Articulating apparatus for endoscopic procedures

Information

  • Patent Grant
  • 10188387
  • Patent Number
    10,188,387
  • Date Filed
    Tuesday, May 31, 2016
    8 years ago
  • Date Issued
    Tuesday, January 29, 2019
    5 years ago
Abstract
According to an aspect of the present disclosure, an endoscopic surgical device is provided. The surgical device includes a handle assembly including a drive mechanism actuatable by a trigger; and an endoscopic assembly including a proximal end portion extending from the handle assembly; a distal end portion pivotably connected to the proximal end portion of the endoscopic assembly; and a rotatable inner actuation shaft extending from the handle assembly and into the distal end portion of the endoscopic assembly, the inner actuation shaft including a flexible portion extending across the pivot connection. The surgical device includes an end effector selectively connectable to the distal end portion of the endoscopic assembly and to a distal portion of the rotatable inner actuation shaft. The end effector includes a splined inner tube rotatably supported in an outer tube; and a plurality of surgical anchors loaded in the inner tube of the end effector.
Description
TECHNICAL FIELD

The present disclosure relates to surgical apparatus, devices and/or systems for performing endoscopic surgical procedures and methods of use thereof. More specifically, the present disclosure relates to surgical apparatus, devices and/or systems for performing endoscopic surgical procedures which includes an articulating endoscopic portion.


BACKGROUND

During laparoscopic or endoscopic surgical procedures, access to a surgical site is achieved through a small incision or through a narrow cannula inserted through a small entrance wound in a patient. Because of limited area to access the surgical site, many endoscopic surgical devices include mechanisms for articulating the tool assembly of the device. Typically, the articulating mechanism is controlled by an actuator which has to be manipulated by a surgeon to properly orient the tool assembly in relation to tissue to be treated.


Accordingly, a need exists for endoscopic surgical devices which include features which indicate to the surgeon whether the endoscopic portion of the surgical device, when in the surgical site, is in a non-articulated or articulated orientation.


SUMMARY

The present disclosure relates to surgical apparatus, devices and/or systems for performing endoscopic surgical procedures which includes an articulating endoscopic portion.


According to an aspect of the present disclosure, an endoscopic surgical device is provided. The surgical device includes a handle assembly including a handle housing and a trigger operatively connected to the handle housing, and a drive mechanism actuatable by the trigger; and an endoscopic assembly including a proximal end portion extending from the handle assembly; a distal end portion pivotably connected to the proximal end portion of the endoscopic assembly at a pivot point; and a rotatable inner actuation shaft extending from the handle assembly and into the distal end portion of the endoscopic assembly, the inner actuation shaft including a flexible portion extending across the pivot point, the inner actuation shaft being connected to the drive mechanism of the handle assembly such that an actuation of the trigger results in a rotation of the inner actuation shaft.


The surgical device further includes an end effector selectively connectable to the distal end portion of the endoscopic assembly and to a distal portion of the rotatable inner actuation shaft. The end effector includes an outer tube having a helical thread along an inner surface thereof; a splined inner tube rotatably supported in the outer tube, wherein the splined inner tube is defined by a pair of opposed longitudinally extending tines and a pair of opposed longitudinally extending channels, a proximal end of the splined inner tube being configured for non-rotatable selective connection to a distal end of the rotatable inner actuation shaft when the end effector is connected to the distal end portion of the endoscopic assembly; and a plurality of surgical anchors loaded in the inner tube of the end effector, wherein each anchor includes a threaded body portion, and a head portion defining a pair of opposed radially outer threads and a pair of opposed radial recesses, wherein the pair of radial recess of each head portion receive respective tines of the inner tube and wherein the pair of opposed radially outer threads of each head portion project from the pair of opposed longitudinally extending channels of the inner tube and engage the inner helical thread of the outer tube.


The endoscopic assembly may include a support tube assembly having a proximal support tube portion extending from the handle assembly, and a distal support tube portion pivotally connected to proximal support tube portion thereby defining an articulation joint therebetween.


The endoscopic assembly may include an articulation tube slidably supported in the support tube assembly, a proximal end of the articulation tube being connected to an articulation actuator supported on the handle assembly, and a distal end of the articulation tube being pivotably connected to an articulation link that is also pivotably connected to the distal support tube portion of the support tube assembly.


The inner actuation shaft may be is rotatably supported in the articulation tube. The inner actuation shaft may include a proximal shaft portion operatively connected to the drive mechanism, a distal shaft portion non-rotatably connected to a distal end of the proximal shaft portion, and a coupling member non-rotatably connected to a distal end of the distal shaft portion.


The distal shaft portion of the inner actuation shaft may be the flexible portion.


The flexible portion of the inner actuation shaft may be relatively more flexible than the proximal shaft portion of the inner actuation shaft.


In use, an actuation of the trigger may result in a rotation of the inner actuation shaft of the endoscopic assembly.


The drive mechanism may transmit the actuation of the trigger into rotation of the inner actuation shaft of the endoscopic assembly.


The endoscopic assembly may include an inner articulation tube assembly having the articulation tube defining a proximal end and a distal end, the proximal end of the articulation tube being operatively connected to the articulation actuator. The articulation link may have a proximal end pivotally connected to the distal end of the articulation tube.


The handle assembly may include an articulation knob rotatably supported thereon. The articulation knob may be the articulation actuator. The articulation knob may define an inner helical thread, the proximal end of the articulation tube may be operatively connected to the articulation tube such that rotation of the articulation knob causes the articulation tube to axially translate.


In use, axial translation of the articulation tube may cause the distal support tube portion of the support tube assembly to pivot about the pivot point.


The endoscopic assembly may include a connection nut fixedly secured to the proximal end of the articulation tube. The connection nut may define an outer helical thread and may meshingly engage the inner helical thread of the articulation knob.


The endoscopic assembly may support a ball detent in the distal support tube portion of the support tube assembly. The ball detent may have a projected position wherein the ball detent partially projects radially outward from the distal support tube portion of the support tube assembly. The ball detent may have a retracted position wherein the ball detent does not project radially outward from the distal support tube portion of the support tube assembly as far as when in the projected position.


The ball detent may ride along an outer surface of the coupling member of the inner actuation shaft of the endoscopic assembly.


The inner actuation shaft may be axially translatable between a proximal position wherein the ball detent is in the retracted position and a distal position wherein the coupling member of the inner actuation shaft holds the ball detent in the projected position.


In use, when the end effector is connected to the distal end portion of the endoscopic assembly, and when the ball detent is in the projected position, the ball detent may engage a recess in the end effector to secure the end effector to the distal end portion of the endoscopic assembly.


The inner actuation shaft may be axially translatable within the articulation tube.


A proximal end of the proximal shaft portion of the inner actuation shaft may support a pair of axially spaced apart radial flanges.


The handle assembly may include a slider supported thereon. A stem of the slider may extend between the pair of axially spaced apart radial flanges supported on the inner actuation shaft.


The slider may be movable between a proximal position and a distal position. In use, movement of the slider between the proximal position and the distal position may result in movement of the inner actuation shaft between a respective proximal position and a distal position.


The slider may be in the proximal position, the end effector is connectable to the to the distal end portion of the endoscopic assembly. In use, when the slider is in the distal position, the end effector may be secured to the to the distal end portion of the endoscopic assembly.


The endoscopic assembly may support a ball detent in the distal support tube portion of the support tube assembly. The ball detent may have a projected position wherein the ball detent partially projects radially outward from the distal support tube portion of the support tube assembly. The ball detent may have a retracted position wherein the ball detent does not project radially outward from the distal support tube portion of the support tube assembly as far as when in the projected position.


The ball detent may ride along an outer surface of the coupling member of the inner actuation shaft of the endoscopic assembly.


The ball detent may be in the retracted position when the inner actuation shaft is in the proximal position. The ball detent may be in the projected position when the inner actuation shaft is in the distal position.


In use, when the end effector is connected to the distal end portion of the endoscopic assembly, and when the ball detent is in the projected position, the ball detent may engage a recess in the end effector to secure the end effector to the distal end portion of the endoscopic assembly.


The handle assembly may include a button supported thereon. The button may include a first position wherein the button blocks movement of the slider, and a second position wherein the button permits movement of the slider.


The button may include a wall extending therefrom. In use, when the button is in the first position, the trigger may be actuatable and the slider may be blocked from moving to the proximal position; and when the button is in the second position, the wall of the button may block the actuation of the trigger and the slider may be free to move to the proximal position.


The handle assembly may include a biasing member tending to maintain the button in one of the first portion and the second position thereon.


The button may include a wall extending therefrom. In use, when the button is in the first position, the trigger is actuatable; and when the button is in the second position, the wall of the button blocks actuation of the trigger.


The distal end portion of the endoscopic assembly may be pivotable when the button is in the second position.


The coupling member of the inner actuation shaft may have a non-circular transverse cross-sectional profile, and wherein the proximal end of the splined inner tube of the end effector may have a splined inner tube rotatably supported in the outer tube. The splined inner tube may be defined by a pair of opposed longitudinally extending tines and a pair of opposed longitudinally extending channels. A proximal end of the splined inner tube may have a transverse cross-sectional profile that complements the non-circular transverse cross-sectional profile of the coupling member.


The handle assembly may include an audible/tactile feedback system associated with the trigger. The audible/tactile feedback system may produce at least one of an audible feedback and a tactile feedback when the trigger is in one of a locked out position for loading and unloading an end effector to the endoscopic assembly, when the trigger has been fully actuated, and when the trigger returns to a home position.


The distal end portion of the endoscopic assembly may be articulatable between a non-articulated orientation and a plurality of articulated orientations relative to the proximal end portion thereof.


According to another aspect of the present disclosure, an end effector for selective connection to a rotatable drive shaft of a surgical handle assembly is provided. The end effector includes an outer tube having a helical thread along an inner surface thereof a splined inner tube rotatably supported in the outer tube, wherein the splined inner tube is defined by a pair of opposed longitudinally extending tines and a pair of opposed longitudinally extending channels, a proximal end of the splined inner tube being configured for non-rotatable selective connection to a distal end of the rotatable drive shaft of the surgical handle assembly when the end effector is connected thereto; and a plurality of surgical anchors loaded in the inner tube.


Each anchor includes a threaded body portion; and a head portion defining a pair of opposed radially outer threads and a pair of opposed radial recesses, wherein the pair of radial recess of each head portion receive respective tines of the inner tube and wherein the pair of opposed radially outer threads of each head portion project from the pair of opposed longitudinally extending channels of the inner tube and engage the inner helical thread of the outer tube.


The proximal end of the inner tube may have a non-circular transverse cross-sectional profile.


The helical thread of the outer tube may be defined by a helical coil.


The inner tube may be fixed against longitudinal displacement relative to the outer tube.


Each surgical anchor may be formed from a bioabsorbable material.


According to still a further aspect of the present disclosure, an endoscopic surgical device configured to fire a surgical anchor into target tissue is provided. The surgical device includes a handle assembly including a handle housing; a trigger operatively connected to the handle housing, the trigger including at least a fully un-actuated position; a drive mechanism actuatable by the trigger; and a timing system associating the trigger with the drive mechanism.


The surgical device further includes an endoscopic assembly including a proximal end portion extending from the handle assembly; a distal end portion configured to support an end effector; and a rotatable inner actuation shaft extending from the handle assembly and into the distal end portion of the endoscopic assembly, the inner actuation shaft being connected to the drive mechanism of the handle assembly such that an actuation of the trigger results in a rotation of the inner actuation shaft to fire a surgical anchor of the surgical device.


In use, the timing system maintains a timing of an actuation stroke of the trigger with an actuation of the drive mechanism to fire a single surgical anchor upon a single stroke of the trigger from the fully un-actuated position, to a fully actuated position, to the fully un-actuated position.


The timing system may include a raceway formed in a surface of the trigger, the raceway defining a plurality of steps along a length thereof; and a deflectable arm having a first end disposed within the raceway and operatively associated with the steps thereof, and a second end connected to the handle housing.


The distal end of the deflectable arm may ride through the raceway when the trigger is actuated. The distal end of the deflectable arm may ride through the raceway in a single direction during a complete stroke of the trigger.


The steps of the raceway may block movement of the distal end of the deflectable arm, in a reverse direction, through the raceway, when the trigger is partially actuated.


