The present invention relates to furniture, and more particularly to a foldable articulated sofa bed.
A sofa bed can be converted between a bed configuration and a sofa configuration. One type of sofa beds has three bed sections with mattress portions integrally formed on each of the sections. The mattress portion should be of some thickness to be comfortable when laid upon as a bed section. Collectively, the three sections form the bed when the sofa bed is deployed. An articulating mechanism connects to the sections to guide their movements between the bed and sofa configuration. To this end, sofa beds are bulky compared to contemporary sofa counterparts due to having to stow the multiple bed sections and the articulating mechanism. Additionally, contemporary sofas can be designed with more aesthetic consideration than existing sofa beds as they are not constrained in also having to function as an articulating bed.
The prior art includes a range of designs of such sofa beds. U.S. Pat. No. 2,740,131, for example, discloses a sofa bed where the back section becomes the back portion of the sofa, the forward seating section becomes the seat support portion of the sofa, and the intermediate section is stowed in a generally horizontal position, beneath the forward seating support portion, upside down facing the floor. The stowed configuration is shown in
U.S. Pat. No. 8,011,034 discloses an improvement over the design of U.S. Pat. No. 2,740,131. Additionally, when the articulating mechanism is in the folded position, the sofa bed includes a removable seat and back cushions. However, as shown in
In addition to being constrained in certain aesthetic appeal, prior art sofa beds of the types described above are not easy to use. The bed sections are often heavy, particularly to a large subset of the population, to lift out of the sofa or to stow back into the sofa frame. The high threshold to articulate the sofa bed is often by design to provide stability to the bed sofa when in the deployed and folded configuration. To this end, the sofa bed is less likely to fold while being laid upon or to unfold without clear actions by the user.
In addition, sofa beds are often complicated to manufacture. The components, including the bed sections and the articulating mechanism, are both bulky. The articulating mechanism comprises a series of metallic linkage components of varying shapes, sizes, and angles, while the sofa sections are made of fabric. Great care is often expended to avoid damaging the fabric portion of the sofa section, in particular, during the assembling of the sofa sections to the articulating mechanism.
There is now described a convertible sofa bed having a folding apparatus that coordinates the movements of the head panel and middle panel and is substantially compact when the sofa bed is in a folded configuration. The folding apparatus, in one embodiment, includes a mid-swinging member and the rear-swinging member, as part of a rear linkage assembly, and pivotally connects between a head panel (or head panel assembly) and a mounting member. A front-swinging member, as a part of a front linkage assembly of the folding apparatus, and pivotally connects between the middle panel (or middle panel assembly) and the mounting member. The various panels, including the head and middle panels, may be a part of a head panel assembly or middle panel assembly, respectively, having a connecting member to connect between the respective panel and the other linkage components of the folding apparatus to improve manufacturability. The swinging members (front, middle, and rear) control the configuration of the head and middle panel (or respective panel assemblies) as the bed deploys or retracts between a folded configuration and a deployed configuration. In an embodiment, the rear swinging member is the sofa bed's only pivotally mounted linking member being located behind the head panel assembly in the folded configuration along most of the rear swinging member's length.
In one embodiment, the convertible sofa bed includes a locking mechanism for fixably maintaining the head panel (or assembly thereof) in a generally horizontal orientation when the sofa bed is in the deployed configuration and releasing the head panel (or assembly) from the deployed configuration by a lifting motion applied to the middle panel assembly—which lifting motion may be applied to the middle panel by simply lifting the foot panel (or assembly). The locking mechanism is connected between the head panel (or assembly) and the mid-swinging member and, additionally, between the head panel (or assembly) and a connecting arm operatively linked to linkage assembly coordinating movements of the middle panel (or assembly thereof). The sofa bed is configured such that the lifting motion at the middle panel (or assembly) moves the connecting arm to push the locking mechanism from a locked position to an unlocked position. Each of the panels (or assemblies, respectively, thereof) preferably includes an attached mattress section.
