Articulating clip applier

Information

  • Patent Grant
  • 11517322
  • Patent Number
    11,517,322
  • Date Filed
    Monday, January 13, 2020
    4 years ago
  • Date Issued
    Tuesday, December 6, 2022
    2 years ago
Abstract
A surgical apparatus for application of surgical clips to body tissue is provided. The surgical apparatus includes a housing, a drive assembly, a trigger, and a shaft assembly. The trigger is operatively connected with the drive assembly. The drive assembly is at least partially positioned within the housing. The shaft assembly extends distally from the housing and has a first tubular member pivotally connected with a second tubular member located distally from the first tubular member. An articulation mechanism is operatively connected between the first and second tubular members, and includes a gear rack, at least one gear, and a gear segment, respectfully connected with each other to pivot the second tubular member about the pivot axis. The gear rack and at least one gear are located within the first tubular member. The gear segment extends proximally from the second tubular member.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical clip appliers and, more particularly, to an articulating endoscopic surgical fastener applier.


2. Background of Related Art

Endoscopic staplers and clip appliers are known in the art and are used for a number of distinct and useful surgical procedures. In the case of a laparoscopic surgical procedure, access to the interior of an abdomen is achieved through narrow tubes or cannulas inserted through a small entrance incision in the skin. Minimally invasive procedures performed elsewhere in the body are often generally referred to as endoscopic procedures. Typically, a tube or cannula device is extended into the patient's body through the entrance incision to provide an access port. The port allows the surgeon to insert a number of different surgical instruments therethrough using a trocar and for performing surgical procedures far removed from the incision.


During a majority of these procedures, the surgeon must often terminate the flow of blood or another fluid through one or more vessels. The surgeon will often apply a surgical clip to a blood vessel or another duct to prevent the flow of body fluids therethrough during the procedure. An endoscopic clip applier is known in the art for applying a single clip during an entry to the body cavity. Such single clip appliers are typically fabricated from a biocompatible material and are usually compressed over a vessel. Once applied to the vessel, the compressed clip terminates the flow of fluid therethrough.


Endoscopic clip appliers that are able to apply multiple clips in endoscopic or laparoscopic procedures during a single entry into the body cavity are described in commonly assigned U.S. Pat. Nos. 5,084,057 and 5,100,420 to Green et al., which are both incorporated by reference in their entirety. Another multiple endoscopic clip applier is disclosed in commonly assigned U.S. Pat. No. 5,607,436 to Pratt et al., the contents of which is also hereby incorporated by reference herein in its entirety. These devices are typically, though not necessarily, used during a single surgical procedure. U.S. patent application Ser. No. 08/515,341 now U.S. Pat. No. 5,695,502 to Pier et al., the disclosure of which is hereby incorporated by reference herein, discloses a resterilizable surgical clip applier. The clip applier advances and forms multiple clips during a single insertion into the body cavity. This resterilizable clip applier is configured to receive and cooperate with an interchangeable clip magazine to advance and form multiple clips during a single entry into a body cavity. One significant design goal is that the surgical clip be loaded between the jaws without any compression of the clip from the loading procedure.


Endoscopic or laparoscopic procedures are often performed remotely from the incision. Consequently, application of clips may be complicated by a reduced field of view or reduced tactile feedback for the user at the proximal end of the device. It is therefore desirable to improve the operation of the instrument by providing an instrument that is capable of articulating.


SUMMARY

The present disclosure relates to surgical clip appliers.


According to an aspect of the present disclosure, a surgical apparatus for application of surgical clips to body tissue is provided and includes a housing, a drive assembly, a shaft assembly, and a trigger. The shaft assembly extends distally from the housing. The drive assembly is at least partially positioned within the housing. The trigger is operatively connected to the drive assembly.


The shaft assembly has a first tubular member and a second tubular member located distally from the first tubular member. The first tubular member defines a longitudinal axis. The first tubular member and the second tubular member are pivotally connected through a common pivot axis. The pivot axis is perpendicular to the longitudinal axis. The drive assembly may include a flexible cable that transfers both a translational force and a rotational force from inside of the housing into the second tubular member.


An articulation mechanism operatively connects the first tubular member and the second tubular member. The articulation mechanism includes a gear rack, at least one gear and a gear segment. The gear rack has a plurality of teeth longitudinally placed thereon and is located within the first tubular member. The at least one gear is operatively connected with the gear rack within the first tubular member. The gear segment extends proximally from the second tubular member and is operatively connected with the at least one gear. The gear segment is fixed with respect to the second tubular member. The articulation mechanism pivots the second tubular member about the pivot axis at an angle of up to 90° from the longitudinal axis. The articulating mechanism may include a control knob that is rotatable to pivot the second tubular member.


The second tubular member may include a jaw assembly and a clip cartridge containing a plurality of fasteners disposed therein.


The surgical clip applying apparatus may include a rotation mechanism. The rotation mechanism is operatively connected with and provides a rotational force to the jaw assembly. The rotation mechanism may include a dial and a band. The band is located about a proximal portion of the drive assembly. The dial defines an internal passage and an inner surface. The band defines a contoured outer surface that receives and transmits a rotational force from the inner surface of the dial to the drive assembly. The dial is slidably coupled with the band.


The second tubular member may include two substantially parallel gear segments.


In another embodiment, a surgical apparatus for application of surgical clips to body tissue is provided and includes a housing, a drive assembly, a shaft assembly, and a trigger. The shaft assembly extends distally from the housing.


The shaft assembly has a first tubular member and a second tubular member located distally from the first tubular member. The first tubular member defines a first longitudinal axis, around which the first tubular member may be rotated. The first tubular member and the second tubular member are pivotally connected through a common pivot axis.


The second tubular member defines a second longitudinal axis. A distal portion of the second tubular member is rotatable about the second longitudinal axis. The second tubular member includes a geared segment extending proximally from a proximal portion thereof.


The drive assembly is at least partially positioned within the housing and extends through the first tubular member and partially into the second tubular member. The drive assembly may include a flexible cable to transfer both a translational force and a rotational force from inside of the housing into the second tubular member. The trigger is operatively connected to the drive assembly.


A rack extends along a portion of the longitudinal axis. The rack is located within the first tubular member and reciprocates along the first longitudinal axis. The rack is operatively connected with the geared segment.


The surgical clip applying apparatus may include an articulation mechanism that provides a pivotal force to pivot the second tubular member about the pivot axis at an angle of up to 90° from the first longitudinal axis. The articulating mechanism includes a control knob being rotatable to retract the rack proximally and to extend the rack distally.


The surgical clip applying apparatus may further include a rotation mechanism. The rotation mechanism is operatively connected with the drive assembly to provide a rotational force to the distal portion of the second tubular member. The rotation mechanism includes a dial and a band located about a proximal portion of the drive assembly. The dial defines an internal passage and an inner surface. The band defines a contoured outer surface that is able receive and transmit a rotational force from the inner surface of the dial to the proximal portion of the drive assembly. The dial is slidably coupled with the band.


The second tubular member may include a jaw assembly and a clip cartridge containing a plurality of clips disposed therein. The rotation mechanism may be connected with and provide a rotational force to the jaw assembly.


According to another aspect of the present disclosure, an end effector for operative connection to a surgical handle assembly including an axially reciprocatable drive assembly having a flexible drive cable operatively connected to the end effector is provided. The end effector includes a distal housing portion defining a proximal end, a distal end, and a longitudinal axis; a knuckle portion extending proximally from the proximal end of the distal housing portion, the knuckle portion being bifurcated into a first geared portion and a second geared portion, the distal housing portion being rotatably mounted to the knuckle portion to allow the distal housing portion to rotate about the longitudinal axis with respect to the knuckle portion; a jaw assembly extending distally from the base portion, the jaw assembly including a first jaw and a second jaw movable between a spaced apart position and an approximated position; a plurality of surgical clips loaded in the housing in a partially stacked fashion; and a jaw closure mechanism disposed in the distal housing portion and operatively associated with the jaw assembly and the plurality of surgical clips. A distal end of the flexible drive cable is connected to the jaw closure mechanism so as to transmit an operative force to the jaw closure mechanism when the longitudinal axis of the distal housing portion is either axially aligned or angled with respect to a longitudinal axis of the surgical handle. The jaw closure mechanism feeds a clip into the jaw assembly and forms the fed clip upon a single complete stroke of the flexible drive cable.


The end effector may further include a proximal housing pivotably connected to the knuckle portion; and a gear train supported in the proximal housing. A distal-most gear of the gear train may be operatively engaged with the first geared portion and the second geared portion of the knuckle portion.


The end effector may further include a rack slidably supported in the proximal housing, wherein the rack defines at least one axial row of gear teeth, and wherein the axial row of gear teeth is engaged with a proximal-most gear of the gear train.


In use, axial displacement of the rack relative to the cover results in articulation of the distal housing portion relative to the proximal housing portion.


According to a further aspect of the present disclosure, an end effector for application of surgical clips to body tissue is provided. The end effector includes a portion defining a proximal end, a distal end, and a longitudinal axis; a knuckle portion extending proximally from the proximal end of the base portion, the knuckle portion being bifurcated into a first geared portion and a second geared portion, the base portion being rotatably mounted to the knuckle portion to allow the base portion to rotate about the longitudinal axis with respect to the knuckle portion; a jaw assembly extending distally from the base portion, the jaw assembly including a first jaw and a second jaw movable between a spaced apart position and an approximated position; and a plurality of fasteners located within the base portion, each of the plurality of fasteners having a pair of legs extending from a backspan, each of the plurality of fasteners defining a fastener axis extending in a direction substantially parallel to the pair of legs, each of the plurality of fasteners being arranged within the base portion to form an angle between the fastener axis and the longitudinal axis, each of the plurality of fasteners being located adjacent to another of the plurality of fasteners to form a stack.


The knuckle may include a pivot structure that defines a pivot axis.


The end effector may further include a jaw closure mechanism operatively connected to the jaw assembly, the jaw closure mechanism providing an approximating force to the first jaw and the second jaw.


The knuckle portion may include a plurality of teeth.


The plurality of fasteners may be stacked in a non-colinear position with respect to the second longitudinal axis.


The first jaw and the second jaw may be angled with respect to the longitudinal axis.


The legs of the plurality of fasteners may be disposed in a substantially parallel orientation to the first jaw and the second jaw.


The fasteners may have a U-shape or a V-shape. The stack of fasteners may extend parallel to the longitudinal axis.


The end effector may further include a proximal housing portion connected to knuckle portion such that base portion is pivotable off-axis with respect to the cover. The proximal housing portion may support a gear train in a distal region thereof, and wherein a distal-most gear of the gear train may be operatively engaged with the first geared portion and the second geared portion of the knuckle portion. The end effector may further include a rack slidably supported in a proximal region of the proximal housing portion, wherein the rack defines at least one axial row of gear teeth, and wherein the axial row of gear teeth is engaged with a proximal-most gear of the gear train.


In use, axial displacement of the rack relative to the proximal housing portion may result in articulation of the base portion relative to the proximal housing portion.


According to yet another aspect of the present disclosure, an end effector for operative connection to a surgical handle assembly including an axially reciprocatable drive assembly having a flexible drive cable operatively connected to the end effector is provided. The end effector includes a distal housing portion defining a proximal end, a distal end and a longitudinal axis; a proximal housing portion defining a proximal end, a distal end and a longitudinal axis; a knuckle portion interconnecting the proximal end of the distal housing portion and the distal end of the proximal housing portion, wherein the knuckle portion permits rotation of the distal housing portion relative thereto and articulation of the distal housing portion relative to the proximal housing portion; a jaw assembly supported in the distal end of the distal housing portion, the jaw assembly including a first jaw and a second jaw movable between a spaced apart position and an approximated position; and a plurality of fasteners loaded within the distal housing portion, each of the plurality of fasteners having a pair of legs extending from a backspan, each of the plurality of fasteners defining a fastener axis extending in a direction substantially parallel to the pair of legs, each of the plurality of fasteners being arranged within the base portion such that the fastener axis is disposed at an angle with respect to the longitudinal axis of the distal housing portion, and wherein the plurality of fasteners are arranged in a stack.


The end effector may further include a jaw closure mechanism operatively connected to the jaw assembly, wherein the jaw closure mechanism provides an approximating force to the first jaw and the second jaw upon a proximal movement thereof relative to the first jaw and the second jaw.


The jaw closure mechanism may include a cam plate axially slidably supported in the distal housing portion, wherein the cam plate includes a camming aperture formed therein, wherein the camming aperture has a substantially “V” shaped profile, and wherein each of first jaw and second jaw includes a post extending therefrom and into the camming aperture of the cam plate. In use, movement of the cam plate proximally relative to the first jaw and second jaw engages an edge of the camming aperture against the nubs of the first jaw and the second jaw to approximate the first jaw and the second jaw.


The cam plate may include a protrusion extending distally into the camming aperture; wherein movement of the cam plate distally relative to the first jaw and second jaw engages the protrusion of the camming aperture between the nubs of the first jaw and the second jaw to separate the first jaw and the second jaw.


The flexible drive cable may extend between the distal housing portion and the proximal housing portion, and across the knuckle portion.


A proximal end of the drive cable may be connected to a drive assembly and a distal end of the drive cable may be connected to a block member slidably supported in the base portion, wherein distal movement of the drive cable results in distal movement of the block member to distally advance a feed bar and load a fastener into the jaw assembly.


The end effector may further include a cam plate axially slidably supported in the base portion; wherein the block member includes a finger extending into a proximal axially extending slot provided in the cam plate; wherein the cam plate includes a camming aperture formed therein; wherein the camming aperture has a substantially “V” shaped profile, and wherein each of first jaw and second jaw includes a post extending therefrom and into the camming aperture of the cam plate. In use, distal movement of the block member may result in distal movement of the cam plate and proximal movement of the block member results in proximal movement of the cam plate. Additionally, in use, movement of the cam plate proximally relative to the first jaw and second jaw engages an edge of the camming aperture against the nubs of the first jaw and the second jaw to approximate the first jaw and the second jaw.


The cam plate may include a protrusion extending distally into the camming aperture, wherein movement of the cam plate distally relative to the first jaw and second jaw engages the protrusion of the camming aperture between the nubs of the first jaw and the second jaw to separate the first jaw and the second jaw.


The cam plate may be biased to a distal position.


The end effector may further include a clip follower disposed proximally of the plurality of fasteners, wherein the clip follower is biased in a distal direction to urge the plurality of fasteners distally.


The knuckle portion may be bifurcated into a first geared portion and a second geared portion.


The proximal housing portion may support a gear train in a distal region thereof, and wherein a distal-most gear of the gear train is operatively engaged with the first geared portion and the second geared portion of the knuckle portion.


The end effector may further include a rack slidably supported in a proximal region of the proximal housing portion, wherein the rack defines at least one axial row of gear teeth, and wherein the axial row of gear teeth is engaged with a proximal-most gear of the gear train.


In use, axial displacement of the rack relative to the proximal housing portion results in articulation of the distal housing portion relative to the proximal housing portion such that the longitudinal axis of the distal housing portion is angled with respect to the longitudinal axis of the proximal housing portion.





