The present disclosure relates generally systems and methods for treating bone or hard tissue. More particularly, some embodiments relate to medical instruments and methods for creating a path or cavity in vertebral bone and injecting bone cement to treat a vertebral compression fracture.
The written disclosure herein describes illustrative embodiments that are non-limiting and non-exhaustive. Reference is made to certain of such illustrative embodiments that are depicted in the figures, in which:
This disclosure provides methods and systems to treat hard tissue by creating and filling cavities within a bone or other hard tissue. A medical device for treating hard tissue may include a shaft with an articulating portion, a handle configured to manipulate the articulating portion, a side port that extends to an accessible portion of the shaft, and a lumen that is inserted in the side port. In one embodiment, a physician may advance the articulating portion of the shaft into a vertebral body. The physician may manipulate the handle to cause the articulating portion to move from a linear configuration to a non-linear configuration. The change of the articulating portion's configuration may displace tissue in the vertebral body creating a pathway. The physician may inject bone cement through the lumen while the articulating portion is in a non-linear configuration allowing precise filling of the pathway.
The shaft may include a conduit and a rod. The conduit may have a series of slots along a first side of a distal portion. The slots may allow the distal portion to deflect thus forming an articulating distal portion of the conduit. The rod may include a semicylindrical portion that extends through the conduit. The semicylindrical portion's shape may allow the rod to flex when a force is applied and return to a linear position when the force is removed.
The rod may be coupled to the distal end of the conduit. In some embodiments, the rod and the conduit may be directly attached. For example, the rod and conduit may be welded together at the distal end. The weld may be along a distal tip of the rod and the conduit. In some embodiments, the weld may be disposed at an additional notch, hole or slot of the conduit, thereby increasing the welded surface area of the conduit and rod. In other words, the weld joint may be made around the perimeter of the notch hole or slot to attach the rod to the conduit.
The rod may extend through the conduit. The rod may extend along the slots on the first side of the conduit. The position of the slots in the conduit, and the relative position of the rod relative to the conduit, may limit the articulating distal portion to movement in one plane. In some instances, when the rod is translated in the proximal direction (without displacing the conduit), the coupling and the positioning between the rod and the conduit may cause the rod and the conduit to flex at the articulating distal portion.
The shaft may also include a sharp tip located at an end of the articulating distal portion of the conduit to penetrate hard tissue. In some embodiments, the tip may be formed from the conduit and/or rod. In another embodiment, the sharp tip may be a separate part coupled to the conduit and/or rod. The articulating distal portion and tip may have sufficient strength to mechanically displace tissue within a vertebra of a patient.
The handle may include an actuating portion coupled to a proximal end of the rod. The movement of the actuating portion may result in an associated movement of the rod. For example, the actuating portion may control the axial movement of the rod. In some embodiments, rotation of the actuating portion may result in a proximal movement of the rod. Thus, by rotating the an actuating portion a selected amount, the articulating portion can be articulated to a selected degree, and the articulating distal portion may selectively move between a linear configuration and an articulated configuration.
The handle may further include a force limiter. The force limiter may disengage the actuating portion from the proximal end of the rod if a target force is exerted on the actuating portion. The target force may be near the breaking point of the articulating distal portion. The force limiter may protect the articulating distal portion from breaking.
Similarly, in some instances, the entire conduit and rod assembly may be coupled to the handle view a clutch or torque limiting assembly. Such an assembly may limit the amount of torque that can be transferred from the handle to the conduit and rod assembly. This torque limiting assembly can reduce breakage of the rod and/or conduit due to excessive force applied by the handle.
In some embodiments which include a torque limiter, cement or other substances may be displaceable along an injection path through the torque limiter assembly by way of a shuttle component. The shuttle component may be rotationally displaceable with respect to the conduit and may comprise opening around its circumference to create a fluid path regardless of the rotational position of the shuttle with respect to the conduit.
A side port may be coupled to the handle. The side port may have an insertion guide that extends to an accessible portion or working channel the conduit. The working channel or accessible portion of the conduit may be the portion not occupied by the semicylindrical portion of the rod. A lumen may be inserted in the accessible portion.
An inserted lumen may extend through the conduit to an opening in the articulating distal portion. The lumen may be a hollow semicylinder that provides a path for materials to pass through the conduit. The lumen can include a surface comprising a lubricious polymeric material. For example, the material can comprise any bio-compatible material having low frictional properties (e.g., TEFLON®, a polytetrafluroethylene (PTFE), FEP (Fluorinated ethylenepropylene), polyethylene, polyamide, ECTFE (Ethylenechlorotrifluoro-ethylene), ETFE, PVDF, polyvinyl chloride and silicone). Similar to the rod, the lumen may be semicylindrical. Semicylindrical rod and the lumen may be positioned within the conduit to form a cylinder that fills the conduit.
A lumen port may be coupled to the lumen. The lumen port may include a clip. The clip may secure the lumen port to a side port with a clip holster. The semicylindrical shape of the rod and the lumen may prevent the lumen from being secured using a threaded connector due to difficulties with rotating a semicylindrical lumen within a semicylindrical accessible portion. The clip provides a method of attachment that will not require the lumen to rotate. The lumen port may selectively couple to a thermal energy delivery probe, a cement delivery cartridge, and a biopsy tool. The lumen may also be selectively removable and replaceable. For example, if cement begins to block the lumen, a new lumen may replace the blocked lumen.
In some embodiments, a stylet may be selectively inserted in the lumen. The stylet may extend through the lumen for additional support to the articulating distal portion. The stylet may be a flexible material that fills the lumen. The stylet may be removed to allow the use of additional tools and cement.
The phrase “coupled to” is broad enough to refer to any suitable coupling or other form of interaction between two or more entities, including mechanical, fluidic and thermal interaction. Thus, two components may be coupled to each other even though they are not in direct contact with each other. The phrases “attached to” or “attached directly to” refer to interaction between two or more entities which are in direct contact with each other and/or are separated from each other only by a fastener of any suitable variety (e.g., mounting hardware or an adhesive). The phrase “fluid communication” is used in its ordinary sense, and is broad enough to refer to arrangements in which a fluid (e.g., a gas or a liquid) can flow from one element to another element when the elements are in fluid communication with each other.
The terms “proximal” and “distal” are opposite directional terms. For example, the distal end of a device or component is the end of the component that is furthest from the physician during ordinary use. The proximal end refers to the opposite end, or the end nearest the physician during ordinary use.
The components of the embodiments as generally described and illustrated in the figures herein can be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the present disclosure, but is merely representative of various embodiments. While various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
In use, a physician may introduce the shaft 102 through a pedicle of a patient's spine. The shaft may comprise a conduit 112 and a semicylindrical rod 114. The conduit 112 and rod 114 may be fabricated of a suitable metal alloy, such as stainless steel or NiTi. The shaft may be configured with an articulating portion 110. The articulating portion 110 may deflect along one plane based on the coupling between the conduit 112 and the semicylindrical rod 114. For example, as shown the semicylindrical rod 114 may be contiguous with, and extend along, a series of slots on the conduit 112. The series of slots may allow the conduit 112 to bend and the semicylindrical rod's shape may allow the semicylindrical rod to bend. The articulating portion 110 may be located at the distal end of the shaft.
The articulating portion 110 may progressively actuate to curve a selected degree and/or rotate to create a curved pathway and cavity in the vertebral body. A lumen 108 may be inserted through the side port 106 and extend through the shaft 102 to provide a pathway for bone cement to pass. The articulating portion 110 may remain in a curved state while the bone cement may be injected directly into the cavity.
