotation knob 860 is moving relative to frame 801 and/or regardless of the degree of rotation between rotation knob 870 and frame 801. Similar to the above, brushes 885 comprise metal fiber brushes, such as braided copper brushes, for example, carbon brushes, and/or any other suitable brush which can be sufficiently resilient such that they can flex, or compress, when rotation knob 870 is pulled distally and re-expand when rotation knob 870 is moved back into its locked position. In addition to the above, brushes 885, and/or brushes 888, can permit relative sliding movement between two halves of the brush. More particularly, in at least one embodiment, a brush 885, for example, can comprise a first half mounted to rotation knob 870 having bristles extending therefrom, wherein the second half of brush 885 can comprise a contact plate, or plates, mounted to frame 801 against which the bristles can contact and slide thereover. In other various embodiments, a brush 885, for example, can comprise first and second halves each having bristles extending therefrom, wherein the first and second halves can be mounted to rotation knob 870 and frame 801 and can contact and slide over one another. In any event, brushes 885 can be positioned in an annular, or at least substantially annular, array around frame 801 and rotation knob 870. In various embodiments, referring once again to FIG. 21, handle assembly 802 can include one or more conductors, or wires, 889 which can supply current and/or apply voltage to electromagnets 886.


In various embodiments, a surgical instrument can include one or more electromagnets positioned within an elongate shaft, wherein the electromagnets can be configured to articulate an end effector of the surgical instrument relative to the elongate shaft. In at least one embodiment, referring to FIGS. 22-24, surgical instrument 900 can comprise an elongate shaft 904 and an end effector 906 (shown with portions removed), wherein end effector 906 can be pivotably connected to elongate shaft 904 by articulation joint 920. Similar to the above, end effector 906 can comprise a pivot plate 922 and, in addition, elongate shaft 904 can comprise a pin insert plate 926 which can be secured within elongate shaft 904 by spine 916. Also similar to the above, pin insert plate 926 can include a pin extending therefrom which can be configured to be closely received within pin aperture 123 in pivot plate 922. In certain embodiments, referring primarily to FIG. 23, elongate shaft 904 can further comprise electromagnets 940a and 940b mounted therein and, in addition, pivot plate 922 can further comprise magnetic elements 949 mounted thereto wherein electromagnets 940a, 940b can be configured to generate a magnetic field, or fields, which can be configured to interact with magnetic elements 949 and rotate pivot plate 922, and end effector 906, about an axis defined by pin insert plate 926. In various embodiments, magnetic elements 949 can comprise magnets, such as rare earth magnets, for example, which can be positioned and arranged on pivot plate 922 such that the poles of the magnets are aligned in a predetermined orientation. In at least one embodiment, magnetic elements 949 can be arranged such that the poles of each magnet are arranged in an end-to-end configuration such that the positive, or north, pole of each magnet is positioned next to the negative, or south, pole of the adjacent magnet, for example. Other embodiments are envisioned in which the positive poles of magnets 949 are positioned radially outwardly with respect to their negative poles, for example.


In use, in at least one embodiment, electromagnet 940b, for example, can be energized, or polarized, such that the distal end of electromagnet 940b comprises a positive, or north, magnetic pole of a magnetic field. In such circumstances, the positive poles of magnetic elements 949 can be repulsed away from electromagnet 940b and the negative poles of magnetic elements 949 can be attracted toward electromagnet 940b. In various embodiments, as a result, the magnetic field produced by electromagnet 940b, for example, can be sufficient to displace, or rotate, pivot plate 922, and end effector 906, in a counter-clockwise direction indicated by arrow CCW, for example. In at least one such embodiment, referring to FIG. 23, the intensity of the magnetic field produced by electromagnet 940b can be controlled by controlling the magnitude of current flowing through conductor 947b, wherein a larger current can produce a more intense magnetic field and a smaller current can produce a less intense magnetic field. In certain embodiments, similar to the above, the direction in which current is supplied, or the polarity in which voltage is applied, to conductor 947b can control the polarity of the magnetic pole generated at the distal end of electromagnet 940b. More particularly, if the current flowing through conductor 947b is flowing in a first direction, the current can generate a positive pole at the distal end of core 941b whereas, if the current flowing through conductor 947b flows in the opposite direction, the current can generate a negative pole at the distal end of core 941b. In various embodiments, as a result, the direction of the current flowing through conductor 947b can be selectively changed in order to selectively change the polarity of the magnetic field produced by electromagnet 940b, for example. In at least one such embodiment, the initial polarity of the distal end of electromagnet 940b can be positive, for example, in order to repel a first magnet 949 wherein the polarity of the distal end of electromagnet 940b can then be changed from positive to negative so as to draw the next permanent magnet 949 toward electromagnet 940b in order to continue to rotate pivot plate 922 and end effector 906. Once the second permanent magnet 949 has been sufficiently positioned, the polarity of electromagnet 940b can be switched once again, i.e., from negative to positive, and repel the second electromagnet 949 away from electromagnet 940b and, again, continue to rotate pivot plate 922 and end effector 906.


In various embodiments, it may be desirable to limit the range in which end effector 906 can be rotated relative to elongate shaft 904. In certain embodiments, although not illustrated, elongate shaft 904 can include one or more stops which can be configured to stop the rotation of end effector 906 when it is moved in a clockwise direction and/or a counter-clockwise direction. In at least one such embodiment, the stops can limit the maximum rotation of end effector 906 in the clockwise and/or counter-clockwise directions. In some embodiments, referring to FIG. 23, a surgical instrument can further comprise means for detecting the position, or relative angle, between end effector 906 and elongate shaft 904 and, in addition, means for stopping the rotation of end effector 906 once end effector 906 has been sufficiently displaced. In at least one such embodiment, elongate shaft 904 can further include one or more sensors which can be configured to detect one or more markings on end effector 906 in order to determine the amount, or degree, in which end effector 906 has been rotated relative to shaft 904. More particularly, in at least one embodiment, elongate shaft 904 can further comprise at least one photosensor, such as photosensor 991, for example, which can be configured to detect encoder markings 990 as they pass under photosensor 991 when end effector 906 is rotated. In various embodiments, photosensor 991 can further comprise a light emitter and, in addition, encoder markings 990 can comprise at least partially reflective surfaces on pivot plate 922 which can be configured to reflect light produced by the light emitter in order to facilitate the detection of encoder markings 990. In certain embodiments, encoder markings 990 can be etched into a surface on pivot plate 922. In at least one embodiment, although not illustrated, end effector 906 can comprise a plurality of slits, or apertures, arranged in a suitable array similar to the arrangement of encoder markings 990, wherein the apertures can be configured to allow light to pass therethrough from a light source positioned on the opposite, or bottom, side of pivot plate 922. In at least one such embodiment, the light source can comprise one or more light emitting diodes. In certain other embodiments, although not illustrated, an end effector and elongate shaft can comprise a mechanical encoder which is indexed as the end effector is rotated.


In various embodiments, referring primarily to FIG. 23, photosensor 991, for example, can be placed in signal communication with a control unit, such as control unit 992, for example, such that data regarding the number of encoder markings 990 that pass under photosensor 991 can be transmitted to control unit 992. More particularly, in at least one embodiment, control unit 992 can comprise at least one digital signal processor, such as DSP 993, for example, which can be configured to receive signal pulses from photosensor 991 which correspond to the passing of encoder markings 990 under photosensor 991. For example, if five markings 990 pass under sensor 991, sensor 991 can transmit five signal pulses to DSP 993 via conductor 994, although such communication can be wireless via a wireless transmitter (not illustrated). In any event, DSP 993 can be configured to process such signal pulses, calculate the amount in which end effector 906 has rotated relative to end effector 904, and output such information to the surgeon. In at least one embodiment, further to the above, the detection of one encoder marking 990 can represent one degree of articulation of end effector 906, wherein DSP 993 can be configured to transmit the degree in which end effector 906 has been rotated to an LCD display on the handle assembly of the surgical instrument. In various embodiments, the LCD display can comprise a screen, wherein data can be displayed in the form of numerals, text, and/or a graphical form such as an increasing or decreasing bar scale, for example. In various embodiments, further to the above, control unit 992 can further include a pulse width modulator (PWM) which can be configured to modify and control the output signals or power supplied to electromagnets 940a and 940b.


As described above, elongate shaft 904 can comprise two electromagnets, i.e., electromagnets 940a and 940b, which can be configured to emit a magnetic field, or fields, which can interact with magnetic elements 949. As illustrated in FIG. 23, pivot plate 922 includes five magnetic elements 949 embedded therein; however, other embodiments may have less than five magnetic elements 949 or more than five magnetic elements. Similarly, other surgical instruments can comprise any suitable number of electromagnets. In at least one embodiment, referring now to FIG. 25, an elongate shaft 1004 of surgical instrument 1000 can comprise four electromagnets, i.e., electromagnets 1040a, 1040b, 1040c, and 1040d which can each be configured to independently generate a magnetic field and polarity at the distal ends of cores 1041a-1041d, respectively. Similar to the above, the strength and polarity of the magnetic fields produced by electromagnets 1040a-1040d can be determined by the direction and magnitude of the current flowing through conductors, or wires, 1041a-1041d, respectively. In any event, once end effector 906 has been sufficiently articulated, similar to the above, end effector 106 can be locked into position. In various embodiments, referring to FIG. 23, elongate shaft 904 can further comprise lock 930 which can be moved between a proximal, unlocked position and a distal, locked position in which lock 930 is engaged with teeth 925 on pivot plate 922. In at least one embodiment, lock 930 can include a plurality of recesses 931 which can be configured to receive one or more teeth 925 such that pivot plate 922 cannot rotate, or at least substantially rotate, relative to lock 930 and, correspondingly, elongate shaft 904. Similarly, lock 930 can comprise a plurality of teeth positioned intermediate recesses 931 which can be configured to be received within recesses positioned intermediate teeth 925 on pivot plate 922, for example. In various embodiments, also similar to the above, elongate shaft 904 can further comprise lock actuator 932 which can be configured to move lock 930 between its locked and unlocked positions. In at least one such embodiment, lock actuator 932 can comprise a solenoid, for example.


In various embodiments, referring now to FIGS. 27-32, a surgical instrument, such as surgical instrument 1100, for example, can comprise an elongate shaft 1104 and an end effector 1106, wherein end effector 1106 can be configured to articulate relative to elongate shaft 1104 about articulation joint 1120. In at least one embodiment, similar to the above, end effector 1106 can comprise pivot plate 1122 mounted thereto and, in addition, elongate shaft 1104 can comprise pin plate member 1126 mounted therein, wherein pin 127 extending from pin plate member 1126 can be closely received within pin aperture 123 in pivot plate 1122 in order to define an axis about which pivot plate 1122, and end effector 1106, can articulate relative to elongate shaft 1104. Also similar to the above, elongate shaft 1104 can further comprise one or more electromagnets which can be configured to generate a magnetic field, or fields, which can be configured to interact with one or more magnetic elements mounted to end effector 1106. In at least one such embodiment, referring primarily to FIGS. 28-31, pivot plate 1122 of end effector 1106 can have a plurality of permanent magnets 1149 mounted thereto wherein, in at least one embodiment, permanent magnets 1149 can be embedded within one or more cavities within pivot plate 1122. In certain embodiments, similar to the above, permanent magnets 1149 can have positive and negative poles which can be arranged in a suitable manner such that, when electromagnets 1141 mounted within elongate shaft 1104 are sufficiently energized, or polarized, permanent magnets 1149 can interact with the magnetic field, or fields, generated by electromagnets 1141. In at least one such embodiment, the positive poles of permanent magnets 1149 can be arranged such that their positive poles are positioned radially outwardly with respect to their negative poles. Stated another way, in at least one embodiment, the positive poles of permanent magnets 1149 can be positioned adjacent to surface 1125 whereas the negative poles of magnets 1149 can be positioned distally, or at least somewhat distally, with respect to the positive poles. In certain other embodiments, permanent magnets 1141 can be arranged such that their poles alternate. For example, permanent magnets 1141 can be arranged such that the radially outward end of a first magnet 1141 is positive, for example, the radially outward end of a second magnet 1141 is negative, and the radially outward end of a third magnet is positive, and so forth.


In various embodiments, further to the above, electromagnets 1141 can be selectively energized, or polarized, in order to retract or repel permanent magnets 1149 and rotate end effector 1106 in a desired direction. In certain embodiments, referring to FIGS. 28 and 30, electromagnets 1141 can be embedded in or positioned within one or more cavities in actuator member 1140. In at least one embodiment, a first group of electromagnets 1141 can be energized, or polarized, such that their distal ends, i.e., their ends positioned adjacent to permanent magnets 1149, generate negative poles, for example, while a second group of electromagnets 1141 can remain unenergized, or unpolarized, or at least substantially unenergized, or unpolarized. In at least one such embodiment, as a result, the negative polarity of the distal ends of electromagnets 1141 can attract the positive poles of permanent magnets 1149 and move permanent magnets 1149 toward the negative poles electromagnets 1141. In various circumstances, the selective energization, or polarization, of the first group of electromagnets 1141 can displace permanent magnets 1149 such that end effector 1106 is rotated in a counter-clockwise direction, for example. In certain circumstances, the first group of electromagnets 1141 can be subsequently de-energized, or de-polarized, or at least substantially de-energized, or de-polarized, and the second group of electromagnets 1141 can be energized, or polarized, such that their distal ends generate a negative polarity which, similar to the above, attracts the positive poles of permanent magnets 1149 in order to continue the rotation of end effector 1106 in a counter-clockwise direction, for example. In certain other embodiments, the first group of electromagnets 1141 can be energized such that their distal ends generate a negative polarity, for example, while the second group of electromagnets 1141 can be energized such that their distal ends generate a positive polarity, for example. In various embodiments, the first and second groups can be energized such that they have different polarities simultaneously or in a suitable alternating sequence.


Once end effector 1106 has been sufficiently articulated, further to the above, end effector 1106 can be locked into position. In various embodiments, referring to FIGS. 28-30 and 32, elongate shaft 1104 can further comprise lock 1130, wherein at least a portion of lock 1130 can be moved between a distal, locked position, in which it is engaged with pivot plate 1122, for example, and a proximal, unlocked position in which it is sufficiently disengaged from pivot plate 1122 to allow end effector 1106 to rotate about an axis defined by pin aperture 123 and pin 127. In at least one embodiment, lock 1130 can comprise a movable brake shoe, such as brake shoe 1131, for example, which can be moved between proximal and distal positions. More particularly, in at least one embodiment, pivot plate 1122 can include one or more permanent magnets 1138 mounted thereto, wherein permanent magnets 1138 can be configured and arranged such that their positive, or north, poles, for example, are positioned radially outwardly with respect to their negative, or south, poles, and wherein permanent magnets 1138 can be configured to attract brake shoe 1131 toward pivot plate 1122 such that brake shoe 1131 contacts brake surface 1125. In various embodiments, brake shoe 1131 can include one or more magnetic elements 1133 mounted thereto which can interact with the magnetic field, or fields, produced by permanent magnets 1138, wherein the magnetic field, or fields, can apply a sufficient magnetomotive force (mmf) to magnetic elements 1133 such that the bearing force, or braking force, between brake shoe 1131 and brake surface 1125 is sufficient to prevent, or at least inhibit, relative movement between pivot plate 1122 and pivot pin member 1126.


In order to disengage brake shoe 1131 from pivot plate 1122, in various embodiments, magnetic elements 1133 can comprise electromagnets which can be selectively energized to order to create a magnetic field, or fields, which can move brake shoe 1131 away from pivot plate 1122. In at least one circumstance, electromagnets 1133 can be energized in order to generate positive poles at their distal ends, i.e., their ends closest to pivot plate 122, such that the positive poles generated by electromagnets 1133 are repelled by the positive poles of permanent magnets 1138. In various embodiments, electromagnets 1133 can be mounted to brake shoe 1131 such that, when a sufficient magnetomotive force is generated, brake shoe 1131 can be displaced proximally. Brake shoe 1131 can be displaced proximally such that brake shoe 1131 is no longer engaged with brake surface 1125 and/or such that brake shoe 1131 is otherwise unable to apply a sufficient braking force to pivot plate 1122 in order to hold end effector 1106 in position. In certain other embodiments, the negative poles of permanent magnets 1138 can be positioned radially outwardly such that, when electromagnets 1133 are energized, negative poles generated at the distal ends of electromagnets 1133 can be repelled by the negative poles of permanent magnets 1138. In at least one embodiment, referring primarily to FIGS. 29 and 32, lock 1130 can comprise one or more features for limiting the displacement of brake shoe 1131 such that brake shoe 1131 travels along a predetermined path, such as axis 1199, for example. In at least one such embodiment, lock 1130 can further comprise one or more projections, or travel limiters 1130a, and brake shoe 1131 can further comprise stop arms 1131a, wherein travel limiters 1130a and stop arms 1131a can be configured to prevent, or at least inhibit, relative movement between brake shoe 1131 and lock 1130 which is transverse to axis 1199.


In various embodiments, further to the above, an articulation joint can comprise first and second portions which can be configured to articulate relative to one another. In various other embodiments, an articulation joint can comprise more than two portions which can articulate relative to one another. In at least one such embodiment, referring to FIGS. 33-40, a surgical instrument, such as surgical instrument 1200, for example, can comprise a handle assembly 1202, an elongate shaft 1204, and an end effector 1206, wherein articulation joint 1220 can be configured to permit end effector 1206 to rotate relative to elongate shaft 1204, and wherein articulation joint 1220 can comprise a plurality of first joint members 1222 and a plurality of second joint members 1226, for example. In certain embodiments, referring primarily to FIGS. 34 and 35, first joint members 1222 and second joint members 1226 can be arranged in an alternating arrangement wherein, in at least one embodiment, first joint members 1222 can each include one or more permanent magnets mounted thereto and second joint members 1226 can each include one or more electromagnets mounted thereto. Referring now to FIGS. 38 and 40, each first joint member 1222 can include a first permanent magnet 1249a positioned within an aperture therein, such as an aperture 1248, for example, and, in addition, a second permanent magnet 1249b positioned within another aperture 1248 on the opposite, or at least substantially opposite, side of the first joint member 1222. Similarly, referring to FIGS. 36-40, each second joint member 1226 can include a first electromagnet 1240a positioned within an aperture therein, such as an aperture 1251, for example, and, in addition, a second electromagnet 1240b positioned within another aperture 1251 on the opposite, or at least substantially opposite, side of second joint member 1226. In various embodiments, referring again to FIGS. 34 and 35, joint members 1222 and 1226 can be arranged such that permanent magnets 1249a are aligned, or at least substantially aligned, with electromagnets 1240a and, in addition, permanent magnets 1249b are aligned, or at least substantially aligned, with electromagnets 1240b.


In various embodiments, further to the above, each electromagnet 1240a can comprise a core, such as core 1241a, for example, and a conductor, such as conductor 1247a, for example, wherein conductors 1247a can be configured to conduct current when a current source and/or voltage source is supplied to conductors 1247a, and wherein at least a portion of conductors 1247a can be wrapped around cores 1241a in order to generate a magnetic field having a polarity. As outlined above, the polarity of such magnetic fields may depend on the direction in which current is flowing through conductors 1247a. Similar to the above, each permanent magnet 1240b can comprise a core, such as core 1241b, for example, and a conductor, such as conductor 1247b, for example, wherein conductors 1247b can be configured to conduct current when a current source and/or voltage source is supplied to conductors 1247b. In use, in at least one embodiment, end effector 1206 can be articulated to the right, or in a clockwise direction, for example, as illustrated in FIG. 35, when current is supplied to, and/or voltage is applied to, conductors 1247a such that current flows through conductors 1247a in a first direction. More particularly, referring again to FIG. 40, electromagnets 1240a can be energized, or polarized, such that the negative, or south, poles of permanent magnets 1249a, marked with an “S”, are attracted to positive, or north, poles generated by electromagnets 1240a and, in addition, the positive poles of permanent magnets 1249a, marked with an “N”, are attracted to negative poles generated by electromagnets 1240a. In such circumstances, referring again to FIG. 35, the magnetomotive forces (mmf) between electromagnets 1240a and permanent magnets 1249a can be sufficient to cause first joint members 1222 and second joint members 1226 to articulate relative to each other. In certain embodiments, the joint members 1222 and 1226 can articulate relative to each other until they abut one another. In certain embodiments, end effector 1206 can be articulated to the left, or in a counter-clockwise direction, as illustrated in FIG. 33, when current is supplied to, and/or voltage is applied to, conductors 1247a such that current flows through conductors 1247a in a second, or opposite, direction. In such embodiments, referring again to FIG. 40, electromagnets 1240a can be energized, or polarized, such that the negative poles of permanent magnets 1249 are repelled by negative poles generated by electromagnets 1240a and, in addition, the positive poles of permanent magnets 1249a are repelled by poles generated by electromagnets 1240a.


In various embodiments, similar to the above, end effector 1206 can be articulated to the left, or in a counter-clockwise direction, for example, when current is supplied to, and/or voltage is applied to, conductors 1247b such that current flows through conductors 1247b in a first direction. More particularly, referring again to FIG. 40, electromagnets 1240b can be energized, or polarized, such that the negative, or south, poles of permanent magnets 1249b, marked with an “S”, are attracted to positive, or north, poles generated by electromagnets 1240b and, in addition, the positive poles of permanent magnets 1249b, marked with an “N”, are attracted to negative poles generated by electromagnets 1240b. In such circumstances, referring again to FIG. 33, the magnetomotive forces (mmf) between electromagnets 1240b and permanent magnets 1249b can be sufficient to cause first joint members 1222 and second joint members 1226 to articulate relative to each other. In certain embodiments, the joint members 1222 and 1226 can articulate relative to each other until they abut one another. Also similar to the above, end effector 1206 can be articulated to the right, or in a clockwise direction, as illustrated in FIG. 35, when current is supplied to, and/or voltage is applied to, conductors 1247b such that current flows through conductors 1247b in a second, or opposite, direction. In such embodiments, referring again to FIG. 40, electromagnets 1240b can be energized, or polarized, such that the negative poles of permanent magnets 1249b are repelled by negative poles generated by electromagnets 1240b and, in addition, the positive poles of permanent magnets 1249b are repelled by positive poles generated by electromagnets 1240b. In various embodiments, further to the above, end effector 1206 and/or elongate shaft 1204 can include one or more permanent magnets and/or electromagnets which can be configured to articulate one or more of joint members 1222 and/or 1226.