BRIEF DESCRIPTION OF THE DRAWINGS

The present clip applier will be more fully appreciated as the same becomes better understood from the following detailed description when considered in connection with the following drawings, in which:



FIG. 1 is a front, perspective view of a surgical clip applier according to an embodiment of the present disclosure;



FIG. 2 is a front, perspective view of the indicated area of detail of FIG. 1, illustrating a clip cartridge of the clip applier of FIG. 1;



FIG. 3 is a left-side, elevational view of the clip cartridge of the surgical clip applier of FIGS. 1 and 2;



FIG. 4 is a top, plan view of the clip cartridge of the surgical clip applier of FIGS. 1-3;



FIG. 5 is a perspective view of the surgical clip applier of FIGS. 1-4 illustrating an articulation of the clip cartridge;



FIG. 5A is a cross-sectional side view of a body of the surgical clip applier of FIGS. 1-5, as taken through 5A-5A of FIG. 5;



FIG. 5B is a cross-sectional view of the body of the surgical clip applier of FIGS. 1-5A, as taken through 5B-5B of FIG. 5A;



FIG. 6 is an exploded view of a shaft assembly of the surgical clip applier of FIG. 5;



FIG. 7 is an enlarged perspective view of an articulation plunger of the shaft assembly of FIG. 6;



FIG. 8 is an enlarged exploded view of an articulation screw of the shaft assembly of FIG. 6;



FIG. 9 is an enlarged view of the articulation screw placed about the proximal end of the articulation plunger of the shaft assembly of FIG. 6;



FIG. 10 is an enlarged perspective view of a distal portion of a shaft of the shaft assembly of FIG. 6, with the drive shaft extending therethrough;



FIG. 11 is an enlarged perspective view of a rack coupled to the shaft of the shaft assembly of FIG. 6;



FIG. 12 is an exploded view of a distal end of a first tubular portion of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 6;



FIG. 12A is an enlarged perspective view of a first gear of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 12;



FIG. 12B is an enlarged perspective view of a second gear of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 12;



FIG. 12C is an enlarged perspective view of a third gear of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 12;



FIG. 13 is a front, perspective view of the distal end of a first tubular portion of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 6;



FIG. 14 is a front, perspective view of the distal end of a first tubular portion of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 6, with a right side end cover and the outer tube removed;



FIG. 15 is a front, perspective view of the distal end of a first tubular portion of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 6, with a right side end cover, the outer tube, the first gear, the second gear, and the third gear removed;



FIG. 16 is a longitudinal cross-sectional view of the distal end of a first tubular portion of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 6, showing the connection between the rack, the first gear, the second gear, the third gear, and a articulation knuckle of the second tubular portion;



FIG. 17 is a further longitudinal cross-sectional view of the distal end of a first tubular portion of the shaft assembly of the surgical clip applier as indicated by the detail of FIG. 6, showing the connection between the rack, the first gear, the second gear, the third gear, and the articulation knuckle of the second tubular portion in an articulated position;



FIG. 18 is an enlarged longitudinal cross-sectional view of the indicated area of detail of FIG. 17, illustrating the distal end of a first tubular portion and the second tubular portion in an articulated position;



FIG. 19 is a longitudinal cross-sectional view of the shaft assembly of FIG. 6, as taken through 19-19 of FIG. 1;



FIG. 20 is an enlarged longitudinal cross-sectional view of the indicated area of detail of FIG. 19 of the shaft assembly;



FIG. 21 is an enlarged cross-sectional view of the proximal portion of the shaft assembly as illustrated in FIG. 20;



FIG. 22 is an enlarged cross-sectional view of the indicated area of detail of FIG. 20 of the shaft assembly as detailed in FIG. 20;



FIG. 23 is an enlarged cross-sectional view of the indicated area of detail of FIG. 22 of the shaft assembly;



FIG. 24 is an enlarged cross-sectional view of the indicated area of detail of FIG. 19 of the shaft assembly;



FIG. 25 is an enlarged cross-sectional view of the indicated area of detail of FIG. 24 of the proximal portion of the second tubular portion as illustrated in FIG. 24;



FIG. 26 is an enlarged cross-sectional view of the indicated area of detail of FIG. 25 illustrating a distal end of a clip pusher of the second tubular portion;



FIG. 27 is a perspective view of the clip cartridge of the second tubular portion as indicated in FIG. 6, with parts separated;



FIG. 27A is a front, plan view of a clip used in the cartridge of the surgical clip applier of FIG. 27;



FIG. 28 is a perspective view of a housing of the clip cartridge of FIG. 27;



FIG. 29 is a perspective view of a camming plate of the clip cartridge of FIG. 27;



FIG. 30 is a perspective view of a jaw structure of the clip cartridge of FIG. 27;



FIG. 31 is a perspective view of a block member of the clip cartridge of FIG. 27;



FIG. 32 is a perspective view of a clip pusher of the clip cartridge of FIG. 27;



FIG. 33 is a perspective view of a clip follower of the clip cartridge of FIG. 27;



FIG. 34 is a perspective view of a clip carrier of the clip cartridge of FIG. 27;



FIG. 35 is a bottom perspective view of a cover of the clip cartridge of FIG. 27;



FIG. 36 is a perspective view of the housing coupled to the knuckle of the clip cartridge;



FIG. 37 is a perspective view of the housing of FIG. 36 with the jaw structure removed therefrom;



FIG. 38 is a perspective view of the housing of FIG. 36 with the jaw structure and the camming plate removed therefrom;



FIG. 39 is a perspective view of the housing of FIG. 36 including the distal member and the clip pusher in position;



FIG. 40 is a perspective view of the housing of FIG. 39 with the addition of the clip carrier and clip follower thereon;



FIG. 41 is an enlarged detail view of the clip carrier and clip pusher as indicated in FIG. 40;



FIG. 42 is a perspective view of the housing of FIG. 40 with the addition of a clip stack thereon;



FIG. 43 is an enlarged detail view of the clip stack as indicated in FIG. 40;



FIG. 44 is an longitudinal cross-sectional view of the clip cartridge, illustrating a clip being loaded during a first stage of operation;



FIG. 45 is an enlarged longitudinal cross-sectional view of the clip cartridge as indicated in FIG. 44, illustrating the clip being loaded during the first stage of operation;



FIG. 46 is an longitudinal cross-sectional view of the clip cartridge, illustrating a complete advancement of the clip pusher during the first stage of operation;



FIG. 47 is an enlarged longitudinal cross-sectional view of the clip cartridge as indicated in FIG. 46, illustrating a return of the clip pusher during a second stage of operation;



FIG. 48 is an longitudinal cross-sectional view of the clip cartridge, illustrating the forming of the loaded clip during a third stage of operation;



FIG. 49 is a perspective view of the jaw structure and the camming plate during the first and second stages of operation, illustrating a separator forcing the jaws apart;



FIG. 50 is a top plan view of the jaw structure and the camming plate during the first and second stages of operation, illustrating the separator forcing the jaws apart;



FIG. 51 is a top plan view of the jaw structure and the camming plate during the third stage of operation, illustrating the formation of the loaded clip about a vessel; and



FIG. 52 is a perspective view of the clip formed about and sealing a vessel.





Other features of the present disclosure will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the present disclosure.


DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of surgical clip appliers in accordance with the present disclosure will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical structural elements. As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus which is closer to the user and the term “distal” refers to the end of the apparatus which is further away from the user.


With reference to FIG. 1, reference numeral 100 designates an embodiment of the presently disclosed surgical clip applier. In the interest of brevity, the present disclosure focuses on an articulation mechanism and a clip applying end mechanism of surgical clip applier 100. U.S. Pat. No. 7,637,917, filed on Oct. 7, 2005, describes in detail the structure and operation of a surgical clip applier that may incorporate the presently disclosed articulation mechanism and a clip applying end mechanism, the entire content of which is incorporated herein by reference.


Clip applier 100 includes a handle assembly 200 and an articulating endoscopic portion or a shaft assembly 300 extending distally from handle assembly 200. Referring now to FIGS. 5, 5A, 5B-8, handle assembly 200 of surgical clip applier 100 is shown. Handle assembly 200 includes a housing 202 having a first or right side half-section 202a and a second or left side half-section 202b. Handle assembly 200 includes a trigger 208 pivotably supported between right side half-section 202a and left side half-section 202b. Housing 202 of handle assembly 200 may be formed of a suitable plastic material.


As seen in FIGS. 1-15, the shaft assembly 300 includes a first tubular member 302 and a second tubular member or an end effector 500. The first tubular member 302 defines a first longitudinal ‘X1’ axis and the end effector 500 defines a second longitudinal ‘X2’ axis. The end effector 500 is located distally from the first tubular member 302. The first tubular member 302 and the end effector 500 are pivotally connected to each other through a common pivot ‘Z’ axis. The common pivot ‘Z’ axis is substantially perpendicular to both the first longitudinal ‘X1’ axis and the second longitudinal ‘X2’ axis. Shaft assembly 300 and the components thereof may be formed of suitable biocompatible materials, such as, for example, stainless steel, titanium, plastics, and the like.


As seen in FIG. 5, the first tubular member 302 has a rotation mechanism 304, and an articulation mechanism 320. The rotation mechanism 304 allows the first tubular member 302 to rotate, with respect to housing 202, about the first longitudinal ‘X1’ axis. The rotation mechanism 304 includes a rotation knob 306 that is rotatably coupled to the housing 202 and an outer tube 310. The rotation knob 306 is supported between the housing half-sections 202a, 202b.


As seen in FIGS. 5 and 6, the outer tube 310 is at least partially supported by rotation knob 306, and has a proximal end 310a and a distal end 310b. The outer tube 310 defines a lumen 312, extending longitudinally therethrough, and a pair of openings 314, formed near the proximal end 310a of the outer tube 310. With reference to FIGS. 20 and 21, the rotation knob 306 has a pair of nubs 307 that extend into and interface with the openings 314 of the outer tube 310. In use, as seen in FIG. 1, rotation of the rotation knob 306 causes the outer tube 310 to rotate about the first longitudinal ‘X1’ axis and thus results in the rotation of the entire shaft assembly 300.


As seen in FIG. 5A, clip applier 100 includes a drive assembly 220 operatively connected to trigger 208. The drive assembly 220 is at least partially positioned within the housing 202 of handle assembly 200 and extends through the first tubular member 302 and at least partially into the end effector 500. The drive assembly 220 is able to transfer both a translational force and a rotational force into the end effector 500.


The trigger 208 is operatively connected to a link 210. Link 210 may be connected to an electrical motor 212, which is connected with a drive member 226. The drive member 226 is rotatably attached to the proximal end 222a of the drive rod 222 via a coupling 230 that allows the drive rod 222 to rotate with respect to the drive member 226.


The drive rod 222 may have a cylindrical shape and may extend at least partially along the first tubular member 302. With additional reference to FIG. 44, drive assembly 220 includes a flexible drive cable 224 mounted to the distal end 222b of the drive rod 222. Drive cable 224 extends distally from drive rod 222 and into the end effector 500. It is envisioned that the drive cable 224 may have a cross-sectional shape that is non-circular.


As seen in FIGS. 5-5B, clip applier 100 further includes a positioning mechanism 530. The positioning mechanism 530 is operatively connected with the drive assembly 220 to provide a rotational force to a distal portion or clip cartridge 550 of the end effector 500. As seen in FIG. 5A, the positioning mechanism 530 includes a rotation knob 306, portions of the drive rod 222, and portions of the drive cable 224.


The drive rod 222 includes a contoured outer surface or shaped band 232 that is complimentary to an aperture 242 in the rotation knob 306. The aperture 242 is sized slightly larger than the shaped band 232 of the drive rod 222. The over sized aperture 242 allows for longitudinal movement of the drive rod 222 through the aperture 242. The drive rod 222 is able to freely rotate within the first tubular member 302, which allows the drive rod 222 to receive and transmit a rotational force from the rotation knob 306 to the proximal portion of the drive assembly 220.


The drive rod 222 includes a contoured outer surface or shaped band 232 that is complimentary to an aperture 242 defined in a mounting member 240 that supports drive rod 222. The aperture 242 is sized slightly larger than the shaped band 232 of the drive rod 222. The over sized aperture 242 allows for longitudinal movement of the drive rod 222 through the aperture 242. The drive rod 222 is able to freely rotate within the first tubular member 302, which allows the drive rod 222 to receive and transmit a rotational force from the rotation known 306 to the proximal portion of the drive assembly 220.


As seen in FIG. 5, clip applier 100 includes an articulation mechanism 320 operatively connecting the first tubular member 302 with the end effector 500. The articulation mechanism 320 provides a pivot force to the end effector 500 to pivot the end effector 500 about the pivot axis at an angle of up to about 90° relative to the first longitudinal ‘X1’ axis.


As seen in FIGS. 6 and 12-18, articulation assembly 320 includes an articulation knob 322 rotatably supported by and projecting distally from the rotation knob 306 (FIG. 5A). With reference to FIG. 21, articulation knob 322 has an internal thread 324 that is sized to accept and compliment an external thread 332 (FIG. 8) of an articulation screw 330. As seen in FIG. 8, articulation screw 330 includes a first or right hand half section 330a and a second or left hand section 330b. Each section 330a, 330b has a nub 334 projecting radially inward from an inner curved surface 336. Each nub 334 extends through a slot 316 (FIG. 6) defined in the outer tube 310 and into a radial recess 342 of an articulation plunger 340 (FIG. 7).


Articulation assembly 320 includes an articulation plunger 340 that extends between a proximal end 340a, located proximally of nubs 334 of articulation screw 330 and outer tube 310. Articulation plunger 340 defines a lumen 346 sized to allow passage of the drive rod 222 therethrough. The articulation plunger 340 terminates in a distal end 340b having a mushroom shaped head 344. The mushroom shaped head 344 has a larger distal portion 344b than proximal portion 344a.


With reference to FIGS. 6-7 and 9-11, clip applier 100 includes a shaft 350 defining a proximal portion 352 having a proximal end 350a, a distal portion 354 having a distal end 350b, and a center portion 350c. The shaft 350 is semi-cylindrical in shape to allow the drive rod 222 to pass therealong, and extends longitudinally within the outer tube 310. As shown in FIG. 4, the proximal end 350a and the distal end 350b of shaft 350 are curved in an opposite transverse direction than the center portion 350c. Shaft 350 defines a distal aperture that separates the distal portion 354 from the center portion 350c and a proximal aperture that separates the proximal portion 352 from the center portion 350c. The distal aperture of shaft 350 is sized and configured to accept the distal portion 334b of head 344 of the articulation plunger 340 therein and the distal portion forms an arc that is sized and configured to loosely set about distal portion 344b of head 344 of the articulation plunger 340.


As seen in FIG. 11, the proximal portion 352 of the shaft 350 removably couples the shaft 350 to a rack 360. A proximal end 362a of the rack 360 is formed in a mushroom shaped tail 362. The proximal end 362a of the mushroom shaped tail 362 is larger than the distal end 362b of the mushroom shaped tail 362. The proximal aperture of the shaft 350 is sized to accept the proximal end 362b of the mushroom shaped tail 362 therein. The proximal portion 352 of shaft 350 forms an arc that is sized to set loosely about distal end 362b of the mushroom shaped tail 362 of the rack 360.


As seen in FIG. 11, rack 360 includes a cylindrical section 363 and a proximal end 362b disposed immediately adjacent to cylindrical section 363 and that is sized slightly smaller than an inner diameter of the outer tube 310. The cylindrical section 363 may have one or more recesses 364 about the perimeter that are sized to accept an O-seal 382 therein, as shown in FIG. 17. The O-seal 382 is deformable to fill the space between the cylindrical section 363 of the rack 360 and the inner diameter of the outer tube 310 to substantially seal the distal portion of the first tubular member 302.


As shown in FIG. 11, the rack 360 defines a central passageway 365 along the first longitudinal ‘X1’ axis sized to allow passage of the drive cable 226 therethrough. A distal portion 366 of the rack 360 has a rectangular cross-sectional shape. With reference to FIGS. 12 and 14, the distal portion 366 is sized to fit through the longitudinal center of a helical spring 380. The spring 380 has an outer diameter sized to be slightly smaller than the cylindrical section 363 of the rack 360. As a result, the spring is prevented from passing proximally beyond the cylindrical section 363 of the rack 360.


As shown in FIGS. 11 and 12, the distal portion 366 of rack 360 includes at least two protrusions 367 and a set of longitudinally aligned linear teeth 368. The two protrusions 367 extend outward in opposite directions from the proximal portion 366 and are aligned and sized to be placed into slots 391 defined in an inner surface 392 of an end cover 390. As seen in FIG. 12, the end cover 390 has a right hand side cover 390a and a left hand side cover 390b. The outer proximal portion 393 of end cover 390 defines an outer diameter that is sized to enable the end cover 390 to be pressed into the distal end 310b of the outer tube 310 and establish an interference fit between the end cover 390 and the outer tube 310.


The inner surface 392 of the end cover 390 has a rectangular shape that is sized to be slightly larger than the rectangular cross-section of the rack 360 to allow at least partial longitudinal movement of the rack 360 therein. A proximal end 394a of the end cover 390 is sized to be smaller than the spring 380 to provide a biasing surface for the spring 380. As seen in FIGS. 14 and 15, the spring 380 is interposed between a distal surface 363a of the cylindrical portion 363 and the proximal end 394a of the end cover 390 to bias the rack 360 proximally.


As seen in FIGS. 12 and 16, the inner surface 392 of the end cover sections 390a, 390b define a series of three circular recesses 396a, 396b, and 396c. Each of the three circular recesses 396a, 396b, and 396c are centered about an aperture 397a, 397b, and 397c through each of the end cover sections 392a, 392b.


As stated above, the rack 360 is located within the outer tube 310 and extends into the end cover 390. The rack 360 is configured to reciprocate along the first longitudinal ‘X1’ axis. A proximal position and a distal position of the rack 360 is defined by the two protrusions 367 that are located within respective slots 391 of end cover 390. The two protrusions 367 of rack 360, acting against the proximal end 391a of the slots 391, define the proximal-most position of the rack 360. The two protrusions 367 of rack 360, acting against the distal end 391b of the slots 391, define the distal-most position of the rack 360.


