Articulating suturing device and method

Abstract
Devices, systems, and methods for suturing of body lumens allow the suturing of vascular puncture sites located at the distal end of a percutaneous tissue tract. An elongated articulated foot near a distal end of a shaft is inserted through the penetration and actuated so that the foot extends along the lumenal axis. The foot carries suturing attachment cuffs, and needles are advanced from the shaft through the vessel wall outside of the penetration and into engagement with the needle cuffs after the foot has been drawn proximally up against the endothelial surface of the blood vessel. The cross-section of the shaft within the tissue tract can be minimized by laterally deflecting the needles as they leave the shaft, while tapered depressions within the foot can guide the advancing needles into engagement with the cuffs. The cuffs lockingly engage the needles and can be withdrawn proximally along the needle paths and through the tissue tract so as to form a loop of suture across the puncture. The articulating foot may be realigned with the shaft and withdrawn proximally through the tissue tract without dilating the tissue tract.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to apparatus and methods for the suturing of body lumens. More particularly, the present invention relates to techniques for percutaneous closure of arterial and venous puncture sites, which are usually accessed through a tissue tract.


A number of diagnostic and interventional vascular procedures are now performed translumenally. A catheter is introduced to the vascular system at a convenient access location and guided through the vascular system to a target location using established techniques. Such procedures require vascular access, which is usually established during the well-known Seldinger technique, as described, for example, in William Grossman's “Cardiac Catheterization and Angioplasty,” 3rd Ed., Lea and Febiger, Philadelphia, 1986, incorporated herein by reference. Vascular access is generally provided through an introducer sheath, which is positioned to extend from outside the patient body into the vascular lumen.


When vascular access is no longer required, the introducer sheath is removed and bleeding at the puncture site stopped. One common approach for providing hemostasis (the cessation of bleeding) is to apply external force near and upstream from the puncture site, typically by manual or “digital” compression. This approach suffers from a number of disadvantages. It is time consuming, frequently requiring one-half hour or more of compression before hemostasis is assured. Additionally, such compression techniques rely on clot formation, which can be delayed until anticoagulants used in vascular therapy procedures (such as for heart attacks, stent deployment, non-optical PTCA results, and the like) wear off. This can take two to four hours, thereby increasing the time required before completion of the compression technique. The compression procedure is further uncomfortable for the patient and frequently requires analgesics to be tolerable. Moreover, the application of excessive pressure can at times totally occlude the underlying blood vessel, resulting in ischemia and/or thrombosis. Following manual compression, the patient typically remains recumbent from four to as much as twelve hours or more under close observation so as to assure continued hemostasis. During this time renewed bleeding may occur, resulting in blood loss through the tract, hematoma and/or pseudo-aneurysm formation, as well as arteriovenous fistula formation. These complications may require blood transfusion and/or surgical intervention.


The incidence of complications from compression induced hemostasis increases when the size of the introducer sheath grows larger, and/or when the patient is anti-coagulated. It is clear that the compression technique for arterial closure can be risky, and is expensive and onerous to the patient. Although the risk of complications can be reduced by using highly trained individuals, dedicating such personnel to this task is both expensive and inefficient. Nonetheless, as the number and efficacy of translumenally performed diagnostic and interventional vascular procedures increases, the number of patients requiring effective hemostasis for a vascular puncture continues to increase.


To overcome the problems associated with manual compression, the use of bioabsorbable fasteners or sealing bodies to stop bleeding has previously been proposed. Generally, these approaches rely on the placement of a thrombogenic and bioabsorbable material, such as collagen, at the superficial arterial wall over the puncture site. While potentially effective, this approach suffers from a number of problems. It can be difficult to properly locate the interface of the overlying tissue and the adventitial surface of the blood vessel. Locating the fastener too far from that interface can result in failure to provide hemostasis, and subsequent hematoma and/or pseudo-aneurysm formation. Conversely, if the sealing body intrudes into the artificial lumen, intravascular clots and/or collagen pieces with thrombus attached can form and embolize downstream, causing vascular occlusion. Also, thrombus formation on the surface of a sealing body protruding into the lumen can cause a stenosis, which can obstruct normal blood flow. Other possible complications include infection, as well as adverse reaction to the collagen or other implant.