The handle 104 may be coupled to the proximal end of the shaft 102. The handle 104 may comprise a grip portion 116 and an actuator portion 118. The grip portion 116 may be coupled to the conduit 112. And the actuator portion 118 may be operatively coupled to the semicylindrical rod 114. The shaft 102 may be coupled to the handle 104, to allow a physician to drive the shaft 102 into bone while contemporaneously actuating the articulating portion 110 into an actuated or curved configuration. The handle 104 can be fabricated of a polymer, metal or any other material. In some embodiments, the material of the handle 104 may be suitable to withstand hammering or impact forces used to drive the assembly into bone (e.g., via use of a hammer or similar device on the handle 104).
The actuator portion 118 may be rotatable relative to the grip portion 116. When the actuator portion 118 is turned, the articulating portion 110 may associatively deflect. Some embodiments may have systems or elements for arresting the movement of the actuator portion 118 and thereby maintaining the deflection of the articulating portion 110. For example, in one embodiment, one or more plastic flex tabs of the grip portion may be configured to engage notches in the rotatable actuator portion to provide tactile indication and temporary locking in a certain degree of rotation.
The side port 106 may provide an aperture through the handle 104 into a portion of the shaft 102 not occupied by the semicylindrical rod, the accessible portion or working channel 124. The lumen 108 may be inserted into the side port 106 and extend through the shaft 102 along the working channel 124. The lumen 108 may be secured to the side port 106 with a clip 120. The lumen 108 may further include a threaded port 122 to accept cement delivery devices, biopsy tools, and other medical instruments. In the embodiment illustrated in
The conduit may have a series of slots 208. The notches or slots in any of the sleeves can comprise a uniform width along the length of the working end or can comprise a varying width. Alternatively, the width can be selected in certain areas to effectuate a particular curved profile. In other variations, the width can increase or decrease along the working end to create a curve having a varying radius.
As shown, the rod 204 and the lumen 206 may both be semicylindrical. When paired together, their shape and sizing may form a cylinder that fills the center of the conduit 202. The lumen may provide additional support for the tip 200.
A semicylindrical rod 302 may be attached to a conduit 304 in a variety of ways. For example, the perimeter of the semicylindrical rod's arc may be welded to the conduit 304 at the end. Other attachment spots may be used to secure the semicylindrical rod 302 to the conduit 304. For instance, the weld notch 306 shown provides a welding area to attach the semicylindrical rod 302 to the conduit 304. In some embodiments multiple attachment means may be used to attach the conduit 304 to the semicylindrical rod 302.
The rod 402 may comprise a cylindrical proximal end 414 and a semicylindrical distal end 416. The cylindrical proximal end 414 may mechanically couple to an actuator portion 404 of the handle 406. The mechanical coupling between the actuator portion 404 and the cylindrical proximal end 414 may translate a rotation of the actuator portion 404 to a force along the axis of the rod 402. The semicylindrical distal end 416 may extend through the conduit 412 and occupy a bottom portion of the conduit. The semicylindrical distal end 416 may be flexible as compared to the cylindrical proximal end 414 due to its shape.
The actuator portion 404 may displace the cylindrical proximal end 414. The displacement of the cylindrical proximal end 414 exerts a force on semicylindrical distal end 416. The semicylindrical distal end 416 may be attached to the conduit 412, causing the force on the semicylindrical distal end 416 to bend the rod 402 and the conduit 706.
The lumen 410 may enter the conduit 412 via the side port 408. As shown, the side port 408 may be located on an upper portion of the handle 406. The side port 408 may include an aperture 418 that opens to an upper portion of the conduit 412. A physician may insert the lumen through the aperture 418. The lumen 410 may extend through the conduit 412 such that the side port has a first opening 420 at the distal end of the conduit 412 and a second opening 422 at the side port 408.
In some embodiments, the lumen 410 may be secured to the side port with a clip 424. Due to the semicylindrical shapes of the rod 402 and the lumen 410, a standard threaded securing mechanism may not function properly. For example, in an embodiment where the lumen 410 does not have room to rotate in the conduit 412, a standard threaded securing mechanism would not work. The clip 424 provides an alternative to secure the lumen the side port 408 with no need for the lumen 410 to rotate. The lumen may also include a threaded attachment point 426 to selectively couple to a stylet, a thermal energy delivery probe, a cement delivery cartridge, or a biopsy tool.
The inner rod may include a cylindrical portion 502 and a semicylindrical portion 504. The cylindrical portion 502 may provide a rigid length of the inner rod 500 not intended to bend. The semicylindrical portion 504 may be configured via its shape to flex when a force is applied to it. As shown, the narrowing between the cylindrical portion 502 and a semicylindrical portion 504 may be rapid. In an alternative embodiment, the cylindrical portion 502 may gradually narrow to a semicylindrical portion 504 to allow greater flexibility at some points of the inner rod 500 than others.
The lumen 600 may provide additional support to a medical device additional strength to treat hard tissue, and allow materials to pass from one end to another end. A first opening 612 may allow materials such as bone cement to enter the lumen 600. A second opening 614 may allow materials that enter into the lumen 600 through the first opening 612 to exit. Alternatively material may be drawn from the second opening 614 out the first opening 612 for procedures such as biopsies. The side port clip 604 may secure the lumen 600 to a medical device, and the threaded mating mechanism 606 may secure the lumen to additional tools such as a thermal energy delivery probe, a cement delivery cartridge, or a biopsy tool.
The stylet may include a cap 610 to secure the stylet 608 to the lumen 600 via the threaded mating mechanism 606. The cap 610 may also prevent foreign material from entering a vertebra through the lumen 600. The stylet 608 may be supportive, such that when a stylet 608 is inserted in the lumen 600, the resulting combination is more rigid than the lumen 600 alone. This may provide a medical device additional strength to treat hard tissue. In some embodiments, a stylet 608 may be very flexible for greater movement of the medical device. In an alternative embodiment, the stylet 608 may be semi-rigid for extra support.
The conduit 706 may be statically attached to the handle 708. In some embodiments, the conduit 706 may be attached to the handle 708 via a weld, O-ring, molding, and/or clamp. The attachment may prevent the conduit 706 from moving or rotating relative to the handle 708. The conduit 706 may also be attached to the rod 704 at or near a distal tip 712,
The rod 704 may be attached to the mechanism for actuating 702 at a proximal end. The mechanism for actuating 702 may selectively translate the rod 704 toward or away from the distal tip 712. A translation may cause the rod 704 to push or pull at the attachment point between the conduit 706 and the rod 704. Because the conduit 706 is static relative to the handle, the pushing or pulling may cause the rod 704 and the conduit 706 to deflect.
The mechanism for actuating 702 may be coupled to an actuator portion 716 of a handle. The mechanism for actuating 702 may include a thread actuator 718 and a clam shell 720 with threaded mating bearing 722. The thread actuator 718 may couple to the actuator portion, such that when a physician rotates the actuator portion 716, the thread actuator 718 also rotates. The clam shell 720 may attach to the rod 704 and engage the thread actuator 718 with the threaded mating bearing 722. As the thread actuator 718 rotates, the threaded mating bearing 722 may slide along the threads of the thread actuator 718 preventing the clam shell 720 from rotating while translating the clam shell toward or away from the distal tip 712.
The mechanism for actuating 702 may displace the proximal end of the rod 704. The displacement of the proximal end of the rod 704 exerts a force on the distal end of the rod 704. Because the distal end of the rod 704 is attached to the conduit 706, the force on the distal end of the rod 704 causes the rod 704 and the conduit 706 to flex.