In various embodiments, also further to the above, every electromagnet 1240a, for example, in articulation joint 1220 can be energized simultaneously in order to achieve a maximum rightward articulation of end effector 1206. Similarly, every electromagnet 1240b, for example, can be energized simultaneously in order to achieve a maximum leftward articulation of end effector 1206. In at least one embodiment, referring to FIG. 35, articulation joint 1220 can comprise three movable first joint members 1222 and three movable second joint members 1226, for example. In at least one such embodiment, each of the six joint members can be configured to articulate approximately 10 degrees relative to an adjacent joint member, for example, resulting in approximately 70 degrees of total articulation, for example. In certain embodiments, although not illustrated, a single conductor can be utilized to energize, or polarize, each of the electromagnets 1240a and, in addition, a single conductor can be utilized to energize, or polarize, each of the electromagnets 1240b. In effect, electromagnets 1240a can be placed in series with one another and, similarly, electromagnets 1240b can be placed in series with one another. In certain other embodiments, as illustrated in FIG. 40, for example, each electromagnet 1240a can be activated independently of the other electromagnets 1240a and, similarly, each electromagnet 1240b can be activated independently of the other electromagnets 1240b. In at least one such embodiment, the electromagnets 1240a, 1240b can be selectively actuated such that end effector 1206 can be articulated less than its maximum articulation. For example, only one electromagnet 1240a may be energized, or polarized, in order to articulate end effector 1206 approximately 20 degrees; two electromagnets 1240a may be energized, or polarized, to articulate end effector 1206 approximately 40 degrees; and three electromagnets 1240a may be energized, or polarized, to articulate end effector 1206 approximately 70 degrees. In certain embodiments, end effector 1206 and/or elongate shaft 1204 can include one or more electromagnets which can be actuated to articulate end effector 1206 more than 70 degrees, such as approximately 80 degrees, for example, or less than 20 degrees.


As described above, each electromagnet 1240a, 1240b can include a conductor 1247a, 1247b, respectively, which can be configured to conduct current. In various embodiments, conductors 1247a and 1247b can comprise wires, for example, which can be sufficiently flexible to accommodate relative movement between first joint members 1222 and second joint members 1226. In at least one embodiment, conductors 1247a and 1247b can extend through one or more throughholes 1298 in joint members 1222 and 1226, wherein conductors 1247a and 1247b can have sufficient slack such that they are not damaged when end effector 1206 is articulated. In at least some embodiments, referring again to FIG. 36, first joint members 1222 and/or second joint members 1226 can further comprise one or more channels 1296, for example, which can be configured to receive one or more conductors 1247a and/or 1247b such that the conductors can be seated flush with and/or below the faces of joint members 1222 and 1226. In various embodiments, one or more conductors, such as conductors 1247a and 1247b, for example, can extend through passages 1250 of joint members 1222 and 1226. In at least one such embodiment, passages 1250 can lie along a neutral axis of the articulation joint such that the stress and strain applied to conductors 1247a and 1247b can be minimized. Stated another way, in at least one embodiment, a path extending through passages 1250 may define a length through the articulation joint wherein the length does not change, or at least substantially change, when the end effector is articulated such that the conductors are not subjected to large deformations.


In various embodiments, as described above, first joint members 1222 can be configured to articulate relative to second joint members 1226 and, correspondingly, second joint members 1226 can be configured to articulate relative to first joint members 1222. In at least one embodiment, referring again to FIGS. 36-39, joint members 1222 and 1226 can be coupled together by one or more ball and socket arrangements, or joints. More particularly, each first joint member 1222 can include a ball member 1227 which can be configured to be received within a socket 1223 of an adjacent second joint member 1226. Similarly, each second joint member 1226 can also include a ball member 1227 which can be configured to be received within a socket 1223 of an adjacent first joint member 1222. In at least one such embodiment, ball members 1227 can be spherical, or at least substantially spherical, and sockets 1223 can comprise a semispherical, or an at least partially spherical, pocket. In various embodiments, the ball and socket joints can be configured to permit the first and second joint members 1222 and 1226 to move in a side-to-side direction, an up-and-down direction, and/or any other suitable direction. In various embodiments, ball members 1227 and sockets 1223 can define a passage 1254 which can be configured to slidably receive firing member 1250 (FIG. 35) and define a path for firing member 1250, especially when end effector 1206 is in an articulated position. In certain embodiments, one or more of the ball and socket joints can be configured to limit the relative movement between joint members 1222 and 1226. In at least one such embodiment, one or more of the ball and socket joints can be configured to limit the relative movement between the first and second joint members such that the joint members can only move relative to each other along a plane, for example. Referring once again to FIG. 36, ball members 1227 can include one or more alignment flanges 1224, for example, extending therefrom which, referring now to FIGS. 37 and 38, can be configured to be received within alignment grooves 1221, for example, defined within sockets 1223. In at least one such embodiment, alignment ridges 1224 and alignment grooves 1221 can be sized and configured to limit the relative movement between first joint members 1222 and second joint members 1226 along a plane defined by alignment flanges 1224, for example.


In any event, further to the above, one or more first joint members 1222 and one or more second joint members 1226 can be realigned along an axis after they have been moved or articulated relative to one other. In at least one embodiment, electromagnets 1240a and 1240b, for example, can be energized in order to straighten out articulation joint 1220 and, in addition, realign end effector 1206 with shaft 1204. More particularly, in at least one embodiment, electromagnets 1240a and electromagnets 1240b can be energized simultaneously such that first joint members 1222 and second joint members 1226 are positioned along a central axis defined by shaft 1204. In certain embodiments, the magnitude of current, and/or power, supplied to electromagnets 1240a and 1240b can be different, at least initially, in order to move joint members 1222 and 1226 into substantial alignment with one another wherein, thereafter, the magnitude of the current and/or power supplied to electromagnets 1240a and 1240b can be equalized, or at least substantially equalized, such that joint members 1222 and 1226 can be more precisely aligned. In certain embodiments, the magnitude of the current and/or power supplied to electromagnets 1240a and 1240b can be the same, or at least substantially the same, initially, especially when end effector 1206 has not been significantly articulated.


In various embodiments, further to the above, an end effector of a surgical instrument can be articulated in more than one plane. In at least one embodiment, referring now to FIGS. 41-45, a surgical instrument 1300 can comprise an elongate shaft 1304, an end effector 1306, and an articulation joint 1320 which can be configured to permit end effector 1306 to articulate relative to shaft 1304. Similar to articulation joint 1220, articulation joint 1320 can comprise a plurality of first joint members 1322 and a plurality of second joint members 1326 which can be configured to articulate relative to one another. Unlike joint members 1222 and 1226, though, joint members 1322 and 1326 do not include alignment features 1221 and 1224 which limit relative movement therebetween. In at least one embodiment, as a result, end effector 1306 can be articulated in a plurality of directions and/or planes. In certain embodiments, referring primarily to FIG. 41, each second joint member 1326 can include four electromagnets, such as electromagnets 1340a, 1340b, 1340c, and 1340d, for example, which can be mounted to second joint member 1326 within apertures in joint member 1326. In at least one such embodiment, electromagnets 1340a-1340d can be positioned equidistantly with respect to each other and with respect to the center of joint member 1326. Correspondingly, each first joint member 1322 can include four permanent magnets comprising, referring to FIG. 42, permanent magnets 1349a, 1349b, 1349c (FIG. 41), and a fourth permanent magnet not illustrated, wherein each permanent magnet 1349a can be aligned with one or more electromagnets 1340a, wherein each permanent magnet 1349b can be aligned with one or more electromagnets 1340b, wherein each permanent magnet 1349c can be aligned with one or more electromagnets 1340c, and wherein each fourth permanent magnet can be aligned with one or more electromagnets 1340d.


In use, similar to the above and referring to FIG. 43, electromagnets 1340a and/or electromagnets 1340b can be selectively actuated in order to articulate end effector 1306 relative to elongate shaft 1304 in left and right directions. Stated another way, referring to FIG. 44, end effector 1306 can be articulated in left and right directions with respect to axis 1395v, wherein, in some embodiments, axis 1395v can extend through electromagnets 1340c and 1340d and can intersect, and extend transversely to, longitudinal axis 1399. In addition to the above, electromagnets 1340c and/or electromagnets 1340d can be selectively actuated in order to articulate end effector 1306 relative to elongate shaft 1304 in up and down directions. Stated another way, end effector 1306 can be articulated in up and down directions with respect to axis 1395h, wherein, in some embodiments, axis 1395h can extend through electromagnets 1340a and 1340b and can intersect, and extend transversely to, longitudinal axis 1399. In various embodiments, any suitable combination of electromagnets 1390a, 1390b, 1390c, and 1390d can be actuated in order to articulate end effector 1306 relative to elongate shaft 1304 in any suitable direction. For example, referring again to FIG. 44, electromagnets 1340b and 1340c can be actuated in order to articulate end effector 1306 in a direction along axis 1395n. In such an embodiment, the magnitude of the current flowing through conductors 1347b can be the same, or at least substantially the same, as the magnitude of the current flowing through conductors 1347c such that the intensities of the magnetic fields generated by electromagnets 1340b and 1340c can be the same, or at least substantially the same, such that they apply equal, or at least substantially equal, magnetomotive forces to their respectfully-aligned permanent magnets. Electromagnets 1340a and 1340d can be actuated in order to articulate end effector 1306 in an opposite direction along 1395n. Similarly, electromagnets 1340a and 1340c can be actuated in order to articulate end effector 1306 in a direction along axis 1395p and, in addition, electromagnets 1340b and 1340d can be actuated in order to articulate end effector 1306 in an opposite direction along axis 1395p.


In various embodiments, as outlined above, electromagnets 1340b and 1340c can be actuated in order to articulate end effector 1306 in a direction along axis 1395n, for example. In at least one such embodiment, electromagnets 1340b and 1340c can be actuated in order to attract permanent magnets 1349b and 1349c, respectively, thereto. Contemporaneously, in certain embodiments, electromagnets 1340a and 1340d can be actuated in order to repel permanent magnets 1349a and 1349d, respectively, in order to assist in the articulation of end effector 1306. In various embodiments, in view of the above, any suitable combination of electromagnets can be actuated such that they can attract and/or repel the various permanent magnets associated therewith, for example, at the same time and/or in any suitable order.


As outlined above, various combinations of electromagnets 1340a, 1340b, 1340c, and 1340d can be actuated in order to articulate end effector 1306 wherein, in some embodiments, the same magnitude of current can be supplied to the actuated electromagnets in order to articulate end effector 1306 along axes 1395n and 1395p, i.e., along approximately 45 degree angles with respect to axes 1395v and 1395h, for example. In other embodiments, different magnitudes of current can be supplied to various electromagnets such that end effector 1306 is articulated in other directions. For example, conductors 1347c of electromagnets 1340c can be supplied with a current which has approximately twice the magnitude of the current supplied to conductors 1347b of electromagnets 1340b so as to articulate end effector 1306 in a direction which is intermediate axes 1395n and 1395v. In any event, electromagnets 1340a, 1340b, 1340c, and 1340d can all be actuated simultaneously in order to re-straighten articulation joint 1320 along longitudinal axis 1399, for example. In certain embodiments, referring once again to FIGS. 41 and 43, articulation joint 1320 can further comprise one or more flexible straightening and alignment rods, such as rods 1343, for example, which can be configured to straighten articulation joint 1320. In at least one such embodiment, the proximal ends of rods 1343 can be mounted to elongate shaft 1304 wherein rods 1343 can extend through apertures 1346 in joint members 1322 and 1326 and extend into apertures 1397 in end effector 1306. When end effector 1306 is articulated as described above, rods 1343 can be sufficiently flexible to permit such articulation but can be sufficiently resilient to return back to their original shape once electromagnets 1340a, 1340b, 1340c, and 1340d have been sufficiently deenergized. In at least one embodiment, rods 1343 can be configured to slide within apertures 1346 and apertures 1397 in order to accommodate the various configurations of articulation joint 1320. Similar to the above, referring to FIGS. 41 and 45, joint members 1322 and 1326 can include one or more throughholes 1398a-1398d which can be configured to slidably receive conductors 1347a-1347d therein, wherein conductors 1347a-1347d can also be sufficiently flexible to accommodate the various configurations of articulation joint 1320.


As described above, a system of permanent magnets and electromagnets can be utilized to articulate an end effector relative to an elongate shaft of a surgical instrument. In various embodiments, a surgical instrument can include a system of permanent magnets and electromagnets configured to drive a cutting member and/or staple driver through an end effector of the surgical instrument. In at least one embodiment, referring to FIGS. 46-50, a surgical instrument, such as surgical instrument 1400, for example, can include an end effector 1406, an elongate shaft 1404, and a cutting member 1452 configured to be advanced and/or retracted within end effector 1406. Referring primarily to FIGS. 46 and 50, end effector 1406 can comprise a staple cartridge channel 1413 configured to support and/or retain staple cartridge 115, for example, therein. End effector 1406 can further comprise an anvil 1414 which can be rotatably coupled to staple cartridge channel 1413 such that anvil 1414 can be rotated between open and closed positions. As best illustrated in FIG. 46, anvil 1414 can further include a plurality of permanent magnets 1417 mounted thereto wherein, when anvil 1414 is in its closed position, for example, permanent magnets 1417 can be configured to advance or retract cutting member 1452. More particularly, in at least one embodiment, cutting member 1452 can comprise one or more electromagnets 1456 (FIGS. 48-50) which can be energized, or polarized, in order to create a magnetic field, or fields, which can interact with permanent magnets 1417 and generate a magnetomotive force therebetween. In various embodiments, such forces can displace cutting member 1452 proximally and/or distally within end effector 1406. In at least one embodiment, permanent magnets 1417 can be secured within equidistant, or at least substantially equidistant, apertures in anvil 1414 and, in addition, electromagnets 1456 can be mounted within upper shoe 1458. In various embodiments, referring to FIG. 50, upper shoe 1458 can be configured to be received within channel 1405a in anvil 1414 such that, when cutting member 1452 traverses anvil 1414, upper shoe 1458 can bias anvil 1414 downwardly to compress tissue positioned intermediate anvil 1414 and staple cartridge 115, for example.


In various embodiments, similar to the above, staple cartridge channel 1413 can further include a plurality of permanent magnets 1419 mounted thereto wherein permanent magnets 1419 can be configured to advance or retract cutting member 1452. More particularly, in at least one embodiment, cutting member 1452 can comprise one or more electromagnets 1457 which can be energized, or polarized, in order to create a magnetic field, or fields, which can interact with permanent magnets 1419 and generate a magnetomotive force therebetween. In various embodiments, such forces can displace cutting member 1452 proximally and/or distally within end effector 1406. In at least one embodiment, permanent magnets 1419 can be secured within equidistant, or at least substantially equidistant, apertures in staple cartridge channel 1413 and, in addition, electromagnets 1457 can be mounted within lower shoe 1459. In various embodiments, referring to FIG. 50, lower shoe 1459 can be configured to be received within channel 1405b in staple cartridge 115 such that, when cutting member 1452 traverses staple cartridge 115, lower shoe 1459 can co-operate with upper shoe 1458 to compress tissue positioned intermediate anvil 1414 and staple cartridge 115, for example. In certain embodiments, various portions of staple cartridge 115, staple cartridge channel 1413, and/or anvil 1414 can be comprised of a non-conductive material, or materials, which can have a sufficient dielectric strength to prevent current from flowing between electromagnets and/or between electromagnets and permanent magnets, yet be sufficiently transmissive to magnetic fields. In any event, similar to the above, surgical instrument 1400 can further comprise one or more conductors, such as wires 1484, for example, which can be configured to supply electromagnets 1456 and/or 1457 with a flow of current in order to selectively polarize electromagnets 1456 and 1457. In at least one such embodiment, similar to the above once again, the direction of current flowing through conductors 1484 can be selectively alternated in order to control the poles generated by electromagnets 1456 and/or 1457. In various embodiments, at least a portion of conductors 1484 can be embedded within firing bar 1450. In certain embodiments, firing bar 1450 can comprise two or more laminated layers, wherein, although not illustrated, at least a portion of conductors 1484 can be positioned intermediate the layers, and wherein the layers can be configured to protect and/or electrically insulate conductors 1484 from unintentionally grounding to one another and/or any other portion of surgical instrument 1400. In various embodiments, although not illustrated, conductors 1484 can comprise a flexible ribbon cable which can comprise a plurality of conductors 1484 arranged in parallel and electrically insulated from one another. In any event, the system of permanent magnets and electromagnets within end effector 1406 may be sufficient to advance and retract cutting member 1452 without an additional firing force being transmitted to cutting member 1452 via firing bar 1450, although firing bar 1450 can be configured to transmit an additional firing force to cutting member 1452.


In various embodiments, as outlined above, electromagnets can be positioned on and/or within a cutting member movable within an end effector. In use, the electromagnets can be actuated, or energized, such that they can produce a polarized magnetic field. In at least one such embodiment, each electromagnet can include at least one conductor arranged in a wrapped configuration wherein, when current is supplied to the conductor, the current can generate a field having positive and negative poles. In certain embodiments, as also outlined above, iron cores positioned within the wrapped conductor can amplify the magnetic field produced by the current. Although electromagnets are entirely suitable in various embodiments, any device capable of selectively generating one or more magnetic fields can be used. In at least one embodiment, for example, a polarizable device can include an annular, or toroidal, permanent magnet, and/or iron core, wherein a conductor can extend through an aperture therein, and wherein a magnetic field produced by current flowing through the conductor can be amplified by the annular iron core surrounding the conductor. In various circumstances, the magnetic field produced by such a device may be sufficient to create a usable magnetomotive force as described herein. In certain embodiments, fields produced by a Hall Effect device, or coil, can be utilized to move a cutting member, for example, within an end effector.


In various embodiments, either in addition to or in lieu of the above, a surgical instrument can comprise a system of permanent magnets and electromagnets configured to advance and/or retract a firing bar within an elongate shaft of a surgical instrument. Referring now to FIGS. 51A-51C and 53, surgical instrument 1500 can comprise an elongate shaft 1504 and a firing bar 1550, wherein firing bar 1550 can be advanced distally (FIG. 53) and/or retracted proximally (FIGS. 51A-51C) in order to move a cutting member and/or staple driver, such as cutting member 1452, for example, within an end effector in order to incise tissue and/or deploy staples into the tissue, for example. In certain embodiments, shaft 1504 can comprise spine 1516 which can comprise one or more slots configured to permit firing bar 1550 to slide therein. In at least one such embodiment, elongate shaft 1504 can further comprise one or more electromagnets 1556 mounted to spine 1516 which can be configured to selectively generate one or more magnetic fields. Similar to the above, such magnetic fields can interact with permanent magnets 1517 mounted to drive bar 1550 such that the magnetomotive force generated between electromagnets 1556 and permanent magnets 1517 can move permanent magnets 1517, and drive bar 1550, relative to electromagnets 1556, and spine 1516. In at least one embodiment, referring now to FIG. 52, elongate shaft 1504 can include a first set of electromagnets 1556 positioned on one side of firing bar 1550 and a second set of electromagnets 1556 positioned on the opposite side of firing bar 1550. Correspondingly, a first set of permanent magnets 1517 can be positioned on a first side of firing bar 1550 and a second set of permanent magnets 1517 can be positioned on the opposite side of firing bar 1550. Also similar to the above, the current supplied to electromagnets 1556 can be selectively supplied in order to generate positive poles, negative poles, and/or no polarity within electromagnets 1556, as needed, in order to sufficiently attract and repel the positive and negative poles of permanent magnets 1517. In certain embodiments, referring again to FIG. 52, elongate shaft 1504 can further comprise one or more conductors 1584 which can be configured to supply current to electromagnets 1556. In certain embodiments, conductors 1584 can comprise a ribbon cable positioned intermediate spine 1516 and electromagnets 1556, wherein spine 1516 can be comprised of an electrically non-conductive material, for example.


In various embodiments, further to the above, a surgical instrument can comprise a system including magnetic elements, such as iron cores and/or permanent magnets, for example, and selectively actuatable electromagnets, wherein the system can comprise a linear motor configured to move a firing bar and/or cutting member along a predetermined path, and wherein the path can comprise linear portions and/or curved portions in one or more directions. In various embodiments, the surgical instrument can further comprise a computer, or processor, which can be configured to calculate the appropriate magnitude, duration, and/or direction of the current to be supplied to the electromagnets. In certain embodiments, the surgical instrument can further comprise one or more switches which can be operated by the computer in order to selectively supply current to one or more electromagnets. In certain embodiments, although not illustrated, a surgical instrument can include a handle, an elongate shaft extending from the handle, and an end effector operably coupled to the shaft, wherein the shaft can include one or more conductors wound about an axis or predetermined path within the shaft. In at least one such embodiment, a firing bar, or rod, having an iron portion, for example, can be positioned within an aperture defined by the wound conductors such that, when current is supplied to the conductors, the magnetic field, or fields, generated by the flow of current can move the iron firing bar along the predetermined path. In at least one embodiment, similar to the above, current flowing through the conductors in a first direction can move the firing bar distally within the shaft, for example, and, in addition, current flowing through the conductors in an opposite direction can move the firing bar in an opposite, or proximal, direction.


In various embodiments, an elongate shaft of a surgical instrument can include a solenoid configured to advance and/or retract a firing bar, cutting member, and/or staple driver. In at least one embodiment, referring to FIGS. 54 and 55, surgical instrument 1600 can comprise a handle assembly 1602, an elongate shaft 1604, and a firing bar 1650. Similar to handle assembly 102, handle assembly 1602 can further comprise a trigger (not illustrated) configured to advance and/or retract firing bar 1650. In at least one embodiment, the trigger of handle assembly 1602 can be configured to close, or complete, a circuit when actuated, wherein the closed circuit can be configured to supply current to a solenoid operably engaged with firing bar 1650. In certain embodiments, although not illustrated, handle assembly 1602, for example, can include one or more batteries positioned therein, wherein the batteries, and one or more conductors, can be configured to supply the current to the solenoid. In at least one embodiment, the solenoid can comprise windings 1656 which can be energized by the current in order to generate a polarized magnetic field. Similar to the above, the solenoid can further comprise a magnetic element 1617, which can be comprised of iron, for example, which can be configured to interact with the magnetic field. In use, current flowing in a first direction can be supplied to windings 1656 such that the magnetic field produced by windings 1656 can advance magnetic element 1617, and drive bar 1650 mounted thereto, distally within elongate shaft 1604 as illustrated in FIG. 55. In certain embodiments, the trigger can be released in order to disconnect the supply of current to windings 1656 and stop the advancement of firing bar 1650. In at least one such embodiment, handle assembly 1602 and/or elongate shaft 1604 can include one or more springs (not illustrated) which can be configured to bias magnetic element 1617 and firing bar 1650 back into their starting positions which are illustrated in FIG. 54. In other embodiments, the current flowing within windings 1656 can be reversed when the firing trigger is released such that the polarity of the magnetic field generated by windings 1656 is reversed and magnetic element 1617 is retracted. In yet other embodiments, the trigger of handle assembly 1602 can be actuated once again in order to reverse the current within windings 1656 and retract magnetic element 1617.


In various embodiments, although not illustrated, a surgical instrument can include a handle, a shaft extending from the handle, and an end effector operably coupled to the shaft, wherein the shaft can include a rotatable drive shaft, and wherein the surgical instrument can further include a motor configured to rotate the drive shaft. Various surgical instruments including a motor and a rotatable drive shaft are disclosed in U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008; and U.S. Pat. No. 7,416,101, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH LOADING FORCE FEEDBACK, which issued on Aug. 28, 2008, the entire disclosures of which are incorporated by reference herein. In at least one embodiment, the motor of the surgical instrument can comprise a stepper motor which can be configured to rotate a drive shaft through a predetermined range of rotation. In at least one embodiment, one or more magnetic elements, such as iron cores, for example, can be placed on or embedded within the drive shaft, wherein the magnetic elements can be configured to be detected by one or more sensors positioned within the shaft, for example. In certain embodiments, such sensors can comprise Hall Effect sensors, or coils, which can be configured to detect disruptions within one or more magnetic fields, i.e., disruptions created by the magnetic elements.


