The present disclosure relates to ablation devices and methods. More particularly, the disclosure relates to antennas that are insertable into tissue and capable of being articulated and that are useful for laparoscopic and endoscopic procedures.
In the treatment of diseases, such as cancer, certain types of cancer cells have been found to denature at elevated temperatures that are slightly lower than temperatures normally injurious to healthy cells. These types of treatments, known generally as hyperthermia therapy, typically utilize electromagnetic radiation to heat diseased cells to temperatures above 41° C. while maintaining adjacent healthy cells at lower temperatures where irreversible cell destruction will not occur. Other procedures utilizing electromagnetic radiation to heat tissue also include ablation and coagulation of the tissue. Such microwave ablation procedures, e.g., such as those performed for menorrhagia, are typically done to ablate and coagulate the targeted tissue to denature or kill it. Many procedures and types of devices utilizing electromagnetic radiation therapy are known in the art. Such microwave therapy is typically used in the treatment of tissue and organs such as the prostate, heart, and liver.
One non-invasive procedure generally involves the treatment of tissue (e.g., a tumor) underlying the skin via the use of microwave energy. The microwave energy is able to non-invasively penetrate the skin to reach the underlying tissue. However, this non-invasive procedure may result in the unwanted heating of healthy tissue. Thus, the non-invasive use of microwave energy requires a great amount of control. This is partly why a more direct and precise method of applying microwave radiation has been sought.
Presently, there are several types of microwave probes in use, e.g., monopole, dipole, and helical. One type is a monopole antenna probe consisting of a single, elongated microwave conductor exposed at the end of the probe. The probe is sometimes surrounded by a dielectric sleeve. The second type of microwave probe commonly used is a dipole antenna consisting of a coaxial construction having an inner conductor and an outer conductor with a dielectric separating a portion of the inner conductor and a portion of the outer conductor. In the monopole and dipole antenna probe, microwave energy generally radiates perpendicularly from the axis of the conductor.
Because of the perpendicular pattern of energy radiation, conventional antenna probes are typically designed to be inserted directly into the tissue, e.g., a tumor, to be radiated. However, such typical antenna probes commonly fail to provide uniform heating axially and/or radially about the effective length of the probe.
It is often difficult to assess the extent to which the energy will radiate into the surrounding tissue, i.e., it is difficult to determine the area or volume of surrounding tissue that will be ablated. Furthermore, when conventional antennas are inserted directly into the tissue, e.g., cancerous tissue, there is a danger of dragging or pulling cancerous cells along the antenna body into other parts of the body during insertion, placement, or removal of the antenna probe.
One conventional method for inserting and/or localizing wires or guides includes a wire guide that is delivered into breast tissue, for example, through a tubular introducer needle. When deployed, the wire guide cuts into and scribes a helical path about the tissue distal to a lesion while the remainder of the distal portion of the wire guide follows the path scribed by the distal tip and locks about the tissue.
The present disclosure relates to an ablation device including a handle portion, a shaft and at least one cable. The shaft extends distally from the handle portion and includes an inner conductor and an outer conductor that substantially surrounds at least a portion of the inner conductor. The cable extends from the handle portion along at least a portion of the shaft. The distal tip of the inner conductor is positionable distally beyond a distal-most end of the outer conductor. In response to movement of the at least one cable relative to the handle portion, the distal tip of the outer conductor is movable form a first position where the distal tip is substantially aligned with a longitudinal axis defined by the outer conductor to at least a second position where the distal tip is disposed at an angle relative to the longitudinal axis.
The present disclosure also relates to a method of treating tissue. The method includes providing an ablation device. The ablation device includes an antenna and at least one cable. A proximal portion of the antenna defines a longitudinal axis. The at least one cable extends along a portion of the antenna. The method also includes moving the at least one cable such that a distal tip of the antenna moves from a first position where the distal tip is substantially aligned with the longitudinal axis to at least a second position where the distal tip is disposed at an angle to the longitudinal axis.
The present disclosure also relates to an ablation system for ablating tissue. The ablation system includes an ablation device including a handle portion defining a longitudinal axis and an antenna extending distally from the handle portion. An intermediate portion of the antenna is movable from a first position where a distal tip of the antenna is substantially aligned with the longitudinal axis to at least a second position where the distal tip of the antenna is disposed at an angle to the longitudinal axis.
The present disclosure also relates to an energy applicator including a handle portion, a shaft, an electrode, and at least one cable. The shaft extends distally from the handle portion and defines a longitudinal axis. The electrode is disposed in electro-mechanical cooperation with the handle portion and is translatable with respect to the shaft. The at least one cable extends between the handle portion and the electrode. At least a portion of the electrode is positionable distally beyond a distal-most end of the shaft. In response to movement of the at least one cable relative to the handle portion, a portion of the electrode is movable from a first position where the electrode is substantially aligned with the longitudinal axis to at least a second position where at least a portion of the electrode is disposed at an angle relative to the longitudinal axis.
