The subject matter of the present disclosure generally relates to articulated instruments and systems for cutting and removing tissue, and more particularly, to instruments and systems for preparing the disc space for deployment of an implant into the disc space. The subject matter also relates to preparing the disc space in minimally invasive surgical (MIS) methods with reduced tissue and bone distraction or removal.
The benefits of interbody fusion have been well described in the literature and include both direct and indirect decompression of the neural elements, as well as, a high rate of bony fusion. A number of approaches have been described to achieve interbody fusion of the lumbar spine (posterior, anterior and lateral) each with a unique set of advantages and challenges. Looking at the posterior approach, some of the challenges to provide for a good fusion have been the discectomy and the disc space preparation. Traditionally, discectomy are performed with the use of simple manual instruments, such as shavers, curettes, pituitary rongeurs and rasps.
For a typical posterior surgical approach, an incision is made through the back of the patient and access to the disc space is achieved. As surgeons want to take advantage of minimally invasive surgery (MIS), the access opening to the disc is becoming smaller and smaller and therefore, traditional manual straight or curved instruments are not always possible to use and the present disclosure provides embodiments, apparatus and methods to address those challenges and to improve on the advantages of MIS.
The articulated instruments, systems and methods may be used to prepare the disc space for the implantation of fusion implants or disc replacement implants. For example, the instruments, systems and methods disclosed herein may be used in conjunction with the Luna® Interbody device sold by Benvenue Medical, Inc. of California, as well as other devices and implant. Such devices and implants may also include those disclosed in U.S. Application No. 62/623,025, filed Jan. 29, 2018 and U.S. Pat. Nos. 8,454,617 and 9,480,574, which are hereby incorporated herein by reference.
The present disclosure generally relates to articulated instrumentation and a first aspect of the disclosure relates to an articulated paddle shaver that combines rotatory motion and angular motion in a single instrument to allow for a broader area of tissue disruption.
Another aspect of the disclosure relates to angular deflection of tip instruments to reach areas that are up to a perpendicular location away from the entry axis.
Another aspect of the disclosure relates to a pivot mounted like end effector to better aligned with the endplate to provide a more adapted contact area.
A further aspect of the disclosure relates to the different articulated mechanism used to control tip deflection with squeezable levers or rotating knobs.
Yet another aspect of the disclosure relates to an articulated disc preparation instrument including a handle having a proximal end and a distal end. The instrument also includes an outer shaft extending from the distal end of the handle and an inner shaft extending within the outer shaft. The instrument further includes a disruption tool hingedly attached to the distal end of the inner shaft and hingedly attached the distal end of the outer shaft. When the inner shaft is rotated, the disruption tool rotates with the inner shaft, and when the inner shaft is moved linearly relative to the outer shaft, the disruption tool moves between a first straight configuration wherein an axis of the disruption tool is parallel to an axis of the outer shaft and a second angled configuration wherein the tool is at an angle relative to the outer shaft through a range of angles up to 120°. In one embodiment, the range of angles may be up to 60° and beyond. In another embodiment, the range of angles may be up to 75°.
A further aspect of the disclosure relates to an articulated disc preparation instrument including a handle having a proximal end and a distal end. The instrument further includes an outer shaft extending from the distal end of the handle and an inner shaft extending within the outer shaft. The instrument also includes a disruption tool hingedly attached to the distal end of the inner shaft and hingedly attached the distal end of the outer shaft. The disruption tool rotates with the inner shaft, and when the inner shaft is moved linearly relative to the outer shaft, the disruption tool moves between a first straight configuration wherein an axis of the disruption tool is parallel to an axis of the outer shaft and a second angled configuration. The instrument includes a free spin drive mechanism that that linearly advances the inner shaft when the inner shaft is rotated. The inner shaft continues to rotate when the drive shaft reaches a proximal travel limit and a distal travel limit.
Yet another aspect relates to an articulated disc preparation instrument including a handle having a proximal end and a distal end. The instrument also includes a shaft extending from the distal end of the handle, wherein the shaft includes an upper half shaft and a lower half shaft. The upper half shaft selectively moveable linearly relative to the lower half shaft. The instrument includes a disruption tool hingedly attached to the upper half shaft and hingedly attached to the lower half shaft. When the lower half shaft is moved linearly relative to the upper half shaft, the disruption tool moves between a first straight configuration wherein an axis of the disruption tool is parallel to an axis of the shaft and a second angled configuration. The instrument also includes a lever pivotally connected to the handle and operatively connected to the lower half shaft so that moving the lever relative to the handle results in moving the lower half shaft linearly relative to the upper half shaft.
These and others aspects will be apparent from the following description.
Turning to
Referring now to
Referring to
In one embodiment, the tool 20 is hingedly connected to the inner shaft 24 by a universal joint (u-joint) 32 that translates rotational movement from the inner shaft 24 to the tool 20 to rotate the tool about its axis. In the illustrated embodiment, the tool 20 is connected to the inner shaft by a double u-joint or a double Cardan joint. Additionally, a hinged lever joint 72 hingedly connects the tool 20 to the distal end 30 of the outer shaft 18. In the illustrated embodiment the hinged lever joint includes a collar 34.
Each spacer 42 and 44 is hingedly connected the middle yoke 36 and hingedly connected to its respective proximal yoke 40 or distal yoke 38. In the illustrated embodiment, each spacer 42 and 44 includes a side-to-side bore 58 and a top-to-bottom bore 60. Each space 42 and 44 is connected to its respective proximal yoke 40 or distal yoke 38 by pins 62 that pass through the arms 64 of the yoke 42 and 44 and the side-to-side bore 58 of the respective spacer 42 and 44. Each spacer 42 and 44 is connected to its respective side of the middle yoke 36 by pins 46 that pass through the respective arms 66 of the middle yoke 38 and the top-to-bottom bore 60. In the illustrated embodiment pins 46 include a passageway 68 that allows for the passage of pins 62. Additionally, pins 62 may include a pin cap 70 to hold the pins in place.