In various embodiments, although not illustrated, a surgical instrument can include a system of electromagnets and magnetic elements which can be configured to close and/or open an end effector of a surgical instrument. In at least one such embodiment, similar to the above, the end effector can comprise a staple cartridge channel configured to receive a staple cartridge and, in addition, an anvil rotatably coupled to the staple cartridge channel. In certain embodiments, one or more electromagnets can be positioned within the staple cartridge channel and, in addition, one or more magnetic elements can be positioned within the anvil, wherein, when the electromagnets are energized, or polarized, the electromagnets can generate a magnetic field which can move the magnetic elements toward the electromagnets and, as a result, move the anvil between an open position and a closed position. In some such embodiments, the polarity of the electromagnets can be reversed in order to repel the magnetic elements mounted to the anvil and, as a result, move the anvil between a closed position and an open position. In other embodiments, the current being supplied to the electromagnets can be sufficiently reduced, or disconnected, such that the electromagnets cannot produce a sufficient magnetic field to hold the anvil in its closed position. In at least one such embodiment, the end effector can further comprise a spring which can be configured to bias the anvil into its open position such that, when the electromagnets are sufficiently deenergized as described above, the spring can move the anvil into its open position. In various alternative embodiments, the electromagnets can be configured to bias the anvil into its open position and the spring can be configured to bias the anvil into its closed position.


While the present invention has been illustrated by the description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. Furthermore, although the embodiments disclosed herein have been described in connection with an endoscopic cutting and stapling instrument, other embodiments are envisioned in connection with any suitable medical device. While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.


Further to the above, the various embodiments of the present invention have been described above in connection with cutting-type surgical instruments. It should be noted, however, that in other embodiments, the surgical instruments disclosed herein need not be a cutting-type surgical instrument. For example, it could be a non-cutting endoscopic instrument, a grasper, a stapler, a clip applier, an access device, a drug/gene therapy delivery device, an energy device using ultrasound, RF, laser, etc. Although the present invention has been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.


Further to the above, the various staple cartridges disclosed herein can be disposable. In at least one embodiment, an expended staple cartridge, or an at least partially expended staple cartridge, can be removed from a surgical stapler and replaced with another staple cartridge. In other various embodiments, the staple cartridge may not be removable and/or replaceable during the ordinary use of the surgical instrument but, in some circumstances, may be replaceable while and/or after the surgical stapler is reconditioned as described in greater detail below. In various embodiments, the staple cartridge can be part of a disposable loading unit or end-effector which can further include a staple cartridge carrier, anvil, cutting member, and/or staple driver. In at least one such embodiment, the entire, or at least a portion of, the disposable loading unit or end-effector can be detachably connected to a surgical instrument and can be configured to be replaced.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference.

Claims
  • 1. A surgical stapler, comprising: a shaft;an actuator;a first magnetic element operably coupled with said actuator;an end effector movably coupled to said shaft, said end effector comprising: a staple cartridge channel configured to receive a staple cartridge; andan anvil movably coupled to said staple cartridge channel; anda second magnetic element positioned on said end effector, wherein said first magnetic element is configured to apply a magnetic force to said second magnetic element upon an actuation of said actuator, and wherein said magnetic force is sufficient to articulate said end effector relative to said shaft.
  • 2. The surgical stapler of claim 1, wherein said actuator is operably coupled to a power source, and wherein said actuator is configured to selectively supply electrical current to said first magnetic element.
  • 3. The surgical stapler of claim 2, wherein said first magnetic element includes an electromagnet which is energized by the electrical current from the power source.
  • 4. The surgical stapler of claim 2, wherein said actuator is configured to selectively switch the polarity of electrical current supplied to said first magnetic element.
  • 5. The surgical stapler of claim 2, wherein a pulse width modulation circuit is operably coupled to said power source and said actuator, wherein said pulse width modulation circuit is configured to modulate pulses supplied from said power source to said actuator when articulating said end effector with respect to said shaft.
  • 6. The surgical stapler of claim 1, wherein the operation of said actuator is configured to change the polarity of said first magnetic element.
  • 7. A surgical instrument, comprising: a shaft; an articulation joint;an end effector rotatably coupled to said shaft about said articulation joint wherein said end effector comprises: an anvil jaw: and a staple cartridge jaw: anda staple cartridge configured to be replaceably seated in said staple cartridge jaw, wherein said staple cartridge comprises staples removably stored therein:a firing member configured to traverse said articulation joint, wherein said firing member is configured to translate from a proximal position toward a distal position during a staple firing stroke: and a motor, comprising:a first magnetic element coupled to said shaft; and a second magnetic element positioned on said end effector, wherein said first magnetic element is configured to generate at least one magnetic field sufficient to displace said second magnetic element and articulate said end effector in a first direction or a second direction with respect to said shaft.
  • 8. The surgical instrument of claim 7, wherein said motor is operably coupled to a power source, wherein said power source is configured to selectively supply electrical current to said first magnetic element.
  • 9. The surgical instrument of claim 8, wherein a pulse width modulation circuit is operably coupled to said power source and said motor, wherein said pulse width modulation circuit is configured to modulate pulses supplied from said power source to said motor when articulating said end effector with respect to said shaft.
  • 10. The surgical instrument of claim 7, wherein said first magnetic element comprises an electromagnet which can be selectively energized to create said magnetic field.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/835,592, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed Mar. 15, 2013, now U.S. Patent Application Publication No. 2013/0270322, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 12/366,538, entitled SURGICAL STAPLING INSTRUMENT COMPRISING A MAGNETIC ELEMENT DRIVER, filed Feb. 5, 2009, which issued on Aug. 27, 2013 as U.S. Pat. No. 8,517,239, the entire disclosures of which are hereby incorporated by reference herein.

