1. Field of the Invention
The present invention relates to prosthetics and, more particularly, to prosthesis for use as a replacement for a lumbar and/or cervical disc in the spinal column of a human that allows both rotational and angular mobility.
2. Description of the Background
Intervertebral discs are subject to various forms of damage and degeneration due to mechanical stresses and aging. A variety of designs for artificial discs and disc prostheses have been proposed over the years. Cervical disc prosthetics pose a more difficult challenge in that the intervertebral spacing of the cervical vertebrae is smaller than for the lower vertebrae, etc., on the order of 8-9 mm for the cervical vertebrae, as compared with approximately 11 mm for the intervertebral discs. Moreover, the average age of patients undergoing spinal disc replacement is 42 years. Consequently, the life span of such a device should exceed 40 years. This requires an extremely high fatigue limit. Existing examples of disc prosthetics are shown in U.S. Pat. Nos. 6,517,580; 5,562,738; 5,676,701; 6,063,121; 6,162,252; 5,071,437; 5,522,899, and 6,132,465. While these designs purport to provide performance mimicking the function of the original disc, in practice, they do not articulate naturally and, consequently, do not function appropriately in the place of the original disc. Still other attempts have been made to replicate the natural action of both lumbar and cervical discs, including the following.
U.S. Pat. No. 4,759,766 to Buettner-Janz et al. (Humbolt University) issued Jul. 26, 1988 shows an intervertebral disc endoprosthesis with two end plates and a spacing piece, the spacing piece having opposing concave-convex surfaces with pins 13 that extend either into circular recesses 14, as shown in FIGS. 12 to 16, or into slot-shaped recesses 15, as shown in FIGS. 17 to 21.
U.S. Pat. No. 6,019,792 to Cauthen issued Feb. 1, 2000 shows an articulating spinal implant for intervertebral disc replacement that relies on an articulating ball-and-socket joint between two replacement disc elements that resists compression and lateral movement between the vertebrae, but allows pivotal movement, thereby preserving mobility. In this case the two replacement discs are hemispherical shapes.
U.S. Pat. No. 6,740,118 to Eisermann et al. (SDGI Holdings, Inc.) issued May 25, 2004 shows an intervertebral prosthetic joint with two plates formed with abutting convex and concave articular surfaces that cooperate to permit articulating motion. One of the articular surfaces has a surface depression that traps and allows removal of matter disposed between abutting portions of the articular surfaces.
U.S. Pat. No. 6,723,127 to Ralph et al. (Spine Core, Inc.) issued Apr. 20, 2004 shows an intervertebral disc that uses an intermediate “wave washer” between two plates that allows the plates to compress, rotate and angulate freely relative to one another, enabling the artificial disc to mimic a healthy natural intervertebral disc.
U.S. Pat. No. 5,401,269 to Buttner-Janz et al. (Waldemar Link) issued Mar. 28, 1995 shows an intervertebral disc endoprosthesis with two concave prosthesis plates sandwiching a convex prosthesis core. In one embodiment, the core has a nib (
United States Patent Application 20030040802 by Errico shows an artificial intervertebral disc having limited rotation using a captured ball and socket joint. The artificial disc has a pair of opposing baseplates, for seating against opposing vertebral bone surfaces. The base plates are separated by a ball and socket joint, the ball being secured by a post extending from one of the baseplates. The ball is captured within a socket formed in the other of the baseplates. The ball and socket joint therefore permits the baseplates to rotate relative to one another through a limited range and also angulate relative to one another.
United States Patent Application 20040158328 by Eisermann filed Aug. 12, 2004 shows a mobile bearing articulating disc with a plate having a concave recess, a second component having a second recess, and a projection adapted to engage the second recess surface to permit articulating motion between the first and second components. The projection 56 is shown to be a ball-and-socket type mechanism, with a notch 76 for removal of matter.