As mentioned above, a hinged lever joint 72 operatively connects the tool 20 to the distal end 30 the outer shaft 18. The hinged lever joint 72 may include a collar 34 that is placed around the post 48 of the distal yoke 38. The collar 34 includes one or more arms 74 that are hingedly connected to the distal end 30 of outer shaft 18. In the illustrated embodiment, the collar 34 includes two arms 74 that are inserted into slots 76 of the outer shaft 18 and connected to the outer shaft by pin 78. As the inner shaft 24 is moved distally, the hinged lever joint 72 pivots moving the tool 20 into the angled configuration. The joint 72 also allows the tool to rotate as it is moves through the angled positions.
Referring to
Optionally, the drive mechanism 84 may be a free spine drive mechanism that allows the inner shaft 24, and thus the tool 20, to continuously rotate during use and when the inner shaft 24 reaches the end of travel in the proximal and distal directions. Referring to
The middle drive sleeve 88 includes a proximal end 98 and a distal end 100, each of which include ratchet teeth 102, 102′. The distal end 104 of the proximal drive ratchet ring 90 includes unidirectional ratchet teeth 106 that are configured to mate with the unidirectional ratchet teeth 102 of proximal end 98 of the middle sleeve 88. Similarly, the proximal end 108 of the distal drive ratchet ring 92 includes unidirectional ratchet teeth 110 that are configured to mate with the unidirectional ratchet teeth 102′ of the distal end 100 of the middle sleeve 88.
The distal drive ratchet ring 92 is biased against the distal end 100 of the middle sleeve 88 so that the ratchet teeth are engaged and the proximal drive ratchet ring 90 is biased against the proximal end 98 of the middle sleeve 88 so that the ratchet teeth are engaged. In the illustrated embodiment, the distal drive ratchet ring 92 is biased by a spring 112, such as a wave spring, positioned between the distal end of the distal ratchet ring 92 and a shoulder 114 of the outer shaft 18. Similarly, the proximal drive ratchet ring 90 is biased against the proximal end of the middle sleeve 88 so that the ratchet teeth are engaged. In the illustrated embodiment, the proximal drive ratchet is biased by spring 116 positioned between the proximal end of the proximal ratchet ring 90 and a shoulder 118 of the handle 16.
Each of the middle sleeve 88 and the proximal and distal ratchet rings 90 and 92 includes stops or limiters that limit the linear movement of the inner shaft 24. In the illustrated embodiment, the stops are defined by pins 120 that pass through each of the respective middle sleeve 88, and proximal and distal ratchet rings 90 and 92. The pins 120 associated with the proximal and distal ratchet rings 90 and 92 also prevent the ratchet rings from rotating. In the illustrated embodiment, the pins 120 associated with ratchet rings 90 and 92 are inserted through the holes 122 in the enlarged proximal end portion 86 of the outer shaft 18. The holes 122 are elongated to allow the ratchet rings 90 and 92 to move linearly within the enlarged proximal end portion 86 of the outer shaft 18 while preventing the rings from rotating.
When the inner shaft 24 is rotated and the threaded section 80 of the shaft 24 is in the middle of its linear travel, the distal ratchet ring 92, the middle drive sleeve 88 and the proximal ratchet ring 90 are held together by the wave spring washers 112 and 166. The two ratchet rings 90 and 92 have opposed unidirectional teeth orientation such that each provides a counter-torque to the other one. Thus, when both ratchet rings 90 and 92 are engaged with the middle sleeve 88, the middle sleeve 88 is fixed and does not rotate. The middle sleeve 88 being fix, allows the inner shaft 24 to move linearly in the proximal and distal directions as the inner shaft 24 is rotated within the middle sleeve 88. As mentioned above the linear proximal and distal movement of the inner shaft 24 controls the angular motion of the tool 20.
Referring to
Similarly, as the inner shaft 24 is turned counter clockwise, the inner shaft 24 moves proximally until a proximal shoulder 126 of the inner shaft 24 contacts the pin 120 associated with the proximal ratchet ring 90. When the shoulder 126 contacts the pin 120, the inner shaft 24 pushes against the pin and moves the proximal ratchet ring 90 so the ratchet teeth 104, 102 of the ring 90 and the middle sleeve 88 disengage, resulting in open the space between the ratchet teeth 104, 102. Because the ratchet teeth of the proximal ring 90 are disengaged, the counter torque is no longer applied at the proximal end of the middle sleeve 88 and the unidirectional teeth 110 of the distal ring 92 are configured to allow the teeth 102′ of the middle sleeve 88 to slip passed the teeth 110 of the distal ring 92 as the middle sleeve 88, the middle sleeve 88 is now allowed to rotate with the inner shaft 24. Thus, the inner shaft 24 is allowed to free spin and the tool 20 at the end of the inner shaft is allowed to spin even after the inner shaft 24 has reached its proximal linear limit. When the inner shaft 24 is at is proximal linear limit and then is turned clockwise, the ratchet teeth of the distal ring 92 prevent the sleeve 88 from rotating clockwise. With the sleeve 88 held stationary and the inner shaft 24 rotating clockwise, the inner shaft 24 moves distally and the shoulder 126 disengages from the pins 120 associated with the proximal ratchet ring 90. The spring 116 moves the ratchet ring 90 back into engagement with the middle sleeve 88, again applying a counter torque to the middle sleeve 88.
