Devices for road widening and creating shoulders are known in the road construction industry. During construction of roads and shoulders, the soil must be compacted in order to prevent settling. Soil compaction is relatively straight-forward on level surfaces, however; inclined surfaces present can be difficult to properly compact as the compactor may become unstable and topple and/or slide.
Another feature of known devices is that they are self-propelled. Many of the devices include large engines with transmissions for moving the devices. Some examples include drivable, rolling compactors. These devices add considerable transportation issues and costs to the project.
Additionally, the shoulder of a roadway often includes a pitch or slope away from the road. This slope helps drainage and ensures a safer roadway. The further the distance from the roadway, the steeper the pitch may be. There may also be hills to the side of a road with an increasing grade that requires compaction. In order to provide a proper foundation for the road, the entire shoulder and surrounding area need to be properly compacted.
Due to the positive or negative slope, conventional compaction equipment like the above-mentioned rolling compactors is known to topple and roll over. This can cause bodily harm and even death as compaction equipment varies in weight from a hundred pounds to thousands of pounds. It can also be expensive to transport and operate large equipment.
What is therefore needed in the road construction industry is a low-cost device that may be pushed by another vehicle such as a skid steer, thus eliminating the need for an engine and drivetrain. Also needed is a device that can compact the sloped shoulders of a roadway without the risk of tipping the vehicle. Another feature needed is a device that is constructed in a lightweight design, allowing for easier mobility, repairs, reduced costs, lower fuel consumption, and less maintenance.
A skid steer rolling compactor attachment may be formed from a universal attachment plate configured to attach to the skid steer. A boom may extend from the attachment plate and articulate/move in a plurality of axis with at least one hinge. The hinge(s) may allow a roller attached to the boom opposite the attachment plate to compact a ground surface to the side of the skid steer as the skid steer travels forward.
The skid steer rolling compactor attachment may further include a boom attached to the skid steer with at least one articulating hinge. The articulating hinge may be configured to allow the boom to articulate in at least one axis. A roller may be attached to the boom opposite the articulating hinge. The skid steer may be driven forward, or in any direction of travel. In order to compact the ground to the side of the skid steer, the roller may be moved to a side of the skid steer perpendicular to the direction of travel. The roller may then be lowered to contact a ground surface perpendicular to the direction of travel. The ground surface may then be compacted on the side of the skid steer as the skid steer is driven forward.
The invention may include one or more of the characteristics discussed above in various combinations, thus, allowing for a reduced labor time and labor effort when compacting ground on a job site. These and other aspects and objects of the present invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating preferred embodiments of the present invention, is given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
A clear conception of the advantages and features constituting the present invention and of the constructions and operation of typical mechanisms provided with the present invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings accompanying and forming a part of this specification, wherein like references numerals designate the same elements in the several views, and in which:
In describing the preferred embodiment of the invention which is illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific terms so selected and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose. For example, the words “connected”, “attached”, or terms similar thereto are often used. They are not limited to direct connection but include connection through other elements where such connection is recognized as being equivalent by those skilled in the art.
Skid steers are commonly used in construction sides as the power source for a number of attachments. As they are commonly used to move aggregate, dirt, or other debris, they are typically present during road construction. Skid steers are also considerably less expensive than other earth-moving construction equipment and for this reason they are preferable for use in road construction. For example, there are many ways to move a mound of gravel. In order to minimize costs and maximize profits companies routinely seek the most efficient way to get things done. In this example, a skid steer is typically the most economical way to move the gravel. An added benefit of the skid steer is that there are a number of attachments that can be attached to the skid steer. As a result, a single skid steer can be configured to perform the tasks of a number of different earth-moving equipment.
The inventive skid steer attachment is shown in
Regardless of the propulsion vehicle, the articulating rolling compactor attachment 10 may have independent controls that allow operation totally independent from the host vehicle. In such a configuration, the boom 16 may be operated to extend, pivot, spin, rotate, or articulate in any direction. It is to be understood pivot, twist, spin, turn, and the like all mean movement in any direction with respect to not only the boom but any part of the invention. The movement is not to be limited to only a certain type of movement in one axis but complete freedom of motion in all directions. Preferably the boom 16 will be hydraulically operated with an independent hydraulic assembly, but it may tap into the existing hydraulics of the host vehicle. Also, electronic actuators may be used to provide articulation power. A joystick or lever controller may also be employed to articulate the boom 16, whether independent or pre-existing on the host vehicle.