The ability of the articulating portion 800 to curve is due to the notches 804 in the conduit 806 and the shape of the rod 802. The rod's semicylindrical shape causes it to have a greater flexibility than if the rod was cylindrical to permit the rod 802 to bend. The direction the articulating portion 800 may be limited by the location of the notches 804 in conduit 806. For instance, the articulating portion 800 may only bend along the plane of the notches 804. The articulating portion 800 is rigid in any other direction. The curvature of any articulated configuration is controlled by the spacing of the notches as well as the distance between each notch peak.
Thereafter, the introducer 1100 is removed and the sleeve 1105 is moved proximally (
Thereafter, as depicted in
Any methods disclosed herein include one or more steps or actions for performing the described method. The method steps and/or actions may be interchanged with one another. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified. Moreover, sub-routines or only a portion of a method described herein may be a separate method within the scope of this disclosure. Stated otherwise, some methods may include only a portion of the steps described in a more detailed method.
Reference throughout this specification to “an embodiment” or “the embodiment” means that a particular feature, structure, or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.
Similarly, it should be appreciated by one of skill in the art with the benefit of this disclosure that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim requires more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following this Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims.
Recitation in the claims of the term “first” with respect to a feature or element does not necessarily imply the existence of a second or additional such feature or element. It will be apparent to those of skill in the art, having the benefit of this disclosure, that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the present disclosure.
This application claims priority to U.S. Provisional Application No. 62/413,768, filed on Oct. 27, 2016 and titled, “Articulating Osteotome with Cement Delivery Channel,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2688329 | Wallace | Sep 1954 | A |
3140623 | Hoose | Jul 1964 | A |
3228400 | Armao | Jan 1966 | A |
3503385 | Stevens | Mar 1970 | A |
3625200 | Muller | Dec 1971 | A |
3664344 | Bryne | May 1972 | A |
3794039 | Kollner et al. | Feb 1974 | A |
3908637 | Doroshow | Sep 1975 | A |
4033331 | Guss et al. | Jul 1977 | A |
4131597 | Bluethgen et al. | Dec 1978 | A |
4236520 | Anderson | Dec 1980 | A |
4276860 | Malmin | Jul 1981 | A |
4294251 | Grennwald et al. | Oct 1981 | A |
4337773 | Raftopoulos et al. | Jul 1982 | A |
4386717 | Koob | Jun 1983 | A |
4399814 | Pratt, Jr. et al. | Aug 1983 | A |
4411266 | Cosman | Oct 1983 | A |
4456017 | Miles | Jun 1984 | A |
4473077 | Noiles | Sep 1984 | A |
4476861 | Dimakos et al. | Oct 1984 | A |
4578061 | Lemelson | Mar 1986 | A |
4586923 | Gould et al. | May 1986 | A |
4595006 | Burke et al. | Jun 1986 | A |
4619263 | Frisbie et al. | Oct 1986 | A |
4627434 | Murray | Dec 1986 | A |
4641654 | Samson et al. | Feb 1987 | A |
4653489 | Tronzo | Mar 1987 | A |
4668295 | Bajpai | May 1987 | A |
4719968 | Speros | Jan 1988 | A |
4722948 | Sanderson | Feb 1988 | A |
4731054 | Billeter et al. | Mar 1988 | A |
4742817 | Kawashima et al. | May 1988 | A |
4747840 | Ladika et al. | May 1988 | A |
4748969 | Wardle | Jun 1988 | A |
4784638 | Ghajar et al. | Nov 1988 | A |
4795602 | Pretchel et al. | Jan 1989 | A |
4842603 | Draenert | Jun 1989 | A |
4843112 | Gerhart et al. | Jun 1989 | A |
4846814 | Ruiz | Jul 1989 | A |
4865586 | Hedberg | Sep 1989 | A |
4869906 | Dingeldein et al. | Sep 1989 | A |
4888366 | Chu et al. | Dec 1989 | A |
4900303 | Lemelson | Feb 1990 | A |
4961730 | Bodicky et al. | Oct 1990 | A |
4961731 | Bodicky | Oct 1990 | A |
4963151 | Ducheyne et al. | Oct 1990 | A |
4969870 | Kramer et al. | Nov 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4982730 | Royce | Jan 1991 | A |
5059193 | Kuslich | Jan 1991 | A |
4998923 | Samson et al. | Mar 1991 | A |
5004501 | Faccioli | Apr 1991 | A |
5017627 | Bonfield | May 1991 | A |
5046513 | O'Leary et al. | Sep 1991 | A |
5049137 | Thompson | Sep 1991 | A |
5049157 | Mittelmeier et al. | Sep 1991 | A |
5085861 | Gerhart et al. | Feb 1992 | A |
5088991 | Weldon | Feb 1992 | A |
5116305 | Milder et al. | Feb 1992 | A |
5092891 | Kummer et al. | Mar 1992 | A |
5103804 | Abele | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5112303 | Pudenz et al. | May 1992 | A |
5114414 | Buchbinder | May 1992 | A |
5147334 | Moss | Sep 1992 | A |
5156606 | Chin | Oct 1992 | A |
5163431 | Greip | Nov 1992 | A |
5184757 | Giannuzzi | Feb 1993 | A |
5188619 | Myers | Feb 1993 | A |
5196201 | Larsson et al. | Mar 1993 | A |
5197971 | Bonutti | Mar 1993 | A |
5211631 | Sheaff | May 1993 | A |
5231989 | Middleman et al. | Aug 1993 | A |
5242082 | Giannuzzi | Sep 1993 | A |
5264214 | Rhee et al. | Nov 1993 | A |
5266248 | Ohtsuka et al. | Nov 1993 | A |
5269750 | Grulke et al. | Dec 1993 | A |
5282821 | Donahue | Feb 1994 | A |
5284128 | Hart | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5295980 | Ersek | Mar 1994 | A |
5296026 | Monroe et al. | Mar 1994 | A |
5308342 | Sepetka et al. | May 1994 | A |
5322064 | Lundquist | Jun 1994 | A |
5322505 | Krause et al. | Jun 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5336699 | Cooke et al. | Aug 1994 | A |
5343877 | Park | Sep 1994 | A |
5352715 | Wallace et al. | Oct 1994 | A |
5356629 | Sander | Oct 1994 | A |
5360416 | Ausherman et al. | Nov 1994 | A |
5368598 | Hasson | Nov 1994 | A |
5372587 | Hammerslag et al. | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5380307 | Chee et al. | Jan 1995 | A |
5385563 | Groos | Jan 1995 | A |
5389073 | Imran | Feb 1995 | A |
