This invention relates generally to devices for wave energy conversion and more particularly to a wave energy conversion device that uses a flow rectifier to drive an electrical generator.
Ocean wave-energy conversion is directed to the exploitation of ocean wave energy to produce energy in one or more of four forms, those being hydraulic, pneumatic, mechanical or electrical. See McCormick, “Ocean Wave Energy Conversion,” published by Wiley-Interscience, New York (1981, reprinted by Dover Publication, Long Island, N.Y. in 2007). The progress in wave-energy conversion over the past three decades has been by the combination of the energy forms and the optimization of the resulting systems. The present invention is directed to the combination of an articulated-barge system and a linear-to-rotary-pump power takeoff system. This type of system is designed to be coupled to a direct current electrical generator.
The articulated-barge wave-energy conversion system dates back to the 1970's when both Sir Christopher in the United Kingdom and Glen Hagen of the United States suggested the system. The system was studied in the late 1970's by P. Haren (1978) at MIT. He found that the optimum articulated-barge configuration was a three-barge system. In the 1980's, Dr. Peter McCabe showed that the efficiency of the three-barge system could be substantially improved by suspending an inertial-damping plate below the center barge. Dr. McCabe, then, produced a prototype of the system, coined the McCabe Wave Pump (MWP), which was deployed and studied in the Shannon Estuary for approximately nine years. See U.S. Pat. No. 5,132,550 (McCabe). The MWP was primarily designed as a producer of potable water.
In 2005, Ocean Energy Systems (OES) was formed in the United States to design and manufacture an articulated-barge system to produce potable water by reverse-osmosis (RO) desalination of sea water; See also U.S. Patent Publication No. 2009/0084296 (McCormick) describing a system directed to a wave-powered device having enhanced motion. Referring to
However, there remains a need for an articulate-barge system, similar to the AWECS and the MWP, that convert wave energy into electrical energy using a commercially-available rotary-vane pump.
An apparatus for generating electricity from ocean wave energy is disclosed. The apparatus comprises: a floating device having a first portion (e.g., a first barge) movably coupled (e.g., hinged) to a second portion (e.g., a second barge); at least one hydraulic pump coupled (e.g., a linear pump) between the first portion the said second portion, the hydraulic pump driving a hydraulic fluid therein when the first portion moves with respect to the second portion due to ocean wave energy; a fluid rectifier, in fluid communication with the at least one hydraulic pump, that generates a unidirectional hydraulic fluid flow; a rotary vane pump, coupled to the fluid rectifier, that uses the unidirectional flow to generate a rotational motion via a drive member; and a rotating electrical generator (e.g., a DC generator) that is coupled to said drive member, said drive member causing the rotating electrical generator to generate electricity when said drive member is rotating.
A method for generating electricity from ocean wave energy is disclosed. The method comprises: providing a floating device having a first portion (e.g., a first barge) that is movably coupled (e.g., hinged) to a second portion (e.g., a second barge); coupling at least one hydraulic pump (e.g., a linear pump) between the first portion and the second portion such that movement of the first portion with respect to the second portion, when the floating device is exposed to ocean wave energy, causes a hydraulic fluid therein to be displaced; passing the displaced hydraulic fluid through a flow rectifier that generates a unidirectional hydraulic fluid flow; directing the unidirectional hydraulic fluid flow through a rotary vane pump to cause rotational motion via a drive member; and coupling the drive member to a rotating electrical generator (e.g., a DC generator) to generate electricity when the drive member is rotating.
In the following sections, the analysis of the electrical power production by a rotary-vane/dc-generator system is first presented. Then, the power produced by the performance of this hydro-electric system when driven by the articulated-raft system is discussed.
As shown in
Rotary Vane Pumps Powered by Linear Pumps
There are a number of types of rotary pressure pumps available for electrical generation. These include Internal Gear Pumps, Rotary-Vane Pumps Flexible Member Pumps, External Gear Pumps, Lobe Pumps and Circumferential Piston Pumps. The first three of the six are more desirable for wave-energy application since they have a single rotor. Of those, the Rotary-Vane Pump has been judged to be the most suitable.