While rack 360 includes a pair of opposed longitudinally arranged teeth 368 that engage respective gear sets and mating structure, only a single set of teeth 368 of rack 360 and a single respective gear set and mating structure will be described herein for the purpose of clarity. As shown in FIGS. 12-18, rack 360 has a pair of longitudinally arranged teeth 368 on opposing sides of the distal portion 366. The longitudinally arranged teeth 368 are defined by recesses 369 in the distal portion 366 that form the distal portion 366 into an “I” beam, wherein the longitudinally arranged teeth 368 are formed along an inside of flanges of the “I” beam that extend in opposing directions. The longitudinally arranged teeth 368 are in intimate contact with a first gear 420 supported in end cover 390.


As seen in FIG. 12A, the first gear 420 defines a center aperture 421, a circular base 422, a first circular set of teeth 423, and a second circular set of teeth 424. The first circular set of teeth 423 is smaller in diameter than and stacked upon the second set of teeth 424. The circular base 422 forms a substantially similar outer diameter as the second set of teeth 424. As seen in FIG. 12, a first pin 410 has a head portion 410a that is larger than the aperture 421 of first gear 420, a body portion 410b slightly smaller in diameter than the center aperture 421, and a tail portion 410c that is sized to allow the first pin 410 to be press fit into the aperture 397a in the cover 390. An interference fit between the tail portion 410c and the cover 390 retains the tail portion 410c in the aperture 397a and holds the first gear 420 at least partially within the first recess 396a of the end cover 390. The longitudinally arranged teeth 368 of the rack 360 and the first gear 420 are connected, such that longitudinal movement of the rack 360 relative to first gear 420 results in a rotational movement in a first direction of the first gear 420.


The first gear 420 is operatively connected with a second gear 430 of the gear set. As seen in FIG. 12B, the second gear 430 defines a center aperture 431, a raised base 432, and a circular set of teeth 433. The raised base 432 is circular in cross-sectional shape and has a substantially smaller outer diameter than the circular set of teeth 423. A second pin 411 has a head portion 411a that is larger than the aperture 431, a body portion 411b that is slightly smaller in diameter than the center aperture 431, and a tail portion 411c that is sized to allow the second pin 411 to be press fit into the aperture 397b in the cover 390. An interference fit between the tail portion 411c and the cover 390 retains the tail portion 411c in the aperture 397b and holds the second gear 430 at least partially within the second recess 396b of the end cover 390. The second circular set of teeth 424 of the first gear 420 is interconnected with the circular set of teeth 433 of the second gear 430, such that rotational movement of the first gear 420 in a first direction results in a rotational movement of the second gear 430 in a second direction.


The second gear 430 is operatively connected with a third gear 440 of the gear set. As seen in FIG. 12c, the third gear 440 defines a center aperture 441, a circular base 442, and a circular set of teeth 443. The circular base 442 forms a substantially similar outer diameter as the circular set of teeth 443. The circular base 442 is substantially equal in height as both the raised base 432 of the second gear 430 and the circular base 422 of the first gear 420. A third pin 412 has a head portion 412a that is larger than the aperture 441, a body portion 412b that is slightly smaller in diameter than the center aperture 441, and a tail portion 412c that is sized to allow the third pin 412 to be press fit into the aperture 397c in the cover 390. An interference fit between the tail portion 412c and the cover 390 retains the tail portion 412c in the aperture 397c and holds the third gear 440 at least partially within the second recess 396c of the end cover 390. The circular set of teeth 433 of the second gear 40 is interconnected with the circular set of teeth 444 of the third gear 440, such that rotational movement of the second gear 430 in the second direction results in a rotational movement of the third gear 440 in the first direction.


Located distally of the third gear 440, each of the end cover sections 392a, 392b defines a boss 398 extending radially inward from the distal portion 395b of the end cover sections 392a, 392b. The bosses 398 capture and secure a cylindrical distal portion 522 of the end effector 500 to the first tubular member 302.


As seen in FIG. 12, cylindrical distal portion 522 of the end effector 500 has a knuckle 510. The knuckle 510 includes a bifurcated proximal portion 514 and a cylindrical distal portion 522. The bifurcated proximal portion 514 defines a pivoting aperture 511 that is perpendicular to both the first longitudinal ‘X1’ axis and the second longitudinal ‘X2’ axis. The pivoting aperture 511 defines the pivot ‘Z’ axis. The pivoting aperture 511 is circular in cross-sectional shape and is sized to accept the bosses 398 therein. The size and alignment of the bosses 398 allow the end cover sections 392a, 392b to sandwich the knuckle 510 therebetween. As a result of the circular bosses 398 projecting into the circular pivoting aperture 511, the end effector 500 is able to pivot or swing about the axis.


The bifurcated proximal portion 514 of knuckle 510 includes two gear segments 516a, 516b that are integrally formed therewith and that extend proximally about the proximal end 510a of the knuckle 510. Each gear segment 516 defines an arcuate set of teeth 517 that are operatively connected with the third gear 440.


The knuckle 510 further defines a lumen 518 through the center thereof, and a circular channel 520 about the cylindrical distal portion 522. The circular channel 520 is located proximally from the distal end 510b of the knuckle 510. The center lumen 518 is sized to allow at least partial passage of the drive cable 224 therethrough and at least partially into a clip cartridge 550 (FIGS. 24 and 27) of the end effector 500.


The operation of the articulation mechanism will now be discussed in reference to FIGS. 6-21. With specific reference to FIGS. 20 and 21, rotation of the articulation knob 322 (FIG. 5) with respect to the rotation knob 306 and the outer tube 310 produces longitudinal movement of the articulation screw 330 by causing the internal thread 324 of the articulation knob 322 to react against the external thread 332 of the articulation screw 330. The articulation screw 330 is rotationally fixed with respect to the outer tube 310 by the nubs 334. As a result, the articulation screw 330 can only move longitudinally as the articulation knob 332 is rotated about the articulation screw 330. Therefore, rotation of the articulation knob 322 in a first direction causes the movement of the articulation screw 330 in distal direction and rotation of the articulation knob 322 in a second direction causes the movement of the articulation screw 330 in proximal direction.


Axial movement of the articulation screw 330 causes the nubs 334 to react against the articulation plunger 340 to cause longitudinal movement of the articulation plunger 340 in the same direction. Movement of the articulation plunger 340 causes longitudinal movement of the shaft 350 and, in turn, longitudinal movement of the rack 360.


As discussed above, the first gear 420 is operatively connected with the linear teeth 368 of the rack 360. With specific reference to FIGS. 17 and 18, as the rack 360 is forced to move proximally, the first gear 420 is rotated in a first direction causing the second gear 430 to be rotated in a second direction. The second gear 430 causes the third gear 440 to be rotated in the same direction as the first gear 420. The third gear 440 reacts against the geared segments 516 causing the second tubular member 302 to pivot about the pivot ‘Z’ axis.


As seen in FIGS. 1-6, end effector 500 is in the form of a surgical clip applier and is configured to support a clip cartridge 550. As seen in FIG. 27, clip cartridge 550 has a housing or base portion 560 and a cover 590. With reference to FIG. 28, the housing 560 includes a proximal portion 561a and a distal portion 561b. The proximal portion 561a of housing 560 is cylindrical in shape and defines a longitudinal passageway 562 therethrough. The longitudinal passageway 562 is co-axially located with the second longitudinal ‘X2’ axis and transitions, as seen in FIGS. 22 and 23, from a larger cylindrical portion 562a of the passageway 562, sized to accept the cylindrical distal portion 522 of the knuckle 510, to a narrower or smaller portion 562b that is co-axially located with the center lumen 518 of the knuckle 510.


Now referring to FIGS. 22-23 and 27-28, the proximal portion 561a of the housing 560 also defines a pair of parallel pinholes 563 located distally from the proximal end 560a of the proximal portion 561a. The pair of pinholes 563 are aligned off-center, such that each of the pair of pinholes 563 creates a single passageway through the proximal portion 561a to extend into and through the larger cylindrical portion 562a of the longitudinal passageway 562. Each hole 563 is sized to accept a pin 586 therein to cause a friction or interference fit of the pin 586 within the pinhole 563. Each of the pair of the pinholes 563 is located to position the pins 586 with the circular channel 520 of the knuckle 510. As a result, the clip cartridge 550 is longitudinally restrained to the knuckle 510 by the pins 586, while allowing the clip cartridge 550 to rotate about the knuckle 510.


As seen in FIG. 28, the distal portion 561b of the housing 560 is a semi-cylindrical structure that extends distally from a perpendicular surface 564 of the proximal portion 561a. With reference to FIG. 28, the semi-cylindrical distal portion 561b has a pair of horizontal walls 565 that extend partially along the distal portion 561b, a first recessed surface 567, and a second recessed surface 568 that define a longitudinally extending recess 566 along the distal portion 561b of the housing 560, between the pair of horizontal walls 565. A pair of inward projection locks 569 extend into the longitudinally extending recess 566 along the first recessed surface 567 with one projection lock extending inward from each of the horizontal walls 565. A spring slot 570 is defined longitudinally along the second recessed surface 568 at a location distal of spring slot 570. A horizontal recess 571 is defined radially along the second recessed surface 568 at a location distal of spring slot 570. Two stops 572 project from the second recess surface 568 along the distal end 560b and define a pair of longitudinal openings 574a, 574b between the horizontal walls 565 and the stops 572, and a distal opening 573 between the two stops 572. The distal portion 561b of the housing 560 is shaped and sized to mate with the cover 590.


As shown in FIG. 27, the clip cartridge 550 includes a plurality or series of clips or fasteners 580, a cam spring 600, a cam plate 610, a jaw structure 620, a block member 640, a feed bar 650, a clip carrier 660, a clip follower 670, and a follower spring 680, between the housing 560 and the cover 590.


The plurality of surgical clips 580 are retained within the clip cartridge 550 for application to tissue. As shown in FIG. 27A, each clip 580 has a pair of legs 582a, 582b extending from a backspan 581 and defines a clip axis ‘W’ extending substantially parallel with the pair of legs 582a, 582b. The clips 580 are located adjacent to one another to form an angled stack. With reference to FIGS. 42 and 43, the series of fasteners or clips 580 are arranged within the clip cartridge 550 to form an angle of between, but not including, 0° and 90° with the second longitudinal ‘X2’ axis. The series of clips 580 are stacked in or at an angle with respect to the second longitudinal ‘X2’ axis and extend along in an offset parallel fashion with the second longitudinal ‘X2’ axis. The shape of the clip 580 may be U-shaped, V-shaped, or some other shape.


As seen in FIGS. 48-51, clip cartridge 550 includes a jaw closure mechanism 532 including the camming plate 610, which is connected with the drive assembly 220 through the block member 640 to provide an approximating force to the jaw structure 620.


With reference to FIGS. 27 and 29, the cam plate 610 defines a proximal portion 610c and a camming or distal portion 610d. A dog bone shaped aperture 611 is defined in the proximal portion 610c and a camming aperture 614 is defined in the camming portion 610d. The cam plate 610 has a finger 612 that extends perpendicularly to a top/bottom surface thereof and a pair of stops 613 extending outward from the camming portion 610c along a side edge thereof.


The camming aperture 614 is substantially “V” shaped. The “V” shaped camming aperture 614 defines a protrusion or separator 615 extending into the center of the aperture and a pair of camming surfaces 616 along the outer edges of the aperture. With reference to FIGS. 30 and 49-51, the camming aperture 614 mates with a pair of posts 621 that extend vertically from the jaw structure 620. Each post 621 includes a head 622 that acts to secure the cam plate 610 and the jaw structure 620 together to maintain contact between the two components.


With reference to FIG. 37, cam plate 610 is located along the second recessed surface 568 of housing 560. The stops 613 of cam plate 610 extend radially outward through the longitudinal openings 574a, 574b of housing 560 to limit longitudinal movement of the cam plate 610 to the length of openings 574a, 574b. The proximal portion 610c of the cam plate 610 is sized to fit into the longitudinal extending recess 566 of the housing 560. When cam plate 610 is at a distal-most position relative to housing 560, a gap 575 is formed between the proximal end 610a of the cam plate 610 and the second recessed surface 567. The finger 612 is sized to be positioned within the spring slot 570 (FIG. 28) of the housing 560. In use, longitudinal movement of the camming plate 610 moves the cam aperture 614 relative to the posts 621 of jaw structure 620.


With reference to FIG. 38, a cam spring 600 is located within the spring slot 570 of the housing 560 such that the finger 612 of the cam plate 610 is disposed distal of cam spring 600.


With reference to FIGS. 27 and 30, the jaw structure 620 includes a locking tab 623, a pair of legs 625, and a pair of jaws 626. A pair of lock recesses 628 is defined between the locking tab 623 and the pair of legs 625. The lock recesses 628 extend inward from side edges thereof to form a pair of locking shoulders 624. With reference to FIG. 36, the locking recesses 628 act to secure the jaw structure 620 along the first recessed surface 567 of the housing 560, by providing space for the inward projecting locks 569. The inward projecting locks 569 act upon the locking block 623 and the locking shoulders 624 to prevent longitudinal movement of the jaw structure 620 with respect to the housing 560.


Each of the pair of legs 625 extends proximally from the respective locking shoulder 624 parallel with the second longitudinal ‘X2’ axis. The pair of jaws 626 is formed at the distal ends of the legs 625 and includes a first jaw 626a and a second jaw 626b. Each jaw 626 extends at an angle from the respective leg 635 to form an angle with the second longitudinal ‘X2’ axis. The clip axis ‘W’ of each clip 580 is substantially parallel to a longitudinal axis of each of the first and second jaws 526a, 526b. Each jaw 626 defines a channel 627 along an inner section that is sized to accept a portion of the clip leg 582a, 582b therein. One of the clip legs 582a, 582b is retained in the channel 627 of the first jaw 626a and the other clip leg 582a, 582b is retained in the channel 627 of the second jaw 626b.


The jaw assembly or structure 620 is supported on and extends distally from between the cover 590 and the housing 560. The jaw structure 620 includes a first jaw 626a and a second jaw 626b that are moveable between a spaced apart position and an approximated position.


Referring to FIGS. 27 and 31, the movement of the cam plate 614 is provided by the block member 640. With reference to FIG. 31, the block member 640 includes a pair of rails 644 extending from a surface 641 thereof, and a finger 642 extending from a surface 643 opposite rails 644 at a location proximate a distal end 640b of the block member 640. The finger 642 is sized to extend between the jaw legs 624, 625 and into the dog bone shaped aperture 611 of the camming plate 610.


With reference to FIGS. 31 and 44-45, a proximal end 640a of the block member 640 is connected with the distal end 224b of the drive cable 224. As a result, advancement or retraction of the drive cable 224 advances or retracts, respectively, the block member 640 along the second longitudinal ‘X2’ axis. Proximal movement or retraction of the block member 640 will cause the finger 642 thereof to abut a proximal end 611a of the dog bone shaped aperture 611 of camming plate 610 and will in turn pull the camming plate 610 proximally. In a proximal position, as seen in FIGS. 49 and 50, the cam aperture 614 presents the separator 615 of camming plate 610, having a tapered end 615a, between the posts 621 of jaw structure 620 to separate the posts 621 and to open the jaws 626.


Meanwhile, distal movement or advancement of the block member 640 will cause the finger 642 to abut a distal end 611b of the dog bone shaped aperture 611 of camming plate 610 and will in turn push the camming plate 610 distally. In a distal position, as seen in FIG. 51, the camming surfaces 616, of cam aperture 614 of camming plate 610, force the posts 621 of the jaw structure 620 together to close the jaws 626. A longitudinal length of the finger 642 is less than a length of the dog bone shaped aperture 611 to thereby allow the finger 642 of block member 640 to move a predetermined distance before engaging and moving the camming plate 610.


With reference to FIGS. 27 and 32, a feed bar 650 is provided for longitudinal movement relative to cover 590 in order to advance individual clips 580 into jaws 626. As seen in FIG. 32, to facilitate the insertion of the clip 580 into jaws 626, feed bar 650 is provided with the pusher 652 at its distal end 650b, which is configured to advance an individual clip 580 out of the stack of clips 580 and into jaws 626.


