1. Field of the Invention
This invention relates to an articulating support arm having a central body pivotally connected between a base and a platform in which the platform has an integral angled abutment therein.
2. Detailed Description of the Prior Art
A keyboard tilt mechanism is described in U.S. Pat. No. 6,270,047 issued on Aug. 7, 2001 and names Randy Hudson as inventor. The keyboard tilt mechanism has a slide link that is mounted on a shaft 28 as well as being mounted on a shaft 54 that is tilted or angled and extends from one end of the platform to the other. The shaft 54 is a separate component from the platform 18 and must be installed in the platform when the tilt mechanism is assembled. In addition, since the slide link 44 has a circular opening 52 therein through which the angled shaft 54 is inserted, the shaft 54 must be installed on the platform 18 after the slide link has been installed on the shaft 54. The shaft 54 is made from metal.
It is an object of the present invention to provide an articulating support arm where the platform of the arm is made from thermoplastic, and more particularly, fibre reinforced plastic with an abutment extending across said platform at an angle relative to the side edges. A slider moves across the platform in contact with angled abutment to vary the pitch of the platform.
An articulating support arm for use with a work station as a central body with two ends the two ends being an inner end and an outer end. The inner end has a base pivotally connected thereto and the outer end has a platform pivotally connected thereto. The base is directly or indirectly connected to the workstation. The platform has an angled abutment that is integral with the platform, the abutment being located to be contacted by a slider extending between the abutment and a threaded shaft rotatably mounted at or near the outer end. The shaft extends parallel to a pivot axis extending between the body and the platform. The slider is constructed to move along the shaft as the shaft rotates, the slider being sized and shaped to simultaneously slide along the abutment as the slider moves along the shaft to vary a pitch of the platform relative to the body.
An articulating support arm is used with a workstation, said support arm comprising a central body with two ends. The two ends are an inner end and an outer end, the inner end being pivotally connected to a base, the base being directly or indirectly connected to the workstation. The outer end is pivotally connected to a platform, the platform having an abutment that is integral therewith. A shaft is rotatably mounted at or near the outer end of the central body, the shaft having a first screw thread thereon. A slider is mounted on the shaft, the slider having a second screw thread corresponding to the first screw thread. The slider moves along the shaft as the shaft rotates. The abutment is oriented at an angle to the shaft and the slider is sized and shaped to contact and slide along the abutment as the shaft rotates, thereby varying a pitch of the platform relative to the body.
A method of constructing an articulating support arm for use with a workstation, the support arm having a central body with two ends. The two ends are an inner end and an outer end with a based being located at the inner end and a platform being located at the outer end. The method comprises pivotally connecting the central body to the base, forming the platform with an elongated angled abutment extending thereon, mounting a threaded slider on a threaded rotatable shaft in the central body at a rear of the outer end, sizing and shaping the slider to slide along the abutment as the shaft is rotated, thereby varying the pitch of the platform relative to the central body.
In
The lower component 22 has an outer edge 30 that extends outward from the rod 24 and rests against an abutment 32. The abutment 32 is located in the platform 18 and is an integral part of the platform. The platform 18 is preferably made from cast metal and still more preferably made from fibre reinforced plastic. The platform is preferably molded in one piece. The abutment 32 is located at an angle to a threaded shaft 34 of the universal screw 4. The shaft 34 perpendicular to a longitudinal centre axis of the support arm and is parallel to the ends 12, 14 of the central body 10. As the handle 28 is rotated, the shaft 34 rotates and causes the upper component 20 of the slider 6 to move along the shaft 34 due to the interaction of the corresponding screw threads. The movement of the upper component 20 causes the lower component 22 of the slider 6 to also move along the rod 24. If the handle 28 is turned in a direction to move the slider 6 closer to the handle side of the support arm 2, a pitch of the platform 18 increases relative to the central body 10. When handle 28 is turned in an opposite direction, the slider 6 moves away from the handle 28 and the pitch of the platform 18 relative to the central body 10 decreases. There is one rod 36 and two bolts 38 located between the base 16 and the central body 10. There is one bolt 38 on each side of the base 16. The cover 8 of the central body 10 is pivotally connected to the base 16 through the rod 36. The lower section 19 of the central body 10 is pivotally connected to the base 16 through the bolts 38. The bolts 38 are held in place by nuts 39, only one of which is shown. When in the rest position shown in
The cover 8 of the central body 10 has a first scale 40 and an indicator 42 to show the height of the central body 10 relative to the base 16. A second scale 44 and indicator 46 shows the pitch of the platform 18 relative to the central body 10.
In
In
In
In
During manufacture, the slider can be installed on the central body, but the slider is not required to be installed on the platform or on the abutment. Since the abutment is integral with the platform, there is very little additional expense required to include the abutment in the platform compared to manufacturing a platform without the abutment and subsequently affixing the abutment to the platform. The slider is installed on the central body and the platform is pivotally connected to the central body. When the base is installed on the central body, the support arm is then operational. While the outer end of the slider that is in contact with the abutment and the abutment can be sized and shaped so that the slider is slidably connected to the abutment (as opposed to just being in contact therewith), that arrangement is not required.
Applicant claims the benefit of U.S. Provisional Application Ser. No. 60/864,314 filed on Nov. 3, 2006.
Number | Name | Date | Kind |
---|---|---|---|
5037054 | McConnell | Aug 1991 | A |
5145136 | McConnell | Sep 1992 | A |
5257767 | McConnell | Nov 1993 | A |
5881984 | Lin | Mar 1999 | A |
5915657 | Ptak | Jun 1999 | A |
6021985 | Hahn | Feb 2000 | A |
6027090 | Liu | Feb 2000 | A |
6135404 | Wisniewski et al. | Oct 2000 | A |
6270047 | Hudson | Aug 2001 | B1 |
6322031 | LeClair et al. | Nov 2001 | B1 |
6601812 | LeClair et al. | Aug 2003 | B2 |
7004438 | Lin | Feb 2006 | B2 |
20040262477 | Whitaker et al. | Dec 2004 | A1 |
20070163135 | Barber | Jul 2007 | A1 |
20070170326 | Timm et al. | Jul 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080142661 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60864314 | Nov 2006 | US |