The raceway may define a home position for the distal end of the deflectable arm when the trigger is in the fully un-actuated position.


The handle assembly may include a button supported thereon. The button may include a first position wherein the button permits actuation of the trigger, and wherein the bottom may include a second position wherein the button blocks actuation of the trigger.


The button may include a wall extending therefrom. In use, when the button is in the second position the wall of the button may block actuation of the trigger.


The trigger may define a notch formed therein. In use, the wall of the button may enter the notch of the trigger when the trigger is in the fully un-actuated position and when the button is in the second position.


The timing system may include a raceway formed in a surface of the trigger, the raceway defining a plurality of steps along a length thereof; and a deflectable arm having a first end disposed within the raceway and operatively associated with the steps thereof, and a second end connected to the handle housing.


The distal end of the deflectable arm may ride through the raceway when the trigger is actuated.


The distal end of the deflectable arm may ride through the raceway in a single direction during a complete stroke of the trigger.


The steps of the raceway may block movement of the distal end of the deflectable arm, in a reverse direction, through the raceway, when the trigger is partially actuated and then un-actuated.


The raceway may define a home position for the distal end of the deflectable arm when the trigger is in the fully un-actuated position.


The endoscopic assembly may include a support tube assembly having a proximal support tube portion extending from the handle assembly, and a distal support tube portion configured to removably receive the end effector. The inner actuation shaft may be rotatably supported in the support tube, the inner actuation shaft including a proximal portion operatively connected to the drive mechanism, and a distal portion non-rotatably supporting a coupling member.


In use, an actuation of the trigger may result in an actuation of the drive mechanism to rotate the inner actuation shaft of the endoscopic assembly.


The endoscopic assembly may support a ball detent in the distal support tube portion of the support tube assembly. The ball detent may have a projected position wherein the ball detent partially projects radially outward from the distal support tube portion of the support tube assembly. The ball detent may have a retracted position wherein the ball detent does not project radially outward from the distal support tube portion of the support tube assembly as far as when in the projected position.


The ball detent may ride along an outer surface of the coupling member of the inner actuation shaft of the endoscopic assembly.


The inner actuation shaft may be axially translatable between a proximal position wherein the ball detent is in the retracted position and a distal position wherein the coupling member of the inner actuation shaft holds the ball detent in the projected position.


In use, the inner actuation shaft may be axially translatable only when the trigger is in the fully un-actuated position.


In use, when the end effector is connected to the distal end portion of the endoscopic assembly, and when the ball detent is in the projected position, the ball detent may engage a recess in the end effector to secure the end effector to the distal end portion of the endoscopic assembly.


According to yet another aspect of the present disclosure, an endoscopic surgical device includes an elongate body portion and an end effector releasably supported adjacent a distal end of the elongate body portion.


The elongate body portion includes an outer tube and an inner actuation shaft. The inner actuation shaft is movably positioned within the outer tube and repositionable between a retracted position and an advanced position. The inner actuation shaft includes an engagement member that is concealed within the outer tube in the retracted position and exposed from the outer tube in the advanced position.


The elongate body portion may include a proximal portion and a distal portion, the distal portion pivotably connected to the proximal portion at a pivot point.


The end effector includes an engagement member and a plurality of surgical anchors. The engagement member of the end effector corresponds to the engagement member of the inner actuation shaft to facilitate releasable connection of the end effector to the elongate body portion.


In use, the end effector is releasable from the elongate body portion when the inner actuation shaft is positioned in the advanced position and secured to the elongate body portion when the inner actuation shaft is positioned in the retracted position.


The engagement structure of the inner actuation shaft may be located at a distal end of the actuation shaft, and the engagement member of the end effector may be located at a proximal end of the end effector.


The engagement member of the inner actuation shaft may include a recess and the engagement member of the end effector may include a protrusion configured and dimensioned for positioning within the recess.


In use, the inner actuation shaft is rotatable within outer tube and rotation of the inner actuation shaft is transmitted to the end effector via connection of the corresponding engagement members of the inner actuation shaft and the end effector.


The end effector may include an outer tube and an inner tube, the inner tube positioned within the outer tube. The inner tube of the end effector may include a pair of opposed longitudinally extending tines and may define a pair of opposed longitudinally extending channels.


In use, the inner tube of the end effector may be rotatably supported within the outer tube.


Each anchor may include a threaded body portion and a head portion. The head portion may define a pair of opposed radially outer threads and a pair of opposed radial recesses. The pair of radial recesses of each head portion may receive the pair of tines of the inner tube of the end effector. The outer tube of the end effector may include a helical thread along an inner surface thereof. The outer threads of the head portion of each anchor may project from the longitudinally extending channels defined by the inner tube of the end effector, and may engage the helical thread of the outer tube of the end effector.


The endoscopic surgical device may include a handle assembly supported adjacent a proximal end of the elongate body portion. The handle assembly may include a handle housing, a trigger operatively connected to the handle housing, and a drive mechanism actuatable by the trigger.


In use, the drive mechanism is connected to the inner actuation shaft such that actuation of the trigger results in rotation of the inner actuation shaft.


According to still another aspect of the present disclosure, a method of performing a surgical procedure with an endoscopic surgical device is provided. The method includes advancing an inner actuation shaft of the surgical device distally to expose a first engagement member formed on the inner actuation shaft from an outer tube of an elongate body portion, securing an end effector to the inner actuation shaft by connecting the first engagement member to a second engagement member formed on a proximal end of the end effector, retracting the inner actuation shaft such that the first and second engagement members are concealed within the outer tube of the elongate body portion, inserting the end effector into an opening in tissue, and performing a surgical task with the end effector.


Securing the end effector to the inner actuation shaft may include inserting a pin that extends from the second engagement member within a recess defined by the first engagement member.


Advancing the inner actuation shaft may include moving a slide member supported on a handle assembly of the surgical device in a distal direction.


Retracting the inner actuation shaft may include moving the slide member supported on the handle assembly of the surgical device in a proximal direction.


The method may involve articulating the end effector about a pivot point via rotation of an articulation knob rotatably supported on a handle assembly of the surgical device.


Performing the surgical task may include deploying a surgical anchor from the end effector, and securing the surgical anchor to tissue.


According to one aspect of the present disclosure, a shipping wedge for an end effector of an endoscopic surgical device is provided. The shipping wedge includes an elongate body and an angled body that extends from the elongate body at an acute angle relative to the elongate body. The elongate body is configured and dimensioned to receive an elongate body portion of an endoscopic surgical device and includes a first pair of opposed sidewalls that define a first channel. The first channel extends longitudinally through the elongate body. The angled body includes a second pair of opposed sidewalls that define a second channel configured and dimensioned to support an end effector for connection to the elongate body portion of the endoscopic surgical device.


At least one of the first and second channels may be U-shaped.


The shipping wedge may include an alignment rib that extends from the first pair of sidewalls of elongate body. The alignment rib may be positioned adjacent to the angled body. The alignment rib may define a passage that extends through the alignment rib.


The angled body may include a protuberance that extends from an inner surface of the angled body.


The shipping wedge may include alignment flanges that extend from at least one of the first and second pairs of sidewalls.


In use, the angled body may prevent the end effector from moving when the end effector is supported within the second channel and positioned in axial alignment with the channel.


In use, the first channel may enable the end effector to move through the first channel when the end effector is positioned in axial alignment with the first channel.


According to yet another aspect of the present disclosure, a method of removing an end effector for use with an endoscopic surgical device from a shipping wedge is provided. The method involves securing an end effector to a shipping wedge, positioning an elongate body portion of the endoscopic surgical device within the shipping wedge, advancing the elongate body portion into engagement with the end effector, pivoting the end effector within the shipping wedge relative to the elongate body portion, securing the end effector to the elongate body portion, and removing the end effector and the elongate body portion from the shipping wedge.


The method may include aligning a distal end of the elongate body portion with a proximal end of the end effector. Aligning the elongate body portion may include abutting the elongate body portion into engagement with an alignment rib that extends from the shipping wedge.


Removing the end effector and the elongate body portion may include passing the end effector beneath the alignment rib.


Securing the end effector to the shipping wedge may include securing the end effector to a protuberance that extends from the shipping wedge to prevent the end effector from rotating.


Securing the end effector to the elongate body portion may include drawing the end effector into engagement with the elongate body portion.


Further details and aspects of exemplary embodiments of the present invention are described in more detail below with reference to the appended figures.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical anchor for use in an endoscopic surgical device in accordance with the present disclosure;



FIG. 2 is a side, elevational view of the surgical anchor of FIG. 1;



FIG. 3 is a distal, end view of the surgical anchor of FIGS. 1 and 2;



FIG. 4 is a side, elevational view, partially broken away, of the surgical anchor of FIGS. 1-3;



FIG. 5 is an endoscopic surgical device according to an aspect of the present disclosure;



FIG. 6 is a perspective view, with parts separated, of the endoscopic surgical device of FIG. 5;



FIG. 7 is an enlarged view of the indicated area of detail of FIG. 6;



FIG. 8 is a rear perspective view, with a first housing half-section removed therefrom, of a handle assembly of the endoscopic surgical device of FIG. 5;



FIG. 9 is a front perspective view, with a second housing half-section removed therefrom, of a handle assembly of the endoscopic surgical device of FIG. 5;



FIG. 10 is a rear perspective view, with a second housing half-section and trigger removed therefrom, of the handle assembly of the endoscopic surgical device of FIG. 5;



FIG. 11 is a rear perspective view, with parts separated, and with a second housing half-section removed therefrom, of the handle assembly of the endoscopic surgical device of FIG. 5;



FIG. 12 is a perspective view of a pinion gear of the handle assembly of FIGS. 8-11;



FIG. 13 is a perspective view of a button and slider of the handle assembly of FIGS. 8-11;



FIG. 14 is a perspective view of a bevel gear of the handle assembly of FIGS. 8-11;



FIG. 15 is a front perspective view, with parts separated, of an endoscopic assembly of the endoscopic surgical device of FIG. 5;



FIG. 16 is an enlarged view of the indicated area of detail of FIG. 15;



FIG. 17 is a rear perspective view of the endoscopic surgical device of FIG. 5;



FIG. 18 is an enlarged view of the indicated area of detail of FIG. 17;



FIG. 19 is a perspective view of the distal end of the endoscopic surgical device of FIG. 5 with an end effector shown separated therefrom;



FIG. 20 is a rear perspective view of the end effector of FIG. 19;



FIG. 21 is a rear perspective view of the end effector of FIG. 20, with an outer tube removed therefrom;



FIG. 22 is a perspective view of the end effector of FIGS. 20 and 21, with an outer tube separated therefrom;



FIG. 23 is a perspective view of the end effector of FIGS. 20-22, with an outer tube removed therefrom and with parts partially separated;



FIG. 24 is a perspective view of an inner tube of the end effector of FIGS. 20-23, with a plurality of anchors of FIGS. 1-4 shown separated therefrom;



FIG. 25 is a cross-sectional view, as taken along 25-25 of FIG. 22;



FIG. 26 is a cross-sectional view, as taken along 26-26 of FIG. 22;



FIG. 27 is a cross-sectional view, as taken along 27-27 of FIG. 22;



FIG. 28 is a perspective view of the end effector of FIGS. 20-27 with a shipping wedge shown attached thereto;



FIG. 29 is a cross-sectional view as taken through 29-29 of FIG. 28;



FIG. 30 is a cross-sectional view as taken through 30-30 of FIG. 29;



FIG. 31 is a longitudinal, cross-sectional, elevational view of the endoscopic surgical device of FIG. 5;



FIG. 32 is an enlarged view of the indicated area of detail of FIG. 31;



FIG. 33 is an enlarged view of the indicated area of detail of FIG. 31;



FIG. 34 is a cross-sectional view as taken though 34-34 of FIG. 31;



FIG. 35 is an enlarged view of the indicated area of detail of FIG. 34;



FIG. 36 is an enlarged view of the indicated area of detail of FIG. 34;



FIG. 37 is an enlarged view of the indicated area of detail of FIG. 36;



FIG. 38 is a cross-sectional view as taken though 34-34 of FIG. 33;



FIG. 39 is a cross-sectional view as taken though 34-34 of FIG. 33;