US Referenced Citations (3927)
Number Name Date Kind
66052 Smith Jun 1867 A
662587 Blake Nov 1900 A
670748 Weddeler Mar 1901 A
951393 Hahn Mar 1910 A
1306107 Elliott Jun 1919 A
1314601 McCaskey Sep 1919 A
1677337 Grove Jul 1928 A
1794907 Kelly Mar 1931 A
2037727 La Chapelle Apr 1936 A
2132295 Hawkins Oct 1938 A
2161632 Nattenheimer Jun 1939 A
2211117 Hess Aug 1940 A
2214870 West Sep 1940 A
2318379 Davis et al. May 1943 A
2329440 La Place Sep 1943 A
2441096 Happe May 1948 A
2448741 Scott et al. Sep 1948 A
2450527 Smith et al. Oct 1948 A
2526902 Rublee Oct 1950 A
2527256 Jackson Oct 1950 A
2578686 Fish Dec 1951 A
2674149 Benson Apr 1954 A
2711461 Happe Jun 1955 A
2804848 O'Farrell et al. Sep 1957 A
2808482 Zanichkowsky et al. Oct 1957 A
2853074 Olson Sep 1958 A
2887004 Stewart May 1959 A
2959974 Emrick Nov 1960 A
3032769 Palmer May 1962 A
3075062 Iaccarino Jan 1963 A
3078465 Bobrov Feb 1963 A
3079606 Bobrov et al. Mar 1963 A
3166072 Sullivan, Jr. Jan 1965 A
3196869 Scholl Jul 1965 A
3204731 Bent et al. Sep 1965 A
3266494 Brownrigg et al. Aug 1966 A
3269630 Fleischer Aug 1966 A
3275211 Hirsch et al. Sep 1966 A
3317103 Cullen et al. May 1967 A
3317105 Astafjev et al. May 1967 A
3357296 Lefever Dec 1967 A
3490675 Green et al. Jan 1970 A
3494533 Green et al. Feb 1970 A
3499591 Green Mar 1970 A
3503396 Pierie et al. Mar 1970 A
3551987 Wilkinson Jan 1971 A
3568675 Harvey Mar 1971 A
3572159 Tschanz Mar 1971 A
3583393 Takahashi Jun 1971 A
3598943 Barrett Aug 1971 A
3608549 Merrill Sep 1971 A
3640317 Panfili Feb 1972 A
3643851 Green et al. Feb 1972 A
3661666 Foster et al. May 1972 A
3662939 Bryan May 1972 A
3695646 Mommsen Oct 1972 A
3709221 Riely Jan 1973 A
3717294 Green Feb 1973 A
3734207 Fishbein May 1973 A
3740994 DeCarlo, Jr. Jun 1973 A
3744495 Johnson Jul 1973 A
3746002 Haller Jul 1973 A
3751902 Kingsbury et al. Aug 1973 A
3799151 Fukaumi et al. Mar 1974 A
3819100 Noiles et al. Jun 1974 A
3821919 Knohl Jul 1974 A
3841474 Maier Oct 1974 A
3851196 Hinds Nov 1974 A
3885491 Curtis May 1975 A
3892228 Mitsui Jul 1975 A
3894174 Cartun Jul 1975 A
3940844 Colby et al. Mar 1976 A
3950686 Randall Apr 1976 A
3955581 Spasiano et al. May 1976 A
RE28932 Noiles et al. Aug 1976 E
3981051 Brumlik Sep 1976 A
4054108 Gill Oct 1977 A
4060089 Noiles Nov 1977 A
4106446 Yamada et al. Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4129059 Van Eck Dec 1978 A
4169990 Lerdman Oct 1979 A
4180285 Reneau Dec 1979 A
4198734 Brumlik Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4213562 Garrett et al. Jul 1980 A
4226242 Jarvik Oct 1980 A
4244372 Kapitanov et al. Jan 1981 A
4250436 Weissman Feb 1981 A
4261244 Becht et al. Apr 1981 A
4272002 Moshofsky Jun 1981 A
4272662 Simpson Jun 1981 A
4274304 Curtiss Jun 1981 A
4275813 Noiles Jun 1981 A
4289133 Rothfuss Sep 1981 A
4296654 Mercer Oct 1981 A
4304236 Conta et al. Dec 1981 A
4305539 Korolkov et al. Dec 1981 A
4312685 Riedl Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4321002 Froehlich Mar 1982 A
4328839 Lyons et al. May 1982 A
4331277 Green May 1982 A
4340331 Savino Jul 1982 A
4347450 Colligan Aug 1982 A
4349028 Green Sep 1982 A
4353371 Cosman Oct 1982 A
4373147 Carlson, Jr. Feb 1983 A
4379457 Gravener et al. Apr 1983 A
4380312 Landrus Apr 1983 A
4382326 Rabuse May 1983 A
4383634 Green May 1983 A
4393728 Larson et al. Jul 1983 A
4396139 Hall et al. Aug 1983 A
4397311 Kanshin et al. Aug 1983 A
4402445 Green Sep 1983 A
4408692 Siegel et al. Oct 1983 A
4409057 Molenda et al. Oct 1983 A
4415112 Green Nov 1983 A
4416276 Newton et al. Nov 1983 A
4423456 Zaidenweber Dec 1983 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4434796 Karapetian et al. Mar 1984 A
4438659 Desplats Mar 1984 A
4442964 Becht Apr 1984 A
4448194 DiGiovanni et al. May 1984 A
4451743 Suzuki et al. May 1984 A
4454887 Krüger Jun 1984 A
4467805 Fukuda Aug 1984 A
4470414 Imagawa et al. Sep 1984 A
4473077 Noiles et al. Sep 1984 A
4475679 Fleury, Jr. Oct 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4486928 Tucker et al. Dec 1984 A
4488523 Shichman Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4499895 Takayama Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
4505272 Utyamyshev et al. Mar 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506671 Green Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4520817 Green Jun 1985 A
4522327 Korthoff et al. Jun 1985 A
4526174 Froehlich Jul 1985 A
4527724 Chow et al. Jul 1985 A
4530453 Green Jul 1985 A
4531522 Bedi et al. Jul 1985 A
4532927 Miksza, Jr. Aug 1985 A
4548202 Duncan Oct 1985 A
4565109 Tsay Jan 1986 A
4565189 Mabuchi Jan 1986 A
4566620 Green et al. Jan 1986 A
4569469 Mongeon et al. Feb 1986 A
4571213 Ishimoto Feb 1986 A
4573468 Conta et al. Mar 1986 A
4573469 Golden et al. Mar 1986 A
4573622 Green et al. Mar 1986 A
4576167 Noiles et al. Mar 1986 A
4580712 Green Apr 1986 A
4585153 Failla et al. Apr 1986 A
4589416 Green May 1986 A
4591085 Di Giovanni May 1986 A
4597753 Turley Jul 1986 A
4600037 Hatten Jul 1986 A
4604786 Howie, Jr. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4607638 Crainich Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4619262 Taylor Oct 1986 A
4619391 Sharkany et al. Oct 1986 A
4628459 Shinohara et al. Dec 1986 A
4629107 Fedotov et al. Dec 1986 A
4632290 Green et al. Dec 1986 A
4633874 Chow et al. Jan 1987 A
4634419 Kreizman et al. Jan 1987 A
4641076 Linden Feb 1987 A
4643731 Eckenhoff Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4655222 Florez et al. Apr 1987 A
4662555 Thornton May 1987 A
4663874 Sano et al. May 1987 A
4664305 Blake, III et al. May 1987 A
4665916 Green May 1987 A
4667674 Korthoff et al. May 1987 A
4669647 Storace Jun 1987 A
4671445 Barker et al. Jun 1987 A
4676245 Fukuda Jun 1987 A
4684051 Akopov et al. Aug 1987 A
4691703 Auth et al. Sep 1987 A
4693248 Failla Sep 1987 A
4700703 Resnick et al. Oct 1987 A
4708141 Inoue et al. Nov 1987 A
4709120 Pearson Nov 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4727308 Huljak et al. Feb 1988 A
4728020 Green et al. Mar 1988 A
4728876 Mongeon et al. Mar 1988 A
4729260 Dudden Mar 1988 A
4730726 Holzwarth Mar 1988 A
4741336 Failla et al. May 1988 A
4743214 Tai-Cheng May 1988 A
4747820 Hornlein et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4767044 Green Aug 1988 A
4773420 Green Sep 1988 A
4777780 Holzwarth Oct 1988 A
4787387 Burbank, III et al. Nov 1988 A
4790225 Moody et al. Dec 1988 A
4805617 Bedi et al. Feb 1989 A
4805823 Rothfuss Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4815460 Porat et al. Mar 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830855 Stewart May 1989 A
4834720 Blinkhorn May 1989 A
4844068 Arata et al. Jul 1989 A
4848637 Pruitt Jul 1989 A
4856078 Konopka Aug 1989 A
4865030 Polyak Sep 1989 A
4868530 Ahs Sep 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4873977 Avant et al. Oct 1989 A
4875486 Rapoport et al. Oct 1989 A
4880015 Nierman Nov 1989 A
4890613 Golden et al. Jan 1990 A
4892244 Fox et al. Jan 1990 A
4893622 Green et al. Jan 1990 A
4896678 Ogawa Jan 1990 A
4900303 Lemelson Feb 1990 A
4903697 Resnick et al. Feb 1990 A
4915100 Green Apr 1990 A
4930503 Pruitt Jun 1990 A
4930674 Barak Jun 1990 A
4931047 Broadwin et al. Jun 1990 A
4932960 Green et al. Jun 1990 A
4933843 Scheller et al. Jun 1990 A
4938408 Bedi et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4943182 Hoblingre Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4951860 Peters et al. Aug 1990 A
4955959 Tompkins et al. Sep 1990 A
4965709 Ngo Oct 1990 A
4973274 Hirukawa Nov 1990 A
4978049 Green Dec 1990 A
4978333 Broadwin et al. Dec 1990 A
4986808 Broadwin et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
4996975 Nakamura Mar 1991 A
5002543 Bradshaw et al. Mar 1991 A
5002553 Shiber Mar 1991 A
5005754 Van Overloop Apr 1991 A
5009661 Michelson Apr 1991 A
5014899 Presty et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5018515 Gilman May 1991 A
5018657 Pedlick et al. May 1991 A
5024671 Tu et al. Jun 1991 A
5027834 Pruitt Jul 1991 A
5031814 Tompkins et al. Jul 1991 A
5035040 Kerrigan et al. Jul 1991 A
5038109 Goble et al. Aug 1991 A
5040715 Green et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5062563 Green et al. Nov 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5079006 Urquhart Jan 1992 A
5080556 Carreno Jan 1992 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5094247 Hernandez et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5104397 Vasconcelos et al. Apr 1992 A
5106008 Tompkins et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5111987 Moeinzadeh et al. May 1992 A
5116349 Aranyi May 1992 A
5122156 Granger et al. Jun 1992 A
5124990 Williamson Jun 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5141144 Foslien et al. Aug 1992 A
5142932 Moya et al. Sep 1992 A
5155941 Takahashi et al. Oct 1992 A
5156315 Green et al. Oct 1992 A
5156609 Nakao et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5158567 Green Oct 1992 A
D330699 Gill Nov 1992 S
5163598 Peters et al. Nov 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171253 Klieman et al. Dec 1992 A
5188111 Yates et al. Feb 1993 A
5190517 Zieve et al. Mar 1993 A
5190544 Chapman et al. Mar 1993 A
5190560 Woods et al. Mar 1993 A
5192288 Thompson et al. Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5200280 Karasa Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5207697 Carusillo et al. May 1993 A
5209747 Knoepfler May 1993 A
5211649 Kohler et al. May 1993 A
5211655 Hasson May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217478 Rexroth Jun 1993 A
5219111 Bilotti et al. Jun 1993 A
5221036 Takase Jun 1993 A
5221281 Klicek Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5222975 Crainich Jun 1993 A
5222976 Yoon Jun 1993 A
5223675 Taft Jun 1993 A
5234447 Kaster et al. Aug 1993 A
5236440 Hlavacek Aug 1993 A
5239981 Anapliotis Aug 1993 A
5240163 Stein et al. Aug 1993 A
5242457 Akopov et al. Sep 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5253793 Green et al. Oct 1993 A
5258009 Conners Nov 1993 A
5258012 Luscombe et al. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5259835 Clark et al. Nov 1993 A
5260637 Pizzi Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5263973 Cook Nov 1993 A
5264218 Rogozinski Nov 1993 A
5268622 Philipp Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5275608 Forman et al. Jan 1994 A
5279416 Malec et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5282806 Haber et al. Feb 1994 A
5282829 Hermes Feb 1994 A
5284128 Hart Feb 1994 A
5285381 Iskarous et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290271 Jernberg Mar 1994 A
5292053 Bilotti et al. Mar 1994 A
5297714 Kramer Mar 1994 A
5304204 Bregen Apr 1994 A
5307976 Olson et al. May 1994 A
5309387 Mon et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5312329 Beaty et al. May 1994 A
5314424 Nicholas May 1994 A
5314445 Heidmueller née Degwitz et al. May 1994 A
5314466 Stern et al. May 1994 A
5318221 Green et al. Jun 1994 A
5330487 Thornton et al. Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5333422 Warren et al. Aug 1994 A
5333772 Rothfuss et al. Aug 1994 A
5333773 Main et al. Aug 1994 A
5334183 Wuchinich Aug 1994 A
5336232 Green et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5341724 Vatel Aug 1994 A
5341810 Dardel Aug 1994 A
5342381 Tidemand Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5343391 Mushabac Aug 1994 A
5344060 Gravener et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5346504 Ortiz et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350388 Epstein Sep 1994 A
5350391 Iacovelli Sep 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5352235 Koros et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5356006 Alpern et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5359231 Flowers et al. Oct 1994 A
D352780 Glaeser et al. Nov 1994 S
5360305 Kerrigan Nov 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5364001 Bryan Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5366134 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368015 Wilk Nov 1994 A
5368592 Stern et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5372602 Burke Dec 1994 A
5374277 Hassler Dec 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381649 Webb Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391180 Tovey et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395384 Duthoit Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5405073 Porter Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5407293 Crainich Apr 1995 A
5408409 Glassman Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5411481 Allen et al. May 1995 A
5411508 Bessler et al. May 1995 A
5413107 Oakley et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5413268 Green et al. May 1995 A
5413272 Green et al. May 1995 A
5413573 Koivukangas May 1995 A
5415334 Williamson, IV et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417203 Tovey et al. May 1995 A
5417361 Williamson, IV May 1995 A
5421829 Olichney et al. Jun 1995 A
5422567 Matsunaga Jun 1995 A
5423471 Mastri et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431654 Nic Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437681 Meade et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439155 Viola Aug 1995 A
5439156 Grant et al. Aug 1995 A
5439479 Schichman et al. Aug 1995 A
5441191 Linden Aug 1995 A
5441193 Gravener Aug 1995 A
5441483 Avitall Aug 1995 A
5441494 Ortiz Aug 1995 A
5444113 Sinclair et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5447417 Kuhl et al. Sep 1995 A
5447513 Davison et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5454378 Palmer et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456401 Green et al. Oct 1995 A
5458579 Chodorow et al. Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464013 Lemelson Nov 1995 A
5464144 Guy et al. Nov 1995 A
5464300 Crainich Nov 1995 A
5465894 Clark et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5466020 Page et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5468253 Bezwada et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470009 Rodak Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5472442 Klicek Dec 1995 A
5473204 Temple Dec 1995 A
5474057 Makower et al. Dec 1995 A
5474223 Viola et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5480409 Riza Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484398 Stoddard Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5489256 Adair Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5497933 DeFonzo et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503635 Sauer et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5511564 Wilk Apr 1996 A
5514129 Smith May 1996 A
5514157 Nicholas et al. May 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5520678 Heckele et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5522831 Sleister et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
D372086 Grasso et al. Jul 1996 S
5531305 Roberts et al. Jul 1996 A
5531744 Nardella et al. Jul 1996 A
5533521 Granger Jul 1996 A
5533581 Barth et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5542949 Yoon Aug 1996 A
5543119 Sutter et al. Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5549583 Sanford et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5549627 Kieturakis Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5551622 Yoon Sep 1996 A
5553675 Pitzen et al. Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554148 Aebischer et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5556416 Clark et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5558671 Yates Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5561881 Klinger et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562690 Green et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5563481 Krause Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569161 Ebling et al. Oct 1996 A
5569270 Weng Oct 1996 A
5569284 Young et al. Oct 1996 A
5571090 Sherts Nov 1996 A
5571100 Goble et al. Nov 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5571488 Beerstecher et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5574431 McKeown et al. Nov 1996 A
5575054 Klinzing et al. Nov 1996 A
5575789 Bell et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5575805 Li Nov 1996 A
5577654 Bishop Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5591187 Dekel Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599151 Daum et al. Feb 1997 A
5599279 Slotman et al. Feb 1997 A
5599344 Paterson Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5599852 Scopelianos et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5607095 Smith et al. Mar 1997 A
5607433 Polla et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5611709 McAnulty Mar 1997 A
5613966 Makower et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618294 Aust et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5620289 Curry Apr 1997 A
5620452 Yoon Apr 1997 A
5624398 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628446 Geiste et al. May 1997 A
5628743 Cimino May 1997 A
5628745 Bek May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5630782 Adair May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
5643291 Pier et al. Jul 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649956 Jensen et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653677 Okada et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657429 Wang et al. Aug 1997 A
5657921 Young et al. Aug 1997 A
5658238 Suzuki et al. Aug 1997 A
5658281 Heard Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658307 Exconde Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5674286 D'Alessio et al. Oct 1997 A
5678748 Plyley et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5686090 Schilder et al. Nov 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693020 Rauh Dec 1997 A
5693042 Boiarski et al. Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5695502 Pier et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704087 Strub Jan 1998 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5709706 Kienzle et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5712460 Carr et al. Jan 1998 A
5713128 Schrenk et al. Feb 1998 A
5713505 Huitema Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5713896 Nardella Feb 1998 A
5713920 Bezwada et al. Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5718548 Costellessa Feb 1998 A
5718714 Livneh Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732821 Stone et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5733308 Daugherty et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5735848 Yates et al. Apr 1998 A
5735874 Measamer et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5738648 Lands et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5747953 Philipp May 1998 A
5749889 Bacich et al. May 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5752965 Francis et al. May 1998 A
5755717 Yates et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769748 Eyerly et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772379 Evensen Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5778939 Hok-Yin Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782749 Riza Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5784934 Izumisawa Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5787897 Kieturakis Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5794834 Hamblin et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797906 Rhum et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5800423 Jensen Sep 1998 A
5806676 Wasgien Sep 1998 A
5807376 Viola et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5809441 McKee Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5813813 Daum et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843096 Igaki et al. Dec 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843122 Riza Dec 1998 A
5843132 Ilvento Dec 1998 A
5843169 Taheri Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5849023 Mericle Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860975 Goble et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873885 Weidenbenner Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878607 Nunes et al. Mar 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5881777 Bassi Mar 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5893506 Powell Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893878 Pierce Apr 1999 A
5894979 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899914 Zirps et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5903117 Gregory May 1999 A
5904647 Ouchi May 1999 A
5904693 Dicesare et al. May 1999 A
5904702 Ek et al. May 1999 A
5906625 Bito et al. May 1999 A
5907211 Hall May 1999 A
5908402 Blythe Jun 1999 A
5908427 McKean et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5921956 Grinberg et al. Jul 1999 A
5928256 Riza Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5931853 McEwen et al. Aug 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5944172 Hannula Aug 1999 A
5944715 Goble et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5948030 Miller et al. Sep 1999 A
5951516 Bunyan Sep 1999 A
5951552 Long et al. Sep 1999 A
5951574 Stefanchik et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5971916 Koren Oct 1999 A
5973221 Collyer et al. Oct 1999 A
5977746 Hershberger et al. Nov 1999 A
5984949 Levin Nov 1999 A
5988479 Palmer Nov 1999 A
5997528 Bisch et al. Dec 1999 A
5997552 Person et al. Dec 1999 A
6001108 Wang et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6010513 Törmälä et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6022352 Vandewalle Feb 2000 A
6023641 Thompson Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6027501 Goble et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033378 Lundquist et al. Mar 2000 A
6033399 Gines Mar 2000 A
6033427 Lee Mar 2000 A
6037724 Buss et al. Mar 2000 A
6037927 Rosenberg Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6039734 Goble Mar 2000 A
6042601 Smith Mar 2000 A
6045560 McKean et al. Apr 2000 A
6047861 Vidal et al. Apr 2000 A
6049145 Austin et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6056735 Okada et al. May 2000 A
6056746 Goble et al. May 2000 A
6062360 Shields May 2000 A
6063095 Wang et al. May 2000 A
6063097 Oi et al. May 2000 A
6063098 Houser et al. May 2000 A
6065679 Levie et al. May 2000 A
6065919 Peck May 2000 A
6066132 Chen et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6077286 Cuschieri et al. Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080181 Jensen et al. Jun 2000 A
6082577 Coates et al. Jul 2000 A
6083191 Rose Jul 2000 A
6083234 Nicholas et al. Jul 2000 A
6083242 Cook Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090106 Goble et al. Jul 2000 A
6093186 Goble Jul 2000 A
6099537 Sugai et al. Aug 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6104304 Clark et al. Aug 2000 A
6106511 Jensen Aug 2000 A
6109500 Alli et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120433 Mizuno et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6123241 Walter et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126058 Adams et al. Oct 2000 A
6126359 Dittrich et al. Oct 2000 A
6126670 Walker et al. Oct 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6132368 Cooper Oct 2000 A
6139546 Koenig et al. Oct 2000 A
6149660 Laufer et al. Nov 2000 A
6151323 O'Connell et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6155473 Tompkins et al. Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6159224 Yoon Dec 2000 A
6162208 Hipps Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171305 Sherman Jan 2001 B1
6171316 Kovac et al. Jan 2001 B1
6171330 Benchetrit Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6175290 Forsythe et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6181105 Cutolo et al. Jan 2001 B1
6182673 Kindermann et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6206897 Jamiolkowski et al. Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6210403 Klicek Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6220368 Ark et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6223835 Habedank et al. May 2001 B1
6224617 Saadat et al. May 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6231565 Tovey et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6241723 Heim et al. Jun 2001 B1
6245084 Mark et al. Jun 2001 B1
6248116 Chevillon et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6249105 Andrews et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6258107 Balázs et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6293942 Goble et al. Sep 2001 B1
6296640 Wampler et al. Oct 2001 B1
6302311 Adams et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6306149 Meade Oct 2001 B1
6309403 Minor et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6320123 Reimers Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6324339 Hudson et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6331761 Kumar et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6346077 Taylor et al. Feb 2002 B1
6349868 Mattingly Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6352532 Kramer et al. Mar 2002 B1
6355699 Vyakarnam et al. Mar 2002 B1
6356072 Chass Mar 2002 B1
6358224 Tims et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6366441 Ozawa Apr 2002 B1
6370981 Watarai Apr 2002 B2
6373152 Wang et al. Apr 2002 B1
6383201 Dong May 2002 B1
6387113 Hawkins et al. May 2002 B1
6387114 Adams May 2002 B2
6391038 Vargas et al. May 2002 B2
6392854 O'Gorman May 2002 B1
6398781 Goble et al. Jun 2002 B1
6398797 Bombard et al. Jun 2002 B2
6402766 Bowman et al. Jun 2002 B2
6406440 Stefanchik Jun 2002 B1
6406472 Jensen Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6413274 Pedros Jul 2002 B1
6416486 Wampler Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6423079 Blake, III Jul 2002 B1
RE37814 Allgeyer Aug 2002 E
6428070 Takanashi et al. Aug 2002 B1
6429611 Li Aug 2002 B1
6430298 Kettl et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6436122 Frank et al. Aug 2002 B1