A more effective approach for vascular closure has been proposed in U.S. Pat. Nos. 5,417,699, 5,613,974; and PCT published Patent Application No. PCT/US96/10271 filed on Jun. 12, 1996, the full disclosures of which are incorporated herein by reference. A suture applying device is introduced through the tissue tract with a distal end of the device extending through the vascular puncture. One or more needles in the device are then used to draw suture through the blood vessel wall on opposite sides of the puncture, and the suture is secured directly over the adventitial surface of the blood vessel wall to provide highly reliable closure.


While a significant improvement over the use of manual pressure, clamps, and collagen plugs, certain design criteria have been found to be important to successful suturing to achieve vascular closure. For example, it is highly beneficial to properly direct the needles through the blood vessel wall at a significant distance from the puncture so that the suture is well anchored in the tissue and can provide tight closure. It is also highly beneficial to insure that the needle deployment takes place when the device is properly positioned relative to the vessel wall. The ease of deployment and efficacy of the procedure can further be enhanced by reducing the cross-section of that portion of the device which is inserted into the tissue tract and/or the vessel itself, which may also allow closure of the vessel in a relatively short amount of time without imposing excessive injury to the tissue tract or vessel.


For the above reasons, it would be desirable to provide improved devices, systems, and methods for suturing vascular punctures. It would be particularly beneficial if these improved devices provided some or all of the benefits while overcoming one or more of the disadvantages discussed above.


2. Description of the Background Art


U.S. Pat. Nos. 5,700,273, 5,836,956, and 5,846,253 describe a wound closure apparatus and method in which needles are threaded with suture inside a blood vessel. U.S. Pat. No. 5,496,332 describes a wound closure apparatus and method for its use, while U.S. Pat. No. 5,364,408 describes an endoscopic suture system.


U.S. Pat. No. 5,374,275 describes a surgical suturing device and method of use, while U.S. Pat. No. 5,417,699 describes a device and method for the percutaneous suturing of a vascular puncture site. An instrument for closing trocar puncture wounds is described in U.S. Pat. No. 5,470,338, and a related device is described in U.S. Pat. No. 5,527,321. U.S. Pat. No. 5,507,757 also describes a method of closing puncture wounds.


SUMMARY OF THE INVENTION

The present invention provides improved devices, systems, and methods for suturing of body lumens. The device often allows the suturing of vascular puncture sites located at the distal end of a percutaneous tissue tract with greater ease, in less time, and with less patient trauma than known systems. These improvements are generally provided through the use of shafts having smaller cross-sections than prior suturing systems. In the exemplary embodiment, an elongate articulated foot near a distal end of a shaft is inserted through the penetration and actuated so that the foot extends along the lumenal axis. The foot carries suture attachment cuffs, and can be drawn proximally up against the endothelial surface of the blood vessel. Needles are advanced from the shaft, through the vessel wall beyond the penetration, and into engagement with the needle cuffs. The cross-section of the shaft within the tissue tract can be minimized by laterally deflecting the needles before they leave the shaft, while tapered depressions within the foot can help guide the advancing needles into engagement with the cuffs. The cuffs lockingly engage the needles so that the cuffs can be withdrawn proximally along the needle paths through the tissue tract so as to form a loop of suture across the puncture without having to thread the needles directly with the suture inside the blood vessel. The suture loop may be drawn distally from the shaft, proximally from within the blood vessel, or laterally down one of the needle paths, across the puncture, and out the opposing path. Regardless, the articulating foot may be realigned with the shaft and withdrawn proximally through the tissue tract in a small profile configuration. The use of an articulatable foot in combination with lateral deflection of the needles can avoid dilation of the tissue tract, as was often necessary using known puncture closure systems.