Since the Rotary-Vane Pump is designed to turn in one rotational direction (either positive or negative), the power transfer from the linear, bi-directional pumps between the barges 2/4 in
In operation, the piston/rod assembly 30/34 is excited by an alternating energy source, namely, the water waves. The piston/rod assembly 30/34 travels in alternating directions over the period associated with the water wave in the piston housing 32. The motions create alternating pressures in the taps 36 due to the alternating piston-rod assembly motions 58. The alternating pressures are transmitted through the control pressure lines 60, producing alternating pressure forces with directions shown as 60. The piston-rod assembly motions 58 cause the operating fluid in the pump 22 to be alternatively expelled at high pressure and refilled at low pressure through the intake/exhaust taps 40. The alternating flows through the taps 40 are transmitted through the intake/exhaust lines 42. The pressure forces 60 in the control pressure lines 38 alternately cause the cone-head valves 46A and 46B to open and close. The cone-head of the valves mate with the conical valve seats 48 when the valve is closed. When the valve is to be opened by the pressure force 60, operating fluid is passed into the seat 48 through the seat pressure relief tap 52 which is partially supplied by the pressure relief tap 50. The taps 48 and 50 are interconnected by the pressure relief lines 54. The resulting flows are as follows. In particular, the high pressure flow in the high pressure feed flow lines 64 travel in the direction 62. The low pressure flow in the low pressure intake flow lines 66 in the direction 68 forms the return from the rotary-vane pump 26.
As can also be seen in
For citizens in the developed western countries, such as Ireland, the mean electrical power requirement is about 1 kW. For a household, the requirement is 5 kW. Based on the 346 kW average power supplied by 10-meter wide modified AWECS 20 deployed in a 2.5-meter, 8-second sea, which is what might be expected off of the west coast of Ireland, 346 citizens would be supplied electricity by a single modified AWECS 20, or approximately 70 households.
A hybrid (not shown) of the modified AWECS 20 may comprise using the forward barge-pair 2 and 3 to supply electricity and using the after barge-pair 3 and 4 to supply potable water. This hybrid would supply 171 kW of electricity and 1,000 m3 per day of potable water, based on a 75% reverse-osmosis efficiency.
The AWECS' technology of OES is versatile, adaptable, cost effective and environmentally friendly. Exchanging high pressure sea water pumps for linear generators on the AWECS enables clients to choose between their requirements for potable water and/or electricity.
Assuming a 30 m-wide AWECS operating in an average wave height of 2.5 meter with a 8-second period off of the Irish coast, with a wholesale purchase price from OES of $1.5 million, 20 year straight-line depreciation, 10% APR and $50,000 annual operating and maintenance expenses, potable water can be delivered to shore side for $0.67/m2 (=$2.53/1000 gallons) or electricity can delivered to the local grid for $0.09/KW-hr.
Without further elaboration the foregoing will so fully illustrate my invention that others may, by applying current or future knowledge, adopt the same for use under various conditions of service.
This utility application claims the benefit under 35 U.S.C. §119(e) of Provisional Application Ser. No. 61/707,266 filed on Sep. 28, 2012 entitled ARTICULATED-RAFT/ROTARY-VANE PUMP GENERATOR SYSTEM and whose entire disclosure is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
260016 | Franklin | Jun 1882 | A |
344813 | Bull | Jul 1886 | A |
1078323 | Trull | Nov 1913 | A |