In the preferred embodiment, the boom 16 is attached to the attachment plate 14 about a pivot hinge 18 and a lift hinge 40. A lift cylinder 58 may be actuated from within the skid steer 26 to raise and lower the boom 16. A pivot cylinder 52, seen for example in
On the opposing side of the boom, opposite the attachment plate 14, the roller 12 may twist about a twist hinge 24 with the use of a twist cylinder 36. The twist cylinder 36 is attached to the boom 16 and causes the roller 12 to twist about the twist hinge 24 when actuated. This twisting motion allows the roller 12 to be properly oriented alongside the skid steer so that it can properly compact the ground to the side of the skid steer.
An added joint may be included proximate the twist hinge 24 such as a tilt hinge 38. The tilt hinge 38 connects a frame 20 that supports the roller 12 to the boom 16. When a tilt cylinder 34 is actuated, it causes the frame 20 to tilt in one direction or the other. For added stability, a tilt cylinder 34 is attached to the frame 20 on each side of the boom 16. The tilt hinge 38 thus allows the roller 12 to pivot about the horizontal axis. The roller 12 is therefore allowed to pivot which enables compaction along an inclined slope as the skid steer 26 is driven forward along the adjacent level road. In this configuration, the skid steer 26 never needs to come in contact with the incline and can remain on the level road which promotes safety.
As previously mentioned, the roller 12 may also be suspended from the boom 16 by a frame 20. The frame 20 may cradle the roller 12 and attach to its central axis with bearings 22. The bearings 22 allow the roller 12 to roll without binding on the boom 16. While the roller 12 is rolling about the bearings 22, an adjustable scraper 42 may be inclined on each side of the roller 12. The adjustable scrapers 42 attach to the frame 20 and are positioned to scrape off any debris stuck onto the roller 12 as it rotates. A side plate 44 may also be attached on each side of the roller 12 to the frame 20 which protect the sides of the roller 12. A guide 46 may further stiffen the side plates 44 to provide structural rigidity to the frame 20.
Referring now to
As shown in
Moving on to
As is shown in
The roller 12 may include any known compaction roller such as a water-filled drum. Alternatively, the roller may include a vibration system within the drum. The boom 16 may also be adjusted such that a predetermined amount of pressure is applied to the inclined slope 32 ensuring adequate compaction with minimal strain on the boom 16. Monitoring the pressure also ensures that the downward force from the boom 16 does not cause the skid steer 26 to topple. It is also envisioned that counterweights or ballast may be added to the skid steer 26 to further inhibit toppling.
It is also envisioned that the articulating rolling compactor 10 cam be attached to any vehicle, not just a skid steer 26. For example, it is envisioned that the articulating rolling compactor 10 may be attached to a traditional drivable rolling compactor allowing the operator to compact the level road 30 surface and the inclined slope 32 at the same time.
Referring next to
In addition, the attachment plate 114 may be coupled to any vehicle, not just a skid steer. In addition, the attachment plate 114 may be oriented at an angle from vertical. For example, the attachment plate 114 may be oriented forward at 10 degrees from vertical in order to tilt the attachment plate 114 forward 10 degrees. In other embodiments of the invention, the attachment plate 114 may be tilted more or less than 10 degrees in either the forward or rearward direction. By orienting the attachment plate 114 at a forward angle, the attachment plate 114 becomes easier to couple and decouple from the skid steer 126. Further, the range of motion vertical range of motion of the articulating rolling compactor attachment 110.
The articulating rolling compactor attachment 110 may include independent controls that allow operation independent from the host vehicle 126. In such a configuration, a boom 116 may be operated to pivot, spin, rotate, and/or articulate in any direction. The terms pivot, twist, spin, turn, and the like may mean movement in any direction with respect to not only the boom, but any part of the invention. The movement is not limited to only a certain type of movement in one axis but complete freedom of motion in all directions. The boom 116 may be hydraulically operated with an independent hydraulic assembly. On the other hand, it is contemplated that the boom 116 may tap into the existing hydraulics of the host vehicle 126. Electronic actuators may also be used to provide articulation power. A joystick, lever controller, or a plurality of pushbuttons may also be used to articulate the boom 116, either independently or preexisting on the host vehicle 126.
In the embodiment shown in
On the side of the boom 116 opposite the attachment plate 114, a roller 112 is coupled to the boom 116 about a twist hinge 124 and a tilt hinge 138. A hydraulic twist cylinder 136 may be actuated from within the skid steer 126 to twist the roller 112 about the twist hinge 124. The twisting motion allows the roller 112 to be properly oriented alongside the skid steer 126 so that it can properly compact the ground to the side of the skid steer 126. A hydraulic tilt cylinder 134 may be actuated from within the skid steer 126 to tilt the roller 112 about the tilt hinge 138 in one direction or the other. The tilt hinge 136 thus allows the roller 112 to pivot about the horizontal axis to enable compaction along an inclined slope as the skid steer 126 is driven forward along the adjacent level road.