In a first aspect, the invention provides a method for suturing a puncture through a vessel wall of a blood vessel. The puncture is disposed within a tissue tract of a patient body, and the method comprises attaching a flexible filament to a first fitting. The first fitting is inserted through the tissue tract and positioned adjacent the vessel wall, and a needle path is formed by advancing a first needle through the vessel wall. The needle is coupled with the first fitting, and the first needle, the first fitting, and at least a portion of the filament are withdrawn through the vessel wall along the needle path.


First and second fittings will often be coupled to the flexible filament, and will generally be positioned so that the puncture is disposed therebetween. The flexible filament will often comprise a suture extending between the first and second fittings, with each fitting being drawn proximally by an associated needle so as to form the suture loop. Alternatively, at least one of the needles may include a detachable tip and may advance a suture distally along the needle path as the needle penetrates through the vessel wall. The flexible filament can again couple the first and second fittings, here allowing both fittings to be withdrawn along a single needle path so that the suture advances down along the first needle path, laterally across the puncture, and then out the other needle path.


Positioning of the fittings is generally effected by articulating an elongate foot within the blood vessel so that the foot extends along the vessel axis. A confirmation lumen may extend along a shaft supporting the foot to ensure that the foot is positioned within the vessel prior to articulation. Once the foot is properly articulated, it can be withdrawn to firmly engage the endothelial layer of the vessel. The foot will preferably include tapering depressions which direct the advancing needle toward the fitting, and the suture or other flexible filament adjacent the fittings will often be releasably restrained within a narrow slot extending from the depression. The suture or other flexible filament and its associated slot will preferably be arranged to avoid entanglement of the advancing needle in the suture, and to ensure that the fitting and suture can be withdrawn proximally as the needle is retracted. An atraumatic, flexible monorail guidebody may extend from the shaft and/or the articulatable foot to facilitate alignment of the foot with the vessel, and also to help provide hemostasis while the knot is tied. A wide variety of foot articulation mechanisms may be provided, with deployment preferably being effected when the foot is disposed entirely within the vessel and using an actuator and foot motion that avoid dilation of the puncture.


In another aspect, the invention provides a method for suturing an opening in a tissue. The method comprises inserting a distal end of a probe through the opening, the probe defining a probe axis. An elongated foot of the probe is articulated so that first and second ends of the foot extend laterally with the opening aligned therebetween. A first needle path is formed from the probe, through the tissue, and to the first end of the foot. A second needle path is formed from the probe, through the tissue, and to the second end of the foot. Suture is advanced along the first and second needle paths to position a suture loop across the opening.


In another aspect, the invention provides a method for suturing a blood vessel. The vessel has a vessel wall, and the method comprises advancing a shaft toward the vessel wall. The shaft has an axis and a plurality of needle guides. A foot is deployed adjacent the vessel wall so that the foot extends laterally from the shaft. A plurality of needles are advanced from the needle guides of the shaft to the foot to form needle paths through the vessel wall. The needle guides deflect the needles laterally so that a needle path width between the needles is greater than a cross-sectional dimension of the shaft. Suture is advanced along the needle paths to position at least one suture loop across the puncture.


In yet another method of the present invention, a blood vessel is sutured through a tissue tract of a patient body. The vessel has a vessel wall, and the method comprises inserting a distal end of a probe through the puncture and into the blood vessel. A first end of the suture is advanced from the probe within the tissue tract, through the vessel wall, and into the vessel. The first end of the suture is withdrawn from the vessel through the vessel wall, and through a bight of the suture to form a loop of suture across the puncture. The first end of the suture and a second end of the suture adjacent the bight are tensioned to detach the bight from the probe and form a knot affixing the loop of suture across the puncture. Advantageously, the bight of suture may be pre-tied before the probe is inserted into the tissue tract, the bight optionally being releasably attached to the probe.