In an embodiment, the locking mechanism preferably includes a first linkage member and a second linkage member in which both are pivotally connected to each other. The locking mechanism preferably forms a truss between the head panel (or assembly thereof) and the swinging member when the sofa is in the deployed configuration. The locking mechanism is preferably configured to engage to its locked position immediately upon the middle panel (or assembly) being deployed while providing a hysteresis to the movement of the middle panel (or assembly) to disengage from the locked position. The folding apparatus may be configured to constrain the pivoting of the locking mechanism to no further than a locked position when the bed is in the deployed configuration. To this end, in an embodiment, the mid-swinging member may include a locking pin extending therefrom, and the locking mechanism may have a cam to mate with the locking pin.
The sofa bed may include a bias member to assist in the folding and/or deploying of the sofa bed. The bias member may be configured to bias the foot panel (or assembly thereof) to separate from the middle panel (or assembly) after the initial lift when the bed is in the deployed configuration and/or as during the deployment of the bed when the bed is in the folded configuration. In an embodiment, the biasing member is located between the foot panel (or assembly) and the middle panel (or assembly). The folding apparatus may include another bias member between the front linkage assembly (connected to the middle panel) and the rear linkage assembly (connected to the head panel) of the folding apparatus.
In another embodiment, a convertible sofa bed is described having a folding apparatus with a forward-linkage assembly and a rear-linkage assembly. The folding apparatus includes a mounting member having a front and a rear end. The forward-linkage assembly is connected at the forward end and the rear-linkage assembly at the rear end. The forward-linkage assembly is pivotally connected to the middle panel (or assembly thereof). As indicated, the various panels, including the head and middle panels, may be a part of a head panel assembly or middle panel assembly, respectively, having a connecting member to improve manufacturability. The rear-linkage assembly is pivotally connected to the head panel (or assembly). The embodiment includes a novel locking mechanism that pivotally attaches both between the head panel (or assembly) and a portion of the rear-linkage assembly and between the head panel (or assembly) and a connecting arm pivotally connected to the forward-linkage assembly. The locking mechanism maintains the head panel (or assembly) in a generally horizontal orientation when the bed is in the deployed configuration and releases the head panel (or assembly) from the deployed configuration by a lifting motion applied the middle panel.
The rear-linkage assembly may include four linkages that form a four-bar linkage. The forward-linkage assembly may include four linkages that form another four-bar linkage. The locking linkage assembly may include two linkages that form yet another four-bar linkage with two linkages common with the four-bar linkage of the rear-linkage assembly. The locking linkage assembly may form a truss between a first linkage and a second linkage of the two linkages common with the rear-linkage assembly when the bed is in the deployed configuration. As a result, the lifting motion of the middle panel (or assembly may move the connecting arm to push the locking mechanism from a locked position to an unlocked position. The rear-linkage assembly constrains the pivoting of the locking mechanism to no further than a locked position when the bed is in the deployed configuration.
In another embodiment, a locking means is provided. The locking means may be connected between the head panel (or assembly thereof) and the mid-swinging member and between the head panel (or assembly) and a connecting arm operatively linked to linkage assembly coordinating movements of the middle panel (or assembly there). The locking means fixably maintains the head panel (or assembly) in a generally horizontal orientation when the sofa bed is in the deployed configuration and releasing the head panel (or assembly) from the deployed configuration by a lifting motion applied to the middle panel (or assembly). The sofa bed is configured such that the lifting motion at the middle panel (or assembly) moves the connecting arm to push the locking means from a locked position to an unlocked position. Each of the panels (or assemblies) preferably includes an attached mattress section. The locking means may include a first linkage member and a second linkage member in which both are pivotally connected to each other. The locking means preferably forms a truss between the head panel section and the swinging member when the sofa is in the deployed configuration. The locking means is preferably configured to engage to its locked position immediately upon the middle panel (or assembly) being deployed while providing a hysteresis to the movement of the middle panel (or assembly) to disengage from the locked position. The folding apparatus may be configured to constrain the pivoting of the locking means to no further than a locked position when the bed is in the deployed configuration. To this end, in an embodiment, the mid-swinging member may include a locking pin extending therefrom, and the locking means may have a cam to contact and limit movement of the locking pin.