FIG. 40 is a cross-sectional view as taken though 34-34 of FIG. 33;



FIG. 41 is a cross-sectional view as taken though 34-34 of FIG. 33;



FIG. 42 is an enlarged elevational view of the handle assembly shown in FIGS. 9 and 10, illustrating an operation of the slider;



FIG. 43 is a longitudinal, cross-sectional view the end effector and the endoscopic assembly of the endoscopic surgical device of FIG. 5, illustrating a first step in the decoupling thereof;



FIG. 44 is a longitudinal, cross-sectional view the end effector and the endoscopic assembly of the endoscopic surgical device of FIG. 5, illustrating a second step in the decoupling thereof;



FIG. 45 is a longitudinal, cross-sectional view an articulation knob of the handle assembly of FIGS. 5-11, illustrating a rotation thereof;



FIG. 46 is a longitudinal, cross-sectional view of a distal end of the endoscopic surgical device illustrating an articulation of the end effector relative to the endoscopic assembly due to a rotation of the articulation knob;



FIG. 47 is an enlarged elevational view of the handle assembly shown in FIGS. 9 and 10, illustrating an operation of an audible/tactile feedback member of the handle assembly, shown in an position following an initial actuation of a trigger;



FIG. 48 is an enlarged elevational view of the handle assembly shown in FIGS. 9 and 10, illustrating an operation of the audible/tactile feedback member of the handle assembly, shown in an position following a complete actuation of the trigger;



FIG. 49 is a longitudinal, cross-sectional view of the end effector and a distal end of endoscopic assembly, illustrating an implanting of a surgical anchor through a surgical mesh and into underlying tissue;



FIG. 50 is a perspective illustration showing the anchoring and/or fixation of a surgical mesh to underlying tissue with a plurality of surgical fasteners;



FIG. 51 is a perspective view of a distal end of another embodiment of an endoscopic surgical device illustrating an alternate end effector and an alternate complementary elongate body portion, wherein the end effector is shown separated from the elongate body portion;



FIG. 52 is a perspective view of the end effector of the endoscopic surgical device of FIG. 51;



FIG. 53 is a perspective view of the end effector of FIG. 52 with an outer tube of the end effector removed therefrom;



FIG. 54 is a perspective view of a portion of the endoscopic surgical device of FIG. 51 with a proximal end of the end effector shown connected to a distal end of the elongate body portion, the elongate body portion shown in an advanced position;



FIG. 55 is a perspective view of a portion of the endoscopic surgical device of FIG. 51 with the proximal end of the end effector shown connected to the distal end of the elongate body portion, the elongate body portion shown in a retracted position;



FIG. 56 is a side, elevational view of an embodiment of a shipping wedge in accordance with the present disclosure;



FIG. 57A is a top, perspective view of the shipping wedge of FIG. 56 with the end effector of FIG. 52 shown disposed within and coupled to the shipping wedge;



FIG. 57B is a side, cross-sectional view as taken along 57B-57B of FIG. 57A;



FIG. 58A is a top, perspective view of the shipping wedge of FIG. 56 with the end effector of FIG. 52 shown coupled to the shipping wedge and with the elongate body portion of the endoscopic surgical device of FIG. 51 being positioned within the shipping wedge relative to the end effector;



FIG. 58B is a side, cross-sectional view as taken along 58B-58B of FIG. 58A; and



FIGS. 59-62 are enlarged, progressive, side, cross-sectional views illustrating the end effector being coupled and secured to the elongate body portion and removed from the shipping wedge.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed endoscopic surgical device is described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the endoscopic surgical device that is farther from the user, while the term “proximal” refers to that portion of the endoscopic surgical device that is closer to the user.


Non-limiting examples of endoscopic surgical devices which may include articulation joints according to the present disclosure include manual, mechanical and/or electromechanical surgical tack appliers (i.e., tackers) and the like.


Referring initially to FIGS. 1-4, a surgical anchor for use with the surgical tack applier of the present disclosure is illustrated and generally designated as anchor 100. As seen in FIGS. 1-4, anchor 100 includes a head section 110, a mesh retention section 120, and a threaded tissue-snaring section 130. Head section 110 includes a pair of opposing threaded sections 112a, 112b having respective radially, outer, helical head threads 114a, 114b, and a pair of opposing open or slotted sections 116a, 116b. A distal surface of head section 110 is formed onto or integral with a proximal end of mesh retention section 120.


Mesh retention section 120 of anchor 100 extends from and between a distal end or surface of head section 110 and a proximal end of tissue-snaring section 130. Mesh retention section 120 functions to lock, anchor or otherwise retain a surgical mesh (not shown) on to anchor 100 when anchor 100 is screwed into the mesh to a depth past a proximal-most segment 138 of tissue-snaring thread 132 of tissue-snaring section 130. This is achieved because there is no thread located in mesh retention section 120 that would allow anchor 100 to be unscrewed or backed out from the mesh.


Mesh retention section 120 has a cylindrical or conical transverse cross-sectional profile. Mesh retention section 120 includes a transverse radial dimension, relative to a central longitudinal axis of anchor 100, that is smaller than a transverse radial dimension of head section 110, and smaller than a transverse radial dimension of proximal-most segment 138 of tissue-snaring thread 138.


Threaded tissue-snaring section 130 of anchor 100 includes helical threads 132 formed onto a tapered truncated body section 134. A distal point or tip 136 defines the terminus of the distal most tissue-snaring thread 132.


As seen in FIG. 4, body section 134 of tissue-snaring section 130 is tapered, i.e., becoming smaller toward the distal end of threaded tissue-snaring section 130, and terminates or truncates to a distal truncation point “TP”, prior to reaching an apex or tip of anchor 100. Body section 134 includes a concave taper such that, for a given length, a minimum diameter body section 134 is defined upon truncation thereof which is approximately less than 0.01 inches.


Anchor 100 includes a transverse dimension “D”, of a distal-most thread in the threaded tissue-snaring section 130 which is as large as design constraints will allow or approximately greater than 0.040 inches. In accordance with the present disclosure, a small truncated body diameter and a large value of “D” minimizes tissue indentation. The tissue-snaring threads 132 terminate at distal tip 136, which is distal of the truncation point “TP” of body section 134.


By providing a distal tip 136 extending distally of truncation point “TP” of tissue-snaring section 130, a penetration of the mesh, by anchor 100, is eased; and an indentation of the mesh into relatively soft tissue, by anchor 100, is minimized, as compared to an anchor having a non-truncated body with tapered threads.


For a given force applied to a surgical mesh by the surgeon, exerting a distal force on a tack applier the larger the dimension “D” of anchor 100 the less the pressure exerted to cause indentation of an underlying tissue and surgical mesh.


Anchor 100 is non-cannulated and is constructed from a suitable bioabsorbable material, such as, polylactide, polyglycolide. Anchor 100 is formed from a proprietary biocompatible co-polymer (Lactomer USS L1, Boehringer Ingelheim LR 704 S, or Boehringer Ingelheim LG-857).


Turning now to FIGS. 5-49, an endoscopic surgical device, in the form of an endoscopic surgical tack applier or tacker, is shown generally as 200. Tack applier 200 includes a handle assembly 210, and an endoscopic assembly 230 extending from handle assembly 210 and configured to store and selectively release or fire a plurality of anchors 100 therefrom and into mesh “M” overlying tissue “T”. (see FIG. 50).


As seen in FIGS. 5-14, handle assembly 210 includes a handle housing 212 formed from a first half-section 212a and a second half section 212b joined to one another. First half-section 212a and second half section 212b of handle housing 212 may be joined to one another using know methods by those of skill in the art, including and not limited to welding, fasteners (i.e., screws) and the like.


Handle assembly 210 includes a trigger 214 pivotably connected to handle housing 212, at a location remote from endoscopic assembly 230. Handle assembly 210 includes a biasing member 222 configured for maintaining trigger 214 in an extended or un-actuated position. Biasing member 222 is also configured to have a spring constant sufficient to return trigger 214 to the un-actuated position.


Trigger 214 defines a gear rack 214a formed thereon at a location opposite or remote from the pivot of trigger 214. Gear rack 214a of trigger 214 is configured for operative engagement with a pinion gear 216 rotatably supported in handle housing 212. Gear rack 214a and pinion gear 216 are dimensioned such that one complete squeeze of trigger 214 results in one complete revolution of pinion gear 216.


As seen in FIGS. 7, 9, 11, 47 and 48, handle assembly 210 includes a timing system 270 associated therewith. Timing system 270 includes a raceway 214c formed in a surface of trigger 214. Raceway 214c defines a plurality of steps 214d therealong, and a home position 214e (FIGS. 9 and 48) formed therein.


Timing system 270 includes a resilient and deflectable arm 272 having a first end 272a operative connected or disposed in raceway 214c and that is in contact with steps 214d as first end 272a thereof travels around raceway 214c. Deflectable arm 272 further includes a second end 272b that is connected to handle housing half 212b. Raceway 214c of trigger is configured such that when trigger 214 is in a fully un-actuated position, first end 272a of deflectable arm 272 is located in the home position 214e of raceway 214c.


In operation, as seen in FIGS. 47 and 48, when trigger 214 is in the fully un-actuated position, as mentioned above, first end 272a of deflectable arm 272 is located in the home position 214e of raceway 214c. Then, as trigger 214 is actuated, first end 272a of arm 272 rides through and/or along raceway 214c (in a single direction) formed in trigger 214. First end 272a of arm 272 moves uni-directionally over steps 214d of raceway 214c, such that, if trigger 214 is released after a partial squeeze, first end 272a of arm 272 can not move backwards or in reverse through raceway 214c due to steps 214d and trigger 214 can not return to the fully un-actuated position.


As so configured and operable, and as will be described in detail below, end effector or SULU 300 may only be removed and replaced when trigger 214 is in the fully un-actuated, home and locked position. As such, an end effector or SULU 300 can not be removed or replaced or loaded on/in handle assembly 200 while trigger 214 is in a short-stroked condition (i.e., partially actuated).


Additionally, as first end 272a of arm 272 moves over steps 214d of raceway 214c, first end 272a of arm 272 snaps over steps 214d and creates an audible sound/click and/or a tactile vibration for the surgeon. It is contemplated that timing system 270 includes sufficient steps 214d in raceway 214c so as to create an audible/tactile indication when trigger 214 is in a fully un-actuated home or lockout position (for loading/unloading end effector or SULU 300); after trigger 214 has been fully actuated to fire a singe surgical anchor 100; and when trigger 214 is reset to the fully un-actuated home position (wherein trigger 214 may once again be locked) and ready to fire another surgical anchor 100.


As seen in FIGS. 7 and 9-12, handle assembly 210 includes a pinion gear 216 having an arm 216a extending radially therefrom and a cam or ramp 216b extending/projecting from arm 216a. Cam 216b includes a front end 216c having a height defining a shoulder, and tail end 216d tapering into arm 216a.


As seen in FIGS. 7-11 and 14, handle assembly 210 further includes a first bevel gear 218, in the form of a crown gear, operatively engaged/associated with pinion gear 216. First bevel gear 218 defines an arcuate slot 218a formed in a face 218d thereof for selectively receiving and engaging cam 216b of pinion gear 216. Slot 218a includes a front end wall 218b configured to engage front end 216c of cam 216b of pinion gear 216, and tapers along a length thereof to be flush with face 218d of first bevel gear 218.


In use, as trigger 214 is actuated, gear rack 214a thereof is moved in an axial or arcuate first direction to thereby rotate pinion gear 216, meshed therewith, in a first direction. As pinion gear 216 is rotated in the first direction, front end 216c of cam 216b of pinion gear 216 is rotated in a first direction until front end 216c engages or contacts front end wall 218a of slot 218b of first bevel gear 218. After front end 216c of pinion gear 216 engages or contacts front end wall 218a of slot 218b of first bevel gear 218, continued rotation of pinion gear 216 in the first direction results in concomitant rotation of first bevel gear 218 in a first direction. At this point, first bevel gear 218 continues to rotate in the first direction so long as trigger 214 is being actuated and gear rack 214a is moving in the first direction.


When actuation of trigger 214 is stopped, either prior to complete actuation or following complete actuation, rotation of first bevel gear 218, in the first direction, is also stopped.