In a device aspect, the invention provides a system for suturing a blood vessel. The vessel has a vessel wall, and the system comprises a needle having a proximal end and a distal end suitable for forming a needle path through the vessel wall. The needle has a recessed engagement surface adjacent the distal end. The system further comprises a flexible filament and a fitting attached to the filament. The fitting has an opening and a tab extending into the opening, the tab securingly engaging the engagement surface when the needle advances through the vessel wall and into the opening, so that the fitting and at least a portion of the filament can be withdrawn proximally along the needle path by the needle.


In a further device aspect, the invention provides a system for suturing a puncture of a blood vessel within a tissue tract. The vessel has a vessel wall and defines an axis, and the system comprises a shaft having a proximal handle and a distal end suitable for insertion along the tissue tract and into the vessel through the puncture. A foot is mounted near the distal end of the shaft. The foot has plurality of needle receptacles extendable laterally from the shaft. A flexible filament extends between the receptacles of the foot. A plurality of needles are advanceable distally and laterally from the shaft, through the vessel wall outside the puncture, and to the receptacles of the foot.


In yet another device aspect, the invention provides a system for suturing a puncture of a blood vessel within a tissue tract. The vessel has a vessel wall, and the system comprises a shaft having a proximal handle and a distal end suitable for insertion along the tissue tract and into the vessel through the puncture. A foot is mounted near the distal end of the shaft. The foot has a first needle receptacle and is articulatable from a small profile configuration to a large profile configuration by actuation of the handle. A first fitting is removably mounted adjacent the first needle receptacle. A filament is coupled to the first fitting. A first needle is advanceable from the shaft to the first needle receptacle on the articulated foot. The first fitting securely engages the first needle so that the secured first fitting and at least a portion of the filament can be drawn through the vessel wall by the first needle.


In a still further device aspect, the invention provides a probe for suturing an opening in a tissue. The probe comprises a shaft having a proximal end and a distal end and defining an axis therebetween. The shaft has a size and configuration suitable for insertion through the opening in the tissue. An elongate foot is movably mounted to the shaft. An actuator extends along the shaft distally to the foot. Movement of the actuator slides the foot axially and pivots the foot from a low profile configuration to a deployed configuration extending laterally from the shaft. A suture is supported by the foot, and a needle is advanceable from the shaft, through the tissue, and to the deployed foot.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective of a percutaneous blood vessel closure device according the principles of the present invention.



FIG. 2 illustrates the vessel closure device of FIG. 1 in which an elongate foot is shown in a deployed position.



FIGS. 2A-C illustrate actuation of a foot and advancement of needles from a shaft to the articulated foot in a probe similar to the probe of FIG. 1.



FIG. 3A is a detailed view showing the foot of the vessel closure device of FIG. 1 in a parked position prior to deployment.



FIG. 3B is a detailed view showing the foot of the vessel closure device of FIG. 1 in a deployed position.



FIGS. 4 and 4A are perspective views illustrating a suture attachment cuff and an associated barbed needle for use in the vessel closure device of FIG. 1.



FIG. 5 is a cross-sectional view showing the barbed needles securingly engaging the suture cuffs of the deployed foot.



FIGS. 6A-C illustrate one embodiment of a deployable foot, in which the foot slides and pivots when drawn proximally by a tension member.



FIG. 7 illustrates the suture cuff positioned within a needle receptacle, and also shows how the suture is releasably secured within a slot extending radially from the needle receptacle.



FIGS. 8A-C illustrate an alternative foot articulation mechanism in which lateral slots on the foot receive pins from the shaft to allow the foot to pivot and slide axially.



FIGS. 9A and B illustrate a still further alternative foot actuation mechanism in which the foot slides axially within a slot.



FIGS. 9C and D illustrate a further foot actuation mechanism in which relative movement between the sides of a two-part shaft actuates the foot.



FIGS. 10A-D illustrate alternative structures and techniques for avoiding entanglement of the needle with the suture.