The free spin drive mechanism 84 allows to user to rotate the tool 20 freely at the end of travel whether it is in a straight position or in an angular position to allow for good endplate preparation by allowing that free end of travel spinning and therefore rendering the articulated tool instrument to be more effective.
Turning to
Turning to
Referring to
As the inner shaft 216 is rotated, it moves distally relative to the outer shaft 214. This causes the collar 246 to pivot about the hinge connecting it the outer shaft 214, which in turn results in the tool 218 moving to an angled configuration relative to the shafts 214 and 218. Additionally, as the inner shaft 216 is rotated, the u-joint 228 translates rotational movement to the tool 218 so that the tool rotates. Thus, the joints 228 and 244 allow the tool 218 to move into an angled position and be simultaneously rotated.
The action generated by the inner shaft's 216 forward/distal motion translates in the angulation of the tool 218 from a straight position in
The instrument, optionally, may include a limited torque driver assembly associated with the inner shaft 216. The limited torque driver assembly may be any suitable limited torque driver assembly that allows the development of a torque motion in a controlled limited fashion.
Turning to
Turning to
Turning now to
Referring to
The lever 314 is biased so that the arm 332 of the lever 314 is spaced from the handle 312. In one embodiment, the handle 312 is biased by a spring 346. In the illustrated embodiment, a spring 346 is positioned about the proximal end portion 330 of the lower half shaft 320. The spring 346 is also positioned between a head 348 at the proximal end 330 of the lower half shaft 320 and a wall 350 within the handled 312. Referring to
Referring to
Referring to
Referring to
When the tool 318 is to be moved to 90° relative to the axis of half shafts 320, 322, the lever 314 is moved toward the handle 312 which moves the lower half shaft 320 distally relative to the upper half shaft 322. When the lower half shaft 322 moves distally, the tool 318 pivots around pin 372 associated with the upper half shaft 322 and pin 374 associated with the lower half shaft 320, thereby moving the tool 318 into a portion that is 90° relative the axis of the half shafts.
Referring to
In
Referring to
The disclosed instrumentation may be used during the discectomy part of a greater procedure for fusion or disc replacement by the placement of an interbody implant device. The disclosed instrumentation may also be used to remove tissue from other parts of the body. In one embodiment, the disclosed instruments may be used in disc preparation procedures where an incision would be made in the annulus, followed by the removal of a cut-out window in the annulus, which may be about 10 mm wide, and the height of the disc at that particular level.
Referring to
During this next step, instrument 10 (
Following the debulking of the nucleus tissue, the next step is the preparation of the end plate 508. The articulated instrument 510 is used to remove further tissue that is still attached to the endplate in the same general area of where the nucleus was removed as it is shown in
Referring to
Upon completion of the disc preparation, the space can be sized and the appropriate interbody implant, such as a fusion device or disc replacement implant can be inserted and the procedure completed.
The operation of the lever 540 is very similar to that shown in
The inner shaft 538 is rotated by knob 544 to provide rotating action to the distal distraction tool 532, while the lever 540 provides the articulation of the tool. An indicator tab 562 may be used to indicate the orientation of the tool 532 in a similar fashion as previously discussed with respect to indicator tab 22 and as shown in
The lower member 572 includes a lower plate or surface 582 which a pair of opposed arms 584 extending upward form the lower surface 582. The opposed arms 584 are spaced inward of the edges of the lower surface 582. Additionally, the outer surface of the opposed arms 584 include a plurality of ramps 586 that are angled in the opposite direction from the ramps 580 of the upper member 570. In one embodiment the ramps 586 are angled at 45° in the opposite direction from the ramps 580 of the upper member 570.
The middle member 574 includes a front wall 588 and a pair of opposed arms 590 extending from the front wall. The inner surface of the opposed arms 590 include a plurality of ramps 592 that are angled in the opposite direction from the ramps 586 of the lower member 572. The lower member 572 and middle member 574 are configured to mate such that the arms 584 of the lower member 572 are placed inside of the arms 590 of the middle member 574 and the ramps 586 of the lower member 572 are positioned in the space 594 between or adjacent to the ramps 592 of the inner surface of the middle member 574. Similarly, the ramps 592 are positioned in the space 596 between the ramps 586 of the lower member.
The outer surface of the arms 590 of the middle member 574 include ramps 598 that are angled in the opposite direction from the ramps 580 of the upper member 570. The upper member 570 and middle member 574 are configured to mate such that the arms 578 of the upper member 570 are placed outside of the arms 590 of the middle member 574 and the ramps 580 of the upper member 570 are positioned in the space 600 between the ramps 598 of the outer surface of the middle member 574. Furthermore, the upper member 270 and lower member 274 each include a slot 602 (not shown in the upper member) that receives a rail 604 (
The distraction tool 532 includes an actuation member 606, which is includes external threads 608 on distal end and a yoke 610 on the proximal end. The yoke 610 attaches to or is a part of the u-joint 542, such as a u-joint or double u-joint as described above. The external threads 608 on the distal end of the actuation member 606 engage internal threads 612 of a bore 614 through the front wall 588 of the middle member 574. The distraction tool 532 also includes a hinged lever 616 that is attached to the outer shaft 536. The hinged lever 616 is similar to hinged lever 34 shown in
In use, the distraction tool 532 is inserted into a disc space in the straight configuration. The lever 540 is moved toward the handle 534 to move the distraction tool 532 into an angled configuration. The knob 544 is used to rotate inner shaft 538 wherein the rotating motion is translated via the u-joint or double U-joint 542 to the actuation member 606 of the distraction tool. The engagement of the threaded distal end 608 of the actuation member 606 with the internal threads 612 of the middle member 574 pulls the middle member 574 proximally relative to the upper and lower member 570, 572. As the middle member 574 moves from a distal location, as shown in
It is understood that the foregoing merely illustrates the principles of the various embodiments of the systems, device and methods disclosed herein. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein.