5425770 | Piez et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431639 | Shaw | Jul 1995 | A |
5437636 | Snoke et al. | Aug 1995 | A |
5449301 | Hanna et al. | Sep 1995 | A |
5449351 | Zohmann | Sep 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5480382 | Hammerslag et al. | Jan 1996 | A |
5484424 | Cottenceau et al. | Jan 1996 | A |
5489275 | Thompson et al. | Feb 1996 | A |
5496330 | Bates et al. | Mar 1996 | A |
5512610 | Lin | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5514137 | Coutts | May 1996 | A |
5531715 | Engelson et al. | Jul 1996 | A |
5535922 | Maziarz | Jul 1996 | A |
5549542 | Kovalcheck | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5554114 | Wallace et al. | Sep 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5571088 | Lennox | Nov 1996 | A |
5574075 | Draemert | Nov 1996 | A |
5599346 | Edwards et al. | Feb 1997 | A |
5616121 | McKay | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5620467 | Wagner | Apr 1997 | A |
5624396 | McNamara et al. | Apr 1997 | A |
5628771 | Mizukawa et al. | May 1997 | A |
5637090 | McGee | Jun 1997 | A |
5637091 | Hakky et al. | Jun 1997 | A |
5662680 | Desai | Sep 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5681289 | Wilcox et al. | Oct 1997 | A |
5681317 | Caldarise | Oct 1997 | A |
5685826 | Bonutti | Nov 1997 | A |
5695513 | Johnson et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5700157 | Chung | Dec 1997 | A |
5704926 | Sutton | Jan 1998 | A |
5709697 | Ratcliff et al. | Jan 1998 | A |
5725568 | Hastings | Mar 1998 | A |
5735829 | Cherian | Apr 1998 | A |
5741320 | Thornton et al. | Apr 1998 | A |
5766153 | Eggers et al. | Jun 1998 | A |
5800408 | Strauss et al. | Sep 1998 | A |
5810804 | Gough | Sep 1998 | A |
5810867 | Zarbateny et al. | Sep 1998 | A |
5820592 | Hammerslag et al. | Oct 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5833692 | Cesarini et al. | Nov 1998 | A |
5847046 | Jiang et al. | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5855577 | Murphy-Chutorian et al. | Jan 1999 | A |
5858003 | Atala | Jan 1999 | A |
5860952 | Quinn | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5891027 | Tu | Apr 1999 | A |
5902251 | VanHooydonk | May 1999 | A |
5902839 | Lautenschlager et al. | May 1999 | A |
5914356 | Erbe | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5931829 | Burbank et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5947964 | Eggers | Sep 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
5997561 | Khalili | Dec 1999 | A |
6019765 | Thornhill et al. | Feb 2000 | A |
6027487 | Crocker | Feb 2000 | A |
6030360 | Biggs | Feb 2000 | A |
6048346 | Reiley et al. | Apr 2000 | A |
6059739 | Baumann | May 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6064902 | Haissaguerre | May 2000 | A |
6066154 | Reiley et al. | May 2000 | A |
6066176 | Oshida | May 2000 | A |
6073051 | Sharkey et al. | Jun 2000 | A |
6080801 | Draenert et al. | Jun 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6106524 | Eggers et al. | Aug 2000 | A |
6106539 | Fortier | Aug 2000 | A |
6110155 | Baudino | Aug 2000 | A |
6123702 | Swanson | Sep 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6146355 | Biggs | Nov 2000 | A |
6156254 | Andrews et al. | Dec 2000 | A |
6183435 | Bumbalough et al. | Feb 2001 | B1 |
6203507 | Wadsworth et al. | Mar 2001 | B1 |
6203574 | Kawamura | Mar 2001 | B1 |
6228052 | Pohndorf | May 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6231569 | Bek et al. | May 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6241734 | Scribner et al. | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6258086 | Ashley et al. | Jul 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6280434 | Kinoshita et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6280456 | Scribner et al. | Aug 2001 | B1 |
6280473 | Lemperle et al. | Aug 2001 | B1 |
6283960 | Ashley | Sep 2001 | B1 |
6291547 | Lyles | Sep 2001 | B1 |
6312428 | Eggers | Nov 2001 | B1 |
6312454 | Stockel et al. | Nov 2001 | B1 |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6348055 | Preissman | Feb 2002 | B1 |
6352533 | Ellman et al. | Mar 2002 | B1 |
6358251 | Mirza | Mar 2002 | B1 |
6375659 | Erbe et al. | Apr 2002 | B1 |
6383188 | Kuslich et al. | May 2002 | B2 |
6383190 | Preissman | May 2002 | B1 |
6395007 | Bhatnagar et al. | May 2002 | B1 |
6408889 | Komachi | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6428894 | Babich et al. | Aug 2002 | B1 |
6437019 | Rusin et al. | Aug 2002 | B1 |
6440138 | Reiley et al. | Aug 2002 | B1 |
6447506 | Swanson et al. | Sep 2002 | B1 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6464683 | Samuelson et al. | Oct 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6479565 | Stanley | Nov 2002 | B1 |
6484904 | Horner et al. | Nov 2002 | B1 |
6506217 | Arnett | Jan 2003 | B1 |
6511471 | Rosenman et al. | Jan 2003 | B2 |
6524296 | Beals | Feb 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6575969 | Rittman et al. | Jun 2003 | B1 |
6575978 | Peterson et al. | Jun 2003 | B2 |
6576249 | Gendler et al. | Jun 2003 | B1 |
6582446 | Marchosky | Jun 2003 | B1 |
6592559 | Pakter et al. | Jul 2003 | B1 |
6599961 | Pienkowski et al. | Jul 2003 | B1 |
6620162 | Kuslich et al. | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6607544 | Boucher et al. | Aug 2003 | B1 |
6613054 | Scribner et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623448 | Slater | Sep 2003 | B2 |
6638268 | Naizi | Oct 2003 | B2 |
6663647 | Reiley et al. | Oct 2003 | B2 |
6641587 | Scribner et al. | Nov 2003 | B2 |
6645213 | Sand et al. | Nov 2003 | B2 |
6676665 | Foley et al. | Jan 2004 | B2 |
6679886 | Weikel et al. | Jan 2004 | B2 |
6689823 | Bellare et al. | Feb 2004 | B1 |
6692532 | Healy et al. | Feb 2004 | B1 |
6716216 | Boucher et al. | Apr 2004 | B1 |
6719761 | Reiley et al. | Apr 2004 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6726691 | Osorio et al. | Apr 2004 | B2 |
6730095 | Olson, Jr. et al. | May 2004 | B2 |