FIGS. 11A-E illustrate an alternative closure system and method for its use in which a first needle advances the suture to the foot, while a second needle engages and withdraws both the first and second suture cuffs, a flexible filament connecting the suture cuffs, and at least a portion of the suture from within the blood vessel so as to complete a pre-tied knot.



FIGS. 12A and B illustrate an alternative probe having two pairs of needles and a foot with four needle receptacles so as to form two loops of suture across a puncture of a blood vessel.



FIGS. 13A-G illustrate a method for use of a suture system so as to effect hemostasis of a blood vessel puncture through a tissue tract.





DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Referring now to FIG. 1, a vessel closure device 10 generally has a shaft 12 having a proximal end 14 and a distal end 16. A proximal housing 18 supports a needle actuation handle 20. A flexible, atraumatic monorail guidebody 22 extends distally of distal end 16 of shaft 12.


As can be seen with reference to FIG. 2, a foot 24 is articulatably mounted near the distal end of shaft 12. Foot 24 moves between a low profile configuration, in which the foot is substantially aligned along an axis of shaft 12 (as illustrated in FIG. 1), to a deployed position, in which the foot extends laterally from the shaft, upon actuation of a foot actuation handle 26 disposed on proximal housing 18.



FIGS. 2A through C illustrate the structure and actuation of foot 24 of a preferred probe 10′ having a modified proximal housing, and also show how needles 38 can be advanced distally from shaft 12 to the foot by depressing needle actuation handle 20.


Actuation of foot 24 is illustrated more clearly in FIGS. 3A and B. In the parked position illustrated in FIG. 3A, foot 24 extends substantially along axis 28 of shaft 12. Note that the axis of the shaft need not be straight, as the shaft may curve somewhat, particularly adjacent the foot. In the exemplary embodiment, foot 24 is substantially disposed within a foot receptacle 30 of shaft 12 so as to minimize the cross-section of the device adjacent the foot prior to deployment. Advantageously, prior to deployment of the foot, device 10 can have a cross-section adjacent foot 24 of about 7 Fr or less, ideally having a cross-section of about 6 Fr or less for the entire device distally of the proximal end 14 of shaft 12.


Actuation of foot handle 26 slides a foot actuation wire 32 proximally, pulling foot 24 from a parked position to the deployed position illustrated in FIG. 3B. Once deployed, a first end 24a and a second end 24b of foot 24 extend laterally from the shaft. Suture 34 here comprises a continuous filament with ends disposed in needle receptacles adjacent each end of the foot. An intermediate portion of suture 34 may extend proximally along a suture lumen of shaft 12 to and/or beyond proximal housing 18. Alternatively, in preferred probe 10′, the length of suture between the ends may extend distally within flexible guidebody 22, preferably in a dedicated lumen (separate from the monorail guidewire lumen). In still further alternatives described below, a short length of suture or some other flexible filament may extend substantially directly between the needle receptacles.


Shaft 12 also includes a foot position verification lumen that extends distally from a position verification port 36 to a position indicator at housing 18. When the foot is properly positioned within the blood vessel, blood pressure will cause blood to flow proximally through the indicator lumen to the indicator. The indicator may optionally comprise a blood exit port, a clear receptacle in which blood is visible, or the like. In the exemplary embodiment, the indicator of handle 18 comprises a length of clear tubing extending from housing 18 (not shown) in which the blood is clearly visible. It should be understood that a wide variety of alternative position verifications sensors might be used, including electrical pressure sensors, electrolytic fluid detectors, or the like.


The structures used in positioning a loop of suture across the puncture can be understood with reference to FIGS. 4, 4A, and 5. In general terms, needles 38 extend from shaft 12 into secured engagement with fittings 40 attached to sutures 34. More specifically, needles 38 include a barbed end 42 defining a recessed engagement surface 44. Fittings 40 are roughly cylindrical structures having an axial channel 46 which receives barbed end 44 of needle 38 therein. A first slot is cut in fitting 44 so as to define at least one tab 48. Tabs 48 can be resiliently biased inward into channel 46. As needle 38 advances into fitting 40, barbed end 42 resiliently displaces tab 48 clear of channel 46 so as to allow the barbed end to pass axially into the fitting. Once barbed end 42 is disposed axially beyond tab 48, the tab resiliently flexes back into the channel, capturing needle 38 by engagement between the tab and recessed surface 44. As each tab can hold the fitting in place on the needle, the use of more than one tab increases the reliability of the system. Ideally, three tabs are provided, as illustrated in FIG. 4A.


