The present disclosure relates generally to the field of articulated tug barges. More specifically the present disclosure relates to a trailing suction hopper dredge configured as an articulated tug barge, and a system for coupling a tug and a barge of an articulated tug barge.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, in which:
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
Referring to
According to an exemplary embodiment, the articulated tug barge 110 is designed to be used for the dredging and transportation of dredged material; much like a self-propeller trailing suction hopper dredge. In other embodiments, an articulated tug barge may be used for other purposes, such as the transportation of oil.
When connected to one another, the tug 112 and the barge 114 are not fixed together with respect to all degrees of freedom. Referring specifically to
Referring to
Some advantages associated with the articulated tug barge 210 (in particular embodiments) as opposed to a traditional, hopper dredge ship, are as follows. In the embodiments described herein, the articulated tug barge 210 may be constructed in separate pieces: the tug 212 and the barge 216. For regulatory purposes, in terms of rules for construction, required equipment, etc., the tug 212 may be manufactured according to rules for vessels under a particular length, such as 90 meters, and the barge 216 may be manufactured according to barge rules. Simplified regulations associated with smaller vessels and barges may result in reduced construction costs.
Construction of a traditional hopper dredge ship may be limited to only a few shipyards in the U.S. that have the interest or capability to build such a commercial ship. Furthermore, high outfitting and machinery requirements associated with the traditional hopper dredge ships may be difficult for such ship yards. By contrast, the tug 212 according to the various embodiments described herein may be built in a ship yard specializing in tugs, and the barge 216 may be built in a ship yard specializing in barges. Furthermore, because the tug 212 and barge 216 may be constructed in separate ship yards, construction may be done in parallel, potentially reducing the time-to-market and resulting in construction period financing benefits.
Manning requirements of the tug 212 may include nine personnel in some embodiments, and licensing requirements may be less onerous in many respects than the licensing requirements of a ship. Legal manning requirements for the barge 216 may be zero, because the barge 216 may be considered “unmanned.” As such, the owner of the articulated tug barge 210 may be free to determine the actual manning of the barge 216. In sum, the combined manning requirements of the articulated tug barge 210 may be about eleven to fourteen personnel, while the manning requirements of a similarly sized ship may be about eighteen to twenty-two personnel.
Additionally, it should be noted that the cargo capacity of a traditional hopper dredge ship is based on the displacement of the ship as well as the lightship weight, which includes propulsion engines, generators, accommodations structures, fuel, and other ship installations. The lightship weight deducts from the cargo-carrying capacity of the ship. However, the articulated tug barge 210 according to various embodiments includes in the tug 212 at least some of the features associated with the lightship weight. Accordingly, the weight of those features does not deduct from the cargo capacity of the barge 216. The draft 212 of the tug remains constant as the draft of the barge 216 increases due to increased load.
Still further, insurance premiums may be reduced for the articulated tug barge 210 according to various embodiments relative to a traditional hopper dredge ship. In some cases, the insurance premiums may be reduced because the chance of losing both the tug 212 and barge 216 may be less than the chance of losing a single ship.
According to an exemplary embodiment, the coupling system 218 is configured to rigidly connect the tug 212 and the barge 216 in at least some degrees of freedom (directions of translation and rotation) but not other degrees of freedom. According to an exemplary embodiment, the coupling system 218 is configured to rigidly connect the tug 212 and the barge 216 with respect to heave, surge, sway, roll, and yaw of the tug 212 relative to the barge 216, while allowing relative motion between the tug 212 and the barge 216 with respect to pitch rotation, which may improve propulsion performance and efficiency of the tug 212.
According to an exemplary embodiment, the coupling system 218 is further configured to allow the draft of the tug 212 and the draft of the barge 216 to change relative to each other while the articulated tug barge 210 is operating in a seaway (i.e., in sea conditions). In various embodiments, the coupling system 218 is configured to allow for controlled adjustment in the vertical direction of the connection, while allowing for continuous freedom of pitch of the tug and maintaining interconnection between the tug 212 and the barge 216 with respect to some or all of the surge, sway, yaw, and roll degrees of freedom.
Accordingly, in various embodiments the coupling system 218: (1) interconnects the tug 212 and the barge 216 with respect to some or all translational degrees of freedom (e.g., limits surge and sway of the tug 212, but may allow heave) and some or all rotational degrees of freedom (e.g., limits yaw and roll, but not pitch); (2) allows for draft adjustments of the tug 212 while operating in a seaway because interconnection between the tug 212 and the barge 216 is maintained with respect to two of the translational and two of the rotational degrees of freedom; (3) allows the tug 212 to pitch relative to the barge 216; and (4) allows the tug 212 to fully disconnect from the barge 216 such that the tug 212 may be used to perform duties in addition to moving the barge 216, such as towing ships or other barges.
Referring to
According to an exemplary embodiment, the rack pin 314 is integrated with the pressing shoe 312. In various embodiments, the rack pin 314 is configured to move relative to the pressing shoe 312, such as through an aperture 322 (
Referring to
Referring to
In various embodiments, substantially identical copies of the first part 310 of the coupling system 218 are attached to port and starboard sides of the bow of the tug 112, and copies of the second part 326 of the coupling system are correspondingly attached to opposing sides of the interior of a notch in the periphery of the barge 114 (see, e.g., the bow 116 of the tug 112 and the notch 118 of the barge 114 as shown in
Referring now to
Referring specifically to
Referring specifically to
In various embodiments, the tug and barge draft sensors 416, 418, 420, 422 provide draft information to the computerized controller 424, which may include or may be used to determine a variation between drafts of the barge 414 and the tug 412 on port and starboard sides. The computerized controller 424 then determines whether the variation warrants an adjustment of the coupling system (e.g., vertical adjustment). In various embodiments, a variation of at least a threshold distance (e.g., six inches, a foot, etc.) initiates automated adjustment of the coupling system.
According to an exemplary embodiment and as shown in part in
Once the drafts of the tug 412 and barge 414 have adjusted (e.g., both within six inches of free float draft in one embodiment; within six inches of one another in another embodiment), the computerized controller 424 increases pressure between the pressing shoe 430, 432 and the channel 436. In various embodiments, the computerized controller 424 uses proximity sensors 440, 442 (also shown in
The construction and arrangements of the articulated tug barge, coupling system, and adjustment system, as shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.
The present application claims priority to U.S. Provisional Patent Application No. 61/515,699, filed Aug. 5, 2011, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3919790 | Sasaki et al. | Nov 1975 | A |
4805548 | Yamaguchi | Feb 1989 | A |
4872118 | Naidenov et al. | Oct 1989 | A |
5050522 | Yamaguchi et al. | Sep 1991 | A |
6612253 | Kuhlman | Sep 2003 | B1 |
6836746 | Coder et al. | Dec 2004 | B2 |
7270070 | Kuhlman et al. | Sep 2007 | B1 |
20110061581 | Sadakuni | Mar 2011 | A1 |
20110120363 | Yamaguchi et al. | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130032073 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61515699 | Aug 2011 | US |