Upon the completion of a partial or complete actuation of trigger 214 and a release thereof, gear rack 214a thereof is moved in a second direction (opposite the first direction) to thereby rotate pinion gear 216 in a second direction. As pinion gear 216 is rotated in the second direction rear end 216d of cam 216b thereof slides along slot 218b of first bevel gear 218, and if the rotation in the second direction is sufficient, slides out of slot 218b of bevel gear 218 and along face 218d of first bevel gear 218.


If trigger 214 was fully actuated, a complete release of trigger 214, and return to the fully un-actuated position, wherein first end 272a of deflectable arm 272 is returned to the home position 214e of raceway 214c, will result in pinion gear 216 making a complete revolution, in the second direction, until front end 216c of cam 216b of pinion gear 216 clears front end wall 218a of slot 218b of first bevel gear 218 to thereby re-enter slot 218b of first bevel gear 218.


As seen in FIGS. 8 and 11, handle assembly 210 of tack applier 200 is provided with a ratchet mechanism 260 which is configured to inhibit or prevent inner shaft assembly 238 from backing-out or reversing after anchor 100 has been at least partially driven into tissue. Ratchet mechanism 260 includes, as seen in FIGS. 8 and 11, a series of ratchet teeth 218f formed on a rear surface 218e of first bevel gear 218.


Ratchet mechanism 260 further includes a spring clip 262 secured within handle assembly 210. Spring clip 262 includes a resilient finger 262a configured for engagement with ratchet teeth 218f formed on rear surface 218e of first bevel gear 218.


Each ratchet tooth 218f includes a shallow angled side and a steep angled side. In this manner, resilient finger 262a of spring clip 262 engages with ratchet teeth 218f in such a manner that as first bevel gear 218 is rotated, in a first direction resilient, finger 262a of spring clip 262 cams over the shallow angled side of ratchet teeth 218f. Also, if first bevel gear 218 is rotated in a second direction (opposite to the first direction), resilient finger 262a of spring clip 262 stops against the steep angled side of ratchet teeth 218f thereby preventing or inhibiting first bevel gear 218 from rotating in the second direction. As such, any reverse rotation or “backing-out” of anchor 100 or inner shaft assembly 238 (tending to cause first bevel gear 218 to rotate in the second direction), during a driving or firing stroke, is inhibited or prevented.


In an alternate embodiment, first bevel gear 218 may be maintained from rotating in the second or opposite direction, upon the rotation of pinion gear 216, in the second direction, due to a coefficient of static friction between first bevel gear 218 and a surface of handle housing 212, or a coefficient of static friction between first bevel gear 218 and a pin upon which first bevel gear 218 is supported, which will tend to maintain first bevel gear 218 stationary. Such a configuration and assembly functions as a ratchet mechanism or the like for tack applier 200.


With reference to FIGS. 6, 7 and 9-11, handle assembly 210 further includes a second or pinion-bevel gear 220 having gear teeth 220a operatively engaged or meshed with gear teeth 218c formed at the outer radial edge and on front face 218d of first bevel gear 218. Pinion-bevel gear 220 is secured to a proximal end of an inner shaft assembly 238 of anchor retaining/advancing assembly 230 (see FIG. 15). In an embodiment, pinion-bevel gear 220 is keyed to proximal end of inner shaft assembly 238 of anchor retaining/advancing assembly 230 such that inner shaft assembly 238 is capable of axial displacement relative to pinion-bevel gear 220 and is prevented from rotation relative to pinion-bevel gear 220.


In use, as described above, upon squeezing of trigger 214, gear rack 214a thereof causes pinion gear 216 to rotate in the first direction. Rotation of pinion gear 216, in the first direction, results in rotation of first bevel gear 218 in the first direction and, in turn, rotation of pinion-bevel gear 220 in a first direction. As pinion-bevel gear 220 is rotated in the first direction, pinion-bevel gear 220 transmits the rotation to inner shaft assembly 238 of anchor retaining/advancing assembly 230.


As seen in FIGS. 5-11 and 13, handle assembly 210 includes a button 240 supported on handle housing 212 and being configured to permit and inhibit actuation of trigger 214, and for effectuating a loading/retention and a release/removal of an end effector 300 to anchor retaining/advancing assembly 230. Button 240 includes a pin 240a slidably supported in handle housing 212. Pin 240a is oriented in a direction orthogonal to the longitudinal axis of anchor retaining/advancing assembly 230. As seen in FIGS. 38-41, pin 240a has a length such that when button 240 is in a first position, a first end of pin 240a extends from a first side of handle housing 212, and when button 240 is in a second position, a second end of pin 240a extends from a second side of handle housing 212.


As seen in FIGS. 13 and 38-41, button 240 includes a plate 240b supported on and connected to pin 240a. Plate 240b defines an elongate slot 240c therein, through which a stem 220a of pinion-bevel gear 220 extends. Elongate slot 240c of plate 240b defines a major axis which is parallel relative to a longitudinal axis of pin 240a. In use, as pin 240a is moved between the first position and the second position, plate 240b is moved between respective first and second positions.


Button 240 includes a first detent or recess 240d defined in plate 240b that is engaged by a biasing member 242 when button 240 is in the first position, and a second detent or recess 240e defined in plate 240b that is engaged by biasing member 242 when button 240 is in the second position. The engagement of biasing member 242 in either first detent 240d or second detent 240e of button 240 functions to help maintain button 240 in either the first or second position.


In an embodiment, biasing member 242 may be in the form of a plunger spring, and, as seen in FIGS. 33 and 42, in another embodiment, biasing member 242 may be in the form of a torsion spring. A torsion spring is contemplated over a plunger spring in order to reduce overall costs of surgical tacker 200.


As seen in FIGS. 8, 13, 33 and 38-42, button 240 includes a first wall 240f extending from plate 240b, and a second wall 240g extending from plate 240b. In use, when button 240 is in the first position, first wall 240f thereof blocks or inhibits movement of a load/release slider 244, and when button 240 is in the second position, first wall 240f thereof permits movement of load/release slider 244. Similarly, in use, when button 240 is in the second position (only achievable when trigger 214 is in a fully un-actuated or home position), second wall 240g thereof blocks or inhibits actuation of trigger 214 by second wall 240g extending into a notch 214b of trigger 214; and when button 240 is in the first position, second wall 240f is clear of notch 214b of trigger 214 to permit actuation of trigger 214.


As seen in FIGS. 5-11, 13 and 38-42, handle assembly 210 includes a load/release slider 244 slidably supported on handle housing 212 and being configured to effectuate a loading/retention and a release/removal of an end effector 300, in the form of a single use loading unit (SULU) or disposable loading unit (DLU), as will be discussed in greater detail below. Slider 244 includes a first stem 244a extending proximally therefrom and toward button 240. Specifically, first stem 244a of slider 244 is in axial registration with first wall 240f extending from plate 240b of button 240 when button 240 is in the first position (see FIG. 39), and out of axial registration with first wall 240f of button 240 when button 240 is in the second position (see FIG. 41).


Slider 244 further includes a second stem 244b extending therefrom in a direction toward inner shaft assembly 238 of anchor retaining/advancing assembly 230. As seen in FIGS. 15 and 42, inner shaft assembly 238 supports a pair of axially spaced apart radial flanges 238d, 238e which bookend (i.e., one flange being distal and one flange being proximal of second stem 244b).


In use, as seen in FIGS. 41 and 42, when button 240 is in the second position (wherein trigger 214 is locked in the fully un-actuated position) such that first stem 244a of slider 244 is out of axial registration with first wall 240f of button 240, slider 244 is free to move between a first or distal position and a second or proximal position. As slider 244 is moved from the first position to the second position thereof, second stem 244b of slider 244 exerts a force on proximal radial flange 238d of inner shaft assembly 238 to urge inner shaft assembly 238 proximally from a respective first position to a respective second position. It follows that as slider 244 is moved from the second position to the first position thereof, second stem 244b of slider 244 exerts a force on distal radial flange 238e of inner shaft assembly 238 to urge inner shaft assembly 238 distally from the respective second position to the respective first position.


In accordance with the present disclosure, as inner shaft assembly 238 is moved between the respective first and second positions thereof, inner shaft assembly 238, being connected to coupling member 238c results in connecting member 238c also moving between a respective first position and a respective second position.


Slider 244 may be biased to the first or distal position by a biasing member 245 (see FIG. 42).


As seen in FIGS. 5, 6, 8, 15, 17, 33-35 and 45, handle assembly 210 includes an articulation knob 246 rotatably supported on handle housing 212. Articulation knob 246 defines an inner helical thread 246a. Inner helical thread 246a meshingly receives or engages an outer thread 247a of a connection nut 247 that is non-rotatably connected to proximal tube portion 234a of inner tube assembly 234 of anchor retaining/advancing assembly 230. Connection nut 247 may be keyed to articulation knob 246 so as to not rotate relative to articulation knob 246 as articulation knob 246 is rotated. Alternatively, the surgeon may manually grip a distal end of connection nut 247 (which is projecting/extending distally of articulation knob 246) as articulation knob 246 is rotated.


In use, as seen in FIGS. 45 and 46, with connection nut 247 retained against rotation about the longitudinal axis, as articulation knob 246 is rotated in a first direction, connection nut 247 travels along inner helical thread 246a of articulation knob 246 to cause inner articulation tube assembly 234 to move in a respective first or distal axial direction; and as articulation knob 246 is rotated in a second direction, connection nut 247 travels along inner helical thread 246a of articulation knob 246 to cause inner articulation tube assembly 234 to move in a respective second or proximal axial direction. In accordance with the present disclosure, rotation of articulation knob 246 in the respective first and second directions results in the articulating and straightening of anchor retaining/advancing assembly 230, as will be discussed in greater detail below.


Turning now to FIGS. 15, 16, 32, 33 and 42-46, as seen therein, endoscopic assembly 230 includes an outer tube 231, an outer support tube assembly 232 disposed within outer tube 231, an inner articulation tube assembly 234, and an inner shaft assembly 238. Outer support tube assembly 232 includes a proximal support tube portion 232a secured to and extending from handle housing 212, and a distal support tube portion 232b pivotally connected to proximal tube portion 232a by a pivot pin 232c (see FIGS. 15 and 16) at an articulation joint 250.


As seen in FIGS. 15, 16, 43 and 44, distal support tube portion 232b supports a ball detent 233 in an outer surface thereof. Ball detent 233 functions to selectively secure and retain end effector 300 to endoscopic assembly 230. In use, as will be discussed in greater detail below, as seen in FIGS. 37 and 42, ball detent 233 is acted on by an outer camming surface/relief 238c1 of coupling member 238 which acts on ball detent 233 to move ball detent 233 radially outward when inner shaft assembly 238 is a distal position.


Inner articulation tube assembly 234 includes a proximal tube portion 234a concentrically and slidably disposed within proximal tube portion 232a of outer support tube assembly 232. As seen in FIG. 33, proximal end 234b of proximal tube portion 234a is non-rotatably connected to connection nut 247.


Inner articulation tube assembly 234 includes an articulation link 235 having a proximal end 235a pivotally connected to a distal end of proximal tube portion 234a, and a distal end 235b pivotally connected to distal tube portion 232b of outer support tube assembly 232. Distal end 235b of articulation link 235 is pivotally connected to distal tube portion 232b of outer support tube assembly 232 at a location offset from the central longitudinal axis of anchor retaining/advancing assembly 230, in a direction substantially away from pivot pin 232c of articulation joint 250.


In operation, as seen in FIGS. 45 and 46, upon an axial translation of proximal tube portion 234a, for example in a proximal direction, due to a rotation of articulation knob 246 and proximal axial movement of connection nut 247 as described above, proximal tube portion 234a acts or pulls on articulation link 235 to cause articulation link 235 to translate in a proximal direction. As articulation link 235 is axially translated in a proximal direction, articulation link 235 acts or pulls on distal tube portion 232b of outer support tube assembly 232 to cause distal tube portion 232b to pivot about a pivot axis of pivot pin 232c. As distal tube portion 232b is pivoted, distal tube portion 232b causes end effector 300 to be moved to an articulated orientation relative to the central longitudinal axis of anchor retaining/advancing assembly 230.