The pusher 652 is sized and shaped to selectively engage/move (i.e., distally advance) a distal-most clip “C1” (FIGS. 42 and 43) of the clips 580 into the jaws 626. The feed bar defines a pair of recess 654a, 654b along each side edge thereof that are sized and shaped to accept the rails 644a, 644b of the block member 640 to mate the feed bar 650 and the block member 640. Turning to FIGS. 44-48, it is understood that a movement of the block member 640 causes a movement of the feed bar 650 in the same direction and in the same magnitude.


With reference to FIGS. 27 and 39-41, the feed bar 650 is slidably disposed under the clip carrier 660. The clip carrier 660 is shaped and sized to retain the plurality of surgical clips 580 thereon. It should be noted that clip carrier 660 and jaw structure 620 do not move longitudinally relative to housing 560.


Referring to FIG. 33, the clip carrier 660 includes a distal pair of slots 664 sized and shaped to receive the pusher 652 of feed bar 650 therein. The clip carrier 660 is formed with a ‘hat’ shaped transverse cross-sectional profile, consisting of a center platform 667, two vertical walls 666 projecting downward from the center platform 667, and a horizontal wall 665 projecting outward from each of the vertical walls 666. Each of the horizontal walls 665 includes two longitudinally spaced retainers 661 that project upward along an outside edge. Each of the retainers 661 defines an opening 662 therethrough. A ramp section 668 about a distal end 660b allows the center platform 667 to be shorter than the horizontal walls 665.


As shown in FIG. 40, a proximal end 660a of the clip carrier 660 is located against the perpendicular surface 564 of the housing 560 and the horizontal walls 665 sit upon the horizontal walls 565 of the housing 560. The ramp section 668 extends the clip carrier 660 partially over a flared out section 629 of the legs 625 of the jaw structure 620. The ramp section 668 forms substantially the same angle with respect to the second longitudinal ‘X2’ axis as the jaws 626.


With reference to FIGS. 27, 34, and 40, the clip follower 670 sits on top of the clip carrier 660. As shown in FIG. 34, the clip follower 670 includes an abutment surface 672 for engagement with the stack of clips 580 and includes two aims 674a, 674b for engagement about the clip carrier 660. The clip follower 670 includes a proximally extending post 676 sized to fit inside of follower spring 680. With reference to FIG. 42, the clip follower 670 is positioned behind the stack of clips 580 on the clip carrier 660 to advance the stack of clips 580 through surgical clip applier 100 as the distal-most clip is fired.


The clip follower 670 is biased distally by the follower spring 680 to urge the stack of clips 580 distally along the clip carrier 660. The cover 590 overlies the clip carrier 660 and is configured to retain and guide advancement of the follower 670, the follower spring 680, and the stack of clips 580 therein.


As seen in FIGS. 27 and 35, the cover 590 of clip cartridge 550 has a substantially semi-cylindrical body 591 and a nose 592. Two pairs of securing protrusions 593 extend radially outward along each side of the semi-cylindrical body 591 of cover 590. Each securing protrusion 593 is sized and shaped to fit into and project through the openings 662 in the retainers 661 of the clip carrier 660. The cover 590 includes inner wall surfaces 594 defining a longitudinal passage or channel 595 therealong.


With reference to FIG. 45, the clip carrier 660 forms an elongated clip channel with the inner surface of the longitudinal passage 595 of the cover 590 for retaining the plurality of clips 580, as shown in stacked manner above the clip carrier 660 in FIGS. 40-43. To direct the clips 580 traversing along the clip channel and into the jaws 626, a ramped inner surface 596 is provided at a distal end 590b of cover 590 along the nose 592 to assist in directing surgical clips 580 into jaws 626. The proximal end 590a of cover 590 is shaped to abut the perpendicular surface 564 of the housing 560.


With reference to FIGS. 44-48, the operation of the clip cartridge 550 will now be discussed. Initially, jaws 626 are placed about a vessel “V.” As seen in FIG. 44, actuation of the trigger 208 (see FIG. 5A) causes distal movement of the drive assembly 220 (see FIG. 5A) and drive rod 222, represented by the direction arrow ‘a’. The distal movement of drive rod 222 causes distal advancement of drive cable 224 which in turn causes the advancement of the block member 640, represented by the direction arrow ‘b’. Referring to FIG. 45, the distal movement of the block member 640 causes a distal advancement of the feed bar 650, represented by the direction arrow ‘c’. As the block member 640 is moved distally, the finger 642 thereof abuts against a reduced width portion of the dog bone shaped recess 611 to force the feed bar 650 distally. As the feed bar 650 is advanced distally, the pusher 652 of feed bar 650 forces a distal-most clip ‘C1’ distally and in-between the jaw members 626, as illustrated by the direction arrow ‘d’ in FIG. 46. During a further advancement of the block member 640, the finger 642 of the block member 640 travels along the dog bone shaped recess 611 of the cam plate 610 thereby maintaining the cam plate 610 stationary in a distal-most position, as seen in FIGS. 40 and 50.


Referring to FIGS. 47 and 48, with distal-most clip “C1” loaded in jaw members 626, retraction of the drive rod 222 as a result of a release of trigger 208, represented by the direction arrow ‘g’, causes a retraction or a proximal movement of the block member 640 and of the pusher 652 of feed bar 650, as illustrated by direction arrow ‘e’. As the feed bar 650 is returned to the initial or starting position, the pusher 652 is forced down toward the center of the clip cartridge 550 by a ramped edge 653 of the pusher 652 riding across the next clip in the stack of clips 580. Referring to FIG. 48, the ramped edge 653 also allows the pusher 652 to be positioned under the clip carrier 660, while the block member 640 continues to move proximally from the initial starting position, represented by the direction arrow ‘h’. As the block member 640 moves proximally from the initial starting position, the finger 642 abuts and acts against the reduced width portion of the dog bone shaped recess 611 to force the cam plate 610 to move proximally, represented by the direction arrow T. As the cam plate 610 moves proximally, the finger 612 of the cam plate 610 moves proximally, represented by direction arrow T to compress the cam spring 600, represented by the direction arrow ‘k’.


With reference to FIGS. 49-52, the forming of the clip ‘C1’ about a blood vessel will now be discussed. The interconnected cam plate 610 and jaw structure 626, as discussed earlier is shown in FIG. 49. With the jaws 626, having a clip ‘C1’ loaded therein and being placed about the blood vessel, the cam plate 610 is forced proximally by the proximally moving block member 640 to cause the camming surface 616 (see FIG. 27) of jaws 626 to act against the posts 621 of the jaw structure 626. As the camming surface 616 of camming aperture 614 abuts each of the posts 621 of the jaw structure 626, the posts 621 are forced together to form the clip ‘C1’ about the blood vessel, as illustrated in FIG. 52.


As the trigger 208 continues to open to withdraw drive rod 222, block member 640 is further pulled in the proximal direction until finger 642 thereof is pulled through the reduced width portion of the dog bone shaped recess 611 of the cam plate 610 at which time cam spring 600 is permitted to expand and act on finger 612 of cam plate 610 to move cam plate 610 distally and open jaw structure 626.


In this manner, a single complete stroke of trigger 208 results in a feeding of a clip “C1” into the jaws 626 and a forming of the loaded clip by the jaws 626. Such a firing sequence can be accomplished with the second longitudinal axis “X2” of the end effector 500 either axially aligned with or angled with respect to the first longitudinal axis “X1” of the first tubular member 302 of the shaft assembly 300.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications, and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods, and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. A surgical shaft assembly configured for selective connection to a drive assembly of a surgical apparatus, the shaft assembly comprising: a first tubular member defining a longitudinal axis; anda second tubular member defining a longitudinal axis, the second tubular member being located distally of the first tubular member, the second tubular member supporting a plurality of surgical clips and configured to distally advance a single unformed clip of the plurality of surgical clips, individually, to form the single unformed clip of the plurality of surgical clips upon each single firing of the surgical apparatus, the first tubular member and the second tubular member being pivotally connected through a common pivot axis, the pivot axis being perpendicular to the longitudinal axes of the first and second tubular members,wherein the second tubular member includes a jaw assembly having a pair of juxtaposed jaws, the jaw assembly having a spaced apart condition for entirely receiving a single unformed clip of the plurality of surgical clips between the pair of jaws, and an approximated condition wherein the pair of jaws form the single clip disposed therebetween, wherein the pair of jaws are approximated in a direction transverse to the longitudinal axis of the second tubular member, andwherein each of the plurality of surgical clips has a pair of legs extending from a backspan, each of the plurality of surgical clips defining a clip axis extending in a direction substantially parallel to the pair of legs, each of the plurality of surgical clips being arranged within the second tubular member to define an angle between the clip axis and the longitudinal axis of the second tubular member, each of the plurality of surgical clips being located adjacent to another of the plurality of surgical clips to form a partially overlapping stack.
  • 2. The surgical shaft assembly according to claim 1, wherein the plurality of surgical clips is stacked in a non-colinear orientation with respect to the longitudinal axis of the second tubular member.
  • 3. The surgical shaft assembly according to claim 2, wherein the pair of jaws define a plane between the pair of jaws that is angled with respect to the second tubular member.
  • 4. The surgical shaft assembly according to claim 3, wherein, when the plurality of surgical clips is loaded in the second tubular member, the clip axis of each of the surgical clips is in a substantially parallel orientation to the plane defined by the pair of jaws.
  • 5. The surgical shaft assembly according to claim 4, further comprising an articulation mechanism operatively connected between the first tubular member and the second tubular member, the articulation mechanism including: a gear rack having a plurality of teeth longitudinally placed on the gear rack, the gear rack located within the first tubular member;at least one gear operatively connected with the gear rack located within the first tubular member; anda gear segment extending proximally from the second tubular member, the gear segment being fixed with respect to the second tubular member, the gear segment being operatively connected with the at least one gear to pivot the second tubular member about the pivot axis relative to the first tubular member.
  • 6. The surgical shaft assembly according to claim 5, wherein the articulation mechanism pivots the second tubular member about the pivot axis at an angle of up to 90° from the longitudinal axis of the first tubular member.
  • 7. An end effector for a surgical clip applying apparatus, the end effector comprising: a distal housing portion defining a proximal end, a distal end, and a longitudinal axis;a proximal housing pivotably connected to the distal housing portion;a jaw assembly supported on the distal housing portion, the jaw assembly including a first jaw and a second jaw extending distally from the distal housing portion and being movable between a spaced apart position and an approximated position;a plurality of surgical clips loaded in the distal housing portion, wherein each of the plurality of surgical clips has a pair of legs extending from a backspan, each of the plurality of surgical clips defining a clip axis extending in a direction substantially parallel to the pair of legs, each of the plurality of surgical clips being arranged within the distal housing portion to define an angle between the clip axis and the longitudinal axis of the distal housing portion, each of the plurality of surgical clips being located adjacent to another of the plurality of surgical clips to form a partially overlapping stack; anda jaw closure mechanism disposed in the distal housing portion and operatively associated with the jaw assembly and the plurality of surgical clips,wherein the jaw closure mechanism is connected to a distal end of a drive so as to receive an operative force from the drive when the longitudinal axis of the distal housing portion is either axially aligned or angled with respect to a longitudinal axis of the proximal housing, andwherein the jaw closure mechanism feeds a clip into the jaw assembly and forms the fed clip upon a single complete stroke of the drive.
  • 8. The end effector according to claim 7, wherein the plurality of surgical clips is stacked in a non-colinear orientation with respect to the longitudinal axis of the distal housing portion.
  • 9. The end effector according to claim 8, wherein the first jaw and the second jaw define a plane between the pair of jaws that is angled with respect to the distal housing portion.
  • 10. The end effector according to claim 9, wherein, when the plurality of surgical clips is loaded in the distal housing portion, the clip axis of each of the surgical clips is in a substantially parallel orientation to the plane defined by the first jaw and the second jaw.
  • 11. The end effector according to claim 10, further comprising an articulation mechanism operatively connected between the distal housing portion and the proximal housing, the articulation mechanism including: a gear rack having a plurality of teeth longitudinally placed on the gear rack, the gear rack located within the proximal housing;at least one gear operatively connected with the gear rack located within the proximal housing; anda gear segment extending proximally from the distal housing portion, the gear segment being fixed with respect to the distal housing portion, the gear segment being operatively connected with the at least one gear to pivot the distal housing portion about the pivot axis relative to the proximal housing.
  • 12. The end effector according to claim 11, wherein the articulation mechanism pivots the second tubular member about the pivot axis at an angle of up to 90° from the longitudinal axis of the first tubular member.
  • 13. An articulating surgical clip applier, comprising: a handle assembly having a housing and a trigger, the handle assembly including an axially reciprocatable drive assembly having a flexible drive cable operatively connected to and actuatable by the trigger; andan end effector operatively connected to the handle assembly, the end effector comprising: a distal housing portion defining a proximal end, a distal end, and a longitudinal axis;a proximal housing pivotably connected to the distal housing portion;a jaw assembly supported on the distal housing portion, the jaw assembly including a first jaw and a second jaw extending distally from the distal housing portion and being movable between a spaced apart position and an approximated position;a plurality of surgical clips loaded in the distal housing portion, wherein each of the plurality of surgical clips has a pair of legs extending from a backspan, each of the plurality of surgical clips defining a clip axis extending in a direction substantially parallel to the pair of legs, each of the plurality of surgical clips being arranged within the distal housing portion to define an angle between the clip axis and the longitudinal axis of the distal housing portion, each of the plurality of surgical clips being located adjacent to another of the plurality of surgical clips to form a partially overlapping stack; anda jaw closure mechanism disposed in the distal housing portion and operatively associated with the jaw assembly and the plurality of surgical clips,wherein the jaw closure mechanism is connected to a distal end of the flexible drive so as to receive an operative force from the drive assembly when the longitudinal axis of the distal housing portion is either axially aligned or angled with respect to a longitudinal axis of the proximal housing portion, andwherein the jaw closure mechanism feeds a clip into the jaw assembly and forms the fed clip upon a single complete stroke of the flexible cable drive.
  • 14. The surgical clip applier according to claim 13, wherein the plurality of surgical clips is stacked in a non-colinear orientation with respect to the longitudinal axis of the distal housing portion.
  • 15. The surgical clip applier according to claim 14, wherein the first jaw and the second jaw define a plane between the pair of jaws that is angled with respect to the distal housing portion.
  • 16. The surgical clip applier according to claim 15, wherein, when the plurality of surgical clips is loaded in the distal housing portion, the clip axis of each of the surgical clips is in a substantially parallel orientation to the plane defined by the first jaw and the second jaw.
  • 17. The surgical clip applier according to claim 16, further comprising an articulation mechanism operatively connected between the distal housing portion and the proximal housing, the articulation mechanism including: a gear rack having a plurality of teeth longitudinally placed on the gear rack, the gear rack located within the proximal housing;at least one gear operatively connected with the gear rack located within the proximal housing; anda gear segment extending proximally from the distal housing portion, the gear segment being fixed with respect to the distal housing portion, the gear segment being operatively connected with the at least one gear to pivot the distal housing portion about the pivot axis relative to the proximal housing.
  • 18. The surgical clip applier according to claim 17, wherein the articulation mechanism pivots the second tubular member about the pivot axis at an angle of up to 90° from the longitudinal axis of the first tubular member.
  • 19. The surgical clip applier according to claim 18, wherein the end effector further comprises: a knuckle portion extending proximally from the proximal end of the distal housing portion, the knuckle portion being bifurcated into a first geared portion and a second geared portion, the distal housing portion being rotatably mounted to the knuckle portion to allow the distal housing portion to rotate about the longitudinal axis with respect to the knuckle portion.
  • 20. The surgical clip applier according to claim 19, wherein the end effector further comprises: a gear train supported in the proximal housing, and wherein the flexible drive cable extends between the distal housing portion and the proximal housing portion and extends along the gear train.
CROSS REFERENCE TO RELATED APPLICATION

This application is a Continuation of U.S. patent application Ser. No. 15/676,063, filed Aug. 14, 2017, which is a Continuation of U.S. patent application Ser. No. 14/621,694, filed Feb. 13, 2015, now U.S. Pat. No. 9,737,310, which is a Continuation of U.S. patent application Ser. No. 13/151,388, filed Jun. 2, 2011, now U.S. Pat. No. 8,968,337, which claims benefit of U.S. Provisional Application No. 61/368,349, filed Jul. 28, 2010, the disclosures of each of the above-identified applications being hereby incorporated by reference in their entirety.