The present application is a continuation of International PCT Application No. PCT/US19/22632, filed Mar. 15, 2019, which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/644,101, filed Mar. 16, 2018, both of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2002021 | Rouse | May 1935 | A |
3807390 | Ostrowski et al. | Apr 1974 | A |
4846175 | Frimberger | Jul 1989 | A |
4862891 | Smith | Sep 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4898161 | Grundei | Feb 1990 | A |
5129889 | Hahn et al. | Jul 1992 | A |
5192327 | Brantigan | Mar 1993 | A |
5201742 | Hasson | Apr 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5267994 | Gentelia et al. | Dec 1993 | A |
5306310 | Siebels | Apr 1994 | A |
5342394 | Matsuno et al. | Aug 1994 | A |
5345945 | Hodgson et al. | Sep 1994 | A |
5366490 | Edwards et al. | Nov 1994 | A |
5374267 | Siegal | Dec 1994 | A |
5383884 | Summers | Jan 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5423806 | Dale et al. | Jun 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5470043 | Marts et al. | Nov 1995 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5540696 | Booth, Jr. et al. | Jul 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5554163 | Shturman | Sep 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5599346 | Edwards et al. | Feb 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5716416 | Lin | Feb 1998 | A |
5718707 | Mikhail | Feb 1998 | A |
5755661 | Schwartzman | May 1998 | A |
5755732 | Green et al. | May 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5788713 | Dubach et al. | Aug 1998 | A |
5851214 | Larsen et al. | Dec 1998 | A |
5871501 | Leschinsky et al. | Feb 1999 | A |
5885217 | Gisselberg et al. | Mar 1999 | A |
5916166 | Reiss et al. | Jun 1999 | A |
5919235 | Husson et al. | Jul 1999 | A |
5980471 | Jafari | Nov 1999 | A |
5980504 | Sharkey et al. | Nov 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6019765 | Thornhill et al. | Feb 2000 | A |
6039761 | Li et al. | Mar 2000 | A |
6059829 | Schläpfer et al. | May 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6126660 | Dietz | Oct 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6183517 | Suddaby | Feb 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6228022 | Friesem et al. | May 2001 | B1 |
6245072 | Zdeblick | Jun 2001 | B1 |
6245107 | Ferree | Jun 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6332895 | Suddaby | Dec 2001 | B1 |
6375635 | Moutafis et al. | Apr 2002 | B1 |
6387130 | Stone et al. | May 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6436142 | Paes et al. | Aug 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6488710 | Besselink | Dec 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6500205 | Michelson | Dec 2002 | B1 |
6530926 | Davison | Mar 2003 | B1 |
6551319 | Lieberman | Apr 2003 | B2 |
6554833 | Levy et al. | Apr 2003 | B2 |
6558383 | Cunningham et al. | May 2003 | B2 |
6558386 | Cragg | May 2003 | B1 |
6558390 | Cragg | May 2003 | B2 |
6562033 | Shah et al. | May 2003 | B2 |
6592625 | Cauthen | Jul 2003 | B2 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6607505 | Thompson et al. | Aug 2003 | B1 |
6607530 | Carl et al. | Aug 2003 | B1 |
6620196 | Trieu | Sep 2003 | B1 |
6656178 | Veldhuizen et al. | Dec 2003 | B1 |
6670505 | Collins et al. | Dec 2003 | B1 |
6676665 | Foley et al. | Jan 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6726684 | Woloszko et al. | Apr 2004 | B1 |
6733496 | Sharkey et al. | May 2004 | B2 |
6749605 | Ashley et al. | Jun 2004 | B2 |
6764491 | Frey et al. | Jul 2004 | B2 |
6767347 | Sharkey et al. | Jul 2004 | B2 |
6773432 | Clayman et al. | Aug 2004 | B1 |
6821276 | Lambrecht et al. | Nov 2004 | B2 |
6830570 | Frey et al. | Dec 2004 | B1 |
6878155 | Sharkey et al. | Apr 2005 | B2 |
6923811 | Carl et al. | Aug 2005 | B1 |
6939351 | Eckman | Sep 2005 | B2 |
6953458 | Loeb | Oct 2005 | B2 |
6964667 | Shaolian et al. | Nov 2005 | B2 |
6976949 | Winkler et al. | Dec 2005 | B2 |
7004970 | Cauthen III et al. | Feb 2006 | B2 |
7008432 | Schlapfer et al. | Mar 2006 | B2 |
7025765 | Balbierz et al. | Apr 2006 | B2 |
7052516 | Cauthen, III et al. | May 2006 | B2 |
7056321 | Pagliuca et al. | Jun 2006 | B2 |