6439439 Rickard et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6440146 Nicholas et al. Aug 2002 B2
6441577 Blumenkranz et al. Aug 2002 B2
6443973 Whitman Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6447864 Johnson et al. Sep 2002 B2
6450391 Kayan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6454781 Witt et al. Sep 2002 B1
6468275 Wampler et al. Oct 2002 B1
6471106 Reining Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6478210 Adams et al. Nov 2002 B2
6482200 Shippert Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6485667 Tan Nov 2002 B1
6488196 Fenton, Jr. Dec 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494896 D'Alessio et al. Dec 2002 B1
6498480 Manara Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500194 Benderev et al. Dec 2002 B2
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6510854 Goble Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6512360 Goto et al. Jan 2003 B1
6517528 Pantages et al. Feb 2003 B1
6517535 Edwards Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6522101 Malackowski Feb 2003 B2
6527782 Hogg et al. Mar 2003 B2
6527785 Sancoff et al. Mar 2003 B2
6533157 Whitman Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6543456 Freeman Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6550546 Thurler et al. Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6554861 Knox et al. Apr 2003 B2
6555770 Kawase Apr 2003 B2
6558378 Sherman et al. May 2003 B2
6558379 Batchelor et al. May 2003 B1
6565560 Goble et al. May 2003 B1
6566619 Gillman et al. May 2003 B2
6569085 Kortenbach et al. May 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6582441 He et al. Jun 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6588931 Betzner et al. Jul 2003 B2
6589164 Flaherty Jul 2003 B1
6592538 Hotchkiss et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6596296 Nelson et al. Jul 2003 B1
6596304 Bayon et al. Jul 2003 B1
6596432 Kawakami et al. Jul 2003 B2
D478665 Isaacs et al. Aug 2003 S
D478986 Johnston et al. Aug 2003 S
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605669 Awokola et al. Aug 2003 B2
6607475 Doyle et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6613069 Boyd et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6629974 Penny et al. Oct 2003 B2
6629988 Weadock Oct 2003 B2
6635838 Kornelson Oct 2003 B1
6636412 Smith Oct 2003 B2
6638108 Tachi Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
RE38335 Aust et al. Nov 2003 E
6641528 Torii Nov 2003 B2
6644532 Green et al. Nov 2003 B2
6645201 Utley et al. Nov 2003 B1
6646307 Yu et al. Nov 2003 B1
6648816 Irion et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
D484243 Ryan et al. Dec 2003 S
D484595 Ryan et al. Dec 2003 S
D484596 Ryan et al. Dec 2003 S
6656177 Truckai et al. Dec 2003 B2
6656193 Grant et al. Dec 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6667825 Lu et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6671185 Duval Dec 2003 B2
D484977 Ryan et al. Jan 2004 S
6676660 Wampler et al. Jan 2004 B2
6679269 Swanson Jan 2004 B2
6679410 Würsch et al. Jan 2004 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685727 Fisher et al. Feb 2004 B2
6689153 Skiba Feb 2004 B1
6692507 Pugsley et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6695774 Hale et al. Feb 2004 B2
6697048 Rosenberg et al. Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699235 Wallace et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6705503 Pedicini et al. Mar 2004 B1
6709445 Boebel et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6716223 Leopold et al. Apr 2004 B2
6716232 Vidal et al. Apr 2004 B1
6716233 Whitman Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6723087 O'Neill et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6726697 Nicholas et al. Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6729119 Schnipke et al. May 2004 B2
6736825 Blatter et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6747121 Gogolewski Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6755195 Lemke et al. Jun 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6762339 Klun et al. Jul 2004 B1
6764445 Ramans et al. Jul 2004 B2
6767352 Field et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6770027 Banik et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6777838 Miekka et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786896 Madani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6790173 Saadat et al. Sep 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793661 Hamilton et al. Sep 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793669 Nakamura et al. Sep 2004 B2
6802843 Truckai et al. Oct 2004 B2
6805273 Bilotti et al. Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6808525 Latterell et al. Oct 2004 B2
6814741 Bowman et al. Nov 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818018 Sawhney Nov 2004 B1
6820791 Adams Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6827712 Tovey et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6828902 Casden Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6831629 Nishino et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6834001 Myono Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6838493 Williams et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6843789 Goble Jan 2005 B2
6843793 Brock et al. Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6850817 Green Feb 2005 B1
6853879 Sunaoshi Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6861142 Wilkie et al. Mar 2005 B1
6863694 Boyce et al. Mar 2005 B1
6866178 Adams et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6869430 Balbierz et al. Mar 2005 B2
6869435 Blake, III Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6878106 Herrmann Apr 2005 B1
6889116 Jinno May 2005 B2
6893435 Goble May 2005 B2
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905498 Hooven Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6913579 Truckai et al. Jul 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6921412 Black et al. Jul 2005 B1
6923093 Ullah Aug 2005 B2
6923803 Goble Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929641 Goble et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6931830 Liao Aug 2005 B2
6932218 Kosann et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6936948 Bell et al. Aug 2005 B2
6939358 Palacios et al. Sep 2005 B2
6942662 Goble et al. Sep 2005 B2
6945444 Gresham et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960107 Schaub et al. Nov 2005 B1
6960163 Ewers et al. Nov 2005 B2
6960220 Marino et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6963792 Green Nov 2005 B1
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6971988 Orban, III Dec 2005 B2
6972199 Lebouitz et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6981978 Gannoe Jan 2006 B2
6984203 Tartaglia et al. Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6990796 Schnipke et al. Jan 2006 B2
6991146 Sinisi Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994708 Manzo Feb 2006 B2
6995729 Govari et al. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
6998736 Lee et al. Feb 2006 B2
6998816 Wieck et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7001380 Goble Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7007176 Goodfellow et al. Feb 2006 B2
7008435 Cummins Mar 2006 B2
7009039 Yayon et al. Mar 2006 B2
7011657 Truckai et al. Mar 2006 B2
7018357 Emmons Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7021669 Lindermeir et al. Apr 2006 B1
7025743 Mann et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029439 Roberts et al. Apr 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7036680 Flannery May 2006 B1
7037344 Kagan et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7041868 Greene et al. May 2006 B2
7043852 Hayashida et al. May 2006 B2
7044350 Kameyama et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7048745 Tierney et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7052499 Steger et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059331 Adams et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7063671 Couvillon, Jr. Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7067038 Trokhan et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7070559 Adams et al. Jul 2006 B2
7070597 Truckai et al. Jul 2006 B2
7071287 Rhine et al. Jul 2006 B2
7075770 Smith Jul 2006 B1
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083073 Yoshie et al. Aug 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7094202 Nobis et al. Aug 2006 B2
7094247 Monassevitch et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7097644 Long Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7098794 Lindsay et al. Aug 2006 B2
7100949 Williams et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7104741 Krohn Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7108701 Evens et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7114642 Whitman Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7121446 Arad et al. Oct 2006 B2
7122028 Looper et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7126879 Snyder Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7133601 Phillips et al. Nov 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7139016 Squilla et al. Nov 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7147637 Goble Dec 2006 B2
7147650 Lee Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7161036 Oikawa et al. Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7171279 Buckingham et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7172593 Trieu et al. Feb 2007 B2
7179223 Motoki et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7182763 Nardella Feb 2007 B2
7183737 Kitagawa Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7199537 Okamura et al. Apr 2007 B2
7202653 Pai Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7207233 Wadge Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7207556 Saitoh et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210609 Leiboff et al. May 2007 B2
7211081 Goble May 2007 B2
7211084 Goble et al. May 2007 B2
7211092 Hughett May 2007 B2
7211979 Khatib et al. May 2007 B2
7213736 Wales et al. May 2007 B2
7214224 Goble May 2007 B2
7215517 Takamatsu May 2007 B2
7217285 Vargas et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7220272 Weadock May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7235302 Jing et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7238195 Viola Jul 2007 B2
7238901 Kim et al. Jul 2007 B2
7241288 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7249267 Chapius Jul 2007 B2
7252660 Kunz Aug 2007 B2
7255696 Goble et al. Aug 2007 B2
7256695 Hamel et al. Aug 2007 B2
7258262 Mastri et al. Aug 2007 B2
7258546 Beier et al. Aug 2007 B2
7260431 Libbus et al. Aug 2007 B2
7265374 Lee et al. Sep 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7278949 Bader Oct 2007 B2
7278994 Goble Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7286850 Frielink et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7293685 Ehrenfels et al. Nov 2007 B2
7295893 Sunaoshi Nov 2007 B2
7295907 Lu et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300373 Jinno et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7303502 Thompson Dec 2007 B2
7303556 Metzger Dec 2007 B2
7306597 Manzo Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7322859 Evans Jan 2008 B2
7322975 Goble et al. Jan 2008 B2
7322994 Nicholas et al. Jan 2008 B2
7324572 Chang Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7326213 Benderev et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7330004 DeJonge et al. Feb 2008 B2
7331340 Barney Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335199 Goble et al. Feb 2008 B2
7336048 Lohr Feb 2008 B2
7336184 Smith et al. Feb 2008 B2
7338513 Lee et al. Mar 2008 B2
7341591 Grinberg Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
7346344 Fontaine Mar 2008 B2
7348763 Reinhart et al. Mar 2008 B1
RE40237 Bilotti et al. Apr 2008 E
7351258 Ricotta et al. Apr 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7354502 Polat et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7377918 Amoah May 2008 B2
7377928 Zubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7384417 Cucin Jun 2008 B2
7386365 Nixon Jun 2008 B2
7386730 Uchikubo Jun 2008 B2
7388217 Buschbeck et al. Jun 2008 B2
7388484 Hsu Jun 2008 B2
7391173 Schena Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7397364 Govari Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7400752 Zacharias Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7404822 Viart et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7418078 Blanz et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422138 Bilotti et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7427607 Suzuki Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431694 Stefanchik et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7438718 Milliman et al. Oct 2008 B2
7439354 Lenges et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7442201 Pugsley et al. Oct 2008 B2
7443547 Moreno et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7462187 Johnston et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7467849 Silverbrook et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7476237 Taniguchi et al. Jan 2009 B2
7479608 Smith Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7485133 Cannon et al. Feb 2009 B2
7485142 Milo Feb 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7501198 Barlev et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507202 Schoellhorn Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530984 Sonnenschein et al. May 2009 B2
7530985 Takemoto et al. May 2009 B2
7533906 Luettgen et al. May 2009 B2
7534259 Lashinski et al. May 2009 B2
7540867 Jinno et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549563 Mather et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7553173 Kowalick Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7556647 Drews et al. Jul 2009 B2
7559449 Viola Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7562910 Kertesz et al. Jul 2009 B2
7563862 Sieg et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7566300 Devierre et al. Jul 2009 B2
7567045 Fristedt Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7568619 Todd et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7583063 Dooley Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7591783 Boulais et al. Sep 2009 B2
7591818 Bertolero et al. Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7597693 Garrison Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7611474 Hibner et al. Nov 2009 B2
7615003 Stefanchik et al. Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625370 Hart et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7638958 Philipp et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641092 Kruszynski et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644783 Roberts et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645230 Mikkaichi et al. Jan 2010 B2
7648519 Lee et al. Jan 2010 B2
7650185 Maile et al. Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7651498 Shifrin et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655288 Bauman et al. Feb 2010 B2
7656131 Embrey et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7658705 Melvin Feb 2010 B2
7659219 Biran et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7674253 Fisher et al. Mar 2010 B2
7674255 Braun Mar 2010 B2
7674263 Ryan Mar 2010 B2
7674270 Layer Mar 2010 B2
7682307 Danitz et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7691106 Schenberger et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699844 Utley et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7699856 Van Wyk et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7699860 Huitema et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708180 Murray et al. May 2010 B2
7708181 Cole et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7712182 Zeiler et al. May 2010 B2
7714239 Smith May 2010 B2
7717312 Beetel May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7718180 Karp May 2010 B2
7718556 Matsuda et al. May 2010 B2
7721930 McKenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shelton, IV et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7722610 Viola et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7727954 McKay Jun 2010 B2
7729742 Govari Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744624 Bettuchi Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7748587 Haramiishi et al. Jul 2010 B2
7749204 Dhanaraj et al. Jul 2010 B2
7751870 Whitman Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7758612 Shipp Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766821 Brunnen et al. Aug 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7771396 Stefanchik et al. Aug 2010 B2
7772720 McGee et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7776065 Griffiths et al. Aug 2010 B2
7778004 Nerheim et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7787256 Chan et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789875 Brock et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7799044 Johnston et al. Sep 2010 B2
7799965 Patel et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810691 Boyden et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819884 Lee et al. Oct 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7824401 Manzo et al. Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7828794 Sartor Nov 2010 B2
7828808 Hinman et al. Nov 2010 B2
7831292 Quaid et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7833234 Bailly et al. Nov 2010 B2
7835823 Sillman et al. Nov 2010 B2
7836400 May et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7838789 Stoffers et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7842025 Coleman et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7850642 Moll et al. Dec 2010 B2
7850982 Stopek et al. Dec 2010 B2
7854736 Ryan Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7862579 Ortiz et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7871418 Thompson et al. Jan 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883465 Donofrio et al. Feb 2011 B2
7886951 Hessler Feb 2011 B2
7886952 Scirica et al. Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7891531 Ward Feb 2011 B1
7891532 Mastri et al. Feb 2011 B2
7892245 Liddicoat et al. Feb 2011 B2
7893586 West et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7896215 Adams et al. Mar 2011 B2
7896877 Hall et al. Mar 2011 B2
7896895 Boudreaux et al. Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7905889 Catanese, III et al. Mar 2011 B2
7905902 Huitema et al. Mar 2011 B2
7909191 Baker et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7914551 Ortiz et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7918848 Lau et al. Apr 2011 B2
7918867 Dana et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7923144 Kohn et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7928281 Augustine Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7931695 Ringeisen Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7935773 Hadba et al. May 2011 B2
7938307 Bettuchi May 2011 B2
7941865 Seman, Jr. et al. May 2011 B2
7942303 Shah May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7944175 Mon et al. May 2011 B2
7945792 Cherpantier May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955322 Devengenzo et al. Jun 2011 B2
7955380 Chu et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7959052 Sonnenschein et al. Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7963964 Santilli et al. Jun 2011 B2
7964206 Suokas et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7987405 Turner et al. Jul 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7993360 Hacker et al. Aug 2011 B2
7994670 Ji Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002696 Suzuki Aug 2011 B2
8002784 Jinno et al. Aug 2011 B2
8002785 Weiss et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006365 Levin et al. Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8007511 Brock et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8016881 Furst Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8028885 Smith et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8034363 Li et al. Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8038686 Huitema et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8043328 Hahnen et al. Oct 2011 B2
8044536 Nguyen et al. Oct 2011 B2
8047236 Perry Nov 2011 B2
8048503 Farnsworth et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8057508 Shelton, IV Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8060250 Reiland et al. Nov 2011 B2
8061576 Cappola Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8063619 Zhu et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066168 Vidal et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
8070033 Milliman et al. Dec 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070743 Kagan et al. Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8080004 Downey et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8084001 Burns et al. Dec 2011 B2
8085013 Wei et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8089509 Chatenever et al. Jan 2012 B2
8091756 Viola Jan 2012 B2
8092443 Bischoff Jan 2012 B2
8092932 Phillips et al. Jan 2012 B2
8096458 Hessler Jan 2012 B2
8097017 Viola Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8100872 Patel Jan 2012 B2
8102278 Deck et al. Jan 2012 B2
8105350 Lee et al. Jan 2012 B2
8107925 Natsuno et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8110208 Hen Feb 2012 B1
8113405 Milliman Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8114100 Smith et al. Feb 2012 B2
8122128 Burke Feb 2012 B2
8123103 Milliman Feb 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8125168 Johnson et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8128624 Couture et al. Mar 2012 B2
8128643 Aranyi et al. Mar 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8134306 Drader et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8137339 Jinno et al. Mar 2012 B2
8140417 Shibata Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8141763 Milliman Mar 2012 B2
8142425 Eggers Mar 2012 B2
8146790 Milliman Apr 2012 B2
8147485 Wham et al. Apr 2012 B2
8152041 Kostrzewski Apr 2012 B2
8154239 Katsuki et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8157793 Omori et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162138 Bettenhausen et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167895 D'Agostino et al. May 2012 B2
8167898 Schaller et al. May 2012 B1
8170241 Roe et al. May 2012 B2
8172120 Boyden et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8179705 Chapuis May 2012 B2
8180458 Kane et al. May 2012 B2
8181840 Milliman May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8197501 Shadeck et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205779 Ma Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210415 Ward Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8211125 Spivey Jul 2012 B2
8214019 Govari et al. Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8215532 Marczyk Jul 2012 B2
8215533 Viola et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8221424 Cha Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8226715 Hwang et al. Jul 2012 B2
8227946 Kim Jul 2012 B2
8228048 Spencer Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241308 Kortenbach et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245594 Rogers et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8245901 Stopek Aug 2012 B2
8246637 Viola et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8257251 Shelton, IV et al. Sep 2012 B2
8257356 Bleich et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267924 Zemlok et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8267951 Whayne et al. Sep 2012 B2
8269121 Smith Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8273404 Dave et al. Sep 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8276802 Kostrzewski Oct 2012 B2
8277473 Sunaoshi et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8281974 Hessler et al. Oct 2012 B2
8282654 Ferrari et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8287561 Nunez et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298161 Vargas Oct 2012 B2
8298677 Wiesner et al. Oct 2012 B2
8302323 Fortier et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308659 Scheibe et al. Nov 2012 B2
8313496 Sauer et al. Nov 2012 B2
8313509 Kostrzewski Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8317074 Ortiz et al. Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8319002 Daniels et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8322590 Patel et al. Dec 2012 B2
8323789 Rozhin et al. Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8348972 Soltz et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357144 Whitman et al. Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8361501 DiTizio et al. Jan 2013 B2
8365973 White et al. Feb 2013 B1
8365975 Manoux et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8366559 Papenfuss et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8388633 Rousseau et al. Mar 2013 B2
8389588 Ringelsen Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397973 Hausen et al. Mar 2013 B1
8398633 Mueller Mar 2013 B2
8398673 Hinchliffe et al. Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8408439 Huang et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409079 Oakamoto et al. Apr 2013 B2
8409174 Omori Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8425600 Maxwell Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439246 Knodel et al. May 2013 B1
8444036 Shelton, IV May 2013 B2
8444549 Viola et al. May 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8457757 Cauller et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8464924 Gresham et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8475474 Bombard et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8491581 Deville et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499992 Whitman et al. Aug 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8500762 Sholev et al. Aug 2013 B2