1636447 | Standish | Jul 1927 | A |
2731799 | Lange et al. | Jan 1956 | A |
3022632 | Parks | Feb 1962 | A |
3099998 | Fisher | Aug 1963 | A |
3120491 | Kincaid | Feb 1964 | A |
3191202 | Handler | Jun 1965 | A |
3376588 | Berteaux | Apr 1968 | A |
3628334 | Coleman | Dec 1971 | A |
3755836 | Milazzo | Sep 1973 | A |
3818523 | Stillman, Jr. | Jun 1974 | A |
3846990 | Bowley | Nov 1974 | A |
3848419 | Bowley | Nov 1974 | A |
4004308 | Gongwer | Jan 1977 | A |
4048802 | Bowley | Sep 1977 | A |
4077213 | Hagen | Mar 1978 | A |
4098084 | Cockerell | Jul 1978 | A |
4118932 | Sivill | Oct 1978 | A |
4209283 | Marbury | Jun 1980 | A |
4210821 | Cockerell | Jul 1980 | A |
4255066 | Mehlum | Mar 1981 | A |
4264233 | McCambridge | Apr 1981 | A |
4280238 | van Heijst | Jul 1981 | A |
4326840 | Hicks et al. | Apr 1982 | A |
4335576 | Hopfe | Jun 1982 | A |
RE31111 | Hagen | Dec 1982 | E |
4408454 | Hagen et al. | Oct 1983 | A |
4421461 | Hicks et al. | Dec 1983 | A |
4512886 | Hicks et al. | Apr 1985 | A |
4686377 | Gargos | Aug 1987 | A |
4698969 | Raichlen et al. | Oct 1987 | A |
4781023 | Gordon | Nov 1988 | A |
4894873 | Kiefer et al. | Jan 1990 | A |
4954110 | Warnan | Sep 1990 | A |
5112483 | Cluff | May 1992 | A |
5132550 | McCabe | Jul 1992 | A |
5186822 | Tzong et al. | Feb 1993 | A |
5359229 | Youngblood | Oct 1994 | A |
5558459 | Odenbach et al. | Sep 1996 | A |
5879105 | Bishop et al. | Mar 1999 | A |
6406221 | Collier | Jun 2002 | B1 |
6451204 | Anderson | Sep 2002 | B1 |
6476511 | Yemm et al. | Nov 2002 | B1 |
6647716 | Boyd | Nov 2003 | B2 |
6863806 | Stark et al. | Mar 2005 | B2 |
7023104 | Kobashikawa | Apr 2006 | B2 |
7042112 | Wood | May 2006 | B2 |
7245041 | Olson | Jul 2007 | B1 |
7264420 | Chang | Sep 2007 | B2 |
7443047 | Ottersen | Oct 2008 | B2 |
7579704 | Steenstrup et al. | Aug 2009 | B2 |
7658843 | Krock et al. | Feb 2010 | B2 |
7694513 | Steenstrup et al. | Apr 2010 | B2 |
7728453 | Evans | Jun 2010 | B2 |
7900571 | Jaber et al. | Mar 2011 | B2 |
8564151 | Huebner | Oct 2013 | B1 |
8650869 | McCormick | Feb 2014 | B1 |
20030010691 | Broussard | Jan 2003 | A1 |
20030121408 | Linerode et al. | Jul 2003 | A1 |
20060112871 | Dyhrberg | Jun 2006 | A1 |
20060283802 | Gordon | Dec 2006 | A1 |
20070108112 | Jones et al. | May 2007 | A1 |
20070130929 | Khan et al. | Jun 2007 | A1 |
20070200353 | Ottersen | Aug 2007 | A1 |
20090084296 | McCormick | Apr 2009 | A1 |
20100054961 | Palecek et al. | Mar 2010 | A1 |
20100320759 | Lightfoot et al. | Dec 2010 | A1 |
20110299927 | McCormick et al. | Dec 2011 | A1 |
20120025532 | Song | Feb 2012 | A1 |
20120067820 | Henthorne et al. | Mar 2012 | A1 |
20130008158 | Hon | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1193490 | Sep 1985 | CA |
2248260 | Apr 1974 | DE |
2437507 | Apr 1980 | FR |
2113311 | Aug 1983 | GB |
2459112 | Oct 2009 | GB |
2002142498 | May 2002 | JP |
20110020077 | Mar 2011 | KR |
WO 9510706 | Apr 1995 | WO |
WO 0196738 | Dec 2001 | WO |
WO 03026954 | Apr 2003 | WO |
Entry |
---|
Bernitsas, et al., “VIVACE (Vortex Induced Vibration for Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy from Fluid Flow,” Proceedings of OMAE2006, Paper OMAE06-92645, Hamburg, Germany Jun. 4-9, 2006, pp. 1-18. |
Blevins, Robert D., “Flow-Induced Vibrations,” Van Nostrand Reinhold, New York, 1990, pp. 194-213. |
Budar, et al., “A Resonant Point Absorber of Ocean-Wave Power,” Nature, vol. 256, Aug. 1975, pp. 478-480. |
Cébron, et al., “Vortex-Induced Vibrations Using Wake Oscillator Model Comparison on 2D Response with Experiments,” Institute of Thermomechanics, Prague, 2008. |
Falnes, Johannes, “Ocean Waves Oscillating Systems,” Cambridge University Press, pp. 196-224, 2002. |
Farshidianfar, et al., “The Lock-in Phenomenon in VIV Using a Modified Wake Oscillator Model for Both High and Low Mass-Damping Ratio,” Iranian Journal of Mechanical Engineering, vol. 10, No. 2, Sep. 2009. |