7069087 | Sharkey et al. | Jun 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7087058 | Cragg | Aug 2006 | B2 |
7114501 | Johnson et al. | Oct 2006 | B2 |
7124761 | Lambrecht et al. | Oct 2006 | B2 |
7144397 | Lambrecht et al. | Dec 2006 | B2 |
7179225 | Shluzas et al. | Feb 2007 | B2 |
7204853 | Gordon et al. | Apr 2007 | B2 |
7211055 | Diederich et al. | May 2007 | B2 |
7241297 | Shaolian et al. | Jul 2007 | B2 |
7252686 | Garrison et al. | Aug 2007 | B2 |
7267687 | McGuckin, Jr. | Sep 2007 | B2 |
7282020 | Kaplan | Oct 2007 | B2 |
7309336 | Ashley et al. | Dec 2007 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7318826 | Teitelbaum et al. | Jan 2008 | B2 |
7322962 | Forrest | Jan 2008 | B2 |
7331956 | Hovda et al. | Feb 2008 | B2 |
7331963 | Bryan et al. | Feb 2008 | B2 |
RE40156 | Sharps et al. | Mar 2008 | E |
7618458 | Biedermann et al. | Nov 2009 | B2 |
7682378 | Truckai et al. | Mar 2010 | B2 |
7753912 | Raymond et al. | Jul 2010 | B2 |
7758647 | Arnin et al. | Jul 2010 | B2 |
7771432 | Schwab et al. | Aug 2010 | B2 |
7776051 | Colleran et al. | Aug 2010 | B2 |
7824445 | Biro et al. | Nov 2010 | B2 |
7887568 | Ahlgren | Feb 2011 | B2 |
7901460 | Sherman | Mar 2011 | B2 |
7922767 | Sack et al. | Apr 2011 | B2 |
7947078 | Siegal | May 2011 | B2 |
7963915 | Bleich | Jun 2011 | B2 |
8021429 | Viker | Sep 2011 | B2 |
8025697 | McClellan, III et al. | Sep 2011 | B2 |
8083796 | Raiszadeh et al. | Dec 2011 | B1 |
8123750 | Norton et al. | Feb 2012 | B2 |
8128662 | Altarac et al. | Mar 2012 | B2 |
8137401 | Stad et al. | Mar 2012 | B2 |
8142507 | McGuckin, Jr. | Mar 2012 | B2 |
8246622 | Siegal et al. | Aug 2012 | B2 |
8252001 | Quimo et al. | Aug 2012 | B2 |
8252054 | Greenhalgh et al. | Aug 2012 | B2 |
8377070 | Gauthier | Feb 2013 | B2 |
8394102 | Garabedian et al. | Mar 2013 | B2 |
8454617 | Schaller et al. | Jun 2013 | B2 |
8454622 | Blain et al. | Jun 2013 | B2 |
8470043 | Schaller et al. | Jun 2013 | B2 |
8579980 | DeLurio et al. | Nov 2013 | B2 |
8628577 | Jimenez | Jan 2014 | B1 |
8632591 | Vila et al. | Jan 2014 | B2 |
8663332 | To et al. | Mar 2014 | B1 |
8685031 | Kleiner et al. | Apr 2014 | B2 |
8764806 | Abdou | Jul 2014 | B2 |
8906028 | Kleiner | Dec 2014 | B2 |
8968408 | Schaller et al. | Mar 2015 | B2 |
8974464 | Johnson et al. | Mar 2015 | B2 |
8979860 | Voellmicke et al. | Mar 2015 | B2 |
8986385 | Hall | Mar 2015 | B2 |
9034041 | Wolters et al. | May 2015 | B2 |
9039771 | Glerum et al. | May 2015 | B2 |
9161773 | Schaller et al. | Oct 2015 | B2 |
9308022 | Chitre et al. | Apr 2016 | B2 |
9351851 | Huffmaster et al. | May 2016 | B2 |
9480574 | Lee et al. | Nov 2016 | B2 |
9566170 | Schell et al. | Feb 2017 | B2 |
9642712 | Schaller et al. | May 2017 | B2 |
9827031 | Emery et al. | Nov 2017 | B2 |
9955961 | Huffmaster et al. | May 2018 | B2 |
10022243 | Emery et al. | Jul 2018 | B2 |
10231843 | Lee et al. | Mar 2019 | B2 |
10258228 | Genovese et al. | Apr 2019 | B2 |
10285821 | Schaller et al. | May 2019 | B2 |
10314605 | Huffmaster et al. | Jun 2019 | B2 |
10426629 | Schaller et al. | Oct 2019 | B2 |
10575963 | Schaller et al. | Mar 2020 | B2 |
10709577 | Lorang et al. | Jul 2020 | B2 |
10758286 | Ammerman et al. | Sep 2020 | B2 |
11224453 | Huffmaster et al. | Jan 2022 | B2 |
20010023348 | Ashley et al. | Sep 2001 | A1 |
20010029377 | Aebi et al. | Oct 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20020019637 | Frey et al. | Feb 2002 | A1 |
20020026197 | Foley et al. | Feb 2002 | A1 |
20020128716 | Cohen et al. | Sep 2002 | A1 |
20020147444 | Shah et al. | Oct 2002 | A1 |
20020156530 | Lambrecht et al. | Oct 2002 | A1 |
20030009223 | Fehling et al. | Jan 2003 | A1 |
20030014047 | Woloszko et al. | Jan 2003 | A1 |
20030040796 | Ferree | Feb 2003 | A1 |
20030065358 | Frecker et al. | Apr 2003 | A1 |
20030083747 | Winterbottom et al. | May 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030158553 | Michelson | Aug 2003 | A1 |
20030187453 | Schlapfer et al. | Oct 2003 | A1 |
20030204189 | Cragg | Oct 2003 | A1 |
20030220650 | Major et al. | Nov 2003 | A1 |
20040002762 | Hawkins | Jan 2004 | A1 |
20040015218 | Finch et al. | Jan 2004 | A1 |
20040024463 | Thomas, Jr. et al. | Feb 2004 | A1 |
20040049180 | Sharps et al. | Mar 2004 | A1 |
20040059333 | Carl et al. | Mar 2004 | A1 |