8506557 Zemlok et al. Aug 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8506581 Wingardner, III et al. Aug 2013 B2
8511308 Hecox et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8521273 Kliman Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8523900 Jinno et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8529819 Ostapoff et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8535304 Sklar et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8540735 Mitelberg et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8556935 Knodel et al. Oct 2013 B1
8561870 Baxter, III et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV et al. Nov 2013 B2
8574199 von Bülow et al. Nov 2013 B2
8574263 Mueller Nov 2013 B2
8575880 Grantz Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8602287 Yates et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603135 Mueller Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8622275 Baxter, III et al. Jan 2014 B2
8628518 Blumenkranz et al. Jan 2014 B2
8628545 Cabrera et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8631992 Hausen et al. Jan 2014 B1
8632462 Yoo et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652151 Lehman et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8657482 Malackowski et al. Feb 2014 B2
8657808 McPherson et al. Feb 2014 B2
8662370 Takei Mar 2014 B2
8663192 Hester et al. Mar 2014 B2
8668129 Olson Mar 2014 B2
8668130 Hess et al. Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8673210 Deshays Mar 2014 B2
8678263 Viola Mar 2014 B2
8679093 Farra Mar 2014 B2
8679098 Hart Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8679454 Guire et al. Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8715256 Greener May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8721666 Schroeder et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727200 Roy May 2014 B2
8728119 Cummins May 2014 B2
8733613 Huitema et al. May 2014 B2
8733614 Ross et al. May 2014 B2
8734478 Widenhouse et al. May 2014 B2
8739033 Rosenberg May 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740037 Shelton, IV et al. Jun 2014 B2
8740038 Shelton, IV et al. Jun 2014 B2
8740987 Geremakis et al. Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746533 Whitman et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752699 Morgan et al. Jun 2014 B2
8752747 Shelton, IV et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758235 Jaworek Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8758438 Boyce et al. Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8771169 Whitman et al. Jul 2014 B2
8777004 Shelton, IV et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8784404 Doyle et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8790684 Dave et al. Jul 2014 B2
8794496 Scirica Aug 2014 B2
8794497 Zingman Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800839 Beetel Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808294 Fox et al. Aug 2014 B2
8808308 Boukhny et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8813866 Suzuki Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820606 Hodgkinson Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8822934 Sayeh et al. Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852199 Deslauriers et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8876857 Burbank Nov 2014 B2
8888688 Julian et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8894647 Beardsley et al. Nov 2014 B2
8894654 Anderson Nov 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8899466 Baxter, III et al. Dec 2014 B2
8905977 Shelton et al. Dec 2014 B2
8911426 Coppeta et al. Dec 2014 B2
8911471 Spivey et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8925783 Zemlok et al. Jan 2015 B2
8925788 Hess et al. Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8955732 Zemlok et al. Feb 2015 B2
8956342 Russo et al. Feb 2015 B1
8960520 McCuen Feb 2015 B2
8960521 Kostrzewski Feb 2015 B2
8961504 Hoarau et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968340 Chowaniec et al. Mar 2015 B2
8970507 Holbein et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8982195 Claus et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992565 Brisson et al. Mar 2015 B2
8996165 Wang et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
9004339 Park et al. Apr 2015 B1
9005230 Yates et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9017331 Fox Apr 2015 B2
9017371 Whitman et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9038881 Schaller et al. May 2015 B1
9039690 Kersten et al. May 2015 B2
9039720 Madan May 2015 B2
9043027 Durant et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044230 Morgan et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9050100 Yates et al. Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9084602 Glieman Jul 2015 B2
9086875 Harrat et al. Jul 2015 B2
9089330 Widenhouse et al. Jul 2015 B2
9095339 Moore et al. Aug 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113865 Shelton, IV et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113874 Shelton, IV et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9123286 Park Sep 2015 B2
9124097 Cruz Sep 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9126317 Lawton et al. Sep 2015 B2
9131940 Huitema et al. Sep 2015 B2
9131957 Sharbnik et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9149274 Spivey et al. Oct 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161753 Prior Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168038 Shelton, IV et al. Oct 2015 B2
9168039 Knodel et al. Oct 2015 B1
9168054 Turner et al. Oct 2015 B2
9168144 Rivin et al. Oct 2015 B2
9179911 Morgan et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9186148 Felder et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9193045 Saur et al. Nov 2015 B2
9198661 Swensgard Dec 2015 B2
9198662 Barton et al. Dec 2015 B2
9198683 Friedman et al. Dec 2015 B2
9204877 Whitman et al. Dec 2015 B2
9204878 Hall et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204880 Baxter, III et al. Dec 2015 B2
9211120 Scheib et al. Dec 2015 B2
9211121 Hall et al. Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9216020 Zhang et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9241714 Timm et al. Jan 2016 B2
9259274 Prisco Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9271799 Shelton, IV et al. Mar 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9277922 Carter et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289206 Hess et al. Mar 2016 B2
9289207 Shelton, IV Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9293757 Chellew Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301755 Shelton, IV et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307988 Shelton, IV Apr 2016 B2
9308011 Chao et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320520 Shelton, IV et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9320523 Shelton, IV et al. Apr 2016 B2
9326767 Koch, Jr. et al. May 2016 B2
9326768 Shelton, IV May 2016 B2
9326769 Shelton, IV et al. May 2016 B2
9326770 Shelton, IV et al. May 2016 B2
9326771 Baxter, III et al. May 2016 B2
9332890 Ozawa May 2016 B2
9332974 Henderson et al. May 2016 B2
9332984 Weaner et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345480 Hessler et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351730 Schmid et al. May 2016 B2
9358003 Hall et al. Jun 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9375206 Vidal et al. Jun 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9393015 Laurent et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402626 Ortiz et al. Aug 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9414838 Shelton, IV et al. Aug 2016 B2
9414849 Nagashimada Aug 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
9463040 Jeong et al. Oct 2016 B2
9468438 Baber et al. Oct 2016 B2
9468447 Aman et al. Oct 2016 B2
9475180 Eshleman et al. Oct 2016 B2
9480476 Aldridge et al. Nov 2016 B2
9483095 Tran et al. Nov 2016 B2
D775336 Shelton et al. Dec 2016 S
9526564 Rusin Dec 2016 B2
9554794 Baber et al. Jan 2017 B2
9572577 Lloyd et al. Feb 2017 B2
9597104 Nicholas et al. Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9629623 Lytle, IV et al. Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9649110 Parihar et al. May 2017 B2
9655613 Schaller et al. May 2017 B2
9687230 Leimbach et al. Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9693777 Schellin et al. Jul 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9724094 Baber et al. Aug 2017 B2
9733663 Leimbach et al. Aug 2017 B2
9737301 Baber et al. Aug 2017 B2
9743927 Whitman Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9750499 Leimbach et al. Sep 2017 B2
9757123 Giordano et al. Sep 2017 B2
9757124 Schellin et al. Sep 2017 B2
9757128 Baber et al. Sep 2017 B2
9770245 Swayze et al. Sep 2017 B2
9775608 Aronhalt et al. Oct 2017 B2
9775610 Nicholas et al. Oct 2017 B2
9782169 Swayze et al. Oct 2017 B2
9788836 Overmyer et al. Oct 2017 B2
9795384 Weaner et al. Oct 2017 B2
9801626 Parihar et al. Oct 2017 B2
9804618 Leimbach et al. Oct 2017 B2
9808244 Leimbach et al. Nov 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9820738 Lytle, IV et al. Nov 2017 B2
9826976 Parihar et al. Nov 2017 B2
9826977 Leimbach et al. Nov 2017 B2
9833241 Huitema et al. Dec 2017 B2
9839422 Schellin et al. Dec 2017 B2
9839423 Vendely et al. Dec 2017 B2
9844368 Boudreaux et al. Dec 2017 B2
9844369 Huitema et al. Dec 2017 B2
9844374 Lytle, IV et al. Dec 2017 B2
9844375 Overmyer et al. Dec 2017 B2
9872683 Hopkins et al. Jan 2018 B2
9877721 Schellin et al. Jan 2018 B2
9883860 Leimbach et al. Feb 2018 B2
9884456 Schellin et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
20010025183 Shahidi Sep 2001 A1
20010044637 Jacobs et al. Nov 2001 A1
20020014510 Richter et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020026126 Burdorff et al. Feb 2002 A1
20020029032 Arkin Mar 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020049472 Coleman et al. Apr 2002 A1
20020087049 Brock Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020103494 Pacey Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020127265 Bowman et al. Sep 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020134811 Napier et al. Sep 2002 A1
20020135474 Sylliassen Sep 2002 A1
20020143340 Kaneko Oct 2002 A1
20020157481 Kogiso et al. Oct 2002 A1
20020165541 Whitman Nov 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020193808 Belef et al. Dec 2002 A1
20030023316 Brown et al. Jan 2003 A1
20030066858 Holgersson Apr 2003 A1
20030078647 Vallana et al. Apr 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030096158 Takano et al. May 2003 A1
20030105478 Whitman et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030163085 Tanner et al. Aug 2003 A1
20030181900 Long Sep 2003 A1
20030195387 Kortenbach et al. Oct 2003 A1
20030202901 Stetzel Oct 2003 A1
20030205029 Chapolini et al. Nov 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20040002726 Nunez et al. Jan 2004 A1
20040006335 Garrison Jan 2004 A1
20040006340 Latterell et al. Jan 2004 A1
20040006372 Racenet et al. Jan 2004 A1
20040006861 Haytayan Jan 2004 A1
20040030333 Goble Feb 2004 A1
20040032345 Kazuya et al. Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040059362 Knodel et al. Mar 2004 A1
20040068161 Couvillon, Jr. Apr 2004 A1
20040068224 Couvillon, Jr. et al. Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040070369 Sakahibara Apr 2004 A1
20040073222 Koseki Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040085180 Juang May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040094597 Whitman et al. May 2004 A1
20040097987 Pugsley et al. May 2004 A1
20040098040 Taniguchi et al. May 2004 A1
20040101822 Weisner et al. May 2004 A1
20040102783 Sutterlin, III et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040110439 Chaikof et al. Jun 2004 A1
20040111081 Whitman et al. Jun 2004 A1
20040115022 Albertson et al. Jun 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040133095 Dunki-Jacobs et al. Jul 2004 A1
20040143297 Ramsey Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040173659 Green et al. Sep 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040186470 Goble et al. Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040225186 Horne, Jr. et al. Nov 2004 A1
20040230214 Donofrio et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040236352 Wang et al. Nov 2004 A1
20040243147 Lipow Dec 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040243176 Hahnen et al. Dec 2004 A1
20040247415 Mangone, Jr. Dec 2004 A1
20040254455 Iddan Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040254608 Huitema et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20040267297 Malackowski Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050006429 Wales Jan 2005 A1
20050010158 Brugger et al. Jan 2005 A1
20050010213 Stad et al. Jan 2005 A1
20050032511 Malone et al. Feb 2005 A1
20050033352 Zeph et al. Feb 2005 A1
20050033357 Braun Feb 2005 A1
20050054946 Krzyzanowski Mar 2005 A1
20050058890 Brazell et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050103819 Racenet et al. May 2005 A1
20050107814 Johnston et al. May 2005 A1
20050107824 Hillstead et al. May 2005 A1
20050113820 Goble et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050119525 Takemoto Jun 2005 A1
20050119669 Demmy Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125009 Perry et al. Jun 2005 A1
20050125897 Wyslucha et al. Jun 2005 A1
20050131173 McDaniel et al. Jun 2005 A1
20050131211 Bayley et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131436 Johnston et al. Jun 2005 A1
20050131437 Johnston et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050145675 Hartwick et al. Jul 2005 A1
20050150928 Kameyama et al. Jul 2005 A1
20050154258 Tartaglia et al. Jul 2005 A1
20050154406 Bombard et al. Jul 2005 A1
20050159184 Kerner et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050165435 Johnston et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050182298 Ikeda et al. Aug 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050187572 Johnston et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050189397 Jankowski Sep 2005 A1
20050192609 Whitman et al. Sep 2005 A1
20050192628 Viola Sep 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050240222 Shipp Oct 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050251128 Amoah Nov 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20050256522 Francischelli et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050261677 Hall et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050267455 Eggers et al. Dec 2005 A1
20050267530 Cummins Dec 2005 A1
20050272973 Kawano et al. Dec 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060008787 Hayman et al. Jan 2006 A1
20060011699 Olson et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060020258 Strauss et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025811 Shelton, IV Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052824 Ransick et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060060630 Shelton, IV et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079115 Aranyi et al. Apr 2006 A1
20060079735 Martone et al. Apr 2006 A1
20060085031 Bettuchi Apr 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060086032 Valencic et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060089535 Raz et al. Apr 2006 A1
20060100643 Laufer et al. May 2006 A1
20060100649 Hart May 2006 A1
20060108393 Heinrich et al. May 2006 A1
20060111711 Goble May 2006 A1
20060111723 Chapolini et al. May 2006 A1
20060116634 Shachar Jun 2006 A1
20060122636 Bailly et al. Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060149163 Hibner et al. Jul 2006 A1
20060155160 Melvin Jul 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060167471 Phillips Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178556 Nasser et al. Aug 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060185682 Marczyk Aug 2006 A1
20060200123 Ryan Sep 2006 A1
20060201989 Ojeda Sep 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060212069 Shelton, IV Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20060235368 Oz Oct 2006 A1
20060235469 Viola Oct 2006 A1
20060241655 Viola Oct 2006 A1
20060241692 McGuckin, Jr. et al. Oct 2006 A1
20060244460 Weaver Nov 2006 A1
20060252990 Kubach Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060253069 Li et al. Nov 2006 A1
20060258904 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060264831 Skwarek et al. Nov 2006 A1
20060264927 Ryan Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060278681 Viola et al. Dec 2006 A1
20060282064 Shimizu et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20060287576 Tsuji et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20060291981 Viola et al. Dec 2006 A1
20070010702 Wang et al. Jan 2007 A1
20070010838 Shelton, IV et al. Jan 2007 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070026039 Drumheller et al. Feb 2007 A1
20070026040 Crawley et al. Feb 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070027472 Hiles et al. Feb 2007 A1
20070027551 Farnsworth et al. Feb 2007 A1
20070027553 Biran et al. Feb 2007 A1
20070034668 Holsten et al. Feb 2007 A1
20070049951 Menn Mar 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070066981 Meagher Mar 2007 A1
20070070574 Nerheim et al. Mar 2007 A1
20070073341 Smith Mar 2007 A1
20070078328 Ozaki et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070083193 Werneth et al. Apr 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070106113 Ravo May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070118175 Butler et al. May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070135686 Pruitt, Jr. et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070155010 Farnsworth et al. Jul 2007 A1
20070158358 Mason, II et al. Jul 2007 A1
20070170225 Shelton, IV et al. Jul 2007 A1
20070173687 Shima et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070175949 Shelton, IV Aug 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20070175955 Shelton, IV et al. Aug 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070181632 Milliman Aug 2007 A1
20070185545 Duke Aug 2007 A1
20070190110 Pameijer et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070198039 Jones et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070213750 Weadock Sep 2007 A1
20070219571 Balbierz et al. Sep 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070233163 Bombard et al. Oct 2007 A1
20070239028 Houser et al. Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070244471 Malackowski Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070249999 Sklar Oct 2007 A1
20070250113 Hegeman et al. Oct 2007 A1
20070260278 Wheeler et al. Nov 2007 A1
20070270784 Smith et al. Nov 2007 A1
20070270884 Smith et al. Nov 2007 A1
20070275035 Herman et al. Nov 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20070286892 Herzberg et al. Dec 2007 A1
20070287993 Hinman et al. Dec 2007 A1
20070288044 Jinno et al. Dec 2007 A1
20070299427 Yeung et al. Dec 2007 A1
20080003196 Jonn et al. Jan 2008 A1
20080015598 Prommersberger Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080035701 Racenet et al. Feb 2008 A1
20080041916 Milliman et al. Feb 2008 A1
20080041917 Racenet et al. Feb 2008 A1
20080051833 Gramuglia et al. Feb 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080082114 McKenna et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083808 Scirica Apr 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080085296 Powell et al. Apr 2008 A1
20080086078 Powell et al. Apr 2008 A1
20080091072 Omori et al. Apr 2008 A1
20080097563 Petrie et al. Apr 2008 A1
20080108443 Jinno et al. May 2008 A1
20080114250 Urbano et al. May 2008 A1
20080114315 Voegele et al. May 2008 A1
20080114385 Byrum et al. May 2008 A1
20080128469 Dalessandro et al. Jun 2008 A1
20080129253 Shiue et al. Jun 2008 A1
20080140115 Stopek Jun 2008 A1
20080140159 Bornhoft et al. Jun 2008 A1
20080149682 Uhm Jun 2008 A1
20080154299 Linvneh Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172087 Fuchs et al. Jul 2008 A1
20080172088 Smith et al. Jul 2008 A1
20080183193 Omori et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200835 Monson et al. Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080228029 Mikkaichi et al. Sep 2008 A1
20080241667 Kohn et al. Oct 2008 A1
20080245841 Smith et al. Oct 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080249608 Dave Oct 2008 A1
20080251568 Zemlok et al. Oct 2008 A1
20080251569 Smith et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080281171 Fennell et al. Nov 2008 A1
20080281254 Humayun et al. Nov 2008 A1
20080283570 Boyden et al. Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287988 Smith et al. Nov 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton, IV et al. Dec 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090004455 Gravagna et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012534 Madhani et al. Jan 2009 A1
20090015195 Loth-Krausser Jan 2009 A1
20090018553 McLean et al. Jan 2009 A1
20090020958 Soul Jan 2009 A1
20090047329 Stucky et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090048612 Farritor et al. Feb 2009 A1
20090054908 Zand et al. Feb 2009 A1
20090069842 Lee et al. Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090081313 Aghion et al. Mar 2009 A1
20090082789 Milliman et al. Mar 2009 A1
20090088659 Graham et al. Apr 2009 A1
20090088774 Swarup et al. Apr 2009 A1
20090090763 Zemlok Apr 2009 A1
20090092651 Shah et al. Apr 2009 A1
20090093728 Hyde et al. Apr 2009 A1
20090099579 Nentwick et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090108048 Zemlok et al. Apr 2009 A1
20090112229 Omori et al. Apr 2009 A1
20090114701 Zemlok et al. May 2009 A1
20090119011 Kondo et al. May 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090143805 Palmer et al. Jun 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090157067 Kane et al. Jun 2009 A1
20090157087 Wei et al. Jun 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090177226 Reinprecht et al. Jul 2009 A1
20090179757 Cohn et al. Jul 2009 A1
20090181290 Baldwin et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204108 Steffen Aug 2009 A1
20090204109 Grove et al. Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090213685 Mak et al. Aug 2009 A1
20090234273 Intoccia et al. Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090247368 Chiang Oct 2009 A1
20090247901 Zimmer Oct 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090248038 Blumenkranz et al. Oct 2009 A1
20090253959 Yoshie et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090255975 Zemlok et al. Oct 2009 A1
20090255976 Marczyk et al. Oct 2009 A1
20090255977 Zemlok Oct 2009 A1
20090255978 Viola et al. Oct 2009 A1
20090262078 Pizzi Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090277949 Viola et al. Nov 2009 A1
20090290016 Suda Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090306639 Nevo et al. Dec 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100010511 Harris et al. Jan 2010 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100016852 Manzo et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100023024 Zeiner et al. Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100041945 Isbell, Jr. Feb 2010 A1
20100049084 Nock et al. Feb 2010 A1
20100057087 Cha Mar 2010 A1
20100057107 Sorrentino et al. Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100076483 Imuta Mar 2010 A1
20100076489 Stopek et al. Mar 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100094289 Taylor et al. Apr 2010 A1
20100096431 Smith et al. Apr 2010 A1
20100100124 Calabrese et al. Apr 2010 A1
20100108740 Pastorelli et al. May 2010 A1
20100108741 Hessler et al. May 2010 A1
20100122339 Boccacci May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100145146 Melder Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100179022 Shirokoshi Jul 2010 A1
20100179540 Marczyk et al. Jul 2010 A1
20100180711 Kilibarda et al. Jul 2010 A1
20100186219 Smith Jul 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100193566 Schieb et al. Aug 2010 A1
20100193567 Scheib Aug 2010 A1
20100193568 Scheib Aug 2010 A1
20100200637 Beetel Aug 2010 A1
20100204717 Knodel Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249519 Park et al. Sep 2010 A1
20100249759 Hinman et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100267662 Fielder et al. Oct 2010 A1
20100268030 Viola et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100276471 Whitman Nov 2010 A1
20100292540 Hess et al. Nov 2010 A1
20100294827 Boyden et al. Nov 2010 A1
20100298636 Casto et al. Nov 2010 A1
20100312261 Suzuki et al. Dec 2010 A1
20100320252 Viola et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20100331880 Stopek Dec 2010 A1
20110003528 Lam Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110009890 Palmer et al. Jan 2011 A1
20110011916 Levine Jan 2011 A1
20110016960 Debrailly Jan 2011 A1
20110017799 Whitman et al. Jan 2011 A1
20110021871 Berkelaar Jan 2011 A1
20110022032 Zemlok et al. Jan 2011 A1
20110024477 Hall et al. Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110025311 Chauvin et al. Feb 2011 A1
20110034910 Ross et al. Feb 2011 A1
20110034918 Reschke Feb 2011 A1
20110036887 Zemlok et al. Feb 2011 A1
20110036890 Ma Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110045047 Bennett et al. Feb 2011 A1
20110046666 Sorrentino et al. Feb 2011 A1
20110046667 Culligan et al. Feb 2011 A1
20110060356 Reschke et al. Mar 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110084112 Kostrzewski Apr 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110088921 Forgues et al. Apr 2011 A1
20110095068 Patel Apr 2011 A1
20110101065 Milliman May 2011 A1
20110101069 Bombard et al. May 2011 A1