It follows that upon an axial translation of proximal tube portion 234a in a distal direction, due to a distal movement of slider 244, as described above, proximal tube portion 234a acts or pushes on articulation link 235 to cause articulation link 235 to translate in a distal direction. As articulation link 235 is axially translated in a distal direction, articulation link 235 acts or pushes on distal tube portion 232b of outer support tube assembly 232 to cause distal tube portion 232b to pivot about a pivot axis of pivot pin 232c. As distal tube portion 232b is pivoted, distal tube portion 232b causes end effector 300 to be returned to a non-articulated orientation relative to the central longitudinal axis of anchor retaining/advancing assembly 230.


In accordance with the present disclosure, distal tube portion 232b of anchor retaining/advancing assembly 230 is pivotable in a single direction relative to proximal tube portion 232a of anchor retaining/advancing assembly 230.


With reference to FIGS. 15, 19, 32, 33 and 35-46, inner actuation shaft assembly 238 includes a proximal rigid shaft portion 238a, a distal flexible shaft portion 238b non-rotatably connected to and extending from a distal end of proximal rigid shaft portion 238a, and a coupling member 238c non-rotatably connected to a distal end of distal flexible shaft portion 238b. Second or pinion-bevel gear 220 is non-rotatably connected to a proximal end of proximal rigid shaft portion 238a of inner actuation shaft assembly 238. Inner actuation shaft assembly 238 is configured such that distal flexible shaft portion 238b extends across and beyond articulation joint 250.


Desirably, coupling member 238c is rotatably and slidably supported in distal tube portion 232b of outer support tube assembly 232 so as to accommodate and/or account for variations in length of distal flexible shaft portion 238b when distal flexible shaft portion 238b is in a flexed condition. Coupling member 238c is substantially tongue shaped and extends in a distal direction distally from distal tube portion 232b of outer support tube assembly 232. Coupling member 238c is configured for non-rotatable connection to inner tube 338 of end effector 300, as will be discussed in greater detail below.


Distal flexible shaft portion 238b is fabricated from a torsionally stiff and flexible material, such as, for example, stainless steel.


It is contemplated that distal flexible shaft portion 238b may have an outer diameter of about 0.08′. Meanwhile, anchor retaining/advancing assembly 230 has an outer diameter of about 0.22′. A ratio of the outer diameter of distal flexible shaft portion 238b to the outer diameter of anchor retaining/advancing assembly 230 is about 2.8.


Inner actuation shaft assembly 238 is configured to perform at least a pair of functions, a first function relating to the securing and release of an end effector or SULU 300 to distal tube portion 232b of outer support tube assembly 232 upon an axial translation thereof, and a second function relating to the firing of fasteners 100 from end effector or SULU 300 when end effector or SULU 300 is coupled to distal tube portion 232b of outer support tube assembly 232 upon a rotation thereof.


In order to prepare surgical tacker 200 for receipt of end effector or SULU 300 or to replace a spent end effector or SULU 300 with a new end effector or SULU 300, as seen in FIGS. 38-44, and as mentioned above, trigger 214 must be in a fully un-actuated position. With trigger 214 in the fully un-actuated position, button 240 is moved from the first position to the second position (as described above) such that trigger 214 is prevented from actuation and such that slider 244 is free to move. With button 240 in the second position, slider 244 is moved from the first position to the second position (as described above). As slider 244 is moved to the second position, second stem 244b of slider 244 exerts a force on proximal radial flange 238d of inner shaft assembly 238 to urge inner shaft assembly 238, and in turn coupling member 238a thereof, proximally from a respective first position to a respective second position. As coupling member 238a is moved from the first position to the second position, ball detent 233 is free to drop or move radially inward of outer tube 231 as outer camming surface/relief 238c1 of coupling member 238 is moved into axial registration with ball detent 233. With ball detent 233 free to drop or move radially inward, end effector or SULU 300 may be fully coupled to distal support tube portion 232b of anchor retaining/advancing assembly 230.


Once again, as mentioned above, as so configured and operable, end effector or SULU 300 may only be removed and replaced when trigger 214 is in the fully un-actuated, home and locked position. As such, end effector or SULU 300 can not be removed or replaced or loaded while trigger 214 is in a short-stroked condition (i.e., partially actuated).


With a new end effector or SULU 300 fully coupled to distal support tube portion 232b of anchor retaining/advancing assembly 230, slider 244 is moved from the second position to the first position to secure or lock end effector or SULU 300 to distal support tube portion 232b of anchor retaining/advancing assembly 230. In particular, as slider 244 is moved to the first position, second stem 244b of slider 244 exerts a force on distal radial flange 238e of inner shaft assembly 238 to urge inner shaft assembly 238, and in turn coupling member 238a thereof, distally from second position to first position. As coupling member 238a is moved from the second position to the first position, ball detent 233 is urged by outer camming surface/relief 238c1 of coupling member 238 to move ball detent 233 radially outward. As ball detent 233 moves radially outward a portion of ball detent 233 enters an aperture 332c of end effector or SULU 300 to secure end effector or SULU 300 to distal support tube portion 232b of anchor retaining/advancing assembly 230. With end effector or SULU 300 coupled to distal support tube portion 232b of anchor retaining/advancing assembly 230, button 240 is moved from the second position to the first position (as described above) such that slider 244 is prevented from actuation and such that trigger 214 is free to move.


Turning now to FIGS. 5, 6, 15, 17-27, 32, 36, 37, 43, 44 and 46, end effector 300, in the form of a SULU or DLU, is shown and will be described herein. End effector 300, as mentioned above, is selectively connectable to distal tube portion 232b of outer support tube assembly 232.


End effector or SULU 300 includes an outer tube 332 defining a lumen 332a therethrough and being configured and dimensioned (i.e., substantially rectangular or dog bone shaped) to receive distal tube portion 232b of outer support tube assembly 232 and coupling member 238c of anchor retaining/advancing assembly 230 therein. As seen in FIG. 19, outer tube 332 defines a proximal key slot 332b for engagement with a key 232c formed in distal tube portion 232b of outer support tube assembly 232. In use, when end effector or SULU 300 is connected to distal tube portion 232b of outer support tube assembly 232 key slot 332b and key 232c engage with one another to properly align end effector or SULU 300 and anchor retaining/advancing assembly 230 to one another.


End effector or SULU 300 further includes a spiral or coil 336 fixedly disposed within a distal portion of outer tube 332. A pair of axially spaced apart retention rings 337a, 337b is also fixedly disposed within outer tube 332 at a location proximal of coil 336.


End effector or SULU 300 also includes an inner tube 338 rotatably disposed within coil 336. Inner tube 338 defines a lumen therethrough, and includes a proximal end portion 338a and a splined distal end portion 338b. Proximal end portion 338a of inner tube 338 is configured and dimensioned to slidably receive coupling member 238c of anchor retaining/advancing assembly 230 therein. Inner tube 338 includes a plurality of retention tabs 338c projecting radially outward therefrom and which snap beyond one of the pair of retention rings 337a, 337b, when inner tube 338 is assembled with outer tube 332. In this manner, outer tube 332 and inner tube 338 are axially fixed and yet rotatable relative to one another.


Distal end portion 338a of inner tube 338 is slotted, defining a pair of tines 338a1 and a pair of channels 338a2. Distal end portion 338a of inner tube 338 is capable of accepting a plurality of anchors 100 within inner tube 338. In particular, anchors 100 are loaded into end effector or SULU 300 such that the pair of opposing threaded sections 112a, 112b of anchors 100 extend through respective channels 338a2 of distal end portion 338a of inner tube 338 and are slidably disposed within the groove of coil 336, and the pair of tines 338a1 of distal end portion 338a of inner tube 338 are disposed within the pair of slotted sections 116a, 116b of anchors 100. Each anchor 100 is loaded into end effector or SULU 300 such that adjacent anchors 100 are not in contact with one another so as to not damage distal tips 136.


In use, as inner tube 338 is rotated, about its longitudinal axis, with respect to coil 336, the pair of tines 338a1 of inner tube 338 transmit the rotation to anchors 100 and advance anchors 100 distally owing to head threads 114a, 114b of anchors 100 engaging with coil 336.


In an operation of surgical tacker 200, as seen in FIG. 49, with end effector or SULU 300 operatively connected to distal tube portion 232b of outer support tube assembly 232 of anchor retaining/advancing assembly 230, as inner shaft assembly 238 is rotated due to an actuation of trigger 214, as described above, said rotation is transmitted to inner tube 338 of end effector or SULU 300 via coupling member 238c of anchor retaining/advancing assembly 230. Again, as inner tube 338 is rotated, about its longitudinal axis, with respect to coil 336, the pair of tines 338a1 of inner tube 338 transmit the rotation to the entire stack of anchors 100 and advance the entire stack of anchors 100 distally, owing to head threads 114a, 114b of anchors 100 engaging with coil 336.


In accordance with the present disclosure, the components of surgical tacker 200, and anchors 100 are dimensioned such that a single complete and full actuation of trigger 214 results in a firing of a singe anchor 100 (i.e., the distal-most anchor of the stack of anchors 100 loaded in end effector or SULU 300) from end effector or SULU 300.


Surgical tacker 200 may be repeatedly fired to fire anchors from end effector 300 until the surgical procedure is complete or until end effector or SULU 300 is spent of anchors 100. If end effector or SULU 300 is spent of anchors 100, and if additional anchors 100 are required to complete the surgical procedure, spent end effector or SULU 300 may be replaced with a new (i.e., loaded with anchors 100) end effector or SULU 300.


As seen in FIGS. 40-44, in order to replace spent end effector or SULU 300 with a new end effector or SULU 300, with trigger 214 in the fully un-actuated position (as described above, the surgeon actuates or slides button 244 to release the spent end effector or SULU 300, decouples end effector or SULU 300 from anchor retaining/advancing assembly 230, loads or connects a new end effector or SULU 300 to anchor retaining/advancing assembly 230 (by fitting proximal end portion 338a of inner tube 338 over coupling member 238c of anchor retaining/advancing assembly 230), and releases button 244 to retain the new end effector or SULU 300 on anchor retaining/advancing assembly 230. Since trigger 214 is in the fully un-actuated position with the loading of a new end effector or SULU 300, timing system 270 is reset such that each fully actuation of trigger 214 results in the firing of a single anchor 100.


It is contemplated that end effector or SULU 300 may only be connected or coupled to distal tube portion 232b of outer support tube assembly 232 of anchor retaining/advancing assembly 230 while anchor retaining/advancing assembly 230 is in the non-articulated condition.


In accordance with the present disclosure, with end effector or SULU 300 connected or coupled to distal tube portion 232b of outer support tube assembly 232 of anchor retaining/advancing assembly 230, articulation knob 246 is rotated or held in place such that anchor retaining/advancing assembly 230 is in a non-articulated condition.


Additionally, in accordance with the present disclosure, with end effector or SULU 300 connected or coupled to distal tube portion 232b of outer support tube assembly 232 of anchor retaining/advancing assembly 230, end effector or SULU 300 is introduced into a target surgical site while in the non-articulated condition. With end effector or SULU 300 disposed within the target surgical site, the surgeon may remotely articulate end effector or SULU 300 relative to anchor retaining/advancing assembly 230. Specifically, as seen in FIGS. 45 and 46, the surgeon rotates articulation knob 246 to axially displace connection nut 247 and proximal tube portion 234a of inner articulation tube assembly 234 to move in the proximal axial direction. As proximal tube portion 234a is moved in the proximal axial direction, proximal tube portion 234a acts or pulls on articulation link 235 to cause articulation link 235 to translate in a proximal direction. As articulation link 235 is axially translated in a proximal direction, articulation link 235 acts or pulls on distal tube portion 232b of outer support tube assembly 232 to cause distal tube portion 232b to pivot about a pivot axis of pivot pin 232c. As distal tube portion 232b is pivoted, distal tube portion 232b causes end effector 300 to be moved to an articulated orientation relative to the central longitudinal axis of anchor retaining/advancing assembly 230.


Turning now to FIGS. 28-30, in accordance with the present disclosure, a shipping wedge 400 may be provided which is configured and dimensioned to releasably connect to end effector or SULU 300, to inhibit premature rotation of inner tube 338 of end effector or SULU 300, and to help facilitate loading/unloading of end effector or SULU 300 to/from distal tube portion 232b of anchor retaining/advancing assembly 230.