20040064144 | Johnson et al. | Apr 2004 | A1 |
20040073216 | Lieberman | Apr 2004 | A1 |
20040087994 | Suddaby | May 2004 | A1 |
20040092988 | Shaolian et al. | May 2004 | A1 |
20040102774 | Trieu | May 2004 | A1 |
20040106940 | Shaolian et al. | Jun 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040127893 | Hovda | Jul 2004 | A1 |
20040148028 | Ferree et al. | Jul 2004 | A1 |
20040153064 | Foley et al. | Aug 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040193158 | Lim et al. | Sep 2004 | A1 |
20040230198 | Manzi et al. | Nov 2004 | A1 |
20040230309 | DiMauro et al. | Nov 2004 | A1 |
20040249464 | Bindseil et al. | Dec 2004 | A1 |
20040260305 | Gorensek et al. | Dec 2004 | A1 |
20050021030 | Pagliuca et al. | Jan 2005 | A1 |
20050021041 | Michelson | Jan 2005 | A1 |
20050033292 | Teitelbaum et al. | Feb 2005 | A1 |
20050038517 | Carrison et al. | Feb 2005 | A1 |
20050049623 | Moore et al. | Mar 2005 | A1 |
20050065610 | Pisharodi | Mar 2005 | A1 |
20050070911 | Carrison et al. | Mar 2005 | A1 |
20050080425 | Bhatnagar et al. | Apr 2005 | A1 |
20050090833 | DiPoto | Apr 2005 | A1 |
20050090899 | DiPoto | Apr 2005 | A1 |
20050107878 | Conchy | May 2005 | A1 |
20050113832 | Molz, IV et al. | May 2005 | A1 |
20050119750 | Studer | Jun 2005 | A1 |
20050131540 | Trieu | Jun 2005 | A1 |
20050131541 | Trieu | Jun 2005 | A1 |
20050137601 | Assell et al. | Jun 2005 | A1 |
20050137605 | Assell et al. | Jun 2005 | A1 |
20050149049 | Assell et al. | Jul 2005 | A1 |
20050165420 | Cha | Jul 2005 | A1 |
20050182414 | Manzi et al. | Aug 2005 | A1 |
20050182416 | Lim et al. | Aug 2005 | A1 |
20050187537 | Loeb et al. | Aug 2005 | A1 |
20050203527 | Carrison et al. | Sep 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050234493 | Carr et al. | Oct 2005 | A1 |
20050240171 | Forrest | Oct 2005 | A1 |
20050251134 | Woloszko et al. | Nov 2005 | A1 |
20050251177 | Saadat et al. | Nov 2005 | A1 |
20050256525 | Culbert et al. | Nov 2005 | A1 |
20050261683 | Veldhuizen et al. | Nov 2005 | A1 |
20050261684 | Shaolian et al. | Nov 2005 | A1 |
20050261692 | Carrison et al. | Nov 2005 | A1 |
20050273173 | Gordon et al. | Dec 2005 | A1 |
20050278027 | Hyde | Dec 2005 | A1 |
20060015131 | Kierce et al. | Jan 2006 | A1 |
20060025797 | Lock et al. | Feb 2006 | A1 |
20060030933 | DeLegge et al. | Feb 2006 | A1 |
20060036241 | Siegal | Feb 2006 | A1 |
20060041258 | Galea | Feb 2006 | A1 |
20060041295 | Osypka | Feb 2006 | A1 |
20060047178 | Winkler et al. | Mar 2006 | A1 |
20060052793 | Heinz | Mar 2006 | A1 |
20060058826 | Evans et al. | Mar 2006 | A1 |
20060058876 | McKinley | Mar 2006 | A1 |
20060074425 | Sutterlin et al. | Apr 2006 | A1 |
20060089646 | Bonutti | Apr 2006 | A1 |
20060116689 | Albans | Jun 2006 | A1 |
20060129244 | Ensign et al. | Jun 2006 | A1 |
20060136064 | Sherman | Jun 2006 | A1 |
20060149268 | Truckai et al. | Jul 2006 | A1 |
20060161162 | Lambrecht et al. | Jul 2006 | A1 |
20060178666 | Cosman et al. | Aug 2006 | A1 |
20060189999 | Zwirkoski | Aug 2006 | A1 |
20060195091 | McGraw et al. | Aug 2006 | A1 |
20060195094 | McGraw et al. | Aug 2006 | A1 |
20060206116 | Yeung | Sep 2006 | A1 |
20060217811 | Lambrecht et al. | Sep 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20060224241 | Butler et al. | Oct 2006 | A1 |
20060229625 | Truckai et al. | Oct 2006 | A1 |
20060235418 | Gil et al. | Oct 2006 | A1 |
20060241577 | Balbierz et al. | Oct 2006 | A1 |
20060247600 | Yeung et al. | Nov 2006 | A1 |
20060247784 | Kim | Nov 2006 | A1 |
20060265076 | Carter et al. | Nov 2006 | A1 |
20060287726 | Segal et al. | Dec 2006 | A1 |
20060287727 | Segal et al. | Dec 2006 | A1 |
20060287729 | Segal et al. | Dec 2006 | A1 |
20060287730 | Segal et al. | Dec 2006 | A1 |
20070010848 | Leung et al. | Jan 2007 | A1 |
20070016273 | Scarborough et al. | Jan 2007 | A1 |
20070027545 | Carls et al. | Feb 2007 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070055259 | Norton et al. | Mar 2007 | A1 |
20070055262 | Tomita et al. | Mar 2007 | A1 |
20070060935 | Schwardt et al. | Mar 2007 | A1 |
20070067035 | Falahee | Mar 2007 | A1 |
20070093822 | Dutoit et al. | Apr 2007 | A1 |
20070093899 | Dutoit et al. | Apr 2007 | A1 |
20070118219 | Hyde, Jr. | May 2007 | A1 |
20070123888 | Bleich et al. | May 2007 | A1 |