20110112517 Peine et al. May 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110118778 Burbank May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110167619 Smith et al. Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110178536 Kostrzewski Jul 2011 A1
20110184459 Malkowski et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110199225 Touchberry et al. Aug 2011 A1
20110208093 Gross et al. Aug 2011 A1
20110210156 Smith et al. Sep 2011 A1
20110218550 Ma Sep 2011 A1
20110241597 Zhu et al. Oct 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110257650 Deville et al. Oct 2011 A1
20110264119 Bayon et al. Oct 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110282446 Schulte et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110307023 Tweden et al. Dec 2011 A1
20110313894 Dye et al. Dec 2011 A1
20110315413 Fisher et al. Dec 2011 A1
20120004636 Lo Jan 2012 A1
20120007550 Juergens Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120018326 Racenet et al. Jan 2012 A1
20120022523 Smith et al. Jan 2012 A1
20120022630 Wübbeling Jan 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120033360 Hsu Feb 2012 A1
20120045303 Macdonald Feb 2012 A1
20120046692 Smith et al. Feb 2012 A1
20120062171 Smith et al. Mar 2012 A1
20120064483 Lint et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120078278 Bales, Jr. et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080340 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080475 Smith et al. Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120110810 Houser et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116367 Houser et al. May 2012 A1
20120116388 Houser et al. May 2012 A1
20120116391 Houser et al. May 2012 A1
20120116395 Madan et al. May 2012 A1
20120123203 Riva May 2012 A1
20120125792 Cassivi May 2012 A1
20120138658 Ullrich et al. Jun 2012 A1
20120171539 Rejman et al. Jul 2012 A1
20120175398 Sandborn et al. Jul 2012 A1
20120187179 Gleiman Jul 2012 A1
20120209289 Duque et al. Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120228355 Combrowski et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120234899 Scheib et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120248167 Flanagan et al. Oct 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120251861 Liang et al. Oct 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120265176 Braun Oct 2012 A1
20120271285 Sholev et al. Oct 2012 A1
20120273550 Scirica Nov 2012 A1
20120277780 Smith et al. Nov 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120286021 Kostrzewski et al. Nov 2012 A1
20120289979 Eskaros et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120296333 Twomey Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120310255 Brisson et al. Dec 2012 A1
20120310256 Brisson Dec 2012 A1
20120325892 Kostrzewski Dec 2012 A1
20130012983 Kleyman Jan 2013 A1
20130018361 Bryant Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130026973 Luke et al. Jan 2013 A1
20130030608 Taylor et al. Jan 2013 A1
20130032626 Smith et al. Feb 2013 A1
20130037596 Bear et al. Feb 2013 A1
20130046290 Palmer et al. Feb 2013 A1
20130060278 Bozung et al. Mar 2013 A1
20130062391 Boudreaux et al. Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130075446 Wang et al. Mar 2013 A1
20130079814 Hess et al. Mar 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130087599 Krumanaker et al. Apr 2013 A1
20130087602 Olson et al. Apr 2013 A1
20130090534 Burns et al. Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130103023 Monson et al. Apr 2013 A1
20130103024 Monson et al. Apr 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130116668 Shelton, IV et al. May 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130119108 Altman et al. May 2013 A1
20130123822 Wellman et al. May 2013 A1
20130126379 Medhal et al. May 2013 A1
20130131476 Siu et al. May 2013 A1
20130131651 Strobl et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130150832 Belson et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130162198 Yokota et al. Jul 2013 A1
20130168431 Zemlok et al. Jul 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130175322 Yates et al. Jul 2013 A1
20130181033 Shelton, IV et al. Jul 2013 A1
20130181034 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130186934 Shelton, IV et al. Jul 2013 A1
20130190733 Giordano et al. Jul 2013 A1
20130190757 Yates et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130193189 Swensgard et al. Aug 2013 A1
20130197556 Shelton, IV et al. Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130214030 Aronhalt et al. Aug 2013 A1
20130221059 Racenet et al. Aug 2013 A1
20130221063 Aronhalt et al. Aug 2013 A1
20130221064 Aronhalt et al. Aug 2013 A1
20130221065 Aronhalt et al. Aug 2013 A1
20130233905 Sorrentino et al. Sep 2013 A1
20130233906 Hess et al. Sep 2013 A1
20130233908 Knodel et al. Sep 2013 A1
20130238021 Gross et al. Sep 2013 A1
20130248578 Arteaga Gonzalez Sep 2013 A1
20130256371 Shelton, IV et al. Oct 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256374 Shelton, IV et al. Oct 2013 A1
20130256375 Shelton, IV et al. Oct 2013 A1
20130256377 Schmid et al. Oct 2013 A1
20130256378 Schmid et al. Oct 2013 A1
20130256379 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130256382 Swayze et al. Oct 2013 A1
20130256383 Aronhalt et al. Oct 2013 A1
20130261648 Laurent et al. Oct 2013 A1
20130267945 Behnke et al. Oct 2013 A1
20130270322 Scheib et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130310873 Stopek (nee Prommersberger) et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130313306 Shelton, IV et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324981 Smith et al. Dec 2013 A1
20130324982 Smith et al. Dec 2013 A1
20130327809 Shelton, IV et al. Dec 2013 A1
20130327810 Swayze et al. Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334284 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130334286 Swayze et al. Dec 2013 A1
20130334287 Shelton, IV Dec 2013 A1
20130334288 Shelton, IV Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140001237 Shelton, IV et al. Jan 2014 A1
20140001238 Shelton, IV et al. Jan 2014 A1
20140001239 Shelton, IV et al. Jan 2014 A1
20140001240 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005681 Gee et al. Jan 2014 A1
20140005693 Shelton, IV et al. Jan 2014 A1
20140005694 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005703 Stulen et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140008414 Shelton, IV et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012238 Chen et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140014705 Baxter, III Jan 2014 A1
20140015782 Kim et al. Jan 2014 A1
20140018832 Shelton, IV Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140042205 Baxter, III et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061279 Laurent et al. Mar 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140081176 Hassan Mar 2014 A1
20140100558 Schmitz et al. Apr 2014 A1
20140103093 Koch, Jr. et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140114327 Boudreaux et al. Apr 2014 A1
20140128850 Kerr et al. May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140158747 Measamer et al. Jun 2014 A1
20140166722 Hess et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140171966 Giordano et al. Jun 2014 A1
20140175150 Shelton et al. Jun 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140175154 Shelton, IV et al. Jun 2014 A1
20140191014 Shelton, IV Jul 2014 A1
20140191015 Shelton, IV Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140205637 Widenhouse et al. Jul 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207166 Shelton, IV et al. Jul 2014 A1
20140224857 Schmid Aug 2014 A1
20140230595 Butt et al. Aug 2014 A1
20140232316 Philipp Aug 2014 A1
20140236184 Leimbach et al. Aug 2014 A1
20140239036 Zerkle et al. Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140249557 Koch, Jr. et al. Sep 2014 A1
20140252066 Shelton, IV et al. Sep 2014 A1
20140252068 Shelton, IV et al. Sep 2014 A1
20140259591 Shelton, IV et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263572 Shelton, IV et al. Sep 2014 A1
20140276730 Boudreaux et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140284373 Shelton, IV et al. Sep 2014 A1
20140288460 Ouyang et al. Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140296873 Morgan et al. Oct 2014 A1
20140296874 Morgan et al. Oct 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303645 Morgan et al. Oct 2014 A1
20140303646 Morgan et al. Oct 2014 A1
20140305990 Shelton, IV et al. Oct 2014 A1
20140305991 Parihar et al. Oct 2014 A1
20140309665 Parihar et al. Oct 2014 A1
20140309666 Shelton, IV et al. Oct 2014 A1
20140330161 Swayze et al. Nov 2014 A1
20140339286 Motooka et al. Nov 2014 A1
20140352463 Parihar Dec 2014 A1
20140353358 Shelton, IV et al. Dec 2014 A1
20140367447 Woodard, Jr. et al. Dec 2014 A1
20140378950 Chiu Dec 2014 A1
20150008248 Giordano et al. Jan 2015 A1
20150034696 Shelton, IV et al. Feb 2015 A1
20150038986 Swensgard et al. Feb 2015 A1
20150041518 Shelton, IV et al. Feb 2015 A1
20150053737 Leimbach et al. Feb 2015 A1
20150053738 Morgan et al. Feb 2015 A1
20150053739 Morgan et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053741 Shelton, IV et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053745 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150060518 Shelton, IV et al. Mar 2015 A1
20150060519 Shelton, IV et al. Mar 2015 A1
20150060520 Shelton, IV et al. Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150076208 Shelton, IV Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150080868 Kerr Mar 2015 A1
20150083780 Shelton, IV et al. Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083782 Scheib et al. Mar 2015 A1
20150083783 Shelton, IV et al. Mar 2015 A1
20150090759 Spivey et al. Apr 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150090763 Murray et al. Apr 2015 A1
20150108199 Shelton, IV et al. Apr 2015 A1
20150122869 Aronhalt et al. May 2015 A1
20150136830 Baxter, III et al. May 2015 A1
20150136831 Baxter, III et al. May 2015 A1
20150136832 Baxter, III et al. May 2015 A1
20150136833 Shelton, IV et al. May 2015 A1
20150136835 Shelton, IV et al. May 2015 A1
20150150620 Miyamoto et al. Jun 2015 A1
20150157354 Bales, Jr. et al. Jun 2015 A1
20150173744 Shelton, IV et al. Jun 2015 A1
20150173745 Baxter, III et al. Jun 2015 A1
20150173746 Baxter, III et al. Jun 2015 A1
20150173747 Baxter, III et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173750 Shelton, IV et al. Jun 2015 A1
20150173751 Shelton, IV et al. Jun 2015 A1
20150173755 Baxter, III et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173760 Shelton, IV et al. Jun 2015 A1
20150173761 Shelton, IV et al. Jun 2015 A1
20150173762 Shelton, IV et al. Jun 2015 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150182220 Yates et al. Jul 2015 A1
20150182222 Swayze et al. Jul 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150196296 Swayze et al. Jul 2015 A1
20150196299 Swayze et al. Jul 2015 A1
20150196347 Yates et al. Jul 2015 A1
20150196348 Yates et al. Jul 2015 A1
20150201932 Swayze et al. Jul 2015 A1
20150201935 Weisenburgh, II et al. Jul 2015 A1
20150201936 Swayze et al. Jul 2015 A1
20150201937 Swayze et al. Jul 2015 A1
20150201938 Swayze et al. Jul 2015 A1
20150201939 Swayze et al. Jul 2015 A1
20150201940 Swayze et al. Jul 2015 A1
20150201941 Swayze et al. Jul 2015 A1
20150209031 Shelton, IV et al. Jul 2015 A1
20150209038 Shelton, IV et al. Jul 2015 A1
20150209039 Shelton, IV et al. Jul 2015 A1
20150209041 Milliman et al. Jul 2015 A1
20150223809 Scheib et al. Aug 2015 A1
20150223816 Morgan et al. Aug 2015 A1
20150230783 Shelton, IV et al. Aug 2015 A1
20150230784 Shelton, IV et al. Aug 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150265276 Huitema et al. Sep 2015 A1
20150265357 Shelton, IV et al. Sep 2015 A1
20150272557 Overmyer et al. Oct 2015 A1
20150272569 Leimbach et al. Oct 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272572 Overmyer et al. Oct 2015 A1
20150272574 Leimbach et al. Oct 2015 A1
20150272575 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272582 Leimbach et al. Oct 2015 A1
20150280384 Leimbach et al. Oct 2015 A1
20150282809 Shelton, IV et al. Oct 2015 A1
20150282810 Shelton, IV et al. Oct 2015 A1
20150289873 Shelton, IV et al. Oct 2015 A1
20150289874 Leimbach et al. Oct 2015 A1
20150297210 Widenhouse et al. Oct 2015 A1
20150297218 Shelton, IV et al. Oct 2015 A1
20150297219 Shelton, IV et al. Oct 2015 A1
20150297221 Kerr et al. Oct 2015 A1
20150297222 Huitema et al. Oct 2015 A1
20150297223 Huitema et al. Oct 2015 A1
20150297224 Hall et al. Oct 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150297226 Hall et al. Oct 2015 A1
20150297228 Huitema et al. Oct 2015 A1
20150297229 Schellin et al. Oct 2015 A1
20150297231 Huitema et al. Oct 2015 A1
20150297232 Huitema et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150297234 Schellin et al. Oct 2015 A1
20150297235 Harris et al. Oct 2015 A1
20150297236 Harris et al. Oct 2015 A1
20150305744 Moore et al. Oct 2015 A1
20150305745 Baxter, III et al. Oct 2015 A1
20150313591 Baxter, III et al. Nov 2015 A1
20150313594 Shelton, IV et al. Nov 2015 A1
20150327853 Aronhalt et al. Nov 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20150335328 Shelton, IV et al. Nov 2015 A1
20150335329 Shelton, IV et al. Nov 2015 A1
20150342606 Schmid et al. Dec 2015 A1
20150342607 Shelton, IV et al. Dec 2015 A1
20150351763 Shelton, IV et al. Dec 2015 A1
20150359536 Cropper et al. Dec 2015 A1
20150374367 Hall et al. Dec 2015 A1
20150374368 Swayze et al. Dec 2015 A1
20150374369 Yates et al. Dec 2015 A1
20150374374 Shelton, IV et al. Dec 2015 A1
20150374375 Shelton, IV et al. Dec 2015 A1
20150374376 Shelton, IV Dec 2015 A1
20150374377 Shelton, IV Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20150374379 Shelton, IV Dec 2015 A1
20160000430 Ming et al. Jan 2016 A1
20160000431 Giordano et al. Jan 2016 A1
20160000432 Huang et al. Jan 2016 A1
20160000437 Giordano et al. Jan 2016 A1
20160000438 Swayze et al. Jan 2016 A1
20160000439 Weisenburgh, II et al. Jan 2016 A1
20160000440 Weisenburgh, II et al. Jan 2016 A1
20160000441 Shelton, IV et al. Jan 2016 A1
20160000442 Shelton, IV Jan 2016 A1
20160000452 Yates et al. Jan 2016 A1
20160000453 Yates et al. Jan 2016 A1
20160000513 Shelton, IV et al. Jan 2016 A1
20160007992 Yates et al. Jan 2016 A1
20160008023 Yates et al. Jan 2016 A1
20160015390 Timm et al. Jan 2016 A1
20160015391 Shelton, IV et al. Jan 2016 A1
20160051257 Shelton, IV et al. Feb 2016 A1
20160058443 Yates et al. Mar 2016 A1
20160066911 Baber et al. Mar 2016 A1
20160066912 Baber et al. Mar 2016 A1
20160066913 Swayze et al. Mar 2016 A1
20160066915 Baber et al. Mar 2016 A1
20160069449 Kanai et al. Mar 2016 A1
20160074038 Leimbach et al. Mar 2016 A1
20160074040 Widenhouse et al. Mar 2016 A1
20160089137 Hess et al. Mar 2016 A1
20160089141 Harris et al. Mar 2016 A1
20160089142 Harris et al. Mar 2016 A1
20160089143 Harris et al. Mar 2016 A1
20160089146 Harris et al. Mar 2016 A1
20160089147 Harris et al. Mar 2016 A1
20160089148 Harris et al. Mar 2016 A1
20160089149 Harris et al. Mar 2016 A1
20160100837 Huang et al. Apr 2016 A1
20160106426 Shelton, IV et al. Apr 2016 A1
20160106427 Shelton, IV et al. Apr 2016 A1
20160106431 Shelton, IV et al. Apr 2016 A1
20160113653 Zingman Apr 2016 A1
20160120544 Shelton, IV et al. May 2016 A1
20160120545 Shelton, IV et al. May 2016 A1
20160120547 Schmid et al. May 2016 A1
20160128694 Baxter, III et al. May 2016 A1
20160135812 Shelton, IV et al. May 2016 A1
20160166256 Baxter, III et al. Jun 2016 A1
20160174969 Kerr et al. Jun 2016 A1
20160174970 Shelton, IV et al. Jun 2016 A1
20160174971 Baxter, III et al. Jun 2016 A1
20160174972 Shelton, IV et al. Jun 2016 A1
20160174973 Shelton, IV et al. Jun 2016 A1
20160174974 Schmid et al. Jun 2016 A1
20160174975 Shelton, IV et al. Jun 2016 A1
20160174976 Morgan et al. Jun 2016 A1
20160174983 Shelton, IV et al. Jun 2016 A1
20160174984 Smith et al. Jun 2016 A1
20160174985 Baxter, III et al. Jun 2016 A1
20160183939 Shelton, IV et al. Jun 2016 A1
20160183943 Shelton, IV Jun 2016 A1
20160183944 Swensgard et al. Jun 2016 A1
20160183945 Shelton, IV et al. Jun 2016 A1
20160183947 Shelton, IV et al. Jun 2016 A1
20160183948 Shelton, IV et al. Jun 2016 A1
20160183950 Shelton, IV et al. Jun 2016 A1
20160184039 Shelton, IV et al. Jun 2016 A1
20160192916 Shelton, IV et al. Jul 2016 A1
20160192917 Shelton, IV et al. Jul 2016 A1
20160192918 Shelton, IV et al. Jul 2016 A1
20160192929 Schmid et al. Jul 2016 A1
20160192933 Shelton, IV Jul 2016 A1
20160192936 Leimbach et al. Jul 2016 A1
20160192996 Spivey et al. Jul 2016 A1
20160192997 Spivey et al. Jul 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160199061 Shelton, IV et al. Jul 2016 A1
20160199063 Mandakolathur Vasudevan et al. Jul 2016 A1
20160199064 Shelton, IV et al. Jul 2016 A1
20160199088 Shelton, IV et al. Jul 2016 A1
20160199089 Hess et al. Jul 2016 A1
20160199956 Shelton, IV et al. Jul 2016 A1
20160206309 Hess et al. Jul 2016 A1
20160206310 Shelton, IV Jul 2016 A1
20160220246 Timm et al. Aug 2016 A1
20160220247 Timm et al. Aug 2016 A1
20160220248 Timm et al. Aug 2016 A1
20160220249 Shelton, IV et al. Aug 2016 A1
20160220254 Baxter, III et al. Aug 2016 A1
20160220266 Shelton, IV et al. Aug 2016 A1
20160220268 Shelton, IV et al. Aug 2016 A1
20160235403 Shelton, IV et al. Aug 2016 A1
20160235404 Shelton, IV Aug 2016 A1
20160235405 Shelton, IV et al. Aug 2016 A1
20160235406 Shelton, IV et al. Aug 2016 A1
20160235408 Shelton, IV et al. Aug 2016 A1
20160235409 Shelton, IV et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160238108 Kanai et al. Aug 2016 A1
20160242768 Moore et al. Aug 2016 A1
20160242769 Moore et al. Aug 2016 A1
20160242770 Moore et al. Aug 2016 A1
20160242775 Shelton, IV et al. Aug 2016 A1
20160242776 Shelton, IV et al. Aug 2016 A1
20160242777 Shelton, IV et al. Aug 2016 A1
20160242780 Shelton, IV et al. Aug 2016 A1
20160242781 Shelton, IV et al. Aug 2016 A1
20160242782 Shelton, IV et al. Aug 2016 A1
20160242783 Shelton, IV et al. Aug 2016 A1
20160249908 Shelton, IV et al. Sep 2016 A1
20160249909 Shelton, IV et al. Sep 2016 A1
20160249910 Shelton, IV et al. Sep 2016 A1
20160249911 Timm et al. Sep 2016 A1
20160249915 Beckman et al. Sep 2016 A1
20160249916 Shelton, IV et al. Sep 2016 A1
20160249917 Beckman et al. Sep 2016 A1
20160249918 Shelton, IV et al. Sep 2016 A1
20160249919 Savage et al. Sep 2016 A1
20160249922 Morgan et al. Sep 2016 A1
20160249927 Beckman et al. Sep 2016 A1
20160249930 Hall et al. Sep 2016 A1
20160249945 Shelton, IV et al. Sep 2016 A1
20160256071 Shelton, IV et al. Sep 2016 A1
20160256153 Shelton, IV et al. Sep 2016 A1
20160256154 Shelton, IV et al. Sep 2016 A1
20160256155 Shelton, IV et al. Sep 2016 A1
20160256156 Shelton, IV et al. Sep 2016 A1
20160256160 Shelton, IV et al. Sep 2016 A1
20160256161 Overmyer et al. Sep 2016 A1
20160256162 Shelton, IV et al. Sep 2016 A1
20160256163 Shelton, IV et al. Sep 2016 A1
20160256185 Shelton, IV et al. Sep 2016 A1
20160256186 Shelton, IV et al. Sep 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160262746 Shelton, IV et al. Sep 2016 A1
20160262760 Shelton, IV et al. Sep 2016 A1
20160270780 Hall et al. Sep 2016 A1
20160287249 Alexander, III et al. Oct 2016 A1
20160287250 Shelton, IV et al. Oct 2016 A1
20160287251 Shelton, IV et al. Oct 2016 A1
20160287253 Shelton, IV et al. Oct 2016 A1
20160287254 Baxter, III et al. Oct 2016 A1
20160331375 Shelton, IV et al. Nov 2016 A1
20160367245 Wise et al. Dec 2016 A1
20160367246 Baxter, III et al. Dec 2016 A1
20160367247 Weaner et al. Dec 2016 A1
20160367248 Baxter, III et al. Dec 2016 A1
20160367254 Baxter, III et al. Dec 2016 A1
20160367255 Wise et al. Dec 2016 A1
20160367256 Hensel et al. Dec 2016 A1
20170014129 Shelton, IV et al. Jan 2017 A1
20170055996 Baxter et al. Mar 2017 A1
20170055997 Swayze et al. Mar 2017 A1
20170055998 Baxter et al. Mar 2017 A1
20170055999 Baxter et al. Mar 2017 A1
20170056000 Nalagatla et al. Mar 2017 A1
20170056001 Shelton et al. Mar 2017 A1
20170056002 Nalagatla et al. Mar 2017 A1
20170056003 Shelton et al. Mar 2017 A1
20170056004 Shelton et al. Mar 2017 A1
20170056005 Shelton et al. Mar 2017 A1
20170056006 Shleton et al. Mar 2017 A1
20170056007 Eckert et al. Mar 2017 A1
20170079640 Overmyer et al. Mar 2017 A1
20170079641 Overmyer et al. Mar 2017 A1
20170079642 Overmyer et al. Mar 2017 A1
20170079643 Yates et al. Mar 2017 A1
20170079644 Overmyer et al. Mar 2017 A1
20170079647 Yates et al. Mar 2017 A1
20170079650 Yates et al. Mar 2017 A1
20180070939 Giordano et al. Mar 2018 A1
20180074535 Shelton, IV et al. Mar 2018 A1
20180095487 Leimbach et al. Apr 2018 A1
Foreign Referenced Citations (1307)
Number Date Country
2008207624 Mar 2009 AU
2010214687 Sep 2010 AU
2011218702 Sep 2011 AU
2012200178 Jul 2013 AU
1015829 Aug 1977 CA
2458946 Mar 2003 CA
2477181 Apr 2004 CA
2512960 Jan 2006 CA
2514274 Jan 2006 CA
2639177 Feb 2009 CA
2576347 Aug 2015 CA
86100996 Sep 1986 CN
1163558 Oct 1997 CN
2488482 May 2002 CN
1424891 Jun 2003 CN
1523725 Aug 2004 CN
1545154 Nov 2004 CN
1634601 Jul 2005 CN
1636525 Jul 2005 CN
1636526 Jul 2005 CN
2716900 Aug 2005 CN
2738962 Nov 2005 CN
1726874 Feb 2006 CN
1726878 Feb 2006 CN
1868411 Nov 2006 CN
1915180 Feb 2007 CN
2868212 Feb 2007 CN
1960679 May 2007 CN
101011286 Aug 2007 CN
200991269 Dec 2007 CN
101095621 Jan 2008 CN
101111196 Jan 2008 CN
201001747 Jan 2008 CN
101137402 Mar 2008 CN
101143105 Mar 2008 CN
201029899 Mar 2008 CN
101224122 Jul 2008 CN
101224124 Jul 2008 CN
101254126 Sep 2008 CN
101507620 Aug 2009 CN
101507622 Aug 2009 CN
101507623 Aug 2009 CN
101507625 Aug 2009 CN
101507628 Aug 2009 CN
101534724 Sep 2009 CN
101541251 Sep 2009 CN
101626731 Jan 2010 CN
101669833 Mar 2010 CN
101675898 Mar 2010 CN
101683280 Mar 2010 CN
101801284 Aug 2010 CN
101828940 Sep 2010 CN
101868203 Oct 2010 CN
101873834 Oct 2010 CN
101073509 Dec 2010 CN
101912285 Dec 2010 CN
101028205 Jan 2011 CN
101933824 Jan 2011 CN
101934098 May 2011 CN
102038531 May 2011 CN
102038532 May 2011 CN
101534722 Jun 2011 CN
101361666 Aug 2011 CN
201949071 Aug 2011 CN
101224119 Sep 2011 CN
101336835 Sep 2011 CN
102188270 Sep 2011 CN
101779977 Dec 2011 CN
101534723 Jan 2012 CN
101310680 Apr 2012 CN
101912284 Jul 2012 CN
202397539 Aug 2012 CN
202426586 Sep 2012 CN
101317782 Oct 2012 CN
101507639 Nov 2012 CN
102835977 Dec 2012 CN
101507633 Feb 2013 CN
101023879 Mar 2013 CN
101507624 Mar 2013 CN
101327137 Jun 2013 CN
101401736 Jun 2013 CN
101332110 Jul 2013 CN
101683281 Jan 2014 CN
103648408 Mar 2014 CN
203564285 Apr 2014 CN
203564287 Apr 2014 CN
203597997 May 2014 CN
103908313 Jul 2014 CN
203736251 Jul 2014 CN
102783741 Oct 2014 CN
102973300 Oct 2014 CN
102793571 Dec 2014 CN
104337556 Feb 2015 CN
102166129 Mar 2015 CN
102113902 Apr 2015 CN
102247177 Feb 2016 CN
103750872 May 2016 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3212828 Nov 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
4228909 Mar 1994 DE
9412228 Sep 1994 DE
19509116 Sep 1996 DE
19534043 Mar 1997 DE
19707373 Feb 1998 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
69328576 Jan 2001 DE
20016423 Feb 2001 DE
19941859 Mar 2001 DE
10052679 May 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
10314827 Apr 2004 DE
10314072 Oct 2004 DE
202004012389 Nov 2004 DE
202007003114 Jun 2007 DE
102010013150 Sep 2011 DE
0000756 Feb 1979 EP
0033633 Aug 1981 EP
0122046 Oct 1984 EP
0070230 Oct 1985 EP
0156774 Oct 1985 EP
0072754 Apr 1986 EP
0033548 May 1986 EP
0077262 Aug 1986 EP
0189807 Aug 1986 EP
0212278 Mar 1987 EP
0129442 Nov 1987 EP
0255631 Feb 1988 EP
0276104 Jul 1988 EP
0379721 Aug 1990 EP
0178940 Jan 1991 EP
0178941 Jan 1991 EP
0169044 Jun 1991 EP
0248844 Jan 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0548998 Jun 1993 EP
0277959 Oct 1993 EP
0591946 Oct 1993 EP
0233940 Nov 1993 EP
0261230 Nov 1993 EP
0639349 Feb 1994 EP
0324636 Mar 1994 EP
0593920 Apr 1994 EP
0594148 Apr 1994 EP
0427949 Jun 1994 EP
0523174 Jun 1994 EP
0600182 Jun 1994 EP
0310431 Nov 1994 EP
0375302 Nov 1994 EP
0376562 Nov 1994 EP
0623311 Nov 1994 EP
0630612 Dec 1994 EP
0630614 Dec 1994 EP
0634144 Jan 1995 EP
0646356 Apr 1995 EP
0646357 Apr 1995 EP
0505036 May 1995 EP
0653189 May 1995 EP
0669104 Aug 1995 EP
0387980 Oct 1995 EP
0511470 Oct 1995 EP
0674876 Oct 1995 EP
0679367 Nov 1995 EP
0392547 Dec 1995 EP
0685204 Dec 1995 EP
0686374 Dec 1995 EP
0364216 Jan 1996 EP
0699418 Mar 1996 EP
0702937 Mar 1996 EP
0488768 Apr 1996 EP
0705571 Apr 1996 EP
0528478 May 1996 EP
0711611 May 1996 EP
0484677 Jun 1996 EP
0541987 Jul 1996 EP
0667119 Jul 1996 EP
0737446 Oct 1996 EP
0748614 Dec 1996 EP
0708618 Mar 1997 EP
0770355 May 1997 EP
0503662 Jun 1997 EP
0447121 Jul 1997 EP
0621009 Jul 1997 EP
0625077 Jul 1997 EP
0633749 Aug 1997 EP
0710090 Aug 1997 EP
0578425 Sep 1997 EP
0623312 Sep 1997 EP
0621006 Oct 1997 EP
0625335 Nov 1997 EP
0552423 Jan 1998 EP
0592244 Jan 1998 EP
0648476 Jan 1998 EP
0649290 Mar 1998 EP
0598618 Sep 1998 EP
0676173 Sep 1998 EP
0678007 Sep 1998 EP
0869104 Oct 1998 EP
0603472 Nov 1998 EP
0605351 Nov 1998 EP
0878169 Nov 1998 EP
0879742 Nov 1998 EP
0695144 Dec 1998 EP
0722296 Dec 1998 EP
0760230 Feb 1999 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0537572 Jun 1999 EP
0923907 Jun 1999 EP
0640317 Sep 1999 EP
0843906 Mar 2000 EP
0552050 May 2000 EP
0833592 May 2000 EP
0832605 Jun 2000 EP
0830094 Sep 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1058177 Dec 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
0806914 Sep 2001 EP
0768840 Dec 2001 EP
0908152 Jan 2002 EP
0717959 Feb 2002 EP
0872213 May 2002 EP
0862386 Jun 2002 EP
0949886 Sep 2002 EP
1238634 Sep 2002 EP
0858295 Dec 2002 EP
0656188 Jan 2003 EP
0717960 Feb 2003 EP
1284120 Feb 2003 EP
1287788 Mar 2003 EP
0717966 Apr 2003 EP
0717967 May 2003 EP
0869742 May 2003 EP
0829235 Jun 2003 EP
0887046 Jul 2003 EP
1323384 Jul 2003 EP
0852480 Aug 2003 EP
0891154 Sep 2003 EP
0813843 Oct 2003 EP
0873089 Oct 2003 EP
0856326 Nov 2003 EP
1374788 Jan 2004 EP
0741996 Feb 2004 EP