US Referenced Citations (1155)
Number Name Date Kind
3120230 Skold Feb 1964 A
3363628 Wood Jan 1968 A
3638847 Noiles et al. Feb 1972 A
3675688 Bryan et al. Jul 1972 A
3735762 Bryan et al. May 1973 A
3867944 Samuels Feb 1975 A
4226242 Jarvik Oct 1980 A
4242902 Green Jan 1981 A
4296751 Blake, III et al. Oct 1981 A
4372316 Blake, III et al. Feb 1983 A
4408603 Blake, III et al. Oct 1983 A
4412539 Jarvik Nov 1983 A
4418694 Beroff et al. Dec 1983 A
4449531 Cerwin et al. May 1984 A
4471780 Menges et al. Sep 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480640 Becht Nov 1984 A
4480641 Failla et al. Nov 1984 A
4487204 Hrouda Dec 1984 A
4487205 Di Giovanni et al. Dec 1984 A
4491133 Menges et al. Jan 1985 A
4492232 Green Jan 1985 A
4498476 Cerwin et al. Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
4509518 McGarry et al. Apr 1985 A
4512345 Green Apr 1985 A
4522207 Klieman et al. Jun 1985 A
4532925 Blake, III Aug 1985 A
4534351 Rothfuss et al. Aug 1985 A
4545377 Cerwin et al. Oct 1985 A
4549544 Favaron Oct 1985 A
4556058 Green Dec 1985 A
4557263 Green Dec 1985 A
4562839 Blake, III et al. Jan 1986 A
4572183 Juska Feb 1986 A
4576165 Green et al. Mar 1986 A
4576166 Montgomery et al. Mar 1986 A
4590937 Deniega May 1986 A
4592498 Braun et al. Jun 1986 A
4598711 Deniega Jul 1986 A
4602631 Funatsu Jul 1986 A
4611595 Klieman et al. Sep 1986 A
4612932 Caspar et al. Sep 1986 A
4616650 Green et al. Oct 1986 A
4616651 Golden Oct 1986 A
4624254 McGarry et al. Nov 1986 A
4637395 Caspar et al. Jan 1987 A
4646740 Peters et al. Mar 1987 A
4647504 Kimimura et al. Mar 1987 A
4658822 Kees, Jr. Apr 1987 A
4660558 Kees, Jr. Apr 1987 A
4662373 Montgomery et al. May 1987 A
4662374 Blake, III May 1987 A
4671278 Chin Jun 1987 A
4671282 Tretbar Jun 1987 A
4674504 Klieman et al. Jun 1987 A
4681107 Kees, Jr. Jul 1987 A
4696396 Samuels Sep 1987 A
4702247 Blake, III et al. Oct 1987 A
4706668 Backer Nov 1987 A
4712549 Peters et al. Dec 1987 A
4726372 Perlin Feb 1988 A
4733666 Mercer, Jr. Mar 1988 A
4759364 Boebel Jul 1988 A
4765335 Schmidt et al. Aug 1988 A
4777949 Perlin Oct 1988 A
4796625 Kees, Jr. Jan 1989 A
4799481 Fransue et al. Jan 1989 A
4815466 Perlin Mar 1989 A
4821721 Chin et al. Apr 1989 A
4822348 Casey Apr 1989 A
4834096 Oh et al. May 1989 A
4850355 Brooks et al. Jul 1989 A
4854317 Braun Aug 1989 A
4856517 Collins et al. Aug 1989 A
4929239 Braun May 1990 A
4931058 Cooper Jun 1990 A
4934364 Green Jun 1990 A
4951860 Peters et al. Aug 1990 A
4957500 Liang et al. Sep 1990 A
4966603 Focelle et al. Oct 1990 A
4967949 Sandhaus Nov 1990 A
4983176 Cushman et al. Jan 1991 A
4988355 Leveen et al. Jan 1991 A
5002552 Casey Mar 1991 A
5026379 Yoon Jun 1991 A
5030224 Wright et al. Jul 1991 A
5030226 Green et al. Jul 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5047038 Peters et al. Sep 1991 A
5049152 Simon et al. Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5053045 Schmidt et al. Oct 1991 A
5059202 Liang et al. Oct 1991 A
5062563 Green et al. Nov 1991 A
5062846 Oh et al. Nov 1991 A
5078731 Hayhurst Jan 1992 A
5084057 Green et al. Jan 1992 A
5100416 Oh et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104394 Knoepfler Apr 1992 A
5104395 Thornton et al. Apr 1992 A
5112343 Thornton May 1992 A
5122150 Puig Jun 1992 A
5127915 Mattson Jul 1992 A
5129885 Green et al. Jul 1992 A
5156608 Troidl et al. Oct 1992 A
5160339 Chen et al. Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171250 Yoon Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5171252 Friedland Dec 1992 A
5171253 Klieman Dec 1992 A
5192288 Thompson et al. Mar 1993 A
5197970 Green et al. Mar 1993 A
5199566 Ortiz et al. Apr 1993 A
5201746 Shichman Apr 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5207692 Kraus et al. May 1993 A
5217473 Yoon Jun 1993 A
5219353 Garvey, III et al. Jun 1993 A
5246450 Thornton et al. Sep 1993 A
5259366 Reydel et al. Nov 1993 A
5269792 Kovac et al. Dec 1993 A
5281228 Wolfson Jan 1994 A
5282807 Knoepfler Feb 1994 A
5282808 Kovac et al. Feb 1994 A
5282832 Toso et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290299 Fain et al. Mar 1994 A
5300081 Young et al. Apr 1994 A
5304183 Gourlay et al. Apr 1994 A
5306280 Bregen et al. Apr 1994 A
5306283 Conners Apr 1994 A
5312426 Segawa et al. May 1994 A
5330442 Green et al. Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5340360 Stefanchik Aug 1994 A
5342373 Stefanchik et al. Aug 1994 A
5354304 Allen et al. Oct 1994 A
5354306 Garvey, III et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5359993 Slater et al. Nov 1994 A
5366458 Korthoff et al. Nov 1994 A
5366459 Yoon Nov 1994 A
5368600 Failla et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5382253 Hogendijk Jan 1995 A
5382254 McGarry et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5395375 Turkel et al. Mar 1995 A
5395381 Green et al. Mar 1995 A
5403327 Thornton et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5413584 Schulze May 1995 A
5423835 Green et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431667 Thompson et al. Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5431669 Thompson et al. Jul 1995 A
5439468 Schulze et al. Aug 1995 A
5441509 Vidal et al. Aug 1995 A
5447513 Davison et al. Sep 1995 A
5448042 Robinson et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5462555 Bolanos et al. Oct 1995 A
5462558 Kolesa et al. Oct 1995 A
5464416 Steckel Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5474567 Stefanchik et al. Dec 1995 A
5474572 Hayhurst Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5487746 Yu et al. Jan 1996 A
5501693 Gravener Mar 1996 A
5509920 Phillips et al. Apr 1996 A
5514149 Green et al. May 1996 A
5520701 Lerch May 1996 A
5527318 McGarry Jun 1996 A
5527319 Green et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5542949 Yoon Aug 1996 A
5547474 Kloeckl et al. Aug 1996 A
5562655 Mittelstadt et al. Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5571121 Heifetz Nov 1996 A
5575802 McQuilkin et al. Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5582615 Foshee et al. Dec 1996 A
5582616 Bolduc et al. Dec 1996 A
5584840 Ramsey et al. Dec 1996 A
5591178 Green et al. Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5593421 Bauer Jan 1997 A
5601573 Berg et al. Feb 1997 A
5601574 Stefanchik et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5618291 Thompson et al. Apr 1997 A
5618306 Roth et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5620458 Green Apr 1997 A
5626585 Mittelstadt et al. May 1997 A
5626586 Pistl et al. May 1997 A
5626587 Bishop et al. May 1997 A
5626592 Phillips et al. May 1997 A
RE35525 Stefanchik et al. Jun 1997 E
5634930 Thornton et al. Jun 1997 A
5643291 Pier et al. Jul 1997 A
5645551 Green et al. Jul 1997 A
5645553 Kolesa et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5653720 Johnson et al. Aug 1997 A
5662662 Bishop Sep 1997 A
5662676 Koninckx Sep 1997 A
5662679 Voss et al. Sep 1997 A
5665097 Baker et al. Sep 1997 A
5676676 Porter Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5683405 Yacoubian et al. Nov 1997 A
5695502 Pier et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5697938 Jensen et al. Dec 1997 A
5697942 Palti Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700271 Whitfield et al. Dec 1997 A
5702048 Eberlin Dec 1997 A
5709706 Kienzle et al. Jan 1998 A
5713911 Racenet et al. Feb 1998 A
5713912 Porter Feb 1998 A
5720756 Green et al. Feb 1998 A
5722982 Ferreira et al. Mar 1998 A
5725537 Green et al. Mar 1998 A
5725538 Green et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5733295 Back et al. Mar 1998 A
5743310 Moran Apr 1998 A
5749881 Sackier et al. May 1998 A
5755726 Pratt et al. May 1998 A
5766189 Matsuno Jun 1998 A
5769857 Reztzov et al. Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5776146 Sackier et al. Jul 1998 A
5776147 Dolendo Jul 1998 A
5779718 Green et al. Jul 1998 A
5779720 Walder-Utz et al. Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5788698 Savornin Aug 1998 A
5792149 Sherts et al. Aug 1998 A
5792150 Pratt et al. Aug 1998 A
5797922 Hessel et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5810853 Yoon Sep 1998 A
5817116 Takahashi et al. Oct 1998 A
5827306 Yoon Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5835199 Phillips et al. Nov 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843101 Fry Dec 1998 A
5846255 Casey Dec 1998 A
5849019 Yoon Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5868759 Peyser et al. Feb 1999 A
5868761 Nicholas Feb 1999 A
5876410 Petillo Mar 1999 A
5895394 Kienzle et al. Apr 1999 A
5897565 Foster Apr 1999 A
5904693 Dicesare et al. May 1999 A
5906625 Bito et al. May 1999 A
5913862 Ramsey et al. Jun 1999 A
5913876 Taylor et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5921991 Whitehead et al. Jul 1999 A
5921996 Sherman Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5928251 Aranyi et al. Jul 1999 A
5938667 Peyser et al. Aug 1999 A
5951574 Stefanchik et al. Sep 1999 A
5972003 Rousseau et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6009551 Sheynblat Dec 1999 A
6017358 Yoon et al. Jan 2000 A
6044971 Esposito et al. Apr 2000 A
6045560 McKean et al. Apr 2000 A
6053908 Crainich et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6059799 Aranyi et al. May 2000 A
6099536 Petillo Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6139555 Hart et al. Oct 2000 A
6210418 Storz et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6228097 Levinson et al. May 2001 B1
6241740 Davis et al. Jun 2001 B1
6258105 Hart et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6273898 Kienzle et al. Aug 2001 B1
6277131 Kalikow Aug 2001 B1
6306149 Meade Oct 2001 B1
6318619 Lee Nov 2001 B1
6322571 Adams Nov 2001 B1
6350269 Shipp et al. Feb 2002 B1
6352541 Kienzle et al. Mar 2002 B1
6391035 Appleby et al. May 2002 B1
6423079 Blake, III Jul 2002 B1
6428548 Durgin et al. Aug 2002 B1
6440144 Bacher Aug 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464710 Foster Oct 2002 B1
6494886 Wilk et al. Dec 2002 B1
6517536 Hooven et al. Feb 2003 B2
6520972 Peters Feb 2003 B2
6527786 Davis et al. Mar 2003 B1
6537289 Kayan et al. Mar 2003 B1
6546935 Hooven Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6562051 Bolduc et al. May 2003 B1
6569171 DeGuillebon et al. May 2003 B2
6579304 Hart et al. Jun 2003 B1
6599298 Forster et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6613060 Adams et al. Sep 2003 B2
6626916 Yeung et al. Sep 2003 B1
6626922 Hart et al. Sep 2003 B1
6648898 Baxter Nov 2003 B1
6652538 Kayan et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6673083 Kayan et al. Jan 2004 B1
6676659 Hutchins et al. Jan 2004 B2
6679894 Damarati Jan 2004 B2
RE38445 Pistl et al. Feb 2004 E
6695854 Kayan et al. Feb 2004 B1
6706057 Bidoia et al. Mar 2004 B1
6716226 Sixto, Jr. et al. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6743240 Smith et al. Jun 2004 B2
6773438 Knodel et al. Aug 2004 B1
6773440 Gannoe et al. Aug 2004 B2
6776783 Frantzen et al. Aug 2004 B1
6776784 Ginn Aug 2004 B2
6780195 Porat Aug 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793664 Mazzocchi et al. Sep 2004 B2
6802848 Anderson et al. Oct 2004 B2
6814742 Kimura et al. Nov 2004 B2
6818009 Hart et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6824547 Wilson, Jr. et al. Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6837894 Pugsley, Jr. et al. Jan 2005 B2
6837895 Mayenberger Jan 2005 B2
6840945 Manetakis et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6849078 Durgin et al. Feb 2005 B2
6849079 Blake, III et al. Feb 2005 B1
6853879 Sunaoshi Feb 2005 B2
6869435 Blake, III Mar 2005 B2
6869436 Wendlandt Mar 2005 B2
6889116 Jinno May 2005 B2
6896682 McClellan et al. May 2005 B1
6905503 Gifford, III et al. Jun 2005 B2
6911032 Jugenheimer et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6916327 Northrup, III et al. Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6939356 Debbas Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6942676 Buelna Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945979 Kortenbach et al. Sep 2005 B2
6949107 McGuckin, Jr. et al. Sep 2005 B2
6953465 Dieck et al. Oct 2005 B2
6955643 Gellman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960218 Rennich Nov 2005 B2
6960221 Ho et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6964668 Modesitt et al. Nov 2005 B2
6966875 Longobardi Nov 2005 B1
6966917 Suyker et al. Nov 2005 B1
6966919 Sixto, Jr. et al. Nov 2005 B2
6969391 Gazzani Nov 2005 B1
6972023 Whayne et al. Dec 2005 B2
6972027 Fallin et al. Dec 2005 B2
6973770 Schnipke et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6974466 Ahmed et al. Dec 2005 B2
6974475 Wall Dec 2005 B1
6981505 Krause et al. Jan 2006 B2
6981628 Wales Jan 2006 B2
6991635 Takamoto et al. Jan 2006 B2
7052504 Hughett May 2006 B2
7056330 Gayton Jun 2006 B2
7108703 Danitz et al. Sep 2006 B2
7144402 Kuester, III Dec 2006 B2
7175648 Nakao Feb 2007 B2
7179265 Manetakis et al. Feb 2007 B2
7207997 Shipp et al. Apr 2007 B2
7211091 Fowler et al. May 2007 B2
7211092 Hughett May 2007 B2
7214230 Brock et al. May 2007 B2
7214232 Bowman et al. May 2007 B2
7223271 Muramatsu et al. May 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7261724 Molitor et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7264625 Buncke Sep 2007 B1
7288098 Huitema et al. Oct 2007 B2
7297149 Vitali et al. Nov 2007 B2
7316693 Viola Jan 2008 B2
7316696 Wilson, Jr. et al. Jan 2008 B2
7326223 Wilson, Jr. Feb 2008 B2
7329266 Royse et al. Feb 2008 B2
7331968 Arp et al. Feb 2008 B2
7338503 Rosenberg et al. Mar 2008 B2
7357805 Masuda et al. Apr 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7510562 Lindsay Mar 2009 B2
7552853 Mas et al. Jun 2009 B2
7585304 Hughett Sep 2009 B2
7637917 Whitfield et al. Dec 2009 B2
7644848 Swayze et al. Jan 2010 B2
7686820 Huitema et al. Mar 2010 B2
7695482 Viola Apr 2010 B2
7717926 Whitfield et al. May 2010 B2
7727248 Smith et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7740641 Huitema Jun 2010 B2
7752853 Singh et al. Jul 2010 B2
7753250 Clauson et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7887553 Lehman et al. Feb 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7942885 Sixto, Jr. et al. May 2011 B2
7952060 Watanabe et al. May 2011 B2
7963433 Whitman et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8021378 Sixto, Jr. et al. Sep 2011 B2
8038686 Huitema et al. Oct 2011 B2
8048088 Green et al. Nov 2011 B2
8056565 Zergiebel Nov 2011 B2
8062310 Shibata et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
8066721 Kortenbach et al. Nov 2011 B2
8066722 Miyagi et al. Nov 2011 B2
8070760 Fujita Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8080021 Griego Dec 2011 B2
8083668 Durgin et al. Dec 2011 B2
8088061 Wells et al. Jan 2012 B2
8091755 Kayan et al. Jan 2012 B2
8100926 Filshie et al. Jan 2012 B1