United States Patent Application 20040049280 by Cauthen filed Mar. 11, 2004 shows an articulating spinal implant for intervertebral disc replacement formed from three elements (see
United States Patent Application 20040176851 by Zubok et al. filed Sep. 9, 2004 shows a cervical disc replacement with first and second articulation plates having concave/convex surfaces sized and shaped to engage one another when the first and second members are disposed in the intervertebral disc space to enable the first and second vertebral bones to articulate in at least one of flexion, extension and lateral bending.
Although the above-described prosthetic discs as well as others have furthered technological development, none have fully solved the disc replacement problem. They pursue articulation, but lack durability and resistance to fatigue. It would be greatly advantageous to provide a fully-articulating spinal disc prosthetic having a high-wear capability and integrally-joined components that are extremely durable.
Accordingly, it is an object of the present invention to provide a prosthetic disc with fully articulating capability, and also high-durability and resistance to fatigue.
It is another object to provide a fully-articulated prosthetic disc as above that makes use of integrally-joined components that cannot come apart.
In accordance with the foregoing object, the present invention comprises a lumbar and/or cervical disc prosthetic formed with three primary layers, including a superior (upper) plate, inferior (lower) plate, and intermediate layer, in a sandwiched configuration. The superior plate member is adapted to be secured on one side to an upper vertebra in a spinal column, and has a formed concave side exposed downwardly. The inferior plate member is adapted to be secured on one side to a lower vertebra in the spinal column, and has a substantially flat side exposed upwardly. The flat side is interrupted by a central cylindrical recess. The intermediate member has a convex side conforming to the concave side of the superior plate member, a flat downside conforming to the flat side of said inferior plate member, and is sandwiched between the superior and inferior plate members. The flat upside of the inferior member is interrupted by a circular recess. A short cylindrical post protrudes downward from the intermediate member and is seated inside the central recess of the inferior plate member to center it, lock it in place, and maintain a predetermined spacing there between. Both the post and the recess within which it resides have flat bearing surfaces for better wear. The post is coupled into the recess by a locking assembly that uses central snap-in spring fingers located at the bottom of the post as well. Additionally the locking assembly involves two lateral pins, one located at each end of the intermediate member, that fit into two corresponding slots located at each end of the inferior plate member. In this and equivalent configurations the locking assemblies prevent withdrawal of the intermediate member from the inferior plate member, thereby increasing reliability and durability. The particular configuration described herein limits rotational articulation to 20 degrees (10 degrees on each side), and also affords the durability and resistance to fatigue necessary for a 30-40 year lifetime.
Other objects, features, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiment and certain modifications thereof, in which
It is to be noted that the reference to the plate members as upper and lower members is for the purpose of identifying these members in the drawings. It may well be possible that the positions of the two plate members can be reversed.
Each of upper and lower plate members 100, 102 is provided with means for securement to the upper and lower vertebra. Many types of securement means are known in the art, and could be used with the present invention. For purposes of illustration, the plates 100, 102 are respectively provided with one or more tabs 110, 112 extending from the periphery of the plates 100, 102, and extending approximately laterally from the surface of the plates which will face the vertebra. As is known in the art, screws 114, 116 can be used to fasten the tabs to the vertebra 104, 106, through bores extending through the tabs. Plate members 100, 102 may further have their bone-contacting surfaces 118, 120 manufactured and/or treated or modified to facilitate or improve bonding to the bone. Again, several such approaches are known in the art and should be suitable for use with the present invention.
The upper plate member 100 preferably has a lower mating surface 132 that is concave and complementary in shape to the upper surface 130 of intermediate member 108. The intermediate member 108 is formed with a slightly smaller diameter than upper plate member 100, is sandwiched between the plate members 100, 102, and is formed with surfaces generally conforming to the opposing plate members 100, 102. Specifically, the intermediate member 108 is formed with a convex or domed upper surface 130 conforming to the concave lower mating surface 132 of the upper plate member 100. By providing such mating surfaces, the upper vertebrae 104 may shift either laterally or in a front or rearward direction, relative to the intermediate member 108 and lower vertebrae 106. The material or materials from which the intermediate member 108 is made, or the surface treatment thereof, can be selected to provide a desired degree of frictional engagement between the upper plate and intermediate member. While it is envisioned that the domed surface would preferably have a low coefficient of friction, it is possible to control or restrict movement between the upper plate 100 and intermediate member 108 by proper selection of the coefficient of friction of these two mating surfaces.