6740090 | Cragg et al. | May 2004 | B1 |
6740093 | Hochschuler et al. | May 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6746451 | Middleton et al. | Jun 2004 | B2 |
6752863 | Lyles et al. | Jun 2004 | B2 |
6753007 | Haggard et al. | Jun 2004 | B2 |
6770079 | Bhatnagar et al. | Aug 2004 | B2 |
6814734 | Chappuis et al. | Nov 2004 | B2 |
6814736 | Reiley et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6832984 | Stelzer et al. | Dec 2004 | B2 |
6835193 | Epstein et al. | Dec 2004 | B2 |
6837867 | Kortelling | Jan 2005 | B2 |
6863672 | Reiley et al. | Mar 2005 | B2 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6869445 | Johnson | Mar 2005 | B1 |
6875219 | Arramon | Apr 2005 | B2 |
6881214 | Cosman et al. | Apr 2005 | B2 |
6887246 | Bhatnagar et al. | May 2005 | B2 |
6899715 | Beaty | May 2005 | B1 |
6899719 | Reiley et al. | May 2005 | B2 |
6907884 | Pellegrino et al. | Jun 2005 | B2 |
6913594 | Coleman et al. | Jul 2005 | B2 |
6916306 | Jenkins et al. | Jul 2005 | B1 |
6923813 | Phillips | Aug 2005 | B2 |
6945956 | Waldhauser et al. | Sep 2005 | B2 |
6953594 | Lee et al. | Oct 2005 | B2 |
6955716 | Xu et al. | Oct 2005 | B2 |
6976987 | Flores | Dec 2005 | B2 |
6979312 | Shimada | Dec 2005 | B2 |
6979352 | Reynolds | Dec 2005 | B2 |
6981981 | Reiley et al. | Jan 2006 | B2 |
6991616 | Bencini et al. | Jan 2006 | B2 |
6998128 | Haggard et al. | Feb 2006 | B2 |
7004930 | Marshall | Feb 2006 | B2 |
7004945 | Boyd et al. | Feb 2006 | B2 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7018460 | Xu et al. | Mar 2006 | B2 |
7022133 | Yee et al. | Apr 2006 | B2 |
7029468 | Honebrink | Apr 2006 | B2 |
7044954 | Reiley et al. | May 2006 | B2 |
7059330 | Makower et al. | Jun 2006 | B1 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7066942 | Treace | Jun 2006 | B2 |
RE39196 | Ying et al. | Jul 2006 | E |
7081122 | Reiley et al. | Jul 2006 | B1 |
7081161 | Genge et al. | Jul 2006 | B2 |
7091258 | Neubert et al. | Aug 2006 | B2 |
7091260 | Kühn | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094286 | Liu | Aug 2006 | B2 |
7108696 | Daniel et al. | Sep 2006 | B2 |
7109254 | Müller et al. | Sep 2006 | B2 |
7112205 | Carrison | Sep 2006 | B2 |
7114501 | Johnson et al. | Oct 2006 | B2 |
7138442 | Smith et al. | Nov 2006 | B2 |
7153306 | Ralph et al. | Dec 2006 | B2 |
7153307 | Scribner et al. | Dec 2006 | B2 |
7156843 | Skarda | Jan 2007 | B2 |
7156845 | Mulier | Jan 2007 | B2 |
7166121 | Reiley et al. | Jan 2007 | B2 |
7172629 | McKay et al. | Feb 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7186761 | Soffiati et al. | Mar 2007 | B2 |
7226481 | Kuslich et al. | Jun 2007 | B2 |
7252671 | Scribner et al. | Aug 2007 | B2 |
7160296 | Pearson et al. | Sep 2007 | B2 |
7267683 | Sharkey et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7294127 | Leung | Nov 2007 | B2 |
7465318 | Sennett et al. | Dec 2008 | B2 |
7480533 | Cosman et al. | Jan 2009 | B2 |
7503920 | Siegal | Mar 2009 | B2 |
7544196 | Bagga et al. | Jun 2009 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7569054 | Michelson | Aug 2009 | B2 |
7572263 | Preissman | Aug 2009 | B2 |
7591822 | Olson, Jr. et al. | Sep 2009 | B2 |
7625364 | Corcoran et al. | Dec 2009 | B2 |
7641664 | Pagano | Jan 2010 | B2 |
7731720 | Sand et al. | Jun 2010 | B2 |
7811291 | Liu et al. | Oct 2010 | B2 |
7824403 | Vaska | Nov 2010 | B2 |
7842041 | Liu et al. | Nov 2010 | B2 |
7887543 | Sand et al. | Feb 2011 | B2 |
7905884 | Simonton et al. | Mar 2011 | B2 |
7918874 | Siegal | Apr 2011 | B2 |
7972340 | Sand et al. | Jul 2011 | B2 |
7976542 | Cosman | Jul 2011 | B1 |
8034071 | Scribner et al. | Oct 2011 | B2 |
8246627 | Vanleeuwen et al. | Aug 2012 | B2 |
8284128 | Kimura | Oct 2012 | B2 |
8518036 | Leung | Aug 2013 | B2 |
8583260 | Knudson | Nov 2013 | B2 |
8591507 | Kramer et al. | Nov 2013 | B2 |
8663226 | Germain | Mar 2014 | B2 |
RE44883 | Cha | May 2014 | E |
8758349 | Germain et al. | Jun 2014 | B2 |
8827981 | Liu et al. | Sep 2014 | B2 |
8864760 | Kramer et al. | Oct 2014 | B2 |
8936631 | Nguyen | Jan 2015 | B2 |
9113974 | Germain | Aug 2015 | B2 |
9125671 | Germain et al. | Sep 2015 | B2 |
9161809 | Germain et al. | Oct 2015 | B2 |
9421057 | Germain | Aug 2016 | B2 |
9743938 | Germain et al. | Aug 2017 | B2 |
20010011174 | Reiley et al. | Aug 2001 | A1 |
20010023349 | Van Tassel et al. | Sep 2001 | A1 |
20020007180 | Wittenberger et al. | Jan 2002 | A1 |
20020013600 | Scribner et al. | Jan 2002 | A1 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020026197 | Foley et al. | Feb 2002 | A1 |
20020068929 | Zvuloni | Jun 2002 | A1 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020077595 | Hundertmark et al. | Jun 2002 | A1 |
20020082605 | Reiley et al. | Jun 2002 | A1 |
20020115742 | Trieu et al. | Aug 2002 | A1 |
20020128638 | Chauvel et al. | Sep 2002 | A1 |
20020133148 | Daniel et al. | Sep 2002 | A1 |
20020156483 | Voellmicke et al. | Oct 2002 | A1 |
20020188299 | Reiley et al. | Dec 2002 | A1 |
20020188300 | Arramon et al. | Dec 2002 | A1 |
20030014094 | Hammack et al. | Jan 2003 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030036763 | Bhatnagar et al. | Feb 2003 | A1 |
20030043963 | Yamagami et al. | Mar 2003 | A1 |
20030050644 | Boucher et al. | Mar 2003 | A1 |
20030069522 | Jacobsen et al. | Apr 2003 | A1 |
20030073979 | Naimark et al. | Apr 2003 | A1 |
20030130664 | Boucher et al. | Jul 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030171744 | Leung et al. | Sep 2003 | A1 |
20030191489 | Reiley et al. | Oct 2003 | A1 |
20030195547 | Scribner et al. | Oct 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030212395 | Woloszko et al. | Nov 2003 | A1 |
20030220414 | Axen et al. | Nov 2003 | A1 |
20030225432 | Baptiste et al. | Dec 2003 | A1 |
20030233096 | Osorio et al. | Dec 2003 | A1 |
20040023384 | Fukaya | Feb 2004 | A1 |
20040023784 | Yu et al. | Feb 2004 | A1 |
20040024081 | Trieu et al. | Feb 2004 | A1 |
20040024398 | Hovda et al. | Feb 2004 | A1 |
20040024409 | Sand et al. | Feb 2004 | A1 |