8128643 Aranyi et al. Mar 2012 B2
8133240 Damarati Mar 2012 B2
8142451 Boulnois et al. Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8172859 Matsuno et al. May 2012 B2
8172870 Shipp May 2012 B2
8187290 Buckman et al. May 2012 B2
8211120 Itoh Jul 2012 B2
8211124 Ainsworth et al. Jul 2012 B2
8216255 Smith et al. Jul 2012 B2
8216257 Huitema et al. Jul 2012 B2
8236012 Molitor et al. Aug 2012 B2
8246634 Huitema et al. Aug 2012 B2
8246635 Huitema Aug 2012 B2
8262678 Matsuoka et al. Sep 2012 B2
8262679 Nguyen Sep 2012 B2
8267944 Sorrentino et al. Sep 2012 B2
8267945 Nguyen et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8282655 Whitfield et al. Oct 2012 B2
8308743 Matsuno et al. Nov 2012 B2
8328822 Huitema et al. Dec 2012 B2
8336556 Zergiebel Dec 2012 B2
8348130 Shah et al. Jan 2013 B2
8357171 Whitfield et al. Jan 2013 B2
8366709 Schechter et al. Feb 2013 B2
8366726 Dennis Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8372095 Viola Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8398655 Cheng et al. Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8419752 Sorrentino et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8444660 Adams et al. May 2013 B2
8465460 Yodfat et al. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8475473 Vandenbroek et al. Jul 2013 B2
8480688 Boulnois et al. Jul 2013 B2
8486091 Sorrentino et al. Jul 2013 B2
8491608 Sorrentino et al. Jul 2013 B2
8496673 Nguyen et al. Jul 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8512357 Viola Aug 2013 B2
8518055 Cardinale et al. Aug 2013 B1
8523882 Huitema et al. Sep 2013 B2
8529585 Jacobs et al. Sep 2013 B2
8529586 Rosenberg et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8545486 Malkowski Oct 2013 B2
8556920 Huitema et al. Oct 2013 B2
8568430 Shipp Oct 2013 B2
8579918 Whitfield et al. Nov 2013 B2
8585717 Sorrentino et al. Nov 2013 B2
8603109 Aranyi et al. Dec 2013 B2
8652151 Lehman et al. Feb 2014 B2
8652152 Aranyi et al. Feb 2014 B2
8663247 Menn et al. Mar 2014 B2
8685048 Adams et al. Apr 2014 B2
8690899 Kogiso et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709027 Adams et al. Apr 2014 B2
8715299 Menn et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8734469 Pribanic et al. May 2014 B2
8747423 Whitfield et al. Jun 2014 B2
8753356 Vitali et al. Jun 2014 B2
8814884 Whitfield et al. Aug 2014 B2
8821516 Huitema Sep 2014 B2
8839954 Disch Sep 2014 B2
8845659 Whitfield et al. Sep 2014 B2
8894665 Sorrentino et al. Nov 2014 B2
8894666 Schulz et al. Nov 2014 B2
8900253 Aranyi et al. Dec 2014 B2
8915930 Huitema et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8939974 Boudreaux et al. Jan 2015 B2
8950646 Viola Feb 2015 B2
8961542 Whitfield Feb 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968342 Wingardner, III et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
9011464 Zammataro Apr 2015 B2
9011465 Whitfield et al. Apr 2015 B2
9089334 Sorrentino et al. Jul 2015 B2
9113892 Malkowski et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9119629 Cardinale et al. Sep 2015 B2
9186136 Malkowski et al. Nov 2015 B2
9186153 Zammataro Nov 2015 B2
9208429 Thornton et al. Dec 2015 B2
9220507 Patel et al. Dec 2015 B1
9282961 Whitman et al. Mar 2016 B2
9282972 Patel et al. Mar 2016 B1
9326776 Gadberry et al. May 2016 B2
9358011 Sorrentino et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9364216 Rockrohr et al. Jun 2016 B2
9364239 Malkowski Jun 2016 B2
9364240 Whitfield et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9393024 Whitfield et al. Jul 2016 B2
9398917 Whitfield et al. Jul 2016 B2
9408610 Hartoumbekis Aug 2016 B2
9414844 Zergiebel et al. Aug 2016 B2
9433411 Racenet et al. Sep 2016 B2
9439654 Sorrentino et al. Sep 2016 B2
9445810 Cappola Sep 2016 B2
9480477 Aranyi et al. Nov 2016 B2
9498227 Zergiebel et al. Nov 2016 B2
9526501 Malkowski Dec 2016 B2
9526565 Strobl Dec 2016 B2
9532787 Zammataro Jan 2017 B2
9545254 Sorrentino et al. Jan 2017 B2
9549741 Zergiebel Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9642627 Zammataro May 2017 B2
9687247 Aranyi et al. Jun 2017 B2
9717504 Huitema Aug 2017 B2
9717505 Whitfield Aug 2017 B2
9737310 Whitfield Aug 2017 B2
9750500 Malkowski Sep 2017 B2
9763668 Whitfield et al. Sep 2017 B2
9775623 Zammataro et al. Oct 2017 B2
9775624 Rockrohr et al. Oct 2017 B2
9782181 Vitali et al. Oct 2017 B2
9848886 Malkowski et al. Dec 2017 B2
9855043 Malkowski Jan 2018 B2
9931124 Gokharu Apr 2018 B2
9968361 Aranyi et al. May 2018 B2
9968362 Malkowski et al. May 2018 B2
10004502 Malkowski et al. Jun 2018 B2
10136939 Minnelli et al. Nov 2018 B2
10159484 Sorrentino et al. Dec 2018 B2
10159491 Gokharu Dec 2018 B2
10159492 Zammataro Dec 2018 B2
10166027 Aranyi et al. Jan 2019 B2
10231732 Racenet et al. Mar 2019 B1
10231735 Sorrentino et al. Mar 2019 B2
10231738 Sorrentino et al. Mar 2019 B2
10258346 Zergiebel et al. Apr 2019 B2
10271854 Whitfield et al. Apr 2019 B2
10292712 Shankarsetty May 2019 B2
10349936 Rockrohr et al. Jul 2019 B2
10349950 Aranyi et al. Jul 2019 B2
10357250 Zammataro Jul 2019 B2
10363045 Whitfield et al. Jul 2019 B2
10368876 Bhatnagar et al. Aug 2019 B2
10390831 Holsten et al. Aug 2019 B2
10426489 Baril Oct 2019 B2
10470765 Malkowski Nov 2019 B2
10485538 Whitfield et al. Nov 2019 B2
10492795 Williams Dec 2019 B2
10537329 Malkowski Jan 2020 B2
10542999 Zergiebel Jan 2020 B2
10548602 Baril et al. Feb 2020 B2
10568635 Whitfield et al. Feb 2020 B2
10582931 Mujawar Mar 2020 B2
10603038 Mujawar et al. Mar 2020 B2
10610236 Baril Apr 2020 B2
10639032 Baril et al. May 2020 B2
10639044 Prior May 2020 B2
10653429 Baril et al. May 2020 B2
10660639 Hartoumbekis May 2020 B2
10660651 Baril et al. May 2020 B2
10660652 Tan et al. May 2020 B2
10660723 Baril May 2020 B2
10660725 Baril et al. May 2020 B2
10675043 P V R Jun 2020 B2
10675112 Baril et al. Jun 2020 B2
10682135 Sorrentino et al. Jun 2020 B2
10682146 Rockrohr et al. Jun 2020 B2
10702278 Fokarz et al. Jul 2020 B2
10702279 Xu et al. Jul 2020 B2
10702280 Cai et al. Jul 2020 B2
10709455 Baril et al. Jul 2020 B2
10722235 Baril et al. Jul 2020 B2
10722236 Zammataro Jul 2020 B2
10743851 Swayze et al. Aug 2020 B2
10743886 Malkowski et al. Aug 2020 B2
10743887 P V R Aug 2020 B2
10758234 Malkowski et al. Sep 2020 B2
10758244 Williams Sep 2020 B2
10758245 Baril et al. Sep 2020 B2
10765431 Hu et al. Sep 2020 B2
10765435 Gokharu Sep 2020 B2
10786262 Baril et al. Sep 2020 B2
10786263 Baril et al. Sep 2020 B2
10786273 Baril et al. Sep 2020 B2
10806463 Hartoumbekis Oct 2020 B2
10806464 Raikar et al. Oct 2020 B2
10828036 Baril et al. Nov 2020 B2
10835260 Baril et al. Nov 2020 B2
10835341 Baril et al. Nov 2020 B2
10849630 P V R Dec 2020 B2
10863992 Czemik et al. Dec 2020 B2
10932791 P V R Mar 2021 B2
10932793 Yi et al. Mar 2021 B2
10945734 Baril et al. Mar 2021 B2
10959737 P V R Mar 2021 B2
10993721 Baril et al. May 2021 B2
11026696 Zammataro Jun 2021 B2
11033256 Zammataro et al. Jun 2021 B2
11051827 Baril et al. Jul 2021 B2
11051828 Baril et al. Jul 2021 B2
11058432 Bhatnagar et al. Jul 2021 B2
11071553 Raikar et al. Jul 2021 B2
11116513 Dinino et al. Sep 2021 B2
11116514 Yue et al. Sep 2021 B2
11134956 Shankarsetty Oct 2021 B2
11147566 Pilletere et al. Oct 2021 B2
11213298 Sorrentino et al. Jan 2022 B2
11213299 Whitfield et al. Jan 2022 B2
20010047178 Peters Nov 2001 A1
20020040226 Laufer et al. Apr 2002 A1
20020068947 Kuhns et al. Jun 2002 A1
20020082618 Shipp et al. Jun 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020087170 Kuhns et al. Jul 2002 A1
20020099388 Mayenberger Jul 2002 A1
20020120279 Deguillebon et al. Aug 2002 A1
20020123742 Baxter et al. Sep 2002 A1
20020128668 Manetakis et al. Sep 2002 A1
20020177859 Monassevitch et al. Nov 2002 A1
20020198537 Smith et al. Dec 2002 A1
20020198538 Kortenbach et al. Dec 2002 A1
20020198539 Sixto et al. Dec 2002 A1
20020198540 Smith et al. Dec 2002 A1
20020198541 Smith et al. Dec 2002 A1
20030014060 Wilson et al. Jan 2003 A1
20030018345 Green Jan 2003 A1
20030023249 Manetakis Jan 2003 A1
20030040759 de Guillebon et al. Feb 2003 A1
20030105476 Sancoff et al. Jun 2003 A1
20030114867 Bolduc et al. Jun 2003 A1
20030135224 Blake Jul 2003 A1
20030167063 Kerr Sep 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20030220657 Adams Nov 2003 A1
20030225423 Huitema Dec 2003 A1
20030229360 Gayton Dec 2003 A1
20030233105 Gayton Dec 2003 A1
20040010272 Manetakis et al. Jan 2004 A1
20040044352 Fowler et al. Mar 2004 A1
20040097970 Hughett May 2004 A1
20040097971 Hughett May 2004 A1
20040097972 Shipp et al. May 2004 A1
20040106936 Shipp et al. Jun 2004 A1
20040133215 Baxter Jul 2004 A1
20040138681 Pier Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20040158266 Damarati Aug 2004 A1
20040162567 Adams Aug 2004 A9
20040167545 Sadler et al. Aug 2004 A1
20040176776 Zubok et al. Sep 2004 A1
20040176783 Edoga et al. Sep 2004 A1
20040176784 Okada Sep 2004 A1
20040193213 Aranyi et al. Sep 2004 A1
20040230198 Manzi et al. Nov 2004 A1
20040232197 Shelton et al. Nov 2004 A1
20050080440 Durgin et al. Apr 2005 A1
20050090837 Sixto et al. Apr 2005 A1
20050090838 Sixto et al. Apr 2005 A1
20050096670 Wellman et al. May 2005 A1
20050096671 Wellman et al. May 2005 A1
20050096672 Manetakis et al. May 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050107807 Nakao May 2005 A1
20050107809 Litscher et al. May 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050119671 Reydel et al. Jun 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050119677 Shipp Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050143767 Kimura et al. Jun 2005 A1
20050149063 Young et al. Jul 2005 A1
20050149064 Peterson et al. Jul 2005 A1
20050149068 Williams et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050165415 Wales Jul 2005 A1
20050165418 Chan Jul 2005 A1
20050171560 Hughett Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050203547 Weller et al. Sep 2005 A1
20050203548 Weller et al. Sep 2005 A1
20050216036 Nakao Sep 2005 A1
20050216056 Valdevit et al. Sep 2005 A1
20050222588 Vandenbroek et al. Oct 2005 A1
20050222590 Gadberry et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228411 Manzo Oct 2005 A1
20050228416 Burbank et al. Oct 2005 A1
20050234478 Wixey et al. Oct 2005 A1
20050251183 Buckman et al. Nov 2005 A1
20050251184 Anderson Nov 2005 A1
20050256529 Yawata et al. Nov 2005 A1
20050267495 Ginn et al. Dec 2005 A1
20050273122 Theroux et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277953 Francese et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277958 Levinson Dec 2005 A1
20050288689 Kammerer et al. Dec 2005 A1
20050288690 Bourque et al. Dec 2005 A1
20060000867 Shelton et al. Jan 2006 A1
20060004388 Whayne et al. Jan 2006 A1
20060004390 Rosenberg et al. Jan 2006 A1
20060009789 Gambale et al. Jan 2006 A1
20060009790 Blake et al. Jan 2006 A1
20060009792 Baker et al. Jan 2006 A1
20060020270 Jabba et al. Jan 2006 A1
20060020271 Stewart et al. Jan 2006 A1
20060047305 Ortiz et al. Mar 2006 A1
20060047306 Ortiz et al. Mar 2006 A1
20060064117 Aranyi et al. Mar 2006 A1
20060079115 Aranyi Apr 2006 A1
20060079913 Whitfield et al. Apr 2006 A1
20060085021 Wenzler Apr 2006 A1
20060100649 Hart May 2006 A1
20060111731 Manzo May 2006 A1
20060124485 Kennedy Jun 2006 A1
20060129170 Royce et al. Jun 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060163312 Viola et al. Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060184182 Aranyi et al. Aug 2006 A1
20060190013 Menn Aug 2006 A1
20060195125 Sakakine et al. Aug 2006 A1
20060200179 Barker et al. Sep 2006 A1
20060212050 D'Agostino et al. Sep 2006 A1
20060217749 Wilson et al. Sep 2006 A1
20060224165 Surti et al. Oct 2006 A1
20060224170 Duff Oct 2006 A1
20060235437 Vitali et al. Oct 2006 A1
20060235438 Huitema et al. Oct 2006 A1
20060235439 Molitor et al. Oct 2006 A1
20060235440 Huitema et al. Oct 2006 A1
20060235441 Huitema et al. Oct 2006 A1
20060235442 Huitema Oct 2006 A1
20060235443 Huitema et al. Oct 2006 A1
20060235444 Huitema et al. Oct 2006 A1
20060241655 Viola Oct 2006 A1
20060259045 Damarati Nov 2006 A1
20060259049 Harada et al. Nov 2006 A1
20060264987 Sgro Nov 2006 A1
20060271072 Hummel et al. Nov 2006 A1
20070016228 Salas Jan 2007 A1
20070021761 Phillips Jan 2007 A1
20070021766 Belagali et al. Jan 2007 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027458 Sixto, Jr. et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070038233 Martinez et al. Feb 2007 A1
20070049947 Menn et al. Mar 2007 A1
20070049948 Menn et al. Mar 2007 A1
20070049949 Manetakis Mar 2007 A1
20070049950 Theroux et al. Mar 2007 A1
20070049951 Menn Mar 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070066981 Meagher Mar 2007 A1
20070073314 Gadberry et al. Mar 2007 A1
20070083218 Morris Apr 2007 A1
20070093790 Downey et al. Apr 2007 A1
20070093856 Whitfield et al. Apr 2007 A1
20070106314 Dunn May 2007 A1
20070112365 Hilal et al. May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070118161 Kennedy et al. May 2007 A1
20070118163 Boudreaux et al. May 2007 A1
20070118174 Chu May 2007 A1
20070123916 Maier et al. May 2007 A1
20070142848 Ainsworth et al. Jun 2007 A1
20070142851 Sixto et al. Jun 2007 A1
20070149988 Michler et al. Jun 2007 A1
20070149989 Santilli et al. Jun 2007 A1
20070162060 Wild Jul 2007 A1
20070173866 Sorrentino et al. Jul 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070185504 Manetakis et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070213747 Monassevitch et al. Sep 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070265640 Kortenbach et al. Nov 2007 A1
20070276417 Mendes Jr et al. Nov 2007 A1
20070282355 Brown et al. Dec 2007 A1
20070288039 Aranyi et al. Dec 2007 A1
20070293875 Soetikno et al. Dec 2007 A1
20080004636 Walberg et al. Jan 2008 A1
20080004637 Klassen et al. Jan 2008 A1
20080004639 Huitema et al. Jan 2008 A1
20080015615 Molitor et al. Jan 2008 A1
20080027465 Vitali et al. Jan 2008 A1
20080027466 Vitali et al. Jan 2008 A1
20080045981 Margolin et al. Feb 2008 A1
20080051808 Rivera et al. Feb 2008 A1
20080065118 Damarati Mar 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080103510 Taylor et al. May 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080147093 Roskopf et al. Jun 2008 A1
20080154287 Rosenberg et al. Jun 2008 A1
20080167665 Arp et al. Jul 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080228199 Cropper et al. Sep 2008 A1
20080243145 Whitfield et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255589 Blakeney et al. Oct 2008 A1
20080306492 Shibata et al. Dec 2008 A1
20080306493 Shibata et al. Dec 2008 A1
20080312665 Shibata et al. Dec 2008 A1
20080312670 Lutze et al. Dec 2008 A1
20080319456 Hart Dec 2008 A1
20090076533 Kayan et al. Mar 2009 A1
20090088777 Miyagi et al. Apr 2009 A1
20090088783 Kennedy et al. Apr 2009 A1
20090101692 Whitman et al. Apr 2009 A1