In an embodiment, the sofa bed may include a folding apparatus, with the front and rear linkage assemblies, configured as a single module. To this end, the folding apparatus may be manufactured independent of the panels with attached mattress sections. The sofa bed may include a modular leg apparatus having a mounting plate that connects to the middle panel (or assembly) and the foot panel (or assembly). The mounting (or connecting) plate ensures the correct spacing between the leg assemblies so that the correct timing is maintained of one leg folding relative to another. The leg apparatus has a middle leg assembly and panel leg assembly for supporting the middle panel (or assembly) and the leg panel (or assembly), respectively. Each leg assembly may be pivotally connected to the mounting plate to deploy and retract between the bed's folded configuration and the bed's deployed configuration.
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Definitions. As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context otherwise requires:
Where used, the terms “secured,” “attached,” “connected,” “interconnected,” “contacting,” “mounted,” “coupled,” “linked,” and the like can mean either direct or indirect attachment or contact between elements, unless stated otherwise. Also, spatial terms, such as “under,” “below,” “lower,” “over,” “upper,” “above,” “top,” “bottom,” “proximal,” “distal,” “upward,” “downward,” “backward,” “forward,” and the like, are used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures and are relative to one another. It should be understood that the spatially relative terms are intended to encompass a variety of different spatial orientations of the article as may be placed during in use, operation, or transport of the article, in addition to the specific spatial orientation depicted in the figures. For example, if the article in the figures is inverted 180° within the plane, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. The article may be otherwise oriented (rotated 90 degrees or at other orientations) and the descriptors of relative spatial orientations used herein should be interpreted accordingly. The same is true of the terms “backward” and “forward” as the bed is being manipulated from an open to close configuration and vice versa.
In exemplary embodiments, an articulated, convertible sofa bed is configured with a compact, articulating mechanism that allows for the sofa bed to have a more contemporary silhouette, compared to traditional sofa beds, while also convertible to any conventional sized bed units. To this end, the sofa bed of the present embodiment has a back region that is angled to provide an aesthetic appeal similar to that of contemporary sofas. Another exemplary embodiment of the articulated, convertible sofa bed is disclosed in co-pending, co-owned U.S. patent application Ser. No. 13/653,945, by Thomas A. Garland, titled “Foldable Articulated Sofa Bed.” This application is incorporated herein by reference in its entirety.
In another aspect of the embodiment of the invention, an exemplary locking mechanism is employed to provide stability to the sofa bed in its respective bed or sofa configuration. The sofa bed can, thus, be configured with non-motorized means to assist in converting between the sofa configuration and the bed configuration to which the threshold of the necessary force to perform the conversion is comfortable to a large subset of the adult population. In an embodiment, after the foot panel is initially lifted, the sofa bed assists in pulling the middle and foot panel sections into the folded configuration as well as in pushing the middle and foot panel sections into the deployed configuration. Additionally, the sofa bed may be assembled with components organized in modules. To this end, metallic linkage components, such as that of the articulating mechanism, may be pre-assembled separately from non-metallic components that are subject to being damaged or scratched. The modules may then be combined during final assembly to reduce manufacturing costs and reduce such risks of inadvertent damage or scratching.
Additionally, the folded portion of the sofa bed is configured in a manner that the overall height 105 of the sofa bed 100 can be made comparable to that of a conventional sofa while also having cushions with comfortable thicknesses. To this end, the non-mattress section of the sofa bed, including the floor clearance, requires less than 3.25 inches of space of the overall height 105 of the seating surface. As such, two foldable mattress sections, each having a thickness of five inches, and a cushion section having a thickness of seven inches would result in a seating height of less than 20.5 inches.
In the deployed configuration, the panel sections are supported by a leg assembly 116, the folding apparatus 112, and the sofa frame 102 to form a bed. Specifically, the sofa frame 102 and the folding apparatus 112 support the middle-panel section and the head-panel section. The leg assembly 116 has a middle-panel leg 118 and a foot-panel leg 120. The middle-panel leg 118 is located below the middle panel 106 and supports the middle-panel section and the foot-panel section. The foot-panel leg 120 is located below the foot panel 104 and supports the foot-panel section. In the folded configuration, the folding apparatus 112 supports all the panel sections as they are arranged on top of one another and stowed in the sofa frame 102.