The lower surface 134 of intermediate member 108 is generally planar across the majority of the surface. The surface may, alternatively, be slightly convex. A post 136 protrudes from the lower surface 134. An upper mating surface 138 of lower plate member 102 is preferably generally planar, and has a recess 140 formed centrally therein to receive the post 136.
The post 136 and recess 140 are particularly configured for spacing the intermediate member 108 from the lower plate member 102, and for maintaining a rotating engagement therewith for purposes of the present invention. Thus, the recess 140 is generally cylindrical, conforming to the cylindrical post 136, with a conforming diameter and depth. This way, the intermediate member 108 is in complete contact with the top side of the lower plate member 102. If desired, the post 136 may be made slightly longer than the recess 140 in the lower plate member 102 with which it mates so as to allow for slight “flexion” of the intermediate member 108 (since the middle member will not be in “complete contact” with the bottom member). Generally, however, full contact is desired.
The post 136 remains free to rotate within recess 140 (allowing the intermediate member 108 to rotate as well), and the post 136 imposes a weight-bearing point of contact between the intermediate member 108 and upper mating surface 138 of lower plate member 102. This configuration presents a degree of freedom for rotation of the intermediate member 108 that more closely replicates that of a natural spinal joint. The post is preferably formed with a substantially planar face 113. The post 136 rests upon the flat face 113, and the latter serves as a bearing surface to support the intermediate member 108 and maintain an even keel, and yet to allow the foregoing articulation. This permits the relief of at least a portion of any compressive forces exerted on prosthesis 10 by the upper and lower vertebra, as well as permitting the upper and lower vertebra to rotate relative to each other through a small angle, as forces on the two vertebrae are transmitted to the prosthesis. The small circular and flat area of contact between post 136 and recess 140 also permits intermediate member 108 to rotate about a vertical axis relative to the lower plate 102, in the event that the spinal column experiences twisting forces. The upper and lower plate members 100, 102 are preferably made of a material that is compatible with the bone and, as noted previously, will preferably facilitate or promote bone grafting. The intermediate member 108 is preferably made of a material that is essentially non-resilient or of low resiliency, such as, for example, a metal, a ceramic, or a polymer having a low degree of resiliency. The function or operation of the prosthesis 10 in approximating the function or operation of a natural disc comes essentially from the degrees of freedom of movement provided between the upper and lower plates, and the intermediate member 108 disposed there between. The illustrated embodiment can be constructed with dimensions that are small enough to enable use of the prosthesis as a cervical disc prosthesis, where the intervertebral spacing is small, e.g., on the order of 8-9 mm. Thus, it is envisioned that the prosthesis 10 will be especially suitable for use in replacing damaged cervical discs. However, the prosthesis can be sized as required to serve as a lumbar disc prosthesis, as well.
The present invention also comprises a locking feature by which the post 136 is inserted into the recess 140 in such a way as to lock into it without detracting from the partial rotation capabilities described above. This may be accomplished with a variety of alternative and equally well-suited configurations, one example of which is described in detail herein.
The locking feature shown in
In addition to the foregoing, the present invention also comprises a rotation-limiting feature to restrict relative rotation of the intermediate member 108 and lower plate member 100.
One example of an embodiment to accomplish this is best seen in
Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiments herein shown and described will obviously occur to those skilled in the art upon becoming familiar with said underlying concept. It is to be understood, therefore, that the invention may be practiced otherwise than as specifically set forth in the appended claims.
The present application derives priority from provisional patent application No. 60/657,755 filed Mar. 1, 2005, and is a continuation-in-part of U.S. patent application Ser. No. 10/997,823 filed Nov. 24, 2004.
Number | Date | Country | |
---|---|---|---|
60657755 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10997823 | Nov 2004 | US |
Child | 11365156 | Mar 2006 | US |