Shipping wedge 400 includes a handle portion 402 and a coupling member 404 integrally formed with or secured to handle portion 402. Coupling member 404 is substantially tubular having a substantially C-shaped transverse cross-sectional profile. Coupling member 404 defines a longitudinally extending opening or gap 404a therealong. Handle portion 404 defines a longitudinal axis that is substantially orthogonal to the longitudinal axis of coupling member 404.


Coupling member 404 has a diameter sufficient to accommodate end effector or SULU 300 therein and along. Also, gap 404a of coupling member 404 has a dimension, which together with the materials of construction of at least coupling member 404, allows for coupling member 404 to be snapped-over end effector or SULU 300. It is envisioned that at least coupling member 404 may be fabricated from a polymeric or other substantially rigid and resilient material.


As seen in FIGS. 29 and 30, shipping wedge 400 includes a wedge, spike or nub 406 extending radially into coupling member 404. In particular, wedge 406 extends or projects in a direction substantially parallel to the longitudinal axis of handle portion 402. Wedge 406 has a length sufficient such that, when shipping wedge 400 is attached to end effector or SULU 300, wedge 406 enters an aperture 332d (see FIGS. 19, 22, 29 and 30) formed in outer tube 332 of end effector or SULU 300.


Additionally, when shipping wedge 400 is attached to end effector or SULU 300, wedge 406 extends to be in close proximity to or in contact with proximal end portion 338a of inner tube 338 of end effector or SULU 300. By extending this amount, wedge 406 inhibits rotation of inner tube 338 relative to outer tube 332 by blocking or contacting proximal end portion 338a of inner tube 338 if inner tube 338 experiences any rotation relative to outer tube 332.


Also, when shipping wedge 400 is attached to end effector or SULU 300, and with wedge 406 blocking rotation of inner tube 338 of end effector or SULU 300, shipping wedge 400 facilitates a loading/unloading of end effector or SULU 300 to/from distal tube portion 232b of anchor retaining/advancing assembly 230. During loading of end effector or SULU 300 to distal tube portion 232b of anchor retaining/advancing assembly 230, shipping wedge 400 functions to fix an angular orientation of proximal end portion 338a of inner tube 338 for proper alignment and orientation with coupling member 238c of anchor retaining/advancing assembly 230.


In accordance with the present disclosure, it is contemplated that handle assembly 100 may be replaced by an electromechanical control module configured and adapted to drive the flexible drive cables to fire or actuate the surgical device. The electromechanical control module may include at least one microprocessor, at least one drive motor controllable by the at least one microprocessor, and a source of power for energizing the at least one microprocessor and the at least one drive motor.


Turning now to FIGS. 51-55, another embodiment of an endoscopic surgical device, in the form of an endoscopic surgical tack applier or tacker, is shown generally as 500. Endoscopic surgical device 500 is similar to endoscopic surgical device 200 and is only described herein to the extent necessary to describe the differences in construction and operation thereof. Likewise, another embodiment of an end effector is shown generally as 520. End effector 520 is similar to end effector 300 and is only described herein to the extent necessary to describe the differences in construction and operation thereof.


With reference to FIG. 51, endoscopic surgical device 500 includes an elongate body portion 510 and an end effector 520 (e.g., single use loading unit) that can be selectively secured to a distal end of elongate body portion 510.


Elongate body portion 510 includes an outer tube 512 and an inner actuation shaft 514 that is slidably positioned within outer tube 512. Outer tube 512 includes an inner surface 512a and an outer surface 512b. Inner surface 512a defines a lumen 512c that extends longitudinally through outer tube 512 and supports inner actuation shaft 514. Outer tube 512 defines a notch 512d that extends between and across inner surface 512a and outer surface 512b in a distal end of outer tube 512. Inner actuation shaft 514 extends longitudinally through lumen 512c between proximal and distal ends of outer tube 512. The distal end of inner actuation shaft 514 includes an engagement member 516. An arm or tab 518 extends from engagement member 516. Arm 518 defines a recess 518a that extends at least partially therethrough.


As illustrated in FIGS. 51-53, end effector 520 includes an outer tube 522 and a splined inner tube 524 rotatably positioned within outer tube 522. Outer tube 522 includes an inner surface 522a and an outer surface 522b. Inner surface 522a defines a lumen 522c that extends longitudinally through outer tube 522 between proximal and distal ends of outer tube 522. The distal end of outer tube 522 includes a distal opening 522d. Outer tube 522 defines an opening 522e that extends between inner surface 522a and outer surface 522b in a proximal portion of outer tube 522. Splined inner tube 524 supports a spiral 336 that is fixedly disposed within a distal portion of outer tube 522 and about a pair of tines 530 of the splined inner tube 524, so that the pair of tines 530 and spiral 336 support a plurality of surgical anchors 100 that are adapted for selective advancement through end effector 520.


As can be seen in FIG. 53, splined inner tube 524 includes a coupling member 526 fixedly secured to inner surface 522a of outer tube 522 at a proximal end thereof and includes a locking tab 526a that extends from a proximal end of coupling member 526. As described above, splined inner tube 524 includes a pair of tines 530 at a distal end thereof and an engagement member 532 at a proximal end thereof. The pair of tines 530 includes a first tine 530a and a second tine 530b. First and second tines 530a, 530b are spaced apart and define first and second channels 530c, 530d therebetween that receive a portion of each of the plurality of anchors 100. Engagement member 532 includes an arm or tab 534 extending longitudinally therefrom, and a pin 536 projecting perpendicularly to arm 534.


In use, as shown in FIGS. 54 and 55, inner actuation shaft 514 of elongate body portion 510 is slidably movable relative to outer tube 512 between an advanced position (FIG. 54) and a retracted position (FIG. 55). In the advanced position, engagement member 516 of inner actuation shaft 514 is exposed or projects from outer tube 512. In the retracted position, engagement member 516 of inner actuation shaft 514 is concealed or housed within outer tube 512. More particularly, in the advanced position, arm 518 of engagement member 516 is extended such that recess 518a is exposed for receiving pin 536 of engagement member 532.


To connect end effector 520 to elongate body portion 510, pin 536 of engagement member 532 is inserted in recess 518a of engagement member 516 so that arm 534 of engagement member 532 is connected to arm 518 of engagement member 516. After connecting end effector 520 to elongate body portion 510, inner actuation shaft 514 can be moved to the retracted position which draws both engagement members 532, 516 within outer tube 512 of elongate body portion 510. As such, locking tab 526a of end effector 520 is received within notch 512d of elongate body portion 510 to prevent outer tube 522 of end effector 520 from rotating relative to elongate body portion 510 upon a rotation of inner actuation shaft 514. Additionally, engagement member 516, 532 are housed within outer tube 522 of end effector 520, thereby being inhibited from separating from one another.


A rotation of inner actuation shaft 114 rotates both engagement members 516, 532 relative to outer tubes 512, 522 and coupling member 526 to impart rotation to splined inner tube 524, and in turn, the pair of tines 530, for distally advancing the plurality of anchors 100 along spiral 336 and individually deploying each of the plurality of anchors 100 out of distal opening 522d of outer tube 522 of end effector 520.


Turning now to FIG. 56, another embodiment of a shipping wedge is shown generally as 600. Shipping wedge 600 includes an elongate first body 610, and an angled second body 620 that extends from first body 610 at an angle relative to first body 610. More particularly, first body 610 defines a longitudinal axis “A” that extends through opposed ends 610a, 610b of elongate body 610. Angled body 620 defines a longitudinal axis “B” that extends through opposed ends of 620a, 620b of angled body 620. Longitudinal axes “A” and “B” define an angle “a” therebetween. Although shown in FIG. 56 as an acute angle, angle “a” can be any suitable angle.


Referring to FIGS. 57A and 57B, first body 610 includes a pair of opposed sidewalls 612a that is connected at a base 612b. The pair of opposed sidewalls 612a defines a channel 614 therebetween to form a U-shape that is dimensioned to receive an elongate body such as elongate body portion 510 of endoscopic surgical device 500. Channel 614 extends longitudinally through first body 610. An alignment rib 616 extends between the pair of opposed sidewalls 612a and defines a passage 616a that extends through alignment rib 616 and separates alignment rib 616 into a pair of segments 616b.


Angled body 620 includes a pair of opposed sidewalls 622a that is connected at a base 622b. The pair of opposed sidewalls 622a defines a channel 624 therebetween to form a U-shape that is dimensioned to receive and retain an end effector, such as, end effector 520 (FIGS. 57A and 57B). Channel 624 extends longitudinally through angled body 620 such that channel 624 is angled relative to channel 614 (see FIG. 57B). Angled body 620 includes a protuberance 626 (e.g., a boss or nub) that extends from an inner surface 622c of base 622b. Protuberance 626 can have any suitable shape including circular and non-circular (e.g., elliptical, polygonal, etc.) shapes.


A pair of alignment flanges 618 extend from opposed sidewalls 612a of first body 610 and opposed sidewalls 622a of angled body 620 to form funnel configurations that facilitate proper alignment of an endoscopic surgical device such as endoscopic surgical device 500, or portions thereof, relative to shipping wedge 600. As shown in FIG. 57A, each alignment flange of the pair of alignment flanges 618 has a curvilinear arrangement that extends outwardly from channels 614 and 624.


With continued reference to FIGS. 57A and 57B, although shipping wedge 600 can be used with any suitable endoscopic surgical device, in an exemplary use with endoscopic surgical device 500, end effector 520 of endoscopic surgical device 500 is secured within channel 624 of angled body 620 (e.g., press fit). Protuberance 626 of angled body 620 is positioned within opening 522e of end effector 520 (and/or within first and/or second channels 530c, 530d of end effector 520) to prevent end effector 520 from translating through channel 624 of angled body 620 and/or to prevent end effector 520, or portions thereof (e.g., outer and/or inner tube 522, 524 including the pair of tines 530), from rotating within channel 624 of angled body 620. As can be appreciated, the protuberance 626 enables end effector 520 to maintain proper timing (e.g., tack/anchor deployment timing) during shipment and/or loading processes of end effector 520. When the end effector 520 is secured within channel 624 of angled body 620, pin 536 of end effector 520 is aligned with alignment rib 616.


Referring also to FIGS. 58A-62, to remove end effector 520 from shipping wedge 600, in the advanced position of the elongate body portion 510 of endoscopic surgical device 500, elongate body portion 510 can be positioned relative to channel 614 so that the distal end of elongate body portion 510 is longitudinally aligned with alignment rib 616. More particularly, engagement member 516 of elongate body portion 510 abuts against alignment rib 616 of shipping wedge 600 to longitudinally align arm 518 of engagement member 516 with passage 616a. Elongate body portion 510 is then inserted (e.g., press fit) into channel 614 so that arm 518 of elongate body portion 510, guided by alignment rib 616 of shipping wedge 600, moves through passage 616a toward pin 536 of end effector 520 (FIGS. 59 and 60). As elongate body portion 510 engages end effector 520, pin 536 inserts into recess 518a of arm 518 so that end effector 520 pivots relative to elongate body portion 510 and out of channel 624 of angled body 620 into axial alignment with elongate body portion 510 (FIGS. 60 and 61). As end effector 520 pivots out of channel 624 of angled body 620, protuberance 626 of angled body 620 separates from opening 522e of end effector 520.


As seen in FIG. 62, with elongate body portion 510 connected to end effector 520, elongate body portion 510 can be moved to the retracted position to draw end effector 520 into engagement with elongate body portion 510 to secure the proximal end of end effector 520 within the distal end of elongate body portion 510. Endoscopic surgical device 500, including both elongate body portion 510 and end effector 520, can then be withdrawn from shipping wedge 600, while beneath alignment rib 616, and through channel 614 of shipping wedge 600 to separate endoscopic surgical device 500 from shipping wedge 600 (FIG. 62). Endoscopic surgical device 500 can then be used to perform a surgical procedure.


As can be appreciated, securement of any of the components of the presently disclosed devices can be effectuated using known fastening techniques such welding, crimping, gluing, etc.