The roller 112 may also be suspended from the boom 116 by a frame 120. The frame 120 may cradle the roller 112 and attach to its central axis with bearings 122. The bearings 122 allow the roller 112 to roll without binding on the boom 116. While the roller 112 is rolling about the bearings 122, an adjustable scraper 142 may be included on one or both sides of the roller 112. That is, while
Referring now to
As shown in
Next,
The roller 112 may include any known compaction roller such as a water-filled drum. Alternatively, the roller 12 may include a vibration system within the drum to assist in compacting. The boom 116 may also be adjusted such that a predetermined amount of pressure is applied to the angled slope 132 ensuring adequate compaction with minimal strain on the boom 116. Monitoring the pressure also ensures that the downward force from the boom 116 does not cause the skid steer 126 to topple. It is also envisioned that counterweights or a ballast may be added to the skid steer 126 to further inhibit toppling.
As shown in
In varying embodiments of the invention, the hydraulic pivot cylinder 152, the hydraulic lift cylinder 158, the hydraulic tilt cylinder 134, and the hydraulic twist cylinder 136 may be prioritized over other systems, such as motor systems. As a result, response time of the hydraulic cylinders is minimized, which allows for immediate response of the hydraulic cylinders to commands.
Further, the hydraulic lift cylinder 158 may include a counter balance valve in order to maintain control of the down pressure of the roller 112. In particular, the counter balance allows the hydraulic lift cylinder 158 to maintain pressure to prevent the boom 116 from moving upward when the roller 112 is pushed into the ground to compact the ground surface.
Varying embodiments of the invention may use other host vehicles 126, not just a skid steer. For example, it is envisioned that the articulating rolling compactor 110 may be attached to a traditional drivable rolling compactor allowing the operator to compact the level road 130 surface and the angled slope 132 at the same time.
As can also be seen in
Although the best mode contemplated by the inventor of carrying out the present invention is disclosed above, practice of the present invention is not limited thereto. It will be manifest that various additions, modifications, and rearrangements of the features of the present invention may be made without deviating from the spirit and scope of the underlying inventive concept. Moreover, the individual components need not be formed in the disclosed shapes, or assembled in the disclosed configuration, but could be provided in virtually any shape and assembled in virtually any configuration. Furthermore, all the disclosed features of each disclosed embodiment can be combined with, or substituted for, the disclosed features of every other disclosed embodiment except where such features are mutually exclusive.
It is intended that the appended claims cover all such additions, modifications, and rearrangements. Expedient embodiments of the present invention are differentiated by the appended claims.
This patent application is a continuation U.S. patent application Ser. No. 16/149,975, filed Oct. 2, 2018, which is a continuation of U.S. patent application Ser. No. 15/319,543, filed Dec. 16, 2016, which is now U.S. Pat. No. 10,087,587, issued Oct. 2, 2018, which claims priority to PCT/US2015/067483, filed Dec. 22, 2015, which claims the benefit of U.S. Provisional Patent Application No. 62/096,001, filed Dec. 23, 2014, the entire teachings and disclosure of which are incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
2386025 | Wills | Oct 1945 | A |
2541045 | Ferwerda et al. | Feb 1951 | A |
3072025 | Cronin | Jan 1963 | A |
3291013 | Stolp | Dec 1966 | A |
3394641 | Steck | Jul 1968 | A |
3732996 | Bauer | May 1973 | A |
4193710 | Pietrowski | Mar 1980 | A |
5304013 | Parsons | Apr 1994 | A |
5395182 | Rossburger | Mar 1995 | A |
6345932 | Fix | Feb 2002 | B1 |
6612774 | Dulin | Sep 2003 | B1 |
7540689 | Major, Sr. | Jun 2009 | B1 |
20070206993 | Tyhy | Sep 2007 | A1 |
20080069639 | James | Mar 2008 | A1 |
20080267719 | Corcoran | Oct 2008 | A1 |
20100135724 | Roth | Jun 2010 | A1 |
20100278589 | Verhoff | Nov 2010 | A1 |
20120045281 | Wagner | Feb 2012 | A1 |
20130306338 | Wood, Sr. | Nov 2013 | A1 |
20170167087 | Frelich | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2712787 | Feb 2012 | CA |
Number | Date | Country | |
---|---|---|---|
20200318296 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62096001 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16149975 | Oct 2018 | US |
Child | 16906940 | US | |
Parent | 15319543 | US | |
Child | 16149975 | US |