To facilitate attachment of fitting 40 to suture 34, a second slot cut in the tubular fitting structure defines a suture attachment collar 50. Optionally, collar 50 may be crimped about suture 34 to mechanically affix the suture to fitting 40. In addition and/or instead of mechanical crimping, suture 34 may be bonded to fitting 40 using an adhesive, heat, fasteners, knots, or the like.


Fitting 40 is quite small in size, and is generally configured to facilitate withdrawing the fitting (and the attached suture) along with needle 38 axially through the vessel wall along the needle path. Needle 38 will generally have a cross-sectional width of between about 0.010 inches and 0.020 inches. Barb 42 will extend laterally so as to define an engagement surface 44 having a protruding length of between about 0.002 inches and 0.005 inches. Fitting 40 will preferably have a cross-sectional size roughly corresponding to or only slightly larger than needle 38. Fitting 40 will typically have an outer lateral width of between about 0.014 inches and 0.025 inches, and an axial length of between about 0.035 inches and 0.050 inches. Channel 46 will be sized to receive at least a portion of needle 38, and will generally have a width of between about 0.010 inches and 0.020 inches. Suture 34 will preferably extend axially opposite the open end of channel 46 so as to minimize drag when the suture is drawn proximally along the needle path. In the exemplary embodiment, needle 38 has a diameter of about 0.020 inches, while the fitting comprises a tube having an outer diameter of about 0.020 inches, an inner diameter of about 0.016 inches, and an overall length of about 0.047 inches. The fitting will typically comprise a resilient material, preferably comprising a metal, and in the exemplary embodiment, comprising stainless steel.


Needles 38 typically have a length of between about 5.0 inches and 6.0 inches, and will preferably be sufficiently stiff to be advanced in compression through the vessel wall (and adjacent tissues) for up to 0.5 inches when supported in cantilever. Nonetheless, the needles will ideally be flexible enough to be laterally deflected within shaft 12, as can be understood with reference to FIG. 5. Needles 38 generally comprise a high strength metal, ideally comprising stainless steel. Fittings 40 will also preferably comprise a flexible material to allow tab 48 to flex out of the way of barbed end 42, and to resiliently rebound and engage recessed surface 44. In the exemplary embodiment, barbed end 42 has a diameter of about 0.015 inches, with the diameter of the needle decreasing to about 0.008 inches proximally of the barb so as to define the recessed engagement surface.


As was generally described above, foot 24 includes needle receptacles 52 adjacent the ends of the foot. A fitting 40 (with an associated end of suture 34) is disposed within each needle receptacle, and a surface of the receptacle tapers proximally and outwardly so as to guide the advancing needles 38 into engagement with fittings 40 when foot 24 is in the deployed position. As fittings 40 (and associated portions of suture 34) are releasable supported in the foot, needles 38 can be withdrawn proximally so as to draw the fittings and suture ends from the foot proximally into (and optionally through) shaft 12. The needle receptacles of the exemplary embodiment taper outward at an angle between 20 and 35 degrees from the centerline of fitting 40, and the fitting is held in a recess having a diameter of about 0.0230 inches and a length of about 0.042 inches. A lateral opening or window through the side of foot to the fitting recess may be provided to facilitate needle and/or cuff positioning during assembly of the probe, and a protruding collar near the proximal end of the fitting recess may help keep the fitting in position.