Embodiments of the presently disclosed ablation devices are disclosed herein with reference to the drawings, wherein:
Embodiments of the presently disclosed ablation devices are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the ablation device, or component thereof, farther from the user while the term “proximal” refers to that portion of the ablation device or component thereof, closer to the user.
An energy applicator or ablation device (e.g., a microwave ablation device) in accordance with the present disclosure is referred to in the figures as reference numeral 10. While a microwave ablation device is described herein, it is contemplated that the present disclosure may also be used in connection with other types of ablation devices such as radiofrequency (RF), laser, ultrasound, cryotherapy, etc. Such ablation devices may include an antenna and/or an electrode.
Referring initially to
As seen in
With reference to
As seen in
As seen in
At least a portion of cables 30a, 30b are made of a suitable flexible and/or non-extendable/compressible material, allowing shaft 14 to be articulated along a curvilinear path and/or to be introduced through a scope (e.g., bronchoscope, colonoscope, etc.). Each cable 30a, 30b is made of a suitable non-conductive material. While a pair of cables 30a, 30b is shown in various figures herein, microwave ablation device 10 may include a single cable 30 for articulating shaft 14 in a single direction. Alternatively, microwave ablation device 10 may include more than two cables (e.g., four cables) for articulating shaft 14.
As seen in
Referring back to
In a disclosed embodiment, the connection between actuation element 7 and inner conductor 16 also enables rotation of shaft 14 (as indicated by arrow “C” of
In accordance with an embodiment of the present disclosure, the connection between rotation knob 9 and shaft 14 allows shaft 14 to be rotated substantially about longitudinal axis A-A. Additionally, and with reference to
As can be appreciated, the combination of the rotational and the articulation capabilities of device 10 allows shaft 14 and distal tip 17 of inner conductor 16 to be positioned at a multitude of positions adjacent and/or at least partially surrounding a desired tissue region. Accordingly, microwave ablation device 10 provides a great deal of versatility during laparoscopic, endoscopic, endoluminal, and transluminal procedures. As mentioned previously, device 10 may be capable of delivering any suitable energy, such as radiofrequency (RF), microwave (MW), laser, ultrasound and cryotherapy energy. In some embodiments, the ablative properties of device 10 may be enhanced by delivery of fluids (e.g., alcohol or chemotherapeutic agents, etc.) to the treatment site.
Microwave ablation device 10 may be introduced to the treatment site via a straight, arcuate, non-deployable and/or deployable applicator and/or introducer.
Conductors 16 and 24 may be made of a suitable conductive metal that may be semi-rigid or flexible, such as, for example, copper, gold, or other conductive metals with similar conductivity values. Alternatively, portions of conductors 16 and 24 may also be made from stainless steel, which may additionally be plated with other materials, e.g., other conductive materials, to improve their properties, e.g., to improve conductivity or decrease energy loss, etc.
For example, an inner conductor 16 made of stainless steel may have an impedance of about 50Ω. In order to improve a conductivity of stainless steel inner conductor 16, inner conductor 16 may be coated with a layer of a conductive material such as copper or gold. Although stainless steel may not offer the same conductivity as other metals, it does offer increased strength that is helpful to puncture tissue and/or skin 112 (
Dielectric material 23, interposed between inner and outer conductors 16, 24, respectively, provides insulation therebetween and may be comprised of any suitable variety of conventional dielectric and/or insulative material.
A method of treating tissue, using ablation device 10, is also included by the present disclosure. The method may include at least providing ablation device 10, such as described above, and moving at least one of cables 30a, 30b such that distal portion 28 of shaft 14 is substantially aligned with longitudinal axis A-A, to at least a second position where distal portion 28 of shaft 14 is disposed at an angle relative to longitudinal axis A-A.
An ablation system for ablating tissue is also included by the present disclosure. The ablation system includes an ablation device 10, such as described above, where an intermediate portion of antenna 12 (or other suitable energy applicator, such as an electrode) is movable from a first position where the distal tip of antenna 12 is substantially aligned with the longitudinal axis to at least a second position where the distal tip of antenna 12 is disposed at an angle to the longitudinal axis.
Various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a continuation application of U.S. patent application Ser. No. 14/688,349 filed Apr. 16, 2015, which is a continuation application of U.S. patent application Ser. No. 13/740,754 filed Jan. 14, 2013, now U.S. Pat. No. 9,023,026, which is a continuation application of U.S. patent application Ser. No. 12/353,623, filed Jan. 14, 2009, now U.S. Pat. No. 8,353,902, which claims priority to U.S. Provisional Application No. 61/025,206 filed Jan. 31, 2008, the entire contents of each of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61025206 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14688349 | Apr 2015 | US |
Child | 15935232 | US | |
Parent | 13740754 | Jan 2013 | US |
Child | 14688349 | US | |
Parent | 12353623 | Jan 2009 | US |
Child | 13740754 | US |