20040024410 | Olson et al. | Feb 2004 | A1 |
20040034384 | Fukaya | Feb 2004 | A1 |
20040044096 | Smith et al. | Mar 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040059328 | Daniel et al. | Mar 2004 | A1 |
20040087936 | Stern et al. | May 2004 | A1 |
20040087994 | Suddaby | May 2004 | A1 |
20040092946 | Bagga et al. | May 2004 | A1 |
20040097612 | Rosenberg et al. | May 2004 | A1 |
20040111136 | Sharkey et al. | Jun 2004 | A1 |
20040127987 | Evans et al. | Jul 2004 | A1 |
20040133208 | Weikel et al. | Jul 2004 | A1 |
20040138758 | Evans et al. | Jul 2004 | A1 |
20040153064 | Foley et al. | Aug 2004 | A1 |
20040153115 | Reiley et al. | Aug 2004 | A1 |
20040158237 | Abboud et al. | Aug 2004 | A1 |
20040167561 | Boucher et al. | Aug 2004 | A1 |
20040167562 | Osorio et al. | Aug 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040210231 | Broucher et al. | Oct 2004 | A1 |
20040215343 | Hochschuler et al. | Oct 2004 | A1 |
20040220577 | Cragg | Nov 2004 | A1 |
20040220680 | Yamamoto et al. | Nov 2004 | A1 |
20040225296 | Reiss et al. | Nov 2004 | A1 |
20040226479 | Lyles et al. | Nov 2004 | A1 |
20040230309 | DiMauro et al. | Nov 2004 | A1 |
20040236186 | Chu | Nov 2004 | A1 |
20040247644 | Bratt et al. | Dec 2004 | A1 |
20040267271 | Scribner et al. | Dec 2004 | A9 |
20050027245 | Sachdeva et al. | Feb 2005 | A1 |
20050033303 | Chappuis et al. | Feb 2005 | A1 |
20050038383 | Kelley et al. | Feb 2005 | A1 |
20050038422 | Maurice | Feb 2005 | A1 |
20050043737 | Reiley et al. | Feb 2005 | A1 |
20050055030 | Falahee | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050070844 | Chow et al. | Mar 2005 | A1 |
20050070912 | Voellmicke | Mar 2005 | A1 |
20050070915 | Mazzuca et al. | Mar 2005 | A1 |
20050090852 | Layne et al. | Apr 2005 | A1 |
20050113836 | Lozier et al. | May 2005 | A1 |
20050119650 | Sanders et al. | Jun 2005 | A1 |
20050124989 | Suddaby | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050177168 | Brunnett et al. | Aug 2005 | A1 |
20050177210 | Lueng et al. | Aug 2005 | A1 |
20050182412 | Johnson et al. | Aug 2005 | A1 |
20050182413 | Johnson et al. | Aug 2005 | A1 |
20050187556 | Stack et al. | Aug 2005 | A1 |
20050199156 | Khairoun et al. | Sep 2005 | A1 |
20050209557 | Carroll et al. | Sep 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050234425 | Miller et al. | Oct 2005 | A1 |
20050240193 | Layne et al. | Oct 2005 | A1 |
20050251266 | Maspero et al. | Nov 2005 | A1 |
20050251267 | Winterbottom et al. | Nov 2005 | A1 |
20050261683 | Veldhuizen et al. | Nov 2005 | A1 |
20050283148 | Janssen | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060024348 | Engqvist et al. | Feb 2006 | A1 |
20060025763 | Nelson et al. | Feb 2006 | A1 |
20060041033 | Bisig et al. | Feb 2006 | A1 |
20060052743 | Reynolds | Mar 2006 | A1 |
20060064101 | Arramon | Mar 2006 | A1 |
20060074433 | McGill et al. | Apr 2006 | A1 |
20060084977 | Lieberman | Apr 2006 | A1 |
20060085009 | Truckai et al. | Apr 2006 | A1 |
20060100635 | Reiley et al. | May 2006 | A1 |
20060100706 | Shadduck et al. | May 2006 | A1 |
20060106392 | Embry | May 2006 | A1 |
20060106459 | Truckai et al. | May 2006 | A1 |
20060116689 | Albans et al. | Jun 2006 | A1 |
20060116690 | Pagano | Jun 2006 | A1 |
20060122623 | Truckai et al. | Jun 2006 | A1 |
20060142732 | Karmarkar et al. | Jun 2006 | A1 |
20060149268 | Truckai et al. | Jul 2006 | A1 |
20060149281 | Reiley et al. | Jul 2006 | A1 |
20060156959 | Engqvist et al. | Jul 2006 | A1 |
20060184106 | McDaniel et al. | Aug 2006 | A1 |
20060184192 | Markworth et al. | Aug 2006 | A1 |
20060200121 | Mowery | Sep 2006 | A1 |
20060206116 | Yeung | Sep 2006 | A1 |
20060206136 | Sachdeva et al. | Sep 2006 | A1 |
20060217704 | Cockburn et al. | Sep 2006 | A1 |
20060217736 | Kaneko | Sep 2006 | A1 |
20060229625 | Truckai et al. | Oct 2006 | A1 |
20060229631 | Reiley et al. | Oct 2006 | A1 |
20060235417 | Sala | Oct 2006 | A1 |
20060259023 | Abboud et al. | Nov 2006 | A1 |
20060264819 | Fischer et al. | Nov 2006 | A1 |
20060264945 | Edidin et al. | Nov 2006 | A1 |
20060266372 | Miller et al. | Nov 2006 | A1 |
20060270750 | Almen et al. | Nov 2006 | A1 |
20060271061 | Beyar et al. | Nov 2006 | A1 |
20060276797 | Botimer | Dec 2006 | A1 |
20060276819 | Osorio et al. | Dec 2006 | A1 |
20060293687 | Bogert | Dec 2006 | A1 |
20070006692 | Phan | Jan 2007 | A1 |
20070010845 | Gong et al. | Jan 2007 | A1 |
20070016130 | Leeflang et al. | Jan 2007 | A1 |
20070016211 | Botimer | Jan 2007 | A1 |
20070021769 | Scribner et al. | Jan 2007 | A1 |
20070043373 | Sala | Feb 2007 | A1 |
20070055201 | Seto et al. | Mar 2007 | A1 |
20070055260 | Cragg | Mar 2007 | A1 |
20070055266 | Osorio et al. | Mar 2007 | A1 |
20070055275 | Schaller | Mar 2007 | A1 |
20070055277 | Osorio et al. | Mar 2007 | A1 |
20070055278 | Osorio et al. | Mar 2007 | A1 |
20070055279 | Sand et al. | Mar 2007 | A1 |
20070055281 | Osorio et al. | Mar 2007 | A1 |
20070055283 | Scribner | Mar 2007 | A1 |
20070055284 | Osorio | Mar 2007 | A1 |
20070055285 | Osorio et al. | Mar 2007 | A1 |
20070055300 | Osorio et al. | Mar 2007 | A1 |
20070055382 | Osorio et al. | Mar 2007 | A1 |
20070059281 | Moseley et al. | Mar 2007 | A1 |
20070067034 | Chirico et al. | Mar 2007 | A1 |
20070093840 | Pacelli | Apr 2007 | A1 |
20070114248 | Kovac | May 2007 | A1 |
20070118142 | Krueger et al. | May 2007 | A1 |
20070118143 | Ralph et al. | May 2007 | A1 |
20070142842 | Krueger et al. | Jun 2007 | A1 |
20070156130 | Thistle | Jul 2007 | A1 |
20070162042 | Dunker | Jul 2007 | A1 |
20070173939 | Kim et al. | Jul 2007 | A1 |
20070185231 | Liu et al. | Aug 2007 | A1 |
20070197935 | Reiley | Aug 2007 | A1 |
20070198023 | Sand et al. | Aug 2007 | A1 |
20070211563 | Devries | Sep 2007 | A1 |
20070233146 | Henniges et al. | Oct 2007 | A1 |
20070260223 | Scheibe et al. | Nov 2007 | A1 |
20070260257 | Phan | Nov 2007 | A1 |
20070270876 | Kuo et al. | Nov 2007 | A1 |
20070276319 | Betts | Nov 2007 | A1 |
20070282305 | Goldfarb et al. | Dec 2007 | A1 |