20070123903 | Raymond et al. | May 2007 | A1 |
20070123986 | Schaller et al. | May 2007 | A1 |
20070149978 | Shezifi et al. | Jun 2007 | A1 |
20070149990 | Palmer et al. | Jun 2007 | A1 |
20070162032 | Johnson et al. | Jul 2007 | A1 |
20070162062 | Norton et al. | Jul 2007 | A1 |
20070162127 | Peterman et al. | Jul 2007 | A1 |
20070162135 | Segal et al. | Jul 2007 | A1 |
20070168041 | Kadiyala | Jul 2007 | A1 |
20070168043 | Ferree | Jul 2007 | A1 |
20070173939 | Kim et al. | Jul 2007 | A1 |
20070175959 | Shelton, IV et al. | Aug 2007 | A1 |
20070198021 | Wales | Aug 2007 | A1 |
20070198025 | Trieu et al. | Aug 2007 | A1 |
20070208426 | Trieu | Sep 2007 | A1 |
20070213704 | Truckai et al. | Sep 2007 | A1 |
20070213733 | Bleich et al. | Sep 2007 | A1 |
20070213734 | Bleich et al. | Sep 2007 | A1 |
20070213735 | Saadat et al. | Sep 2007 | A1 |
20070225703 | Schmitz et al. | Sep 2007 | A1 |
20070233143 | Josse et al. | Oct 2007 | A1 |
20070255286 | Trieu | Nov 2007 | A1 |
20070255406 | Trieu | Nov 2007 | A1 |
20070255703 | Maruyama et al. | Nov 2007 | A1 |
20070260252 | Schmitz et al. | Nov 2007 | A1 |
20070260270 | Assell et al. | Nov 2007 | A1 |
20070260315 | Foley et al. | Nov 2007 | A1 |
20070265652 | Assell et al. | Nov 2007 | A1 |
20070265691 | Swanson | Nov 2007 | A1 |
20070276406 | Mahoney et al. | Nov 2007 | A1 |
20070299521 | Glenn et al. | Dec 2007 | A1 |
20080009826 | Miller et al. | Jan 2008 | A1 |
20080009828 | Miller et al. | Jan 2008 | A1 |
20080009847 | Ricart et al. | Jan 2008 | A1 |
20080009875 | Sankaran et al. | Jan 2008 | A1 |
20080009876 | Sankaran et al. | Jan 2008 | A1 |
20080009877 | Sankaran et al. | Jan 2008 | A1 |
20080015639 | Bjork et al. | Jan 2008 | A1 |
20080021435 | Miller et al. | Jan 2008 | A1 |
20080027407 | Miller et al. | Jan 2008 | A1 |
20080033465 | Schmitz et al. | Feb 2008 | A1 |
20080058707 | Ashley et al. | Mar 2008 | A1 |
20080065080 | Assell et al. | Mar 2008 | A1 |
20080065092 | Assell et al. | Mar 2008 | A1 |
20080065093 | Assell et al. | Mar 2008 | A1 |
20080065094 | Assell et al. | Mar 2008 | A1 |
20080086157 | Stad et al. | Apr 2008 | A1 |
20080114367 | Meyer | May 2008 | A1 |
20080147113 | Nobis et al. | Jun 2008 | A1 |
20080161809 | Schmitz | Jul 2008 | A1 |
20080177259 | Wu | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080221687 | Viker | Sep 2008 | A1 |
20080228135 | Snoderly | Sep 2008 | A1 |
20080249628 | Altarac et al. | Oct 2008 | A1 |
20080287995 | Gauthier | Nov 2008 | A1 |
20080294171 | Boehm, Jr. et al. | Nov 2008 | A1 |
20080300636 | Carli et al. | Dec 2008 | A1 |
20090012612 | White et al. | Jan 2009 | A1 |
20090024217 | Levy et al. | Jan 2009 | A1 |
20090105711 | Mitchell et al. | Apr 2009 | A1 |
20090143716 | Lowry et al. | Jun 2009 | A1 |
20090157187 | Richelsoph | Jun 2009 | A1 |
20090198241 | Phan | Aug 2009 | A1 |
20090198245 | Phan | Aug 2009 | A1 |
20090234454 | Siegal | Sep 2009 | A1 |
20100030216 | Arcenio | Feb 2010 | A1 |
20100114179 | Moore et al. | May 2010 | A1 |
20100131005 | Conlon | May 2010 | A1 |
20100179578 | Tannoury | Jul 2010 | A1 |
20100185291 | Jimenez et al. | Jul 2010 | A1 |
20100198263 | Siegal et al. | Aug 2010 | A1 |
20100228091 | Widenhouse et al. | Sep 2010 | A1 |
20100249798 | Sournac | Sep 2010 | A1 |
20100262147 | Siegal et al. | Oct 2010 | A1 |
20100262242 | Chavatte et al. | Oct 2010 | A1 |
20100268234 | Aho | Oct 2010 | A1 |
20100286782 | Schaller et al. | Nov 2010 | A1 |
20100298864 | Castro | Nov 2010 | A1 |
20110015638 | Pischl et al. | Jan 2011 | A1 |
20110015747 | McManus et al. | Jan 2011 | A1 |
20110112455 | Rocklin | May 2011 | A1 |
20110125266 | Rodgers et al. | May 2011 | A1 |
20110144440 | Cropper et al. | Jun 2011 | A1 |
20110172722 | Verhulst et al. | Jul 2011 | A1 |
20110208306 | Farris | Aug 2011 | A1 |
20110245926 | Kitchen | Oct 2011 | A1 |
20110307063 | Schaller et al. | Dec 2011 | A1 |
20120022651 | Akyuz et al. | Jan 2012 | A1 |
20120071977 | Oglaza et al. | Mar 2012 | A1 |
20120071980 | Purcell et al. | Mar 2012 | A1 |
20120089231 | Prestigiacomo | Apr 2012 | A1 |
20120123426 | Quimo | May 2012 | A1 |
20120136442 | Kleiner | May 2012 | A1 |
20120136448 | Seifert et al. | May 2012 | A1 |
20120150241 | Ragab et al. | Jun 2012 | A1 |