The folding apparatus 112 guides the movements of the head panel 108 and the middle panel 106 between their respective deployed and folded configuration. The folding apparatus 112 includes two linkage assemblies: a rearmost-linkage assembly 122 and a foremost-linkage assembly 124, which share a common mounting arm 126. Each mounting arm 126 is connected to a respective arm of the sofa frame 102 (see
Referring to
The foremost-linkage assembly 124 connects to the middle panel 106 and guides the movement of the middle panel 106 between its respective deployed and folded configurations. In the deployed configuration (
The torsional-hinge assemblies 110 (see
A connecting arm 128 pivotally connects between the rearmost-linkage assembly 122 and the foremost-linkage assembly 124 to coordinate the movements between the front and middle panels 104, 106 and the head panel 108. To this end, movements at the foot and middle panels 104, 106 are transferred to the head panel 108. A locking mechanism 130, also referred to as a locking linkage assembly 130, is connected between linkages of the rearmost-linkage assembly 122 for securing the head panel 108 in place in the deployed configuration. The locking linkage assembly may include at least two linkage members.
The folding apparatus 112 may include a bias member 136 operatively connected between the rearmost-linkage assembly 122 and the foremost-linkage assembly 124 to assist a person in the folding or deploying of the sofa bed 100. In an embodiment, after the initial lift, the force necessary to deploy or fold the sofa bed 100 is preferably less than ten pounds, even more preferably less than five pounds.
As indicated, the sofa bed 100 may be assembled with components organized in modules for improved manufacturability. Looking at
Moreover, in an embodiment, the foot-panel section, the middle-panel section, and the head-panel section may be separate and independent of one another and linked only through the folding apparatus 112 and the leg assembly 116. In the embodiment shown in
The modules may be designed such that they can be packaged as small shipping units. Referring to
Looking at
Looking at
Specifically, as the foot panel 104 is initially lifted in an upward motion (arrow 123), the middle panel 106 is also caused to be lifted by its connection to the foot panel 104 via the torsional-hinge assemblies 110 and the foot assembly 116. The torsional-hinge assemblies 110 and the leg assembly 116 are configured to preferably maintain the middle panel 106 coplanar and adjacent to the foot panel 104 during the initial lift. The middle panel 106, in turn, rotates the mid-panel connecting member 150 of the foremost-linkage assembly 124 at pivot point 150a (see dotted arrow at 150) causing the mid-panel connecting member 150 to pivot upward and towards the rear. This motion pushes, via the connecting arm 128, both (i) the locking mechanism 130 causing it to rotate from its locked position and (ii) the head-panel connecting member 132 to move linkages of the rearmost-linkage assembly 122. As the locking mechanism 130 is moved from its locked position, the forward portion 108b of the head panel 108 begins to move downward while the rear portion 108c moves upward (see dotted arrows near 108b, 108c). The bias member 136 may provide a force to assist in drawing the foremost-linkage assembly 124 and the rearmost-linkage assembly 122 together, thereby reducing the lifting force 123 necessary to lift the foot panel 104. To this end, the conversion of the sofa bed from the deployed configuration to the folded configuration can be easily performed by most adults.
Looking at
Looking at
At this position, it is observed that the rearmost-linkage assembly 122 is elongating vertically and narrowing horizontally resulting in the rear portion of the head panel 108c shifting upward and rearward (see dotted arrows near 108). The folding of the middle panel 106 and the foot panel 104 causes the leg assembly 116 to fold the middle-panel leg 118 and a foot-panel leg 120. The leg assembly 116 is configured to fold the foot-panel leg 120 earlier than middle-panel leg 118 to avoid the foot-panel leg 120 being caught against middle panel 106.
Looking at
Looking at
Referring to
The locking mechanism 130 includes a means for constraining the pivoting of the locking mechanism no further than the locked position. To this end, the locking mechanism 130 includes a cam 141 that pivotally rotates to a stop surface 142, preferably disposed on the mid-swinging member 134, to maintain the locking mechanism 130 at the locked position. The movement of the head panel 108 into a generally horizontal orientation causes the locking mechanism 130 to lock the head panel 180 to the generally horizontal orientation. In an embodiment, the stop surface 142 is a pin extending from the side wall preferably at the middle section of the mid-swinging member 134. The cam 141 may be alternatively shaped as a pin. When in the locked position, the locking mechanism 130 fixably maintains the head panel 108 in a generally horizontal orientation and is free to pivotally rotate only to the unlocked position. Specifically, the rotation of the head panel 108 toward the deployed configuration orients the head-panel connecting member 132 and the connecting arm 128 in a manner to rotate the components of the locking mechanism 130 so that the cam 141 pivotally rotates to the stop surface 142. The locked position forms an angle measuring preferably between 30 and 70 degrees, even more preferably between 40 and 50 degrees, with the horizontal plane. It should be appreciated by those skilled in the art that the location of the stop surface 142 is merely illustrative as other locations along the mid-swinging member 134 or the mounting arm 126 may be employed.