FIG. 5 also illustrates the lateral deflection of needles 38 by needle guides 54 of shaft 12. This lateral deflection of the needles allows the use of a small diameter shaft, while still encompassing sufficient tissue within the suture loop on opposite sides of the puncture so as to effect hemostasis when the suture looped is tightened and secured. In the exemplary embodiment, shaft 12 comprises an outer casing of a biocompatible material such as stainless steel, carbon fiber, nylon, another suitable polymer, or the like. Needle guides 54 may be defined at least in part as lumens formed within the casing of a polymeric material such as nylon or the like. In some embodiments, shaft 12 may comprise a carbon fiber filled nylon, or carbon fiber filled with an alternative material.


One example of a suitable structure and articulation motion for foot 24 is illustrated in FIGS. 6A and B. Foot actuation wire 32 (see FIG. 3A) rides in a lumen of shaft 12, and draws foot 24 from a parked position (shown in FIG. 6A) to a deployed position (shown in FIG. 6B) through a combination of sliding and pivoting of the foot. The foot remains supported throughout its range of motion by arms disposed laterally on either side of the foot, the arms defining (at least in part) foot receptacle 30. Once foot 24 is deployed, needle receptacles 52 and/or the fittings disposed therein will preferably define a lateral suturing width 56 in a range from about 0.260 inches to about 0.300 inches. Foot 24 may be machined or cast from a polymer or metal, but will preferably comprise a polymer such as carbon fiber filled nylon. In some cases, foot 24 may be molded as two separate halves which can subsequently be affixed together. Needles 38 advance from the fixed needle guides 54, and are laterally directed into fittings 40 by receptacles 52, as illustrated in FIG. 6C. In general, a shape memory alloy such as Nitinol™ in its superelastic regime provides a particularly advantageous actuator wire for manipulating foot 24.


Referring now to FIG. 7, fittings 40 and suture 34 will be withdrawn proximally by the needles from needle receptacles 52. To releasably support fittings 40 and suture 34 and avoid entanglement of the suture in the needles, suture 34 is fittingly received within a slot 58 which extends laterally from needle receptacles 52. As the needles pull the fitting axially from needle receptacles 52, suture 34 is pulled from slot 58 and free from foot 24. Bending of the suture proximally within the suture slot can also locally increase the suture width, so that the interaction between the bent suture and the slot can help hold the fitting in the recess.


A wide variety of foot actuation mechanisms might be used within the scope of the present invention. A first alternative foot actuation arrangement is illustrated in FIGS. 8A-C. In this embodiment, a shaft 12i has pins 60 which ride in associated slots 62 of a foot 24i. Proximal motion of an actuation wire causes foot 24i to move axially and rotationally, with pins 60 sliding along slot 62, and the foot pivoting about the pins. In this embodiment, guidebody 22 extends directly from the foot, as illustrated in FIG. 8C.


A still further alternative foot actuation mechanism is illustrated in FIGS. 9A and B. In this embodiment, slidable foot 24ii is slidingly received within a receptacle 30 of shaft 12ii. Sliding of the foot 24ii from the parked position of FIG. 9A to the deployed position of FIG. 9B places the needle receptacles 52 in the paths of needles from the shaft 12ii without pivoting of the foot. Guidebody 22 (see FIG. 1) will extend here from a distal end of shaft 12ii at a fixed angle from the shaft. Optionally, insertion through the tissue tract may be facilitated by including an additional bend in the shaft axis adjacent the guidebody on many embodiments.


Yet another foot actuation mechanism can be understood with reference to FIGS. 9C and D. Shaft 12iii is formed in two parts, which slide axially relative to each other when foot actuation lever 26iii moves, using an offset crank arrangement. A similar offset crank supports foot 24iii, so that the sliding shaft parts cause the foot to pivot as shown.


A variety of features may be included in the articulatable foot, the needle receptacle, and/or the needle to avoid tangling of the needle in the suture as the needle is directed to the fitting. As illustrated in FIG. 10A, a moveable flap 64 may extend over slot 58 so that the advancing needle slides along the flap toward the fitting, rather than entering the slot and engaging the suture directly. Flap 64 may be affixed along one side of the slot, with the other side of the flap flexing into the receptacle to release the suture from slot 58 when the fitting and suture are withdrawn by the needle.