20080004615 | Woloszko et al. | Jan 2008 | A1 |
20080033422 | Turner et al. | Feb 2008 | A1 |
20080058725 | Scribner et al. | Mar 2008 | A1 |
20080058821 | Maurer et al. | Mar 2008 | A1 |
20080058827 | Osorio et al. | Mar 2008 | A1 |
20080058840 | Albrecht | Mar 2008 | A1 |
20080065020 | Ralph et al. | Mar 2008 | A1 |
20080065087 | Osorio et al. | Mar 2008 | A1 |
20080065190 | Osorio et al. | Mar 2008 | A1 |
20080086142 | Kohm et al. | Apr 2008 | A1 |
20080140079 | Osorio et al. | Jun 2008 | A1 |
20080183165 | Buysee et al. | Jul 2008 | A1 |
20080183265 | Bly | Jul 2008 | A1 |
20080195112 | Liu et al. | Aug 2008 | A1 |
20080208255 | Siegal | Aug 2008 | A1 |
20080221608 | Betts | Sep 2008 | A1 |
20080228192 | Beyer et al. | Sep 2008 | A1 |
20080249481 | Crainich | Oct 2008 | A1 |
20080249525 | Lee et al. | Oct 2008 | A1 |
20080255571 | Truckai et al. | Oct 2008 | A1 |
20080269766 | Justis | Oct 2008 | A1 |
20080269796 | Reiley et al. | Oct 2008 | A1 |
20080287741 | Ostrovsky et al. | Nov 2008 | A1 |
20080294167 | Schumacher et al. | Nov 2008 | A1 |
20090076517 | Reiley et al. | Mar 2009 | A1 |
20090105775 | Mitchell et al. | Apr 2009 | A1 |
20090131867 | Liu et al. | May 2009 | A1 |
20090131886 | Liu et al. | May 2009 | A1 |
20090131945 | Liu et al. | May 2009 | A1 |
20090131948 | Liu et al. | May 2009 | A1 |
20090131950 | Liu et al. | May 2009 | A1 |
20090131986 | Lee | May 2009 | A1 |
20090182427 | Liu et al. | Jul 2009 | A1 |
20090198243 | Melsheimer | Aug 2009 | A1 |
20090264862 | Neidert et al. | Oct 2009 | A1 |
20090264892 | Beyar et al. | Oct 2009 | A1 |
20090292289 | Sand et al. | Nov 2009 | A9 |
20090293687 | Nino et al. | Dec 2009 | A1 |
20090299282 | Lau et al. | Dec 2009 | A1 |
20100057087 | Cha | Mar 2010 | A1 |
20100082033 | Germain | Apr 2010 | A1 |
20100114184 | Degtyar | May 2010 | A1 |
20100121332 | Crainich et al. | May 2010 | A1 |
20100152724 | Marion et al. | Jun 2010 | A1 |
20100160922 | Liu et al. | Jun 2010 | A1 |
20100211076 | Germain et al. | Aug 2010 | A1 |
20100274270 | Patel | Oct 2010 | A1 |
20100298832 | Lau | Nov 2010 | A1 |
20110034884 | Pellegrino et al. | Feb 2011 | A9 |
20110098701 | McIntyre et al. | Apr 2011 | A1 |
20110160737 | Steffen et al. | Jun 2011 | A1 |
20110251615 | Truckai et al. | Oct 2011 | A1 |
20110295261 | Germain | Dec 2011 | A1 |
20110295262 | Germain et al. | Dec 2011 | A1 |
20110301590 | Podhajsky et al. | Dec 2011 | A1 |
20120065543 | Ireland | Mar 2012 | A1 |
20120130381 | Germain | May 2012 | A1 |
20120158004 | Burger et al. | Jun 2012 | A1 |
20120191095 | Burger et al. | Jul 2012 | A1 |
20120239049 | Truckai | Sep 2012 | A1 |
20120265186 | Burger et al. | Oct 2012 | A1 |
20120277730 | Salahieh | Nov 2012 | A1 |
20120330180 | Pellegrino et al. | Dec 2012 | A1 |
20120330301 | Pellegrino et al. | Dec 2012 | A1 |
20130006232 | Pellegrino | Jan 2013 | A1 |
20130072941 | Tan-Malecki et al. | Mar 2013 | A1 |
20130041377 | Kuntz | Apr 2013 | A1 |
20130231654 | Germain | Sep 2013 | A1 |
20130237795 | Carr | Sep 2013 | A1 |
20130261615 | Kramer et al. | Oct 2013 | A1 |
20130261621 | Kramer et al. | Oct 2013 | A1 |
20130345709 | Burger et al. | Dec 2013 | A1 |
20140135779 | Germain | May 2014 | A1 |
20140163566 | Phan et al. | Jun 2014 | A1 |
20140316413 | Burger et al. | Oct 2014 | A1 |
20140350542 | Kramer et al. | Nov 2014 | A1 |
20140371740 | Germain et al. | Dec 2014 | A1 |
20150216594 | Prakash | Aug 2015 | A1 |
20150297246 | Patel et al. | Oct 2015 | A1 |
20150313614 | Germain | Nov 2015 | A1 |
20160228131 | Brockman et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2785207 | Jul 2011 | CA |
88203061 | Nov 1988 | CN |
2841051 | Nov 2006 | CN |
1459691 | Sep 2004 | EP |
2004242936 | Sep 2004 | JP |
2008510530 | Apr 2008 | JP |
2008528081 | Jul 2008 | JP |
2008541878 | Nov 2008 | JP |
2010063887 | Mar 2010 | JP |
2011500156 | Jan 2011 | JP |
1993004634 | Mar 1993 | WO |
1996013297 | May 1996 | WO |
1996020752 | Jul 1996 | WO |
1997003611 | Feb 1997 | WO |
2002003870 | Jan 2002 | WO |
20113101308 | Dec 2003 | WO |
2005122938 | Dec 2005 | WO |
2007036815 | Apr 2007 | WO |
2007087400 | Aug 2007 | WO |
2008076330 | Jun 2008 | WO |
2008084479 | Jul 2008 | WO |
2010039894 | Apr 2010 | WO |
2010081187 | Jul 2010 | WO |
2010135602 | Nov 2010 | WO |
2010135606 | Nov 2010 | WO |
2011066465 | Jun 2011 | WO |
2011114602 | Sep 2011 | WO |
2011137357 | Nov 2011 | WO |
2011137377 | Nov 2011 | WO |
2012071464 | May 2012 | WO |
2013147990 | Oct 2013 | WO |
2014093673 | Jun 2014 | WO |
Entry |
---|
US 7,063,700 B2, 06/2006, Michelson (withdrawn) |
Office Action dated May 1, 2009 for U.S. Appl. No, 12/261,987. |
Office Action dated Apr. 26, 2010 for U.S. Appl. No. 12/029,428. |
Office Action dated Apr. 24, 2017 for U.S. Appl. No. 14/453,427. |
European Examination Report dated Dec. 19, 2017 for EP13767383.6. |
European Search Report dated Jan. 7, 2019 for EP16793433.0. |
European Search Report dated Jun. 8, 2017 for EP17154660.9. |
European Search Report dated Nov. 15, 2017 for EP09818476.5. |
European Search Report dated Nov. 16, 2016 for EP14772615.2. |
International Search Report and Written Opinion dated Jan. 9, 2012 for PCT/US2011/034185. |
International Search Report and Written Opinion dated Jan. 22, 2009 for PCT/US2008/83698. |
International Search Report and Written Opinion dated Feb. 21, 2018 for PCT/US2017/063281. |
International Search Report and Written Opinion dated Mar. 30, 2018 for PCT/US2017/065328. |
International Search Report arid Written Opinion dated Apr. 23, 2016 for PCT/US2018/012372. |
International Search Report and Written Opinion dated Jul. 20, 2010 for PCT/US2010/035687. |
International Search Report and Written Opinion dated Jul. 26, 2011 for PCT/US2011/034628. |
International Search Report and Written Opinion dated Aug. 25, 2009 for PCT/US2009/035726. |
International Search Report and Written Opinion dated Nov. 20, 2009 for PCT/US2009/059113. |
Notice of Allowance dated Jan. 4, 2017 for U.S. Appl. No. 13/302,927. |