It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the length of the linear row of staples or fasteners may be modified to meet the requirements of a particular surgical procedure. Thus, the length of the linear row of staples and/or fasteners within a staple cartridge assembly may be varied accordingly. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.

Claims
  • 1. A surgical device, comprising: an elongate body portion including an inner actuation shaft movably positioned therewithin and repositionable between a first position and a second position, the inner actuation shaft including an engagement member;an end effector releasably supported adjacent a distal end of the elongate body portion, the end effector including: an engagement member corresponding to the engagement member of the inner actuation shaft to facilitate releasable connection of the end effector to the elongate body portion, the end effector being releasable from the elongate body portion when the inner actuation shaft is positioned in the second position and secured to the elongate body portion when the inner actuation shaft is positioned in the first position;a plurality of surgical anchors; anda pair of opposed longitudinally extending tines defining a pair of opposed longitudinally extending channels; andan outer tube, wherein the inner actuation shaft is movably positioned within the outer tube, wherein the engagement of the inner actuation shaft is concealed within the outer tube in the first position and exposed from the outer tube in the second position.
  • 2. The surgical device according to claim 1, wherein the engagement member of the inner actuation shaft is located at a distal end of the actuation shaft, and the engagement member of the end effector is located at a proximal end of the end effector.
  • 3. A surgical device, comprising: an elongate body portion including an inner actuation shaft movably positioned therewithin and repositionable between a first position and a second position, the inner actuation shaft including an engagement member; andan end effector releasably supported adjacent a distal end of the elongate body portion, the end effector including: an engagement member corresponding to the engagement member of the inner actuation shaft to facilitate releasable connection of the end effector to the elongate body portion, the end effector being releasable from the elongate body portion when the inner actuation shaft is positioned in the second position and secured to the elongate body portion when the inner actuation shaft is positioned in the first position, wherein the engagement member of the inner actuation shaft includes a recess, and the engagement member of the end effector includes a protrusion configured and dimensioned for positioning within the recess;a plurality of surgical anchors; anda pair of opposed longitudinally extending tines defining a pair of opposed longitudinally extending channels.
  • 4. The surgical device according to claim 1, wherein the inner actuation shaft is rotatable within outer tube, rotation of the inner actuation shaft being transmitted to the end effector via connection of the corresponding engagement members of the inner actuation shaft and the end effector.
  • 5. The surgical device according to claim 1, wherein the end effector includes an outer tube and an inner tube, the inner tube positioned within the outer tube.
  • 6. The surgical device according to claim 5, wherein the inner tube of the end effector is rotatably supported within the outer tube.
  • 7. The surgical device according to claim 6, wherein each anchor includes a threaded body portion and a head portion, the head portion defining a pair of opposed radially outer threads and a pair of opposed radial recesses, the pair of radial recesses of each head portion receiving the pair of tines of the inner tube of the end effector.
  • 8. The endoscopic surgical device according to claim 6, wherein the outer tube of the end effector includes a helical thread along an inner surface thereof.
  • 9. A surgical device, comprising: an elongate body portion including an inner actuation shaft movably positioned therewithin and repositionable between a first position and a second position, the inner actuation shaft including an engagement member; andan end effector releasably supported adjacent a distal end of the elongate body portion, the end effector including: an engagement member corresponding to the engagement member of the inner actuation shaft to facilitate releasable connection of the end effector to the elongate body portion, the end effector being releasable from the elongate body portion when the inner actuation shaft is positioned in the second position and secured to the elongate body portion when the inner actuation shaft is positioned in the first position;a plurality of surgical anchors;a pair of opposed longitudinally extending tines defining a pair of opposed longitudinally extending channels; andan outer tube and an inner tube, the inner tube positioned within the outer tube, wherein the inner tube of the end effector is rotatably supported within the outer tube, wherein the outer tube of the end effector includes a helical thread along an inner surface thereof, wherein the outer threads of the head portion of each anchor project from the longitudinally extending channels defined by the inner tube of the end effector, and engage the helical thread of the outer tube of the end effector.
  • 10. The endoscopic surgical device according to claim 1, further including a handle assembly supported adjacent a proximal end of the elongate body portion.
  • 11. The endoscopic surgical device according to claim 10, wherein the handle assembly includes a handle housing, a trigger operatively connected to the handle housing, and a drive mechanism actuatable by the trigger.
  • 12. The endoscopic surgical device according to claim 11, wherein the drive mechanism is connected to the inner actuation shaft such that actuation of the trigger results in rotation of the inner actuation shaft.
  • 13. The endoscopic surgical device according to claim 1, wherein the elongate body portion includes a proximal portion and a distal portion, the distal portion pivotably connected to the proximal portion at a pivot point.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/974,338, filed Aug. 23, 2013, which is a continuation-in-part and claiming the benefit of and priority to U.S. patent application Ser. No. 13/930,770, filed Jun. 28, 2013, now U.S. Pat. No. 9,351,728, the entire contents of which are incorporated herein by reference.