20090114699 Viola May 2009 A1
20090171380 Whiting Jul 2009 A1
20090204115 Dees, Jr. et al. Aug 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090222003 Otley Sep 2009 A1
20090228023 Cui Sep 2009 A1
20090228024 Whitfield et al. Sep 2009 A1
20090261142 Milliman et al. Oct 2009 A1
20090264904 Aldrich et al. Oct 2009 A1
20090299382 Zergiebel Dec 2009 A1
20090312775 Gilkey et al. Dec 2009 A1
20090326558 Cui et al. Dec 2009 A1
20100049216 Zergiebel Feb 2010 A1
20100057102 Sorrentino et al. Mar 2010 A1
20100057105 Sorrentino Mar 2010 A1
20100057107 Sorrentino et al. Mar 2010 A1
20100069935 Crainich Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100274262 Schulz et al. Oct 2010 A1
20100274264 Schulz et al. Oct 2010 A1
20100318103 Cheng et al. Dec 2010 A1
20100331862 Monassevitch et al. Dec 2010 A1
20110028994 Whitfield et al. Feb 2011 A1
20110054498 Monassevitch et al. Mar 2011 A1
20110082474 Bindra et al. Apr 2011 A1
20110087220 Felder et al. Apr 2011 A1
20110087241 Nguyen Apr 2011 A1
20110087243 Nguyen et al. Apr 2011 A1
20110087268 Livneh Apr 2011 A1
20110101066 Farascioni et al. May 2011 A1
20110112552 Lehman et al. May 2011 A1
20110137323 Malkowski et al. Jun 2011 A1
20110137324 Boudreaux et al. Jun 2011 A1
20110144662 McLawhorn et al. Jun 2011 A1
20110144665 Malkowski Jun 2011 A1
20110190791 Jacobs et al. Aug 2011 A1
20110208211 Whitfield et al. Aug 2011 A1
20110208212 Zergiebel et al. Aug 2011 A1
20110218553 Huitema et al. Sep 2011 A1
20110218554 Cheng et al. Sep 2011 A1
20110218555 Huitema Sep 2011 A1
20110218556 Nguyen et al. Sep 2011 A1
20110224696 Huitema et al. Sep 2011 A1
20110224700 Schmidt et al. Sep 2011 A1
20110224701 Menn Sep 2011 A1
20110230900 Sarradon Sep 2011 A1
20110245847 Menn et al. Oct 2011 A1
20110245848 Rosenberg et al. Oct 2011 A1
20110251608 Timm et al. Oct 2011 A1
20110295290 Whitfield Dec 2011 A1
20110313437 Yeh Dec 2011 A1
20120022526 Aldridge et al. Jan 2012 A1
20120029534 Whitfield Feb 2012 A1
20120041455 Martinez Feb 2012 A1
20120046671 Matsuoka et al. Feb 2012 A1
20120053402 Conlon et al. Mar 2012 A1
20120059394 Brenner et al. Mar 2012 A1
20120065647 Litscher et al. Mar 2012 A1
20120109158 Zammataro May 2012 A1
20120116420 Sorrentino et al. May 2012 A1
20120197269 Zammataro Aug 2012 A1
20120226291 Malizia et al. Sep 2012 A1
20120234894 Kostrzewski Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20120265220 Menn Oct 2012 A1
20120277765 Zammataro et al. Nov 2012 A1
20120330326 Creston et al. Dec 2012 A1
20130041379 Bodor et al. Feb 2013 A1
20130110135 Whitfield et al. May 2013 A1
20130131697 Hartoumbekis May 2013 A1
20130165951 Blake, III Jun 2013 A1
20130165952 Whitfield et al. Jun 2013 A1
20130172909 Harris Jul 2013 A1
20130172910 Malkowski Jul 2013 A1
20130172911 Rockrohr et al. Jul 2013 A1
20130172912 Whitfield et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130226200 Kappel et al. Aug 2013 A1
20130253540 Castro et al. Sep 2013 A1
20130253541 Zergiebel Sep 2013 A1
20130274767 Sorrentino et al. Oct 2013 A1
20130289583 Zergiebel et al. Oct 2013 A1
20130296891 Hartoumbekis Nov 2013 A1
20130296892 Sorrentino et al. Nov 2013 A1
20130310849 Malkowski Nov 2013 A1
20130325040 Zammataro Dec 2013 A1
20130325057 Larson et al. Dec 2013 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005693 Shelton, IV et al. Jan 2014 A1
20140039526 Malkowski Feb 2014 A1
20140052157 Whitfield et al. Feb 2014 A1
20140058412 Aranyi et al. Feb 2014 A1
20140074143 Fitzgerald et al. Mar 2014 A1
20140131421 Viola May 2014 A1
20140188159 Steege Jul 2014 A1
20140194903 Malkowski et al. Jul 2014 A1
20140207156 Malkowski Jul 2014 A1
20140252065 Hessler et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140276970 Messerly et al. Sep 2014 A1
20140296879 Menn et al. Oct 2014 A1
20140309677 Baldwin Oct 2014 A1
20140316441 Zergiebel et al. Oct 2014 A1
20140324074 Crainich et al. Oct 2014 A1
20140330291 Whitfield et al. Nov 2014 A1
20140371728 Vaughn Dec 2014 A1
20150005790 Whitfield et al. Jan 2015 A1
20150032131 Sorrentino et al. Jan 2015 A1
20150045816 Aranyi et al. Feb 2015 A1
20150066057 Rockrohr et al. Mar 2015 A1
20150080916 Aranyi et al. Mar 2015 A1
20150127022 Whitfield et al. May 2015 A1
20150164511 Whitfield et al. Jun 2015 A1
20150190133 Penna et al. Jul 2015 A1
20150190138 Whitfield et al. Jul 2015 A1
20150190139 Zammataro Jul 2015 A1
20150196298 Menn et al. Jul 2015 A1
20150201953 Strobl et al. Jul 2015 A1
20150265282 Miles et al. Sep 2015 A1
20150282808 Sorrentino et al. Oct 2015 A1
20150313452 Hasser et al. Nov 2015 A1
20150314451 Nixon Nov 2015 A1
20150327879 Garrison et al. Nov 2015 A1
20150351771 Malkowski et al. Dec 2015 A1
20150351772 Malkowski et al. Dec 2015 A1
20160000428 Scirica Jan 2016 A1
20160004956 Reynolds et al. Jan 2016 A1
20160030044 Zammataro Feb 2016 A1
20160030045 Malkowski et al. Feb 2016 A1
20160113655 Holsten Apr 2016 A1
20160151071 Tokarz et al. Jun 2016 A1
20160166255 Fischvogt Jun 2016 A1
20160192927 Kostrzewski Jul 2016 A1
20160192940 Gokharu Jul 2016 A1
20160213377 Shankarsetty Jul 2016 A1
20160242789 Sorrentino et al. Aug 2016 A1
20160249927 Beckman et al. Sep 2016 A1
20160256157 Rockrohr et al. Sep 2016 A1
20160256158 Whitfield et al. Sep 2016 A1
20160262764 Gokharu Sep 2016 A1
20160296232 Campbell Oct 2016 A1
20160296236 Whitfield et al. Oct 2016 A1
20160338695 Hartoumbekis Nov 2016 A1
20160338699 Sorrentino et al. Nov 2016 A1
20170027581 Zergiebel et al. Feb 2017 A1
20170049449 Aranyi et al. Feb 2017 A1
20170065277 Malkowski Mar 2017 A1
20170065281 Zammataro Mar 2017 A1
20170086846 Sorrentino et al. Mar 2017 A1
20170086850 Zergiebel Mar 2017 A1
20170128071 Holsten et al. May 2017 A1
20170165015 Hess et al. Jun 2017 A1
20170172780 Murthy Aravalli Jun 2017 A1
20170202567 Griffiths et al. Jul 2017 A1
20170238936 Mujawar Aug 2017 A1
20170245921 Joseph et al. Aug 2017 A1
20170252042 Kethman et al. Sep 2017 A1
20170258472 Aranyi et al. Sep 2017 A1
20170290587 Schober et al. Oct 2017 A1
20170325814 Malkowski Nov 2017 A1
20170340325 Baril et al. Nov 2017 A1
20170340331 Hu et al. Nov 2017 A1
20170340332 Whitfield et al. Nov 2017 A1
20170360449 Rockrohr et al. Dec 2017 A1
20180008276 Bhatnagar et al. Jan 2018 A1
20180008277 Baril Jan 2018 A1
20180021041 Zhang et al. Jan 2018 A1
20180070952 Malkowski et al. Mar 2018 A1
20180116671 Prior May 2018 A1
20180116673 Baril et al. May 2018 A1
20180116674 Baril May 2018 A1
20180116675 Baril May 2018 A1
20180116676 Williams May 2018 A1
20180168660 Gokharu Jun 2018 A1
20180214156 Baril et al. Aug 2018 A1
20180221028 Williams Aug 2018 A1
20180228492 Aranyi et al. Aug 2018 A1
20180228567 Baril et al. Aug 2018 A1
20180235632 Mujawar et al. Aug 2018 A1
20180235633 Baril et al. Aug 2018 A1
20180235637 Xu et al. Aug 2018 A1
20180242977 Tan et al. Aug 2018 A1
20180263624 Malkowski et al. Sep 2018 A1
20180271526 Zammataro Sep 2018 A1
20180317927 Cai et al. Nov 2018 A1
20180317928 P V R Nov 2018 A1
20180325519 Baril et al. Nov 2018 A1
20190000449 Baril et al. Jan 2019 A1
20190000482 Hu et al. Jan 2019 A1
20190000584 Baril Jan 2019 A1
20190021738 Hartoumbekis Jan 2019 A1
20190038375 Baril et al. Feb 2019 A1
20190046202 Baril et al. Feb 2019 A1
20190046203 Baril et al. Feb 2019 A1
20190046207 Czemik et al. Feb 2019 A1
20190046208 Baril et al. Feb 2019 A1
20190053806 Zhang et al. Feb 2019 A1
20190053808 Baril et al. Feb 2019 A1
20190059904 Zammataro Feb 2019 A1
20190076147 Baril et al. Mar 2019 A1
20190076148 Baril et al. Mar 2019 A1
20190076149 Baril et al. Mar 2019 A1
20190076150 Gokharu Mar 2019 A1
20190076210 Baril et al. Mar 2019 A1
20190133583 Baril et al. May 2019 A1
20190133584 Baril et al. May 2019 A1
20190133590 Richard May 2019 A1
20190133593 P V R May 2019 A1
20190133594 Dinino et al. May 2019 A1
20190133595 Baril et al. May 2019 A1
20190150935 Raikar et al. May 2019 A1
20190159782 Kamaraj et al. May 2019 A1
20190175176 Zammataro Jun 2019 A1
20190175187 P V R Jun 2019 A1
20190175188 P V R Jun 2019 A1
20190175189 P V R Jun 2019 A1
20190192139 Rockrohr et al. Jun 2019 A1
20190209177 Whitfield et al. Jul 2019 A1
20190216464 Baril et al. Jul 2019 A1
20190239893 Shankarsetty Aug 2019 A1
20190298377 Castro Oct 2019 A1
20190321048 Dinino et al. Oct 2019 A1
20190328391 Holsten et al. Oct 2019 A1
20190328399 Baril et al. Oct 2019 A1
20200008806 Dinino et al. Jan 2020 A1
20200046329 Baril et al. Feb 2020 A1
20200046359 Thomas et al. Feb 2020 A1
20200046363 Baril et al. Feb 2020 A1
20200046365 Baril et al. Feb 2020 A1
20200046443 Baril et al. Feb 2020 A1
20200060686 Williams Feb 2020 A1
20200113569 Zergiebel Apr 2020 A1
20200129183 Baril et al. Apr 2020 A1
20200146687 Whitfield et al. May 2020 A1
20200170646 Mujawar Jun 2020 A1
20200229825 P V R Jul 2020 A1
20200261095 Yi et al. Aug 2020 A1
20200315629 Xu et al. Oct 2020 A1
20210059681 Zhang et al. Mar 2021 A1
20210169482 Baril et al. Jun 2021 A1
20210204946 Banerjee et al. Jul 2021 A1
20210298758 Thomas et al. Sep 2021 A1
20210401438 Pilletere et al. Dec 2021 A1
Foreign Referenced Citations (115)
Number Date Country
2010200641 Oct 2010 AU
2013254887 Nov 2013 AU
1163889 Mar 1984 CA
2740831 Apr 2010 CA
1 939 231 Apr 2007 CN
1994236 Jul 2007 CN
101164502 Apr 2008 CN
101401737 Apr 2009 CN
101530340 Sep 2009 CN
100571640 Dec 2009 CN
101658437 Mar 2010 CN
101664329 Mar 2010 CN
101664331 Mar 2010 CN
201683954 Dec 2010 CN
202699217 Jan 2013 CN
103083059 May 2013 CN
103181809 Jul 2013 CN
103181810 Jul 2013 CN
103251441 Aug 2013 CN
104487006 Apr 2015 CN
104605911 Feb 2017 CN
29520789 Jun 1996 DE
20 2005 001664 May 2005 DE
202007003398 Jun 2007 DE
202009006113 Jul 2009 DE
0059852 Sep 1982 EP
0073655 Mar 1983 EP
0085931 Aug 1983 EP
0086721 Aug 1983 EP
0089737 Sep 1983 EP
0092300 Oct 1983 EP
0324166 Jul 1989 EP
0392750 Oct 1990 EP
0406724 Jan 1991 EP
0409569 Jan 1991 EP
0569223 Nov 1993 EP
0576835 Jan 1994 EP
0594003 Apr 1994 EP
0622049 Nov 1994 EP
0685204 Dec 1995 EP
0732078 Sep 1996 EP
0755655 Jan 1997 EP
0760230 Mar 1997 EP
0769274 Apr 1997 EP
0769275 Apr 1997 EP
0834286 Apr 1998 EP
1317906 Jun 2003 EP
1468653 Oct 2004 EP
1609427 Dec 2005 EP
1637086 Mar 2006 EP
1712187 Oct 2006 EP
1712191 Oct 2006 EP
1757236 Feb 2007 EP
1813199 Aug 2007 EP
1813207 Aug 2007 EP
1894531 Mar 2008 EP
1908423 Apr 2008 EP
1913881 Apr 2008 EP
1939231 Jul 2008 EP
2000102 Dec 2008 EP
2140817 Jan 2010 EP
2229895 Sep 2010 EP
2263570 Dec 2010 EP
2332471 Jun 2011 EP
2412318 Feb 2012 EP
2412319 Feb 2012 EP
2752165 Jul 2014 EP
3132756 Feb 2017 EP
3476331 May 2019 EP
1134832 Nov 1968 GB
2073022 Oct 1981 GB
2 132 899 Jul 1984 GB
06054858 Mar 1994 JP
10118083 May 1998 JP
2003033361 Feb 2003 JP
2006501954 Jan 2006 JP
2006154230 Jun 2006 JP
2006209948 Aug 2006 JP
2006277221 Oct 2006 JP
2007250843 Sep 2007 JP
2008017876 Jan 2008 JP
2008047498 Feb 2008 JP
2008055165 Mar 2008 JP
2008515550 May 2008 JP
2008200190 Sep 2008 JP
2009198991 Sep 2009 JP
2011186812 Sep 2011 JP
2013166982 Aug 2013 JP
5499386 May 2014 JP
9003763 Apr 1990 WO
9624294 Aug 1996 WO
9814124 Apr 1998 WO
0042922 Jul 2000 WO
0165997 Sep 2001 WO
0166001 Sep 2001 WO
0167965 Sep 2001 WO
03086207 Oct 2003 WO
03092473 Nov 2003 WO
2004032762 Apr 2004 WO
2005091457 Sep 2005 WO
2006042076 Apr 2006 WO
2006042084 Apr 2006 WO
2006042110 Apr 2006 WO
2006042141 Apr 2006 WO
2006135479 Dec 2006 WO
2008118928 Oct 2008 WO
2008127968 Oct 2008 WO
2009039506 Mar 2009 WO
2016192096 Dec 2016 WO
2016192718 Dec 2016 WO
2016197350 Dec 2016 WO
2016206015 Dec 2016 WO
2017084000 May 2017 WO
2017146138 Aug 2017 WO
2018035796 Mar 2018 WO
Non-Patent Literature Citations (183)
Entry
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,716,672 dated May 31, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,717,448 dated May 31, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,721,951, dated Jun. 1, 2016.
Partial European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0287.7 dated Jun. 16, 2016.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201210555570.8 dated Jun. 20, 2016.
International Search Report & Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/091603 dated Jul. 8, 2016.
The extended European Search Report corresponding to European Application No. EP 07 25 3905.9, completed Jan. 29, 2008; dated Feb. 7, 2008; (7 Pages).
International Search Report corresponding to International Application No. PCT-US08-58185, completed Sep. 4, 2008 dated Sep. 9, 2008; (2 Pages).
The International Search Report corresponding to International Application No. PCT-US08-59859, completed Sep. 14, 2008; dated Sep. 18, 2008; (2 Pages).
The extended European Search Report corresponding to European Application No. EP 07 25 3807.7, completed Nov. 7, 2008; dated Nov. 26, 2008; (11 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2049.3, completed Dec. 11, 2009; dated Jan. 12, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2050.1, completed Dec. 23, 2009; dated Jan. 21, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2051.9, completed Dec. 21, 2009; dated Jan. 28, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2052.7, completed Nov. 16, 2009; dated Nov. 24, 2009; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2053.5, completed Nov. 1, 2009; dated Dec. 1, 2009; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2054.3, completed Jan. 7, 2010; dated Jan. 22, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2055.8, completed Jan. 3, 2010; dated Feb. 5, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 10 25 0497.4, completed May 1, 2010; dated May 12, 2010; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 10 25 2079.8, completed Mar. 8, 2011; dated Mar. 17, 2011; (3 Pages).
The European Search Repori corresponding to European Application No. EP 05 81 0218.7, completed Apr. 18, 2011; dated May 20, 2011; (3 pages).
The European Search Repori corresponding to European Application No. EP 05 80 7612.6, completed May 2, 2011; dated May 20, 2011; (3 pages).
The extended European Search Report corresponding to European Application No. EP 10 25 1737.2, completed May 9, 2011; dated May 20, 2011; (4 pages).
The extended European Search Report corresponding to European Application No. EP 11 25 0214.1, completed May 25, 2011; dated Jun. 1, 2011; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 11 00 2681.2, completed May 31, 2011; dated Jun. 10, 2011; (3 Pages).
The European Search Repori corresponding to European Application No. EP 05 80 2686.5, completed Jan. 9, 2012; dated Jan. 18, 2012; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 12 15 1313.9, completed Mar. 20, 2012 and dated Apr. 12, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 1291.5, completed Apr. 24, 2012 and dated May 4, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 5891.8, completed Jun. 12, 2012 and dated Jun. 20, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 2288.0, completed Jun. 4, 2012 and dated Jul. 7, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 4955.2, completed Aug. 23, 2012 and dated Sep. 4, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 11 25 0754.6, completed Oct. 22, 2012 and dated Oct. 31, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 18 6401.1, completed Nov. 22, 2012 and dated Nov. 30, 2012; (7 Pages).