20120232664 | Ulrich et al. | Sep 2012 | A1 |
20120277861 | Steele et al. | Nov 2012 | A1 |
20120283748 | Ortiz et al. | Nov 2012 | A1 |
20120296171 | Lovell | Nov 2012 | A1 |
20130053863 | Juravic et al. | Feb 2013 | A1 |
20130110239 | Siegal et al. | May 2013 | A1 |
20130116791 | Theofilos | May 2013 | A1 |
20130144391 | Siegal et al. | Jun 2013 | A1 |
20130158667 | Tabor et al. | Jun 2013 | A1 |
20130204374 | Milella, Jr. | Aug 2013 | A1 |
20130238098 | Schaller et al. | Sep 2013 | A1 |
20130282143 | Perkins et al. | Oct 2013 | A1 |
20130304070 | Nelson | Nov 2013 | A1 |
20140058513 | Gahman et al. | Feb 2014 | A1 |
20140067073 | Hauck | Mar 2014 | A1 |
20140163326 | Forsell | Jun 2014 | A1 |
20140163560 | Fenn | Jun 2014 | A1 |
20140235949 | Smith | Aug 2014 | A1 |
20140236296 | Wagner et al. | Aug 2014 | A1 |
20140249629 | Moskowitz et al. | Sep 2014 | A1 |
20140257484 | Flower et al. | Sep 2014 | A1 |
20140277481 | Lee et al. | Sep 2014 | A1 |
20140316427 | Yoon et al. | Oct 2014 | A1 |
20150012000 | Siegal | Jan 2015 | A1 |
20150051701 | Glerum et al. | Feb 2015 | A1 |
20150100124 | Whipple | Apr 2015 | A1 |
20150112437 | Davis et al. | Apr 2015 | A1 |
20150112438 | McLean | Apr 2015 | A1 |
20150148908 | Marino et al. | May 2015 | A1 |
20150367487 | Nino | Dec 2015 | A1 |
20160007979 | Bhagat et al. | Jan 2016 | A1 |
20160287409 | Ziemek | Oct 2016 | A1 |
20160367332 | Shah et al. | Dec 2016 | A1 |
20170135704 | Abbasi | May 2017 | A1 |
20170303938 | Rindal | Oct 2017 | A1 |
20190167440 | Lee et al. | Jun 2019 | A1 |
20190216482 | Huffmaster et al. | Jul 2019 | A1 |
20190216612 | Schaller et al. | Jul 2019 | A1 |
20200345401 | McHale et al. | Nov 2020 | A1 |
20210113252 | Ammerman et al. | Apr 2021 | A1 |
20210154024 | Lorang et al. | May 2021 | A1 |
20220031471 | Hessler et al. | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
42 22 121 | Sep 1993 | DE |
197 10 392 | Jul 1999 | DE |
0 682 910 | Nov 1995 | EP |
1 157 676 | Nov 2001 | EP |
2 900 814 | Nov 2007 | FR |
2002-028171 | Jan 2002 | JP |
WO 98017190 | Apr 1998 | WO |
WO 98034552 | Aug 1998 | WO |
WO 99021500 | May 1999 | WO |
WO 99047058 | Sep 1999 | WO |
WO 00074605 | Dec 2000 | WO |
WO 03024344 | Mar 2003 | WO |
WO 2005048856 | Jun 2005 | WO |
WO 2006047587 | May 2006 | WO |
WO 2006072941 | Jul 2006 | WO |
WO 2007100914 | Sep 2007 | WO |
WO 2008036505 | Mar 2008 | WO |
WO 2008084479 | Jul 2008 | WO |
WO 2008103832 | Aug 2008 | WO |
WO 2010008353 | Jan 2010 | WO |
WO 2011150350 | Dec 2011 | WO |
WO 2012048187 | Apr 2012 | WO |
WO 2012178018 | Dec 2012 | WO |
WO 2013043850 | Mar 2013 | WO |
WO 2014158680 | Oct 2014 | WO |
WO 2019148083 | Aug 2019 | WO |
WO 2019178575 | Sep 2019 | WO |
Entry |
---|
Official Communication in European Application No. 08730402.8, dated Feb. 18, 2013. |
International Search Report and Written Opinion in International Application No. PCT/US2008/054590, dated Aug. 22, 2008. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2008/054590, dated Aug. 28, 2009. |
International Search Report and Written Opinion in International Application No. PCT/US2019/015386, dated May 23, 2019. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2019/015386, dated Aug. 13, 2020. |
International Search Report and Written Opinion in International Application No. PCT/US2019/022632, dated May 30, 2019. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2019/022632, dated Oct. 1, 2020. |
International Search Report and Written Opinion in International Application No. PCT/US2014/019246, dated Aug. 19, 2014. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2014/019246, dated Sep. 24, 2015. |
Office Communication for U.S. Appl. No. 13/804,847, dated Jul. 13, 2015. |
Office Communication for U.S. Appl. No. 13/804,847, dated Oct. 16, 2015. |
Extended European Search Report for European Patent Application No. 11787510.4, dated Oct. 15, 2013. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2011/038377, dated Aug. 25, 2011. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2013/068906, dated Feb. 6, 2014. |
Number | Date | Country | |
---|---|---|---|
20210169459 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62644101 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2019/022632 | Mar 2019 | US |
Child | 17023312 | US |