Notice of Allowance dated Jan. 18, 2017 for U.S. Appl. No. 13/097,998. |
Notice of Allowance dated Feb. 21, 2019 for U.S. Appl. No. 14/139,372. |
Notice of Allowance dated Apr. 3, 2019 for U.S. Appl. No. 15/349,715. |
Notice of Allowance dated Apr. 9, 2014 for U.S. Appl. No. 12/578,455. |
Notice of Allowance dated Apr. 23, 2018 for U.S. Appl. No. 13/083,411. |
Notice of Allowance dated May 3, 2017 for U.S. Appl. No. 14/815,620. |
Notice of Allowance dated May 11, 2018 for U.S. Appl. No. 14/453,427. |
Notice of Allowance dated May 26, 2015 for U.S. Appl. No. 13/098,116. |
Notice of Allowance dated Aug. 24, 2018 for U.S. Appl. No. 15/388,598. |
Notice of Allowance dated Oct. 28, 2016 for U.S. Appl. No. 13/853,397. |
Notice of Allowance dated Nov. 8, 2013 for U.S. Appl. No. 12/578,455. |
Notice of Allowance dated Nov. 9, 2017 for U.S. Appl. No. 14/815,812. |
Notice of Allowance dated Nov. 18, 2016 for U.S. Appl. No. 13/097,998. |
Notice of Allowance dated Nov. 25, 2013 for U.S. Appl. No. 12/571,174. |
Notice of Allowance dated Nov. 25, 2016 for U.S. Appl. No. 13/853,397. |
Notice of Allowance dated Dec. 13, 2018 for U.S. Appl. No. 15/917,454. |
Notice of Allowance dated Dec. 28, 2017 for U.S. Appl. No. 15/211,359. |
Notice of Allowance dated Aug. 31, 2016 for U.S. Appl. No. 14/887,007. |
Office Action dated Jan. 18, 2017 for U.S. Appl. No. 14/815,620. |
Office Action dated Jan. 26, 2011 for U.S. Appl. No. 11/941,764. |
Office Action dated Jan. 26, 2017 for U.S. Appl. No. 14/815,812. |
Office Action dated Feb. 3, 2016 for U.S. Appl. No. 13/853,397. |
Office Action dated Feb. 10, 2015 for U.S. Appl. No. 13/083,411. |
Office Action dated Feb. 23, 2010 for U.S. Appl. No. 11/941,733. |
Office Action dated Feb. 23, 2010 for U.S. Appl. No. 11/941,764. |
Office Action dated Mar. 1, 2017 for U.S. Appl. No. 15/211,359. |
Office Action dated Mar. 21, 2011 for U.S. Appl. No. 11/941,764. |
Office Action dated Mar. 21, 2011 for U.S. Appl. No. 12/029,428. |
Office Action dated Apr. 19, 2018 for U.S. Appl. No. 15/388,598. |
Park, et al., The Materials Properties of Bone-Particle Impregnated PMMA, Journal of Biomedical Engineering, vol. 108 ,1986 ,141-148. |
Park, et al., Biornaterials: An Introduction—Second Edition, Plenum Press ,1992 ,177-178. |
Liu, et al., Bone-Particle-Impregnanted Bone Cement: An In Vitro Study, Journal of Biomedical Materials Research, vol. 21 ,1987 ,247-261. |
Office Action dated May 5, 2010 for U.S. Appl. No. 11/941,764. |
Office Action dated May 6, 2019 for U.S. Appl. No. 15/675,315. |
Office Action dated May 13, 2009 for U.S. Appl. No. 12/029,428. |
Office Action dated May 17, 2010 for U.S. Appl. No. 12/261,987. |
Office Action dated May 21, 2014 for U.S. Appl. No. 13/098,116. |
Office Action dated May 24, 2012 for U.S. Appl. No. 12/578,455. |
Office Action dated May 31, 2016 for U.S. Appl. No. 14/815,620. |
Office Action dated Jun. 4, 2018 for U.S. Appl. No. 15/349,715. |
Office Action dated Jun. 8, 2009 for U.S. Appl. No. 11/941,764. |
Office Action dated Jun. 12, 2009 for U.S. Appl. No. 11/941,733. |
Office Action dated Jun. 21, 2018 for U.S. Appl. No. 13/215,098. |
Office Action dated Jun. 22, 2018 for U.S. Appl. No. 15/917,454. |
Office Action dated Jun. 25, 2015 for U.S. Appl. No. 13/853,397. |
Office Action dated Jun. 29, 2018 for U.S. Appl. No. 15/449,591. |
Office Action dated Jul. 11, 2017 for U.S. Appl. No. 14/815,812. |
Office Action dated Jul. 12, 2010 for U.S. Appl. No. 11/941,764. |
Office Action dated Jul. 12, 2017 for U.S. Appl. No. 13/083,411. |
Office Action dated Jul. 25, 2011 for U.S. Appl. No. 11/941,733. |
Office Action dated Jul. 29, 2013 for U.S. Appl. No. 13/098,116. |
Office Action dated Jul. 30, 2013 for U.S. Appl. No. 13/083,411. |
Office Action dated Sep. 1, 2010 for U.S. Appl. No. 12/029,428. |
Office Action dated Sep. 6, 2017 for U.S. Appl. No. 15/211,359. |
Office Action dated Sep. 26, 2017 for U.S. Appl. No. 15/388,598. |
Office Action dated Oct. 2, 2018 for U.S. Appl. No. 14/139,372. |
Office Action dated Oct. 30, 2018 for U.S. Appl. No. 15/349,715. |
Office Action dated Nov. 3, 2008 for U.S. Appl. No. 11/941,764. |
Office Action dated Nov. 3, 2008 for U.S. Appl. No. 12/029,428. |
Office Action dated Nov. 5, 2008 for U.S. Appl. No. 11/941,733. |
Office Action dated Nov. 12, 2013 for U.S. Appl. No. 13/083,411. |
Office Action dated Nov. 25, 2016 for U.S. Appl. No. 13/083,411. |
Office Action dated Dec. 2, 2009 for U.S. Appl. No. 12/029,428. |
Office Action dated Dec. 3, 2012 for U.S. Appl. No. 12/571,174. |
Office Action dated Dec. 9, 2009 for U.S. Appl. No. 12/262,064. |
Office Action dated Dec. 11, 2009 for U.S. Appl. No. 12/261,987. |
Office Action dated Feb. 27, 2013 for U.S. Appl. No. 12/578,455. |
Office Action dated Jul. 12, 2016 for U.S. Appl. No. 14/887,007. |
Office Action dated Sep. 10, 2013 for U.S. Appl. No. 12/571,174. |
Disc-O-Tech confidence Cement System at http://www.disc-o-tech.com/Articles/Article.asp?CategoryID=4&ArticieID=168 accessed, ,Dec. 3, 2007. |
Dai, et al., Bone-Particle-Impregnated Bone Cement: an in vivo weight-bearing study, Journal Biomedical Materials Search, vol. 25 ,191 ,141-156. |
Hasenwinkel, et al.,“A Novel High-Viscosity, Two-Solution Acrylic Bone Cement: Effect of Chemical Composition on Properties”, J. Biomed Mater. Res. vol. 47, No. 1 ,1999 ,36-45. |
Klawitter, et al., Application of Porous Ceramics for the Attachment of Load Bearing Internal Orthopedic Applications, J. Biomed. Mater. Res. Symp., 2(1) ,1972 ,61-229. |
International Search Report and Written Opinion dated Feb. 7, 2018 for PCT/US2017/058303. |
Notice of Allowance dated Aug. 8, 2019 for U.S. Appl. No. 15/836,125. |
Notice of Allowance dated Aug. 9, 2019 for U.S. Appl. No. 15/836,241. |
Examination Report dated Aug. 23, 2019 for India Application No. 10013/CHENP/2012. |
Number | Date | Country | |
---|---|---|---|
20180116702 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62413768 | Oct 2016 | US |