0814712 Feb 2004 EP
1402837 Mar 2004 EP
0705570 Apr 2004 EP
0959784 Apr 2004 EP
1407719 Apr 2004 EP
1411626 Apr 2004 EP
1086713 May 2004 EP
0996378 Jun 2004 EP
1426012 Jun 2004 EP
0833593 Jul 2004 EP
1442694 Aug 2004 EP
0888749 Sep 2004 EP
0959786 Sep 2004 EP
1453432 Sep 2004 EP
1459695 Sep 2004 EP
1254636 Oct 2004 EP
1473819 Nov 2004 EP
1477119 Nov 2004 EP
1479345 Nov 2004 EP
1479347 Nov 2004 EP
1479348 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
1001710 Jan 2005 EP
1496805 Jan 2005 EP
1256318 Feb 2005 EP
1520521 Apr 2005 EP
1520522 Apr 2005 EP
1520523 Apr 2005 EP
1520525 Apr 2005 EP
1522264 Apr 2005 EP
1523942 Apr 2005 EP
1550408 Jul 2005 EP
1557129 Jul 2005 EP
1064883 Aug 2005 EP
1067876 Aug 2005 EP
0870473 Sep 2005 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
0906764 Dec 2005 EP
1330989 Dec 2005 EP
0771176 Jan 2006 EP
1621138 Feb 2006 EP
1621139 Feb 2006 EP
1621141 Feb 2006 EP
1621143 Feb 2006 EP
1621145 Feb 2006 EP
1621151 Feb 2006 EP
1034746 Mar 2006 EP
1201196 Mar 2006 EP
1632191 Mar 2006 EP
1647231 Apr 2006 EP
1065981 May 2006 EP
1082944 May 2006 EP
1230899 May 2006 EP
1652481 May 2006 EP
1382303 Jun 2006 EP
1253866 Jul 2006 EP
1676539 Jul 2006 EP
1032318 Aug 2006 EP
1045672 Aug 2006 EP
1617768 Aug 2006 EP
1693015 Aug 2006 EP
1400214 Sep 2006 EP
1702567 Sep 2006 EP
1129665 Nov 2006 EP
1400206 Nov 2006 EP
1721568 Nov 2006 EP
1256317 Dec 2006 EP
1285633 Dec 2006 EP
1728473 Dec 2006 EP
1728475 Dec 2006 EP
1736105 Dec 2006 EP
1011494 Jan 2007 EP
1479346 Jan 2007 EP
1484024 Jan 2007 EP
1749485 Feb 2007 EP
1754445 Feb 2007 EP
1759812 Mar 2007 EP
1767157 Mar 2007 EP
1767163 Mar 2007 EP
1563792 Apr 2007 EP
1769756 Apr 2007 EP
1769758 Apr 2007 EP
1581128 May 2007 EP
1780825 May 2007 EP
1785097 May 2007 EP
1790293 May 2007 EP
1790294 May 2007 EP
1563793 Jun 2007 EP
1791473 Jun 2007 EP
1800610 Jun 2007 EP
1300117 Aug 2007 EP
1813199 Aug 2007 EP
1813200 Aug 2007 EP
1813201 Aug 2007 EP
1813202 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813209 Aug 2007 EP
1815950 Aug 2007 EP
1330991 Sep 2007 EP
1806103 Sep 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1487359 Oct 2007 EP
1599146 Oct 2007 EP
1839596 Oct 2007 EP
2110083 Oct 2007 EP
1679096 Nov 2007 EP
1857057 Nov 2007 EP
1402821 Dec 2007 EP
1872727 Jan 2008 EP
1550410 Feb 2008 EP
1671593 Feb 2008 EP
1897502 Mar 2008 EP
1611856 Apr 2008 EP
1908417 Apr 2008 EP
1917929 May 2008 EP
1330201 Jun 2008 EP
1702568 Jul 2008 EP
1943955 Jul 2008 EP
1943957 Jul 2008 EP
1943959 Jul 2008 EP
1943962 Jul 2008 EP
1943964 Jul 2008 EP
1943976 Jul 2008 EP
1593337 Aug 2008 EP
1970014 Sep 2008 EP
1974678 Oct 2008 EP
1980213 Oct 2008 EP
1980214 Oct 2008 EP
1759645 Nov 2008 EP
1987780 Nov 2008 EP
1990014 Nov 2008 EP
1992296 Nov 2008 EP
1552795 Dec 2008 EP
1693008 Dec 2008 EP
1759640 Dec 2008 EP
1997439 Dec 2008 EP
2000101 Dec 2008 EP
2000102 Dec 2008 EP
2005894 Dec 2008 EP
2005897 Dec 2008 EP
2005901 Dec 2008 EP
2008595 Dec 2008 EP
2025293 Feb 2009 EP
1736104 Mar 2009 EP
1749486 Mar 2009 EP
1782743 Mar 2009 EP
2039302 Mar 2009 EP
2039308 Mar 2009 EP
2039316 Mar 2009 EP
1721576 Apr 2009 EP
1733686 Apr 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
1550409 Jun 2009 EP
1550413 Jun 2009 EP
1719461 Jun 2009 EP
1834594 Jun 2009 EP
1709911 Jul 2009 EP
2077093 Jul 2009 EP
1745748 Aug 2009 EP
2090231 Aug 2009 EP
2090237 Aug 2009 EP
2090241 Aug 2009 EP
2090244 Aug 2009 EP
2090245 Aug 2009 EP
2090254 Aug 2009 EP
2090256 Aug 2009 EP
2095777 Sep 2009 EP
2098170 Sep 2009 EP
2100562 Sep 2009 EP
2110082 Oct 2009 EP
2110084 Oct 2009 EP
2111803 Oct 2009 EP
1762190 Nov 2009 EP
1813208 Nov 2009 EP
1908426 Nov 2009 EP
2116195 Nov 2009 EP
2116197 Nov 2009 EP
1607050 Dec 2009 EP
1815804 Dec 2009 EP
1875870 Dec 2009 EP
1878395 Jan 2010 EP
2151204 Feb 2010 EP
1813211 Mar 2010 EP
2165654 Mar 2010 EP
2165656 Mar 2010 EP
2165660 Mar 2010 EP
2165663 Mar 2010 EP
2165664 Mar 2010 EP
1566150 Apr 2010 EP
1813206 Apr 2010 EP
2184014 May 2010 EP
1769754 Jun 2010 EP
1854416 Jun 2010 EP
1911408 Jun 2010 EP
2198787 Jun 2010 EP
2214610 Aug 2010 EP
2218409 Aug 2010 EP
1647286 Sep 2010 EP
1825821 Sep 2010 EP
1535565 Oct 2010 EP
1702570 Oct 2010 EP
1785098 Oct 2010 EP
2005896 Oct 2010 EP
2030578 Nov 2010 EP
2036505 Nov 2010 EP
2245993 Nov 2010 EP
2245994 Nov 2010 EP
2253280 Nov 2010 EP
1627605 Dec 2010 EP
2027811 Dec 2010 EP
2130498 Dec 2010 EP
2258282 Dec 2010 EP
2263568 Dec 2010 EP
1994890 Jan 2011 EP
2005900 Jan 2011 EP
2277667 Jan 2011 EP
2283780 Feb 2011 EP
2286738 Feb 2011 EP
1494595 Mar 2011 EP
1690502 Mar 2011 EP
1884201 Mar 2011 EP
2292153 Mar 2011 EP
1769755 Apr 2011 EP
2090240 Apr 2011 EP
2305135 Apr 2011 EP
2308388 Apr 2011 EP
2314254 Apr 2011 EP
2316345 May 2011 EP
2316366 May 2011 EP
2319443 May 2011 EP
2324776 May 2011 EP
1813205 Jun 2011 EP
2042107 Jun 2011 EP
2090243 Jun 2011 EP
2329773 Jun 2011 EP
2090239 Jul 2011 EP
2340771 Jul 2011 EP
2353545 Aug 2011 EP
2361562 Aug 2011 EP
2377472 Oct 2011 EP
1836986 Nov 2011 EP
1908414 Nov 2011 EP
2153781 Nov 2011 EP
2387943 Nov 2011 EP
2389928 Nov 2011 EP
1847225 Dec 2011 EP
2397079 Dec 2011 EP
2399538 Dec 2011 EP
1785102 Jan 2012 EP
1316290 Feb 2012 EP
2415416 Feb 2012 EP
2090253 Mar 2012 EP
2430986 Mar 2012 EP
1347638 May 2012 EP
1943956 May 2012 EP
2446834 May 2012 EP
2455007 May 2012 EP
2457519 May 2012 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
1813204 Jul 2012 EP
2189121 Jul 2012 EP
2248475 Jul 2012 EP
2478845 Jul 2012 EP
2005895 Aug 2012 EP
2090248 Aug 2012 EP
2481359 Aug 2012 EP
2484304 Aug 2012 EP
2486860 Aug 2012 EP
2486862 Aug 2012 EP
2486868 Aug 2012 EP
1908412 Sep 2012 EP
1935351 Sep 2012 EP
2497431 Sep 2012 EP
1550412 Oct 2012 EP
1616549 Oct 2012 EP
2030579 Oct 2012 EP
2090252 Oct 2012 EP
2517637 Oct 2012 EP
2517638 Oct 2012 EP
2517642 Oct 2012 EP
2517645 Oct 2012 EP
2517649 Oct 2012 EP
2517651 Oct 2012 EP
2526877 Nov 2012 EP
2526883 Nov 2012 EP
1884206 Mar 2013 EP
2286735 Mar 2013 EP
2090238 Apr 2013 EP
2586380 May 2013 EP
2586383 May 2013 EP
2606812 Jun 2013 EP
2606834 Jun 2013 EP
1982657 Jul 2013 EP
2614782 Jul 2013 EP
2617369 Jul 2013 EP
2090234 Sep 2013 EP
2633830 Sep 2013 EP
2644124 Oct 2013 EP
2644209 Oct 2013 EP
2649948 Oct 2013 EP
2649949 Oct 2013 EP
1997438 Nov 2013 EP
2684529 Jan 2014 EP
2687164 Jan 2014 EP
2700367 Feb 2014 EP
2713902 Apr 2014 EP
1772105 May 2014 EP
2743042 Jun 2014 EP
2759267 Jul 2014 EP
2764826 Aug 2014 EP
2764827 Aug 2014 EP
2767243 Aug 2014 EP
2772206 Sep 2014 EP
2772209 Sep 2014 EP
2777520 Sep 2014 EP
2777524 Sep 2014 EP
2777528 Sep 2014 EP
2777537 Sep 2014 EP
2777538 Sep 2014 EP
2786714 Oct 2014 EP
2792313 Oct 2014 EP
2803324 Nov 2014 EP
2815704 Dec 2014 EP
2446835 Jan 2015 EP
2845545 Mar 2015 EP
1943960 Apr 2015 EP
2090255 Apr 2015 EP
2923647 Sep 2015 EP
2923653 Sep 2015 EP
2923660 Sep 2015 EP
2932913 Oct 2015 EP
2944270 Nov 2015 EP
1774914 Dec 2015 EP
2090235 Apr 2016 EP
2823773 Apr 2016 EP
2131750 May 2016 EP
2298220 Jun 2016 EP
2510891 Jun 2016 EP
1915957 Aug 2016 EP
2296559 Aug 2016 EP
2586379 Aug 2016 EP
2777533 Oct 2016 EP
2364651 Nov 2016 EP
2116192 Mar 2017 EP
2789299 May 2017 EP
2311386 Jun 2017 EP
2839787 Jun 2017 EP
2745782 Oct 2017 EP
2396594 Feb 2013 ES
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2452275 Apr 1983 FR
2598905 Nov 1987 FR
2689749 Jul 1994 FR
2765794 Jan 1999 FR
2815842 Oct 2000 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2024012 Jan 1980 GB
2109241 Jun 1983 GB
2272159 May 1994 GB
2284242 May 1995 GB
2286435 Aug 1995 GB
2336214 Oct 1999 GB
2425903 Nov 2006 GB
2423199 May 2009 GB
2509523 Jul 2014 GB
930100110 Nov 1993 GR
S 47-11908 May 1972 JP
S 50-33988 Apr 1975 JP
S 56-112235 Sep 1981 JP
S 58500053 Jan 1983 JP
S 58-501360 Aug 1983 JP
S 59-174920 Mar 1984 JP
S 60-100955 Jun 1985 JP
S 60-212152 Oct 1985 JP
S 61-98249 May 1986 JP
S 61502036 Sep 1986 JP
S 62-170011 Oct 1987 JP
S 63-59764 Mar 1988 JP
S 63-147449 Jun 1988 JP
S 63-203149 Aug 1988 JP
H 02-279149 Nov 1990 JP
H 03-12126 Jan 1991 JP
H 03-18354 Jan 1991 JP
H 03-78514 Aug 1991 JP
H 03-85009 Aug 1991 JP
H 04-215747 Aug 1992 JP
H 04-131860 Dec 1992 JP
H 05-84252 Apr 1993 JP
H 05-123325 May 1993 JP
H 05-212039 Aug 1993 JP
H 05226945 Sep 1993 JP
H 06-7357 Jan 1994 JP
H 06-30945 Feb 1994 JP
H 06-54857 Mar 1994 JP
H 06-63054 Mar 1994 JP
H 06-26812 Apr 1994 JP
H 06-121798 May 1994 JP
H 06-125913 May 1994 JP
H 06-197901 Jul 1994 JP
H 06-237937 Aug 1994 JP
H 06-327684 Nov 1994 JP
H 07-9622 Feb 1995 JP
H 07-31623 Feb 1995 JP
H 07-47070 Feb 1995 JP
H 07-51273 Feb 1995 JP
H 07-124166 May 1995 JP
H 07-163573 Jun 1995 JP
H 07-163574 Jun 1995 JP
H 07-171163 Jul 1995 JP
H 07-255735 Oct 1995 JP
H 07-285089 Oct 1995 JP
H 07-299074 Nov 1995 JP
H 08-33641 Feb 1996 JP
H 08-33642 Feb 1996 JP
H 08-164141 Jun 1996 JP
H 08-173437 Jul 1996 JP
H 08-182684 Jul 1996 JP
H 08-215201 Aug 1996 JP
H 08-507708 Aug 1996 JP
H 08-229050 Sep 1996 JP
H 08-289895 Nov 1996 JP
H 08-336540 Dec 1996 JP
H 08-336544 Dec 1996 JP
H 09-501081 Feb 1997 JP
H 09-501577 Feb 1997 JP
H 09-164144 Jun 1997 JP
H 10-113352 May 1998 JP
H 10-118090 May 1998 JP
H 10-296660 Nov 1998 JP
H 10-512465 Dec 1998 JP
H 10-512469 Dec 1998 JP
2000-014632 Jan 2000 JP
2000-033071 Feb 2000 JP
2000-112002 Apr 2000 JP
2000-166932 Jun 2000 JP
2000-171730 Jun 2000 JP
3056672 Jun 2000 JP
2000-287987 Oct 2000 JP
2000-325303 Nov 2000 JP
2001-037763 Feb 2001 JP
2001-046384 Feb 2001 JP
2001-087272 Apr 2001 JP
2001-514541 Sep 2001 JP
2001-276091 Oct 2001 JP
2001-286477 Oct 2001 JP
2001-517473 Oct 2001 JP
2002-051974 Feb 2002 JP
2002-085415 Mar 2002 JP
2002-143078 May 2002 JP
2002-204801 Jul 2002 JP
2002-528161 Sep 2002 JP
2002-314298 Oct 2002 JP
2002-369820 Dec 2002 JP
2002-542186 Dec 2002 JP
2003-000603 Jan 2003 JP
2003-500153 Jan 2003 JP
2003-504104 Feb 2003 JP
2003-135473 May 2003 JP
2003-148903 May 2003 JP
2003-164066 Jun 2003 JP
2003-521301 Jul 2003 JP
2003-521304 Jul 2003 JP
2003-523251 Aug 2003 JP
2003-523254 Aug 2003 JP
2003-524431 Aug 2003 JP
3442423 Sep 2003 JP
2003-300416 Oct 2003 JP
2004-147701 May 2004 JP
2004-162035 Jun 2004 JP
2004-229976 Aug 2004 JP
2004-524076 Aug 2004 JP
2004-531280 Oct 2004 JP
2004-532084 Oct 2004 JP
2004-532676 Oct 2004 JP
2004-329624 Nov 2004 JP
2004-535217 Nov 2004 JP
2004-337617 Dec 2004 JP
2004-344662 Dec 2004 JP
2004-344663 Dec 2004 JP
2005-013573 Jan 2005 JP
2005-028147 Feb 2005 JP
2005-028148 Feb 2005 JP
2005-028149 Feb 2005 JP
2005-505309 Feb 2005 JP
2005-505322 Feb 2005 JP
2005-505334 Feb 2005 JP
2005-080702 Mar 2005 JP
2005-103280 Apr 2005 JP
2005-103281 Apr 2005 JP
2005-103293 Apr 2005 JP
2005-511131 Apr 2005 JP
2005-511137 Apr 2005 JP
2005-131163 May 2005 JP
2005-131164 May 2005 JP
2005-131173 May 2005 JP
2005-131211 May 2005 JP
2005-131212 May 2005 JP
2005-137423 Jun 2005 JP
2005-137919 Jun 2005 JP
2005-144183 Jun 2005 JP
2005-152416 Jun 2005 JP
2005-516714 Jun 2005 JP
2005-187954 Jul 2005 JP
2005-521109 Jul 2005 JP
2005-523105 Aug 2005 JP
2005-524474 Aug 2005 JP
4461008 Aug 2005 JP
2005-296412 Oct 2005 JP
2005-529675 Oct 2005 JP
2005-529677 Nov 2005 JP
2005-328882 Dec 2005 JP
2005-335432 Dec 2005 JP
2005-342267 Dec 2005 JP
2006-034975 Feb 2006 JP
2006-034977 Feb 2006 JP
2006-034978 Feb 2006 JP
2006-034980 Feb 2006 JP
2006-043451 Feb 2006 JP
2006-506106 Feb 2006 JP
2006-510879 Mar 2006 JP
3791856 Jun 2006 JP
2006-187649 Jul 2006 JP
2006-218228 Aug 2006 JP
2006-218297 Aug 2006 JP
2006-223872 Aug 2006 JP
2006-281405 Oct 2006 JP
2006-289064 Oct 2006 JP
2006-334412 Dec 2006 JP
2006-334417 Dec 2006 JP
2006-346445 Dec 2006 JP
2007-000634 Jan 2007 JP
2007-050253 Mar 2007 JP
2007-061628 Mar 2007 JP
2007-083051 Apr 2007 JP
2007-098130 Apr 2007 JP
2007-105481 Apr 2007 JP
3906843 Apr 2007 JP
2007-117725 May 2007 JP
2007-130471 May 2007 JP
2007-130479 May 2007 JP
2007-222615 Jun 2007 JP
3934161 Jun 2007 JP
2007-203047 Aug 2007 JP
2007-203049 Aug 2007 JP
2007-203051 Aug 2007 JP
2007-203055 Aug 2007 JP
2007-203057 Aug 2007 JP
2007-524435 Aug 2007 JP
2007-229448 Sep 2007 JP
2007-526026 Sep 2007 JP
2007-252916 Oct 2007 JP
4001860 Oct 2007 JP
2007-307373 Nov 2007 JP
2007-325922 Dec 2007 JP
2008-068073 Mar 2008 JP
2008-510515 Apr 2008 JP
2008-516669 May 2008 JP
2008-528203 Jul 2008 JP
2008-206967 Sep 2008 JP
2008-212637 Sep 2008 JP
2008-212638 Sep 2008 JP
2008-212640 Sep 2008 JP
2008-220032 Sep 2008 JP
2008-220956 Sep 2008 JP
2008-237881 Oct 2008 JP
2008-259860 Oct 2008 JP
2008-264535 Nov 2008 JP
2008-283459 Nov 2008 JP
2008-307393 Dec 2008 JP
2009-000531 Jan 2009 JP
2009-006137 Jan 2009 JP
2009-502351 Jan 2009 JP
2009-502352 Jan 2009 JP
2009-022742 Feb 2009 JP
2009-506799 Feb 2009 JP
2009-507526 Feb 2009 JP
2009-072595 Apr 2009 JP
2009-072599 Apr 2009 JP
2009-090113 Apr 2009 JP
2009-106752 May 2009 JP
2009-189821 Aug 2009 JP
2009-189823 Aug 2009 JP
2009-189836 Aug 2009 JP
2009-189837 Aug 2009 JP
2009-189838 Aug 2009 JP
2009-189846 Aug 2009 JP
2009-189847 Aug 2009 JP
2009-201998 Sep 2009 JP
2009-536082 Oct 2009 JP
2009-261944 Nov 2009 JP
2009-268908 Nov 2009 JP
2009-538684 Nov 2009 JP
2009-539420 Nov 2009 JP
2009-291604 Dec 2009 JP
2010-504808 Feb 2010 JP
2010-504809 Feb 2010 JP
2010-504813 Feb 2010 JP
2010-504846 Feb 2010 JP
2010-505524 Feb 2010 JP
2010-069307 Apr 2010 JP
2010-069310 Apr 2010 JP
2010-075694 Apr 2010 JP
2010-075695 Apr 2010 JP
2010-088876 Apr 2010 JP
2010-094514 Apr 2010 JP
2010-098844 Apr 2010 JP
2010-520025 Jun 2010 JP
2010-142636 Jul 2010 JP
2010-148879 Jul 2010 JP
2010-214166 Sep 2010 JP
4549018 Sep 2010 JP
2010-240411 Oct 2010 JP
2010-240429 Oct 2010 JP
2010-246948 Nov 2010 JP
2010-279690 Dec 2010 JP
2010-540041 Dec 2010 JP
2010-540192 Dec 2010 JP
2011-005260 Jan 2011 JP
2011-504391 Feb 2011 JP
2011-509786 Mar 2011 JP
2011-072797 Apr 2011 JP
2011-078763 Apr 2011 JP
2011-115594 Jun 2011 JP
2011-520564 Jul 2011 JP
2011-524199 Sep 2011 JP
4783373 Sep 2011 JP
2011-251156 Dec 2011 JP
2012-040398 Mar 2012 JP
2012-507356 Mar 2012 JP
2012-517289 Aug 2012 JP
5140421 Feb 2013 JP
5162595 Mar 2013 JP
2013-517891 May 2013 JP
2013-526342 Jun 2013 JP
2013-128791 Jul 2013 JP
5333899 Nov 2013 JP
20100110134 Oct 2010 KR
20110003229 Jan 2011 KR
1814161 May 1993 RU
2008830 Mar 1994 RU
2052979 Jan 1996 RU
2066128 Sep 1996 RU
2098025 Dec 1997 RU
2141279 Nov 1999 RU
2144791 Jan 2000 RU
2181566 Apr 2002 RU
2187249 Aug 2002 RU
2189091 Sep 2002 RU
32984 Oct 2003 RU
2225170 Mar 2004 RU
42750 Dec 2004 RU
61114 Feb 2007 RU
2007-103563 Aug 2008 RU
189517 Jan 1967 SU
328636 Sep 1972 SU
511939 Apr 1976 SU
674747 Jul 1979 SU
886900 Dec 1981 SU
1009439 Apr 1983 SU
1022703 Jun 1983 SU
1271497 Nov 1986 SU
1333319 Aug 1987 SU
1377053 Feb 1988 SU
1443874 Dec 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
1377052 Feb 1998 SU
WO 8202824 Sep 1982 WO
WO 8602254 Apr 1986 WO
WO 9115157 Oct 1991 WO
WO 9220295 Nov 1992 WO
WO 9221300 Dec 1992 WO
WO 9308755 May 1993 WO
WO 9313718 Jul 1993 WO
WO 9314690 Aug 1993 WO
WO 9315648 Aug 1993 WO
WO 9315850 Aug 1993 WO
WO 9319681 Oct 1993 WO
WO 9400060 Jan 1994 WO
WO 9411057 May 1994 WO
WO 9412108 Jun 1994 WO
WO 9414129 Jun 1994 WO
WO 9417737 Aug 1994 WO
WO 9418893 Sep 1994 WO
WO 9420030 Sep 1994 WO
WO 9422378 Oct 1994 WO
WO 9423659 Oct 1994 WO
WO 9424943 Nov 1994 WO
WO 9424947 Nov 1994 WO
WO 9502369 Jan 1995 WO
WO 9503743 Feb 1995 WO
WO 9506817 Mar 1995 WO
WO 9509576 Apr 1995 WO
WO 9509577 Apr 1995 WO
WO 9514436 Jun 1995 WO
WO 9517855 Jul 1995 WO
WO 9518383 Jul 1995 WO
WO 9518572 Jul 1995 WO
WO 9519739 Jul 1995 WO
WO 9520360 Aug 1995 WO
WO 9523557 Sep 1995 WO
WO 9524865 Sep 1995 WO
WO 9525471 Sep 1995 WO
WO 9526562 Oct 1995 WO
WO 9529639 Nov 1995 WO
WO 9604858 Feb 1996 WO
WO 9618344 Jun 1996 WO
WO 9619151 Jun 1996 WO
WO 9619152 Jun 1996 WO
WO 9620652 Jul 1996 WO
WO 9621119 Jul 1996 WO
WO 9622055 Jul 1996 WO
WO 9623448 Aug 1996 WO
WO 9624301 Aug 1996 WO
WO 9627337 Sep 1996 WO
WO 9631155 Oct 1996 WO
WO 9635464 Nov 1996 WO
WO 9639085 Dec 1996 WO
WO 9639086 Dec 1996 WO
WO 9639087 Dec 1996 WO
WO 9639088 Dec 1996 WO
WO 9639089 Dec 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO 9701989 Jan 1997 WO
WO 9706582 Feb 1997 WO
WO 9710763 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9711648 Apr 1997 WO
WO 9711649 Apr 1997 WO
WO 9715237 May 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9730644 Aug 1997 WO
WO 9730659 Aug 1997 WO
WO 9734533 Sep 1997 WO
WO 9737598 Oct 1997 WO
WO 9739688 Oct 1997 WO
WO 9741767 Nov 1997 WO
WO 9801080 Jan 1998 WO
WO 9817180 Apr 1998 WO
WO 9822154 May 1998 WO
WO 9827880 Jul 1998 WO
WO 9830153 Jul 1998 WO
WO 9847436 Oct 1998 WO
WO 9858589 Dec 1998 WO
WO 9902090 Jan 1999 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912483 Mar 1999 WO
WO 9912487 Mar 1999 WO
WO 9912488 Mar 1999 WO
WO 9915086 Apr 1999 WO
WO 9915091 Apr 1999 WO
WO 9923933 May 1999 WO
WO 9923959 May 1999 WO
WO 9925261 May 1999 WO
WO 9929244 Jun 1999 WO
WO 9934744 Jul 1999 WO
WO 9945849 Sep 1999 WO
WO 9948430 Sep 1999 WO
WO 9951158 Oct 1999 WO
WO 0024322 May 2000 WO
WO 0024330 May 2000 WO
WO 0033755 Jun 2000 WO
WO 0041638 Jul 2000 WO
WO 0048506 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0054653 Sep 2000 WO
WO 00057796 Oct 2000 WO
WO 0064365 Nov 2000 WO
WO 0072762 Dec 2000 WO
WO 0072765 Dec 2000 WO
WO 0078222 Dec 2000 WO
WO 0103587 Jan 2001 WO
WO 0105702 Jan 2001 WO
WO 01010482 Feb 2001 WO
WO 0135845 May 2001 WO
WO 0154594 Aug 2001 WO
WO 0158371 Aug 2001 WO
WO 0162158 Aug 2001 WO
WO 0162161 Aug 2001 WO
WO 0162162 Aug 2001 WO
WO 0162163 Aug 2001 WO
WO 0162164 Aug 2001 WO
WO 0162169 Aug 2001 WO
WO 0178605 Oct 2001 WO
WO 0180757 Nov 2001 WO
WO 0191646 Dec 2001 WO
WO 0200121 Jan 2002 WO
WO 0207608 Jan 2002 WO
WO 0207618 Jan 2002 WO
WO 0217799 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0219932 Mar 2002 WO
WO 0226143 Apr 2002 WO
WO 0230297 Apr 2002 WO
WO 0232322 Apr 2002 WO
WO 0236028 May 2002 WO
WO 0243571 Jun 2002 WO
WO 02058568 Aug 2002 WO
WO 02060328 Aug 2002 WO
WO 02065933 Aug 2002 WO
WO 02067785 Sep 2002 WO
WO 02080781 Oct 2002 WO
WO 02085218 Oct 2002 WO
WO 02087586 Nov 2002 WO
WO 02098302 Dec 2002 WO
WO 03000138 Jan 2003 WO
WO 03001329 Jan 2003 WO
WO 03001986 Jan 2003 WO
WO 03013363 Feb 2003 WO
WO 03013372 Feb 2003 WO
WO 03015604 Feb 2003 WO
WO 03020106 Mar 2003 WO
WO 03020139 Mar 2003 WO
WO 03024339 Mar 2003 WO
WO 2003079909 Mar 2003 WO
WO 03030743 Apr 2003 WO
WO 03037193 May 2003 WO
WO 2003047436 Jun 2003 WO
WO 03055402 Jul 2003 WO
WO 03057048 Jul 2003 WO
WO 03057058 Jul 2003 WO
WO 2003063694 Aug 2003 WO
WO 03077769 Sep 2003 WO
WO 03079911 Oct 2003 WO
WO 03082126 Oct 2003 WO
WO 03086206 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03090630 Nov 2003 WO
WO 03094743 Nov 2003 WO
WO 03094745 Nov 2003 WO
WO 2003094746 Nov 2003 WO
WO 2003094747 Nov 2003 WO
WO 03101313 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO 03105702 Dec 2003 WO
WO 2004004578 Jan 2004 WO
WO 2004006980 Jan 2004 WO
WO 2004011037 Feb 2004 WO
WO 2004014238 Feb 2004 WO
WO 2004019769 Mar 2004 WO
WO 2004019803 Mar 2004 WO
WO 2004021868 Mar 2004 WO
WO 2004028585 Apr 2004 WO
WO 2004030554 Apr 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004032783 Apr 2004 WO
WO 2004034875 Apr 2004 WO
WO 2004047626 Jun 2004 WO
WO 2004047653 Jun 2004 WO
WO 2004049956 Jun 2004 WO
WO 2004050971 Jun 2004 WO
WO 2004052426 Jun 2004 WO
WO 2004056276 Jul 2004 WO
WO 2004056277 Jul 2004 WO
WO 2004062516 Jul 2004 WO
WO 2004064600 Aug 2004 WO
WO 2004078050 Sep 2004 WO
WO 2004078051 Sep 2004 WO
WO 2004078236 Sep 2004 WO
WO 2004086987 Oct 2004 WO
WO 2004096015 Nov 2004 WO
WO 2004096057 Nov 2004 WO
WO 2004103157 Dec 2004 WO
WO 2004105593 Dec 2004 WO
WO 2004105621 Dec 2004 WO
WO 2004112618 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2005027983 Mar 2005 WO
WO 2005037329 Apr 2005 WO
WO 2005042041 May 2005 WO
WO 2005044078 May 2005 WO
WO 2005048809 Jun 2005 WO
WO 2005055846 Jun 2005 WO
WO 2005072634 Aug 2005 WO
WO 2005078892 Aug 2005 WO
WO 2005079675 Sep 2005 WO
WO 2005087128 Sep 2005 WO
WO 2005096954 Oct 2005 WO
WO 2005110243 Nov 2005 WO
WO 2005112806 Dec 2005 WO
WO 2005112808 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2005115253 Dec 2005 WO
WO 2005117735 Dec 2005 WO
WO 2005122936 Dec 2005 WO
WO 2006023486 Mar 2006 WO
WO 2006023578 Mar 2006 WO
WO 2006026520 Mar 2006 WO
WO 2006027014 Mar 2006 WO
WO 2006028314 Mar 2006 WO
WO 2006044490 Apr 2006 WO
WO 2006044581 Apr 2006 WO
WO 2006044810 Apr 2006 WO
WO 2006049852 May 2006 WO
WO 2006050360 May 2006 WO
WO 2006051252 May 2006 WO
WO 2006057702 Jun 2006 WO
WO 2006059067 Jun 2006 WO
WO 2006073581 Jul 2006 WO
WO 2006083748 Aug 2006 WO
WO 2006085389 Aug 2006 WO
WO 2006092563 Sep 2006 WO
WO 2006092565 Sep 2006 WO
WO 2006115958 Nov 2006 WO
WO 2006125940 Nov 2006 WO
WO 2006132992 Dec 2006 WO
WO 2007002180 Jan 2007 WO
WO 2007014355 Feb 2007 WO
WO 2007016290 Feb 2007 WO
WO 2007018898 Feb 2007 WO
WO 2007034161 Mar 2007 WO
WO 2007051000 May 2007 WO
WO 2007059233 May 2007 WO
WO 2007074430 Jul 2007 WO
WO 2007089603 Aug 2007 WO
WO 2007098220 Aug 2007 WO
WO 2007121579 Nov 2007 WO
WO 2007129121 Nov 2007 WO
WO 2007131110 Nov 2007 WO
WO 2007137304 Nov 2007 WO
WO 2007139734 Dec 2007 WO
WO 2007142625 Dec 2007 WO
WO 2007145825 Dec 2007 WO
WO 2007146987 Dec 2007 WO
WO 2007147439 Dec 2007 WO
WO 2008020964 Feb 2008 WO
WO 2008021687 Feb 2008 WO
WO 2008021969 Feb 2008 WO
WO 2008027972 Mar 2008 WO
WO 2008039237 Apr 2008 WO
WO 2008039249 Apr 2008 WO
WO 2008039270 Apr 2008 WO
WO 2008045383 Apr 2008 WO
WO 2008057281 May 2008 WO
WO 2008061566 May 2008 WO
WO 2008070763 Jun 2008 WO
WO 2008080148 Jul 2008 WO
WO 2008089404 Jul 2008 WO
WO 2008101080 Aug 2008 WO
WO 2008101228 Aug 2008 WO
WO 2008103797 Aug 2008 WO
WO 2008109123 Sep 2008 WO
WO 2008109125 Sep 2008 WO
WO 2008112912 Sep 2008 WO
WO 2008118728 Oct 2008 WO
WO 2008118928 Oct 2008 WO
WO 2008124748 Oct 2008 WO
WO 2008131357 Oct 2008 WO
WO 2009005969 Jan 2009 WO
WO 2009022614 Feb 2009 WO
WO 2009023851 Feb 2009 WO
WO 2009033057 Mar 2009 WO
WO 2009039506 Mar 2009 WO
WO 2009046394 Apr 2009 WO
WO 2009066105 May 2009 WO
WO 2009067649 May 2009 WO
WO 2009091497 Jul 2009 WO
WO 2009120944 Oct 2009 WO
WO 2009137761 Nov 2009 WO
WO 2009143092 Nov 2009 WO
WO 2009143331 Nov 2009 WO
WO 2009150650 Dec 2009 WO
WO 2009152307 Dec 2009 WO
WO 2010028332 Mar 2010 WO
WO 2010030434 Mar 2010 WO
WO 2010045425 Apr 2010 WO
WO 2010050771 May 2010 WO
WO 2010054404 May 2010 WO
WO 2010056714 May 2010 WO
WO 2010063795 Jun 2010 WO
WO 2010090940 Aug 2010 WO
WO 2010093333 Aug 2010 WO
WO 2010098871 Sep 2010 WO
WO 2011008672 Jan 2011 WO
WO 2011013103 Feb 2011 WO
WO 2011044343 Apr 2011 WO
WO 2011060311 May 2011 WO
WO 2011084969 Jul 2011 WO
WO 2011127137 Oct 2011 WO
WO 2012006306 Jan 2012 WO
WO 2012009431 Jan 2012 WO
WO 2012013577 Feb 2012 WO
WO 2012021671 Feb 2012 WO
WO 2012040438 Mar 2012 WO
WO 2012044551 Apr 2012 WO
WO 2012044554 Apr 2012 WO
WO 2012044597 Apr 2012 WO
WO 2012044606 Apr 2012 WO
WO 2012044820 Apr 2012 WO
WO 2012044844 Apr 2012 WO
WO 2012044853 Apr 2012 WO
WO 2012044854 Apr 2012 WO
WO 2012058213 May 2012 WO
WO 2012068156 May 2012 WO
WO 2012109760 Aug 2012 WO
WO 2012127462 Sep 2012 WO
WO 2012135705 Oct 2012 WO
WO 2012143913 Oct 2012 WO
WO 2012148667 Nov 2012 WO
WO 2012148668 Nov 2012 WO
WO 2012148703 Nov 2012 WO
WO 2012160163 Nov 2012 WO
WO 2012166503 Dec 2012 WO
WO 2013009252 Jan 2013 WO
WO 2013009699 Jan 2013 WO
WO 2013023114 Feb 2013 WO
WO 2013036409 Mar 2013 WO
WO 2013043707 Mar 2013 WO
WO 2013043717 Mar 2013 WO
WO 2013043721 Mar 2013 WO
WO 2013062978 May 2013 WO
WO 2013116869 Aug 2013 WO
WO 2013148762 Oct 2013 WO
WO 2013167427 Nov 2013 WO
WO 2013188130 Dec 2013 WO
WO 2014004199 Jan 2014 WO
WO 2014004294 Jan 2014 WO
WO 2014008289 Jan 2014 WO
WO 2014113438 Jul 2014 WO
WO 2014134034 Sep 2014 WO
WO 2014172213 Oct 2014 WO
WO 2015032797 Mar 2015 WO
WO 2015148136 Oct 2015 WO
WO 2015148141 Oct 2015 WO
WO 2015153642 Oct 2015 WO
Non-Patent Literature Citations (53)
Entry
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journa1/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, (2000), 3 pages.
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986).
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671.
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504.
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages).
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages).
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages).
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages).
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages).
Covidien brochure “iDrive™ Ultra Powered Stapling System,” (6 pages).
“Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001)”, Mar. 1, 2001.
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012.
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012.
Allegro MicroSystems, LLC, Automotive Full Bridge MODFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en.
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached.
Data Sheet of LM4F230H5QR, 2007.
Cuper et al., “The Use of Near-Infrared Light for Safe and Effective Visualization of Subsurface Blood Vessels to Facilitate Blood Withdrawal in Children,” Medical Engineering & Physics, vol. 35, No. 4, pp. 433-440 (2013).
Anonymous, Analog Devices Wiki, Chapter 11: The Current Mirror, Aug. 20, 2017, 22 pages. https://wiki.analog.com/university/courses/electronics/text/chapter-11?rev=1503222341.
Yan et al, Comparison of the effects of Mg—6Zn and Ti—3Al—2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages.
Yan et al., “Comparison of the effects of Mg—6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages.
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95.
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517.
Mouser Electronics, “LM317M 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Mar. 31, 2014 (Mar. 31, 2014), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-8.
Mouser Electronics, “LM317 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Sep. 30, 2016 (Sep. 30, 2016), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-9.
Related Publications (1)
Number Date Country
20160206314 A1 Jul 2016 US
Continuations (2)
Number Date Country
Parent 13835592 Mar 2013 US
Child 15078580 US
Parent 12366538 Feb 2009 US
Child 13835592 US