The first locking member 138 preferably includes a longitudinal-member portion 145 with a side-member portion 146 to connect to the connecting arm 128. The side-member portion 146 may be referred to as an “elbow region.” The first locking member 138 connects to the head-panel connecting member 132 at hinge 138a and to the connecting arm 128 at a sliding hinge 128a (discussed in more detail below). The second locking member 140 connects to the first locking member 138 at hinge 140a and to the mid-swinging member 134 at hinge 140b.
When the sofa bed 100 is deployed, the locking mechanism 130 acts as a rigid structure, between the head-panel connecting member 132 at hinge 138a and the mid-swinging member 134 at hinge 140b, to maintain the head panel 108 in a fixed generally horizontal orientation. To this end, the connecting arm 128 and the stop surface 142 maintains the orientation of the locking mechanism 130, with respect to pivot point 138a, allowing for weight to be applied onto the head panel 108 without releasing the locking mechanism 130. Specifically, when weight is applied to the head panel 108, it forces the cam 141 against the stop surface 142 and thus precludes the mid-swinging member 134 from closing the angle 131 formed between the mid-swinging member 134 and a horizontal plane. Moreover, a rotation by the connecting arm 128 releases the locking mechanism 130 from the locked position allowing for the sofa bed 100 and the rearmost-linkage assembly 122 to fold.
It should be appreciated by those skilled in the art that the shapes and dimension of the locking members 138, 140 are merely illustrative. To that end, the first locking member 138 may be configured with other shapes, such a T-shape, D-shape, Y-shape, among others.
Referring now to
Looking at
The head panel 108 is preferably connected to the head-panel connecting member 132. To this end, the head-panel connecting member 132 may be assembled to the other linkage members to form the four-bar linkage independent of the head panel 108 and the mattress portion 114c, both of which can later be assembled to the apparatus 112. Of course, it should be appreciated that the head panel 108 may alternatively be configured with the mounting points of the head-panel connecting member 132 as a head panel sub-assembly, which may then be connected to the mid-swinging member 134, the rear-swinging member 144, and the connecting arm 128.
Still looking at
Referring to
During the folding of the apparatus 112, the movement by the connecting arm 128 causes the sliding hinge 128a to shift slightly in a generally horizontal direction, and then to rotate the first locking member 138 and unlock the locking mechanism 130 from the stop surface 142. To this end, the movement of the connecting arm 128 may be initiated by movement of the middle panel 106 (and accordingly by movement of the foot panel 104). The rotation of the middle panel then causes the foremost-linkage assembly 124 to rotate.
Continuing to refer to
In
Looking at
Looking at
The connecting arm 128 pivotally connects between the foremost-linkage assembly 124 and the rearmost-linkage assembly 122 to coordinate the unfolding and folding of both linkage assemblies 122, 124. Specifically, the rearmost portion of the mid-panel connecting member 150 pivotally connects to the forward-most portion of the stationary mounting arm 126 at the pivot point 150a; the middle portion of the mid-panel connecting member 150 pivotally connects to the top portion of the drawing member 152 at hinge 152a; and the foremost portion of the mid-panel connecting member 150 pivotally connects to the foremost portion of the connecting arm 128 at hinge 128b. The drawing member 152 connects at its top portion to the mid-panel connecting member 150 at hinge 152a and at its lower portion to the crank member 154 at hinge 154a. The crank member 154 pivotally connects to a first region of the mounting arm 126 at hinge 154b. The crank member 154 additionally connects to a second region of the mounting arm 126 at anchor point 155 via the bias member 136. The bias member 136 is preferably an extension spring. Of course, multiple extension springs may operate as a group to compose the bias member 136. The crank member 154 preferably includes a pivotally mounted extending member 156 to connect to the bias member 136, which is secured to a pin 136a extending from the extending member 156. The bias member 136 then connects at an anchor point 155 at the rear portion of the mounting arm 126. The extending member 156 pivotally connects to the crank member 154 at hinge 156a and is constrained in rotation by slot 156b.