US Referenced Citations (322)
Number Name Date Kind
3596528 Dittrich et al. Aug 1971 A
3866510 Eibes et al. Feb 1975 A
4350491 Steuer Sep 1982 A
4648733 Merkt Mar 1987 A
4754909 Barker Jul 1988 A
4884572 Bays et al. Dec 1989 A
4949927 Madocks Aug 1990 A
5085661 Moss Feb 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5176306 Heimerl et al. Jan 1993 A
5207697 Carusillo et al. May 1993 A
5228256 Dreveny Jul 1993 A
5236563 Loh Aug 1993 A
5246441 Ross Sep 1993 A
5246450 Thornton et al. Sep 1993 A
5271543 Grant Dec 1993 A
5312023 Green et al. May 1994 A
5330487 Thornton et al. Jul 1994 A
5344061 Crainich Sep 1994 A
5348259 Blanco Sep 1994 A
5356064 Green et al. Oct 1994 A
5381943 Allen et al. Jan 1995 A
5382254 McGarry et al. Jan 1995 A
5398861 Green Mar 1995 A
5403327 Thornton et al. Apr 1995 A
5433721 Hooven et al. Jul 1995 A
5439468 Schulze et al. Aug 1995 A
5466243 Schmieding et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5474567 Stefanchik et al. Dec 1995 A
5522844 Johnson Jun 1996 A
5527319 Green et al. Jun 1996 A
5553765 Knodel et al. Sep 1996 A
5562685 Mollenauer et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5582615 Foshee et al. Dec 1996 A
5582616 Bolduc et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5601571 Moss Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5626613 Schmieding May 1997 A
5628752 Asnis et al. May 1997 A
5649931 Bryant et al. Jul 1997 A
5662662 Bishop et al. Sep 1997 A
5681330 Hughett et al. Oct 1997 A
5683401 Schmieding et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5697935 Moran et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5709692 Mollenauer et al. Jan 1998 A
5728116 Rosenman Mar 1998 A
5730744 Justin et al. Mar 1998 A
5732806 Foshee et al. Mar 1998 A
5735854 Caron et al. Apr 1998 A
5741268 Schutz Apr 1998 A
5762255 Chrisman et al. Jun 1998 A
5782844 Yoon et al. Jul 1998 A
5792165 Klieman et al. Aug 1998 A
5810882 Bolduc et al. Sep 1998 A
5824008 Bolduc et al. Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843087 Jensen et al. Dec 1998 A
5897564 Schulze et al. Apr 1999 A
5904693 Dicesare et al. May 1999 A
5910105 Swain et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5928244 Tovey et al. Jul 1999 A
5928252 Steadman et al. Jul 1999 A
5931844 Thompson et al. Aug 1999 A
5941439 Kammerer et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5961524 Crombie Oct 1999 A
5964772 Bolduc et al. Oct 1999 A
5976160 Crainich Nov 1999 A
5997552 Person et al. Dec 1999 A
6010513 Tormala et al. Jan 2000 A
6013991 Philipp Jan 2000 A
6039753 Meislin Mar 2000 A
6074395 Trott et al. Jun 2000 A
6099537 Sugai et al. Aug 2000 A
6126670 Walker et al. Oct 2000 A
6132435 Young Oct 2000 A
6146387 Trott et al. Nov 2000 A
6183479 Tormala et al. Feb 2001 B1
6228098 Kayan et al. May 2001 B1
6235058 Huene May 2001 B1
6241736 Sater et al. Jun 2001 B1
6261302 Voegele et al. Jul 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6330964 Kayan et al. Dec 2001 B1
6387113 Hawkins et al. May 2002 B1
6402757 Moore, III et al. Jun 2002 B1
6425900 Knodel et al. Jul 2002 B1
6439446 Perry et al. Aug 2002 B1
6440136 Gambale et al. Aug 2002 B1
6450391 Kayan et al. Sep 2002 B1
6457625 Tormala et al. Oct 2002 B1
6551333 Kuhns et al. Apr 2003 B2
6562051 Bolduc et al. May 2003 B1
6572626 Knodel et al. Jun 2003 B1
6589249 Sater et al. Jul 2003 B2
6592593 Parodi et al. Jul 2003 B1
6626916 Yeung et al. Sep 2003 B1
6632228 Fortier et al. Oct 2003 B2
6652538 Kayan et al. Nov 2003 B2
6663656 Schmieding et al. Dec 2003 B2
6666854 Lange Dec 2003 B1
6695867 Ginn et al. Feb 2004 B2
6733506 McDevitt et al. May 2004 B1
6743240 Smith et al. Jun 2004 B2
6749621 Pantages et al. Jun 2004 B2
6755836 Lewis Jun 2004 B1
6773438 Knodel et al. Aug 2004 B1
6800081 Parodi Oct 2004 B2
6811552 Weil, Sr. et al. Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6837893 Miller Jan 2005 B2
6840943 Kennefick et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6869435 Blake, III Mar 2005 B2
6884248 Bolduc et al. Apr 2005 B2
6887244 Walker et al. May 2005 B1
6893446 Sater et al. May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6929661 Bolduc et al. Aug 2005 B2
6942674 Belef et al. Sep 2005 B2
6945979 Kortenbach et al. Sep 2005 B2
6960217 Bolduc Nov 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6988650 Schwemberger et al. Jan 2006 B2
7000819 Swayze et al. Feb 2006 B2
7128754 Bolduc Oct 2006 B2
7147657 Chiang et al. Dec 2006 B2
7204847 Gambale Apr 2007 B1
7261716 Strobel et al. Aug 2007 B2
7357287 Shelton, IV et al. Apr 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7491232 Bolduc et al. Feb 2009 B2
7544198 Parodi Jun 2009 B2
7591842 Parodi Sep 2009 B2
7637905 Saadat et al. Dec 2009 B2
7637932 Bolduc et al. Dec 2009 B2
7670362 Zergiebel Mar 2010 B2
7758612 Shipp Jul 2010 B2
7819884 Lee et al. Oct 2010 B2
7823267 Bolduc Nov 2010 B2
7828838 Bolduc et al. Nov 2010 B2
7862573 Darois et al. Jan 2011 B2
7867252 Criscuolo et al. Jan 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7959663 Bolduc Jun 2011 B2
7959670 Bolduc Jun 2011 B2
8002811 Corradi et al. Aug 2011 B2
8034076 Criscuolo et al. Oct 2011 B2
8075570 Bolduc et al. Dec 2011 B2
8083752 Bolduc Dec 2011 B2
8087142 Levin et al. Jan 2012 B2
8092519 Bolduc Jan 2012 B2
8114099 Shipp Feb 2012 B2
8114101 Criscuolo et al. Feb 2012 B2
8181840 Milliman May 2012 B2
8216272 Shipp Jul 2012 B2
8231639 Bolduc et al. Jul 2012 B2
8282670 Shipp Oct 2012 B2
8292933 Zergiebel Oct 2012 B2
8323314 Blier Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8343176 Criscuolo et al. Jan 2013 B2
8343184 Blier Jan 2013 B2
8382778 Criscuolo et al. Feb 2013 B2
8414627 Corradi et al. Apr 2013 B2
8465520 Blier Jun 2013 B2
8474679 Felix Jul 2013 B2
8579919 Bolduc et al. Nov 2013 B2
8579920 Nering et al. Nov 2013 B2
8597311 Criscuolo et al. Dec 2013 B2
8603135 Mueller Dec 2013 B2
8684247 Scirica et al. Apr 2014 B2
8685044 Bolduc et al. Apr 2014 B2
8690897 Bolduc Apr 2014 B2
8728102 Criscuolo et al. May 2014 B2
8728120 Blier May 2014 B2
8777969 Kayan Jul 2014 B2
8821514 Aranyi Sep 2014 B2
8821522 Criscuolo et al. Sep 2014 B2
8821557 Corradi et al. Sep 2014 B2
8852215 Criscuolo et al. Oct 2014 B2
8920439 Cardinale et al. Dec 2014 B2
8926637 Zergiebel Jan 2015 B2
8968311 Allen, IV et al. Mar 2015 B2
9017345 Taylor et al. Apr 2015 B2
9023065 Bolduc et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9186138 Corradi et al. Nov 2015 B2
9259221 Zergiebel Feb 2016 B2
9282961 Whitman et al. Mar 2016 B2
9332983 Shipp May 2016 B2
9351728 Sniffin et al. May 2016 B2
9351733 Fischvogt May 2016 B2
9358004 Sniffin et al. Jun 2016 B2
9358010 Wenchell et al. Jun 2016 B2
9364274 Zergiebel Jun 2016 B2
9402623 Kayan Aug 2016 B2
9486218 Criscuolo et al. Nov 2016 B2
9526498 Reed Dec 2016 B2
9655621 Abuzaina et al. May 2017 B2
9662106 Corradi et al. May 2017 B2
9668730 Sniffin et al. Jun 2017 B2
9801633 Sholev et al. Oct 2017 B2
9867620 Fischvogt et al. Jan 2018 B2
9987010 Zergiebel Jun 2018 B2
10070860 Zergiebel Sep 2018 B2
20010007074 Strobel et al. Jul 2001 A1
20010044656 Williamson et al. Nov 2001 A1
20020117533 Milliman Aug 2002 A1
20030009441 Holsten et al. Jan 2003 A1
20030114839 Looper et al. Jun 2003 A1
20040092937 Criscuolo et al. May 2004 A1
20040111089 Stevens et al. Jun 2004 A1
20040127916 Bolduc et al. Jul 2004 A1
20040181222 Culbert et al. Sep 2004 A1
20040193217 Lubbers et al. Sep 2004 A1
20040243139 Lewis et al. Dec 2004 A1
20050222665 Aranyi Oct 2005 A1
20060047308 Ortiz et al. Mar 2006 A1
20060100629 Lee May 2006 A1
20060129152 Shipp Jun 2006 A1
20060129154 Shipp Jun 2006 A1
20070038220 Shipp Feb 2007 A1
20070088390 Paz et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070162030 Aranyi et al. Jul 2007 A1
20070282356 Sonnenschein et al. Dec 2007 A1
20080029575 Shelton et al. Feb 2008 A1
20080029576 Shelton et al. Feb 2008 A1
20080086154 Taylor et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080147113 Nobis et al. Jun 2008 A1
20080169327 Shelton et al. Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243145 Whitfield et al. Oct 2008 A1
20080281336 Zergiebel Nov 2008 A1
20080312687 Blier Dec 2008 A1
20090112234 Crainich et al. Apr 2009 A1
20090118776 Kelsch et al. May 2009 A1
20090188965 Levin et al. Jul 2009 A1
20090289096 Shelton, IV et al. Nov 2009 A1
20090326546 Mohamed et al. Dec 2009 A1
20100030262 McLean et al. Feb 2010 A1
20100270354 Rimer et al. Oct 2010 A1
20100292710 Daniel et al. Nov 2010 A1
20100292713 Cohn et al. Nov 2010 A1
20100292715 Nering et al. Nov 2010 A1
20110022065 Shipp Jan 2011 A1
20110042441 Shelton, IV et al. Feb 2011 A1
20110060349 Cheng et al. Mar 2011 A1
20110071578 Colesanti et al. Mar 2011 A1
20110079627 Cardinale et al. Apr 2011 A1
20110087240 Shipp Apr 2011 A1
20110204120 Crainich Aug 2011 A1
20110272448 Scirica Nov 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20110295282 Glick et al. Dec 2011 A1
20120059397 Criscuolo et al. Mar 2012 A1
20120109157 Criscuolo et al. May 2012 A1
20130018392 Zergiebel Jan 2013 A1
20130110088 Wenchell May 2013 A1
20130131700 Criscuolo et al. May 2013 A1
20130197591 Corradi et al. Aug 2013 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140114329 Zergiebel Apr 2014 A1
20140121684 Criscuolo et al. May 2014 A1
20140200587 Pompee et al. Jul 2014 A1
20140243855 Sholev et al. Aug 2014 A1
20140276967 Fischvogt et al. Sep 2014 A1
20140276969 Wenchell et al. Sep 2014 A1
20140276972 Abuzaina et al. Sep 2014 A1
20140316446 Kayan Oct 2014 A1
20140371765 Corradi et al. Dec 2014 A1
20150001272 Sniffin et al. Jan 2015 A1
20150005748 Sniffin et al. Jan 2015 A1
20150005788 Sniffin et al. Jan 2015 A1
20150005789 Sniffin et al. Jan 2015 A1
20150018847 Criscuolo et al. Jan 2015 A1
20150032130 Russo Jan 2015 A1
20150080911 Reed Mar 2015 A1
20150133970 Ranucci et al. May 2015 A1
20150133971 Ranucci et al. May 2015 A1
20150133972 Ranucci et al. May 2015 A1
20150150558 Zergiebel Jun 2015 A1
20150327859 Bolduc Nov 2015 A1
20160007991 Bolduc Jan 2016 A1
20160007996 Bolduc Jan 2016 A1
20160066971 Corradi et al. Mar 2016 A1
20160074034 Shipp Mar 2016 A1
20160135807 Zergiebel May 2016 A1
20160166255 Fischvogt Jun 2016 A1
20160249912 Fischvogt Sep 2016 A1
20160270778 Zergiebel Sep 2016 A1
20160270835 Reed Sep 2016 A1
20160278766 Wenchell et al. Sep 2016 A1
20160338694 Kayan Nov 2016 A1
20160345967 Sniffin et al. Dec 2016 A1
20170042657 Criscuolo et al. Feb 2017 A1
20170128068 Zhang et al. May 2017 A1
20170143342 Russo May 2017 A1
20170151048 Russo Jun 2017 A1
20170231631 Abuzaina et al. Aug 2017 A1
20170265859 Sniffin et al. Sep 2017 A1
20180042591 Russo et al. Feb 2018 A1
20180116670 Fischvogt et al. May 2018 A1
20180214144 Fischvogt Aug 2018 A1
Foreign Referenced Citations (25)
Number Date Country
104042283 Sep 2014 CN
10300787 Sep 2004 DE
102010015009 Oct 2011 DE
0374088 Jun 1990 EP
0592244 Apr 1994 EP
0834280 Apr 1998 EP
1273272 Jan 2003 EP
1908409 Apr 2008 EP
1990013 Nov 2008 EP
2055241 May 2009 EP
2399538 Dec 2011 EP
2484294 Aug 2012 EP
2659848 Nov 2013 EP
2777517 Sep 2014 EP
2853202 Apr 2015 EP
9149906 Jun 1997 JP
0016701 Mar 2000 WO
0234140 May 2002 WO
2003034925 May 2003 WO
03103507 Dec 2003 WO
2004112841 Dec 2004 WO
2005004727 Jan 2005 WO
2009039506 Mar 2009 WO
2012064692 May 2012 WO
2013046115 Apr 2013 WO
Non-Patent Literature Citations (43)
Entry
European Search Report dated May 10, 2017 in corresponding European Patent Application No. 17157259.7, 12 pages.
Extended European Search Report corresponding to counterpart Int'l, Appln. No. EP 14 81 7036.8 dated Feb. 2, 2017.
European Office Action corresponding to counterpart Int'l, Appln. No. EP 14 19 7885.8 dated Feb. 7, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410090675 dated Feb. 28, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 19 8333.3 dated Mar. 15, 2017.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 1663.3 dated May 10, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 17 15 7259.7 dated May 10, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2014103559671 dated Jun. 13, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014200071 dated Jun. 20, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014201338 dated Jul. 10, 2017.
Chinese Office Action for application No. 201480037169.2 dated Jul. 20, 2017.
Chinese Office Action for application No. 201410418879.1 dated Jul. 20, 2017.
Chinese First Office Action corresponding to Chinese Patent Appln. No. 201480037169.2 dated Jun. 29, 2017.
Chinese First Office Action corresponding to Chinese Patent Appln. No. 201410418879.1 dated Jun. 29, 2017.
European Office Action corresponding to European Patent Appln. No. 14 17 8107.0 dated Oct. 12, 2017.
Australian Examination Report No. 1 corresponding to Australian Patent Appln. No. 2014200870 dated Oct. 26, 2017.
Chinese Second Office Action corresponding to Chinese Patent Appln. No. 201410090675 dated Nov. 6, 2017.
Japanese Office Action corresponding to Japanese Patent Appln. No. 2014-048652 dated Nov. 14, 2017.
Japanese Office Action corresponding to Japanese Patent Appln. No. 2014-047708 dated Nov. 14, 2017.
Chinese Second Office Action corresponding to Chinese Patent Appln. No. 2014103063407 dated Feb. 1, 2018.
Australian Examination Report No. 1 corresponding to Australian Patent Appln. No. 2014202970 dated Mar. 9, 2018.
Japanese Office Action corresponding to Japanese Patent Appln. No. 2014-048652 dated Mar. 15, 2018.
Chinese Second Office Action corresponding to Chinese Patent Appln. No. 201480077682.4 dated Mar. 21, 2018.
Australian Examination Report No. 1 corresponding to Australian Patent Appln. No. 2014202972 dated Mar. 27, 2018.
Supplementary European Search Report dated Feb. 2, 2017 in corresponding European Patent Application No. 14817036, 8 pages.
Extended European Search Report corresponding to EP No. 11 25 0549.0, completed Sep. 9, 2013 and dated Sep. 17, 2013; 9 pages.
Extended European Search Report corresponding to EP 14 15 9394.7, completed Apr. 16, 2014 and dated Apr. 29, 2014; 8 pages.
European Search Report corresponding to EP No. 10 01 2659.8, completed Dec. 21, 2010; dated Jan. 3, 2011: 3 pages.
European Search Report corresponding to EP No. 10 01 2646.5, completed Feb. 11, 2011; dated Feb. 22, 2011; 3 pages.
EP Search Report corresponding to EP 14 18 1900.3, completed Mar. 31, 2015 and dated Apr. 9, 2015; 7pp.
Extended European Search Report corresponding to EP 14 15 8946.5, completed Jun. 20, 2014 and dated Jul. 8, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 17 8107.0, completed Nov. 24, 2014 and dated Dec. 3, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 17 4656.0, completed Jan. 16, 2015 and dated Jan. 26, 2015; (7 pp).
Extended European Search Report corresponding to EP 14 18 4907.5, completed Jan. 12, 2015 and dated Jan. 27, 2015; (9 pp).
Extended European Search Report corresponding to counterpart application EP 14 19 7885.8 dated Apr. 30, 2015; 9pp.
Extended European Search Report corresponding to Int'l Application No. EP 14 15 1663.3 dated Jun. 7, 2016.
European Office Action corresponding to Patent Application EP 14 15 8946.5 dated Apr. 26, 2018.
Japanese Office Action corresponding to Patent Application JP 2014-132105 dated May 1, 2018.
Japanese Office Action corresponding to Patent Application JP 2014-047708 dated May 14, 2018.
Chinese Second Office Action corresponding to Patent Application CN 2014103559671 dated May 25, 2018.
Australian Examination Report No. 1 corresponding to Patent Application AU 2014302551 dated Jul. 16, 2018.
Japanese Office Action corresponding to Patent Application JP 2014-047708 dated Aug. 15, 2018.
Australian Examination Report No. 1 corresponding to counterpart AU Patent Appln. 2014302551 dated Jul. 16, 2018.
Related Publications (1)
Number Date Country
20160345967 A1 Dec 2016 US
Continuations (1)
Number Date Country
Parent 13974338 Aug 2013 US
Child 15168654 US
Continuation in Parts (1)
Number Date Country
Parent 13930770 Jun 2013 US
Child 13974338 US