Garnaud, et al, “Comparison of Wave Power Extraction by a Compact Array of Small Buoys and by a Large Buoy,” Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009, pp. 934-942. |
Jauvitis, et al., The Effect of Two Degrees of Freedom on Vortex-Induced Vibration at Low Mass and Damping,: J. Fluid Mechanics, vol. 509, 2004, pp. 23-62. |
Lee, et al., “On the Floating Breakwater—A New Arrangement,” Proceedings, International Conf. on Coastal Engineering, Taipei, 1986, pp. 2017-2022. |
Leong, et al., “Two-Degree-of-Freedom Vortex-Induced Vibration of a Pivoted Cylinder Below Critical Mass Ratio,” Proceedings of the Royal Society A, vol. 464, 2008, pp. 2907-2927. |
Liang, et al., “A Study of Spar Buoy Floating Breakwater,” Ocean Engineering, vol. 31, 2004, pp. 43-60. |
McCormick, et al., “Full-Scale Experimental Study of Bi-Modal Buoy,” Report EW 01-11, Department of Naval Architecture and Ocean Engineering, U.S. Naval Academy, Jun. 2011, 32 pages. |
McCormick, et al., “Planing Characteristics of Fast-Water Buoys,” Journal of the Waterways Harbors and Coastal and Engineering Division, vol. 99, No. WW4, Nov. 1973, pp. 485-493. |
McCormick, et al., “Prototype Study of a Passive Wave-Energy Attenuating Bi-Modal Buoy,” Murtech, Inc. Report M-12-1, Jan. 2012, 26 pages. |
Miles, John W., “On the Interference Factors for Finned Bodies,” J. Aeronautical Sciences, vol. 19, No. 4, Apr. 1952, p. 287. |
Murali, et al., “Performance of Cage Floating Breakwater,” Journal of Waterway, Port, Costal and Ocean Engineering, Jul./Aug. 1997, pp. 1-8. |
Ng, et al., “An Examination of Wake Oscillator Models for Vortex-Induced Vibrations,” Naval Undersea Warfare Center Division, Newport, RI, Technical Report 11,298, Aug. 1, 2011, 18 pages. |
Ogink, et al., “A Wake Oscillator With Frequency Dependent Coupling for the Modeling of Vortex-Induced Vibration,” Journal of Sound and Vibration, No. 329, 2010, pp. 5452-5473. |
Rodenbusch, George, “Response of a Pendulum Spar to 2-Dimensional Random Waves and a Uniform Current,” Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Engineering Program, Ph.D. Dissertation, Aug. 1978, 138 pages. |
Ryan, et. al., “Energy Transfer in a Vortex Induced Vibrating Tethered Cylinder System”, Conf. on Bluff Body Wakes and Vortex-Induced Vibrations, Port Douglas, Australia, Dec. 2002, 4 pages. |
Shiguemoto, et al., “Vortex Induced Motions of Subsurface Buoy with a Vertical Riser: A Comparison Between Two Phenomenological Models” Proceedings, 23° Congresso Nacional de Transporte Aquaviário, Construção Naval e Offshore, Rio de Janeiro, Oct. 25-29, 2010, pp. 1-9. |
Sobey, et al., “Hydrodynamic of Circular Piles,” Proceedings, 6th Australian Hydraulics and Fluid Mechanics Conference, Adelaide, Dec. 1977, pp. 253-256. |
Long Beach Water Department, Under-Ocean Floor Seawater intake and Discharge Test Plan, Apr. 1, 2009. |
Lovo, Robert, “Initial Evaluation of the Subfloor Water Intake Structure System (SWISS) vs. Conventional Multimedia Pretreatment Techniques,” Assistance Agreement No. 98-FC-81-0044, Desalination Research and Development Program Report No. 66, U.S. Dept. of Interior, May 2001. |
McCormick, “Ocean Wave Energy Conversion,” Wiley-Interscience, New York (1981, reprinted by Dover Publication, Long Island, New York in 2007). |
WateReuse Association, “Overview of Desalination Plan Intake Alternatives”, Mar. 2011. |
International Search Report for corresponding PCT Application No. PCT/US2013/059175 dated Mar. 19, 2014. |
International Search Report for related PCT Application No. PCT/US2013/048906 dated Sep. 30, 2013. |
Number | Date | Country | |
---|---|---|---|
20140091575 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61707266 | Sep 2012 | US |