During folding, as the mid-panel connecting member 150 rotates at the hinge 150a, the pivot point at hinge 152a is initially displaced up, during the initial lift of the middle panel 106, and then is displaced downward and backward toward the rearmost-linkage assembly 122 (see dotted arrows at 152a), shifting with it the drawing member 152 and the crank member 154. The crank member 154 pivots at hinge 154b to displace the hinge 154a backward (see dotted arrow at 154a), and the pivot point at hinge 156a downward (see dotted arrow at 156a). Concurrent with the rotation of the mid-panel connecting member 150, the rear-swinging member 144 is configured to pivotally rotate upward and rearward (see dotted arrow at 144) with the back section of the head-panel connecting member 132. The mid-swinging member 134 pivotally rotates with respect to the stationary mounting arm 126 also rearward (see dotted arrow at 134).
Looking at
Still looking at
In another aspect of the embodiment of the invention, the folded portions of the sofa bed are configured in a manner that the overall height of the sofa bed 100 can be made within a comfortable range for the average person comparable that of a conventional sofa while also having cushions with comfortable thicknesses. This compactness of the sofa bed 100 may be achieved by (i) substantially reducing the distance between the middle and foot panels 104, 106 and (ii) reducing the distance between the stowed middle-panel section and the floor. In doing so, the height of the non-mattress portions of the sofa bed measures preferably less than three inches, even more preferably at about 2 inches (±0.5 inch).
In one aspect of reducing the height of the non-mattress portions, the apparatus 112 is configured such that components that operate in proximity to the floor are compact. Looking at
In the folded configuration (
In another aspect of reducing the height of the non-mattress portions, the sofa bed 100 is configured such that the distance between the stowed middle and foot panels 104, 106 measures preferably between about 2.25 and 3 inches (±0.025 inch) in which the panels 104, 106 are each approximately ¾ inch in thickness. Looking at
Looking at
Specifically, the middle-panel-leg sub-assembly 168 is preferably a four-bar linkage comprising a middle-panel mounting-member 176, a foot-panel mounting-member 178, a cross-bar 180, and the middle-panel leg 118. The foot-panel mounting-member 178 and the middle-panel mounting-member 176 compose the first connecting member 119. The middle-panel mounting-member 176 and the foot-panel mounting-member 178 are L-shaped brackets for mounting to the foot panel 104 and the middle panel 106, respectively. Each of the mounting members 176, 178 has preferably at least two mounting holes. The middle-panel mounting-member 176 is pivotally connected to the foot-panel mounting-member 178 at hinge 176a. The middle-panel leg 118 preferably includes a mounting frame 182 to connect to the cross-bar 180 and the middle-panel mounting-member 176. The cross-bar 180 provides provide lateral stability to the middle-panel leg 118. The mounting frame 182 pivotally connects to the middle-panel mounting-member 176 at hinge 182a and to the cross-bar 180 at hinge 180a. The cross-bar 180 pivotally connects to the foot-panel mounting-member 178 at hinge 180b. The leg-connecting arm 174 pivotally connects to the middle-panel mounting-member 176 at hinge 174a.
The foot-panel-leg sub-assembly 170 is preferably a four-bar linkage comprising the foot-panel leg 120, the second connecting member 121, a leg crank-member 184, and a leg connecting member 186. The second connecting member 121 is an L-shaped bracket with two angled portions to connect to the leg-connecting arm 174 (see
As the sofa bed 100 folds and the leg assembly 116 begins retracting the legs 118, 120. The timing of the folding of each of the legs 118, 120 has to be adjusted so that the foot-panel leg 120 does not jam against the middle panel 106. In one embodiment, the foot-panel leg 120 folds faster than the middle-panel leg 118. In another embodiment, the middle-panel leg 118 folds faster than the foot-panel leg 120.
Referring to
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.
This patent application claims priority from Provisional Application No. 61/712,755, filed Oct. 11, 2012, titled “Articulated Sofa Bed With Improved Locking Mechanism.” This application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61712755 | Oct 2012 | US |