The extended European Search Report corresponding to European Application No. EP 12 18 6448.2, completed Nov. 28, 2012 and dated Dec. 10, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 19 1706.6, completed Dec. 19, 2012 and dated Jan. 8, 2013; (6 Pages).
The Extended European Search Report corresponding to EP 12 19 8745.7, completed Mar. 19, 2013 and dated Apr. 11, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 12 15 2989.5, completed Apr. 9, 2013 and dated Apr. 18, 2013; (9 Pages).
The Extended European Search Report corresponding to EP 08 73 2820.9, completed Jul. 2, 2013 and dated Jul. 9, 2013; (10 Pages).
The Extended European Search Report corresponding to EP 13 17 2008.8, completed Aug. 14, 2013 and dated Aug. 28, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 13 16 6382.5, completed Nov. 19, 2013 and dated Nov. 28, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 11 25 0194.5, completed Nov. 25, 2013 and dated Dec. 3, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 10 25 1798.4, completed Dec. 12, 2013 and dated Jan. 2, 2014; (9 Pages).
“Salute II Disposable Fixation Device”, Technique Guide—Laparoscopic and Open Inguinal and Ventral Hernia Repair; Davol, A Bard Company, 2006; (7 Pages).
The Extended European Search Report corresponding to EP 10 25 2112.7, completed Jul. 29, 2014 and dated Aug. 5, 2014; (8 pp).
The Extended European Search Report corresponding to EP 14 15 1673.2, completed Apr. 25, 2014 and dated May 8, 2014; (8 pp).
The Chinese Office Action, and English translation, corresponding to CN 2011102017361 dated Feb. 9, 2015; (29 pp).
Extended European Search Report corresponding to counterpart Int'l Application No. EP 11 25 0675.3 dated Oct. 1, 2015.
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210586814.9 dated Jul. 18, 2016.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510093591.6 dated Jul. 25, 2016.
International Search Report & Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/094172 dated Aug. 4, 2016.
Canadian Office Action corresponding to Int'l Appln. No. CA 2,728,538 dated Sep. 6, 2016.
International Search Report and Written Opinion corresponding to International Application No. PCT/US18/050316 dated Dec. 31, 2018.
International Search Report and Written Opinion corresponding to International Application No. PCT/US18/050325 dated Jan. 7, 2019.
International Search Report and Written Opinion corresponding to International Application No. PCT/US2018/057922 dated Feb. 22, 2019.
Chinese First Office Action corresponding to Patent Application CN 201610055870.8 dated Aug. 1, 2019.
Japanese Office Action corresponding to Patent Application JP 2015-203499 dated Aug. 16, 2019.
Chinese Second Office Action corresponding to Patent Application CN 201510696298.9 dated Aug. 21, 2019.
Japanese Office Action corresponding to Patent Application JP 2018-516433 dated Aug. 21, 2019.
Chinese First Office Action corresponding to Patent Application CN 201580072284.8 dated Aug. 29, 2019.
Chinese First Office Action corresponding to Patent Application CN 201580073962.2 dated Sep. 5, 2019.
Extended European Search Report corresponding to Patent Application EP 19151805.9 dated Sep. 5, 2019.
Japanese Office Action corresponding to Patent Application JP 2018-537512 dated Sep. 9, 2019.
Extended European Search Report corresponding to Patent Application EP 19170951.8 dated Sep. 26, 2019.
Extended European Search Report corresponding to Patent Application EP 15908020.9 dated Oct. 9, 2019.
Japanese Office Action corresponding to Patent Application JP 2018-534822 dated Oct. 17, 2019.
Extended European Search Report corresponding to Patent Application EP 16884297.9 dated Oct. 31, 2019.
Extended European Search Report corresponding to Patent Application EP 16885490.9 dated Nov. 12, 2019.
Extended European Search Report corresponding to Patent Application EP 19191203.9 dated Dec. 9, 2019.
Extended European Search Report corresponding to Patent Application EP 19191226.0 dated Dec. 10, 2019.
Extended European Search Report corresponding to Patent Application EP 19172130.7 dated Dec. 19, 2019.
European Office Action corresponding to Patent Application EP 18 187 690.5 dated Mar. 23, 2020.
Extended European Search Report corresponding to Patent Application EP 16912243.9 dated Mar. 25, 2020.
Chinese First Office Action corresponding to Patent Application CN 201610694951.2 dated Apr. 23, 2020.
Partial Supplementary European Search Report corresponding to Patent Application EP 18899075.8 dated Jul. 1, 2021.
Australian Examination Report No. 1 corresponding to Patent Application AU 2015413639 dated Jul. 23, 2020.
Chinese First Office Action corresponding to Patent Application CN 201680078525.4 dated Jul. 28, 2020.
Japanese Office Action corresponding to Patent Application JP 2016-217970 dated Sep. 28, 2020.
Extended European Search Report corresponding to Patent Application EP 17895153.9 dated Dec. 17, 2020.
Extended European Search Report corresponding to Patent Application EP 20215391.2 dated Apr. 30, 2021.
Extended European Search Report corresponding to Patent Application EP 18873112.9 dated Oct. 18, 2021.
Extended European Search Report corresponding to Patent Application EP 21164196.4 dated Dec. 17, 2021.
Canadian Office Action dated Sep. 6, 2016 corresponding to Patent Application CA 2,728,538.
Japanese Office Action dated Sep. 1, 2014 corresponding to counterpart Patent Application JP 2011-039024.
Chinese First Office Action dated Jul. 24, 2014 corresponding to counterpart Patent Application CN 201110201736.1.
Extended European Search Report corresponding to Patent Application EP 18154617.7 dated Jun. 25, 2018.
Extended European Search Report corresponding to Patent Application EP 18155158.1 dated Jun. 28, 2018.
European Search Report corresponding to Patent Application EP 15877428.1 dated Jul. 2, 2018.
European Search Report corresponding to Patent Application EP 18157789.1 dated Jul. 5, 2018.
Office Action corresponding to Patent Application CA 2,972,444 dated Aug. 9, 2018.
European Search Report corresponding to Patent Application EP 18156458.4 dated Sep. 3, 2018.
European Search Report corresponding to Patent Application EP 18171682.0 dated Sep. 18, 2018.
European Search Report corresponding to Patent Application EP 15878354.8 dated Sep. 19, 2018.
European Search Report corresponding to Patent Application EP 18183394.8 dated Sep. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 18163041.9 dated Sep. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 18170524.5 dated Oct. 1, 2018.
Japanese Office Action corresponding to Patent Application JP 2017-536546 dated Oct. 15, 2018.
Extended European Search Report corresponding to Patent Application EP 18187640.0 dated Nov. 30, 2018.
Extended European Search Report corresponding to Patent Application EP 18187690.5 dated Nov. 30, 2018.
Chinese First Office Action corresponding to Patent Application CN 201510696298.9 dated Dec. 3, 2018.
Extended European Search Report corresponding to Patent Application EP 18158143.0 dated Dec. 5, 2018.
European Office Action corresponding to European Appln. No. EP 16 15 9324.9 dated Aug. 7, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 2014104295806 dated Aug. 31, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 17 3508.7 dated Sep. 29, 2017.
Chinese Second Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Oct. 10, 2017 .
Extended European Search Report corresponding to European Appln. No. EP 17 18 0570.8 dated Dec. 6, 2017.
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210586826.1 dated Sep. 14, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 15 0287.7 dated Oct. 4, 2016.
Chinese First Office Action corresponding to Int'l Appln. No. Cn 201510205737A dated Nov. 1, 2016.
European Office Action corresponding to Int'l Appln. No. EP 08 73 2820.9 dated Nov. 3, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 18 5465.8 dated Dec. 21, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 18 4652.2 dated Jan. 4, 2017.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510419902.3 dated Jan. 4, 2017.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050316 dated Dec. 31, 2 018.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050336 dated Jan. 7, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050325 dated Jan. 7, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/045306 dated Jan. 16, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050349 dated Jan. 21, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/045725 dated Jan. 28, 2019.
Extended European Search Report corresponding to European Patent Application EP 18208630.6 dated Feb. 12, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057910 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057922 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/058078 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/058603 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057221 dated Mar. 11, 2019.
Extended European Search Report corresponding to European Patent Application EP 18212043.6 dated Apr. 24, 2019.
Extended European Search Report corresponding to European Patent Application EP 18211565.9 dated Apr. 26, 2019.
Extended European Search Report corresponding to European Patent Application EP 18211921.4 dated Apr. 30, 2019.
Chinese First Office Action corresponding to Chinese Patent Application CN 201510868226.8 dated May 29, 2019.
Extended European Search Report corresponding to European Patent Application EP 15905685.2 dated May 29, 2019.
European Office Action corresponding to European Patent Application EP 17157606.9 dated Jul. 2, 2019.
Extended European Search Report corresponding to European Patent Application EP 15908025.8 dated Jul. 2, 2019.
Extended European Search Report corresponding to European Patent Application EP 18212054.3 dated Jul. 3, 2019.
Partial Supplementary European Search Report corresponding to European Patent Application EP 16884297.9 dated Jul. 30, 2019.
Australian Examination Report No. 1 dated Sep. 27, 2013 corresponding to counterpart Patent Application AU 2011202925.
Japanese Office Action corresponding to JP 2011-160130 dated Dec. 1, 2014.
Chinese Office Action corresponding to CN 201210015011.8 dated Jan. 4, 2015.
Japanese Office Action corresponding to JP 2011-160126 dated Jan. 9, 2015.
Japanese Office Action corresponding to JP 2011-184521 dated Jan. 15, 2015.
Extended European Search Report corresponding to 14 18 2236.1 dated Jan. 20, 2015.
Chinese Office Action corresponding to CN 201110201736.1 dated Feb. 9, 2015.
Extended European Search Report corresponding to EP 14 16 1540.1 dated Feb. 27, 2015.
Australian Office Action corresponding to AU 2010226985 dated Mar. 31, 2015.
Australian Office Action corresponding to AU 2013211526 dated Apr. 6, 2015.
Australian Office Action corresponding to AU 2011211463 dated Apr. 13, 2015.
Australian Office Action corresponding to AU 2013254887 dated Apr. 14, 2015.
Japanese Office Action corresponding to JP 2013-225272 dated May 1, 2015.
European Office Action corresponding to EP 12 152 989.5 dated May 4, 2015.
Australian Office Action corresponding to AU 2009212759 dated May 7, 2015.
Japanese Office Action corresponding to JP 2013-229070 dated May 8, 2015.
Japanese Office Action corresponding to JP 2013-229996 dated May 8, 2015.
Japanese Office Action corresponding to JP 2014-190735 dated May 27, 2015; no English translation attached—unavailable.
Extended European Search Report for EP 11250675.5 dated Oct. 6, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210212642.9 dated Jun. 3, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 04 719 757.9 dated Jun. 12, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 166 382.5 dated Jun. 19, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2010-226908 dated Jun. 26, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 15 15 5024.1 dated Jul. 17, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 14 19 2026.4 dated Jul. 17, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2011-160126 dated Aug. 10, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 14 15 0321.9 dated Sep. 23, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 11 25 0674.6 dated Oct. 7, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 12 19 3447.5 dated Oct. 19, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,675,875 dated Oct. 26, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2015-005629 dated Oct. 28, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2014-245081 dated Oct. 28, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,675,921 dated Oct. 30, 2015.
Chinese Office Action corresponding to counterpart Int'l Application No. CN 201210555570.8 dated Nov. 2, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,309 dated Nov. 3, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,211 dated Nov. 24, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,547 dated Nov. 25, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 15 17 3809.3 dated Nov. 25, 2015.
Chinese Office Action corresponding to counterpart Int'l Application No. CN 201210586814.9 dated Dec. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 12 17 2940.4 dated Dec. 14, 2015.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210586826A dated Dec. 30, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 1313.4 dated Feb. 1, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 5362.9 dated Feb. 12, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 7813.4 dated Mar. 7, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,676,465 dated Mar. 8, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-245081, dated Mar. 18, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2015-005629 dated Mar. 18, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 3549.1 dated Mar. 22, 2016.
International Search Report and Written Opinion corresponding to counterpart Int'l Appln. No. PCT/CN2015/082199 dated Mar. 31, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 7251.0 dated Apr. 8, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0739.7 dated May 17, 2016.
Related Publications (1)
Number Date Country
20200146687 A1 May 2020 US
Provisional Applications (1)
Number Date Country
61368349 Jul 2010 US
Continuations (3)
Number Date Country
Parent 15676063 Aug 2017 US
Child 16741042 US
Parent 14621694 Feb 2015 US
Child 15676063 US
Parent 13151388 Jun 2011 US
Child 14621694 US