An alternative mechanism for avoiding entanglement of the needle with the suture is illustrated 10B. In this embodiment, needle receptacles 52i have tangential slots 58i which extends substantially tangentially to the surface of the receptacle. As a result of this tangential arrangement, a needle entering the receptacle 52i will be directed toward the fitting contained therein, but will generally not be able to enter and advance within the tangential slot 58i so as to become entangled with the suture. As illustrated in this embodiment, the slots may optionally extend laterally through the foot so that the loop of suture can be pulled from one side of the shaft without interference.


A still further alternative mechanism for avoiding entanglement between the suture and the needle is illustrated in FIGS. 10C and D. Two-part needle 38i includes an outer sheath 66 and an inner core 68. The parts of these needles initially advance together into the receptacles with the needle core 68 withdrawn so that the needle presents a smooth tapered tip (the combined tip preferably being larger in diameter than the slot containing the suture) as illustrated in FIG. 10C. Once two-part needle 38i is fully positioned within the needle receptacle, needle core 68 may extend axially to expose barbed tip 42 and recessed engagement surface 44 and to secure the needle to the fitting within the needle receptacle. In the exemplary embodiment of FIGS. 4 and 5, barbed tip 42 is formed integrally with the rest of the needle structure, but the tip has a larger cross-section than radial slot 58 containing the suture 34. As a result, the barbed tip is unable to enter the slot, thereby avoid entanglement between the needle and suture.


An alternative vessel closure probe 70 will be explained with reference to FIGS. 11A through 11E. This embodiment includes an articulatable foot 24 having a pair of needle receptacles 52, as described above. Although each needle receptacle 52 contains a fitting 40 for coupling a flexible filament to a tip of an associated needle, the filament in this case comprises a short length of suture 74 (or some temporary connecting filament, as shown schematically in phantom in FIG. 11A) spanning directly between the needle receptacles. Rather than pulling the two ends of an extended loop through the needle paths and proximally out the tissue tract for tying, closure system 70 advances a single end of the suture distally along one needle path, across the puncture, and then proximally along the other needle path. To provide this interaction, at least one needle includes means for attaching suture 34 to short suture 74, here in the form of a detachable coupling structure carried on the at least one needle. This structure facilitates the use of a pre-tied knot.


Referring now to FIGS. 11A and B, the distal end of probe 70 advances distally through skin S and into a tissue T of the patient while the probe is in the small profile configuration with foot 24 aligned along the axis of the probe. Here, however, an end 76 of suture 34 is affixed to a detachable needle tip 78 of a hollow needle 38′. Detachable tip 78 comprises a fitting having an opening receiving an end of suture similar to fitting 40, attached to a barbed needle end (similar to that of needle 38). Suture 34 may extend proximally within hollow needle 38 where the needle has an open channel along its length, may exit the hollow needle just proximally of detachable tip 78, or may be disposed alongside a solid needle. Needle 38 (opposite hollow needle 38′) has a fixed barbed tip, as described above, and a bight of suture 80 is releasably attached to the probe shaft encircling the opening of needle guide 54 of the fixed tip needle. The bight of suture may be releasably disposed within a slot of the probe, may be temporarily held in place by a weak adhesive or coating, or the like. A second end 82 of suture 34 extends proximally along the shaft of the probe, the second end of the suture optionally also being releasably held along the shaft.


Bight 80 will define a knot when first end suture passes therethrough, as can be understood with reference to FIGS. 11Ai and 11Aii. Bight 80 will often include more than one loop, and may be pre-arranged so as to define a square knot (using the layout schematically illustrated in FIG. 11Ai), a clinch knot (FIG. 11Aii), or a variety of known or new surgical knots.


Probe 70 advances along tissue tract TT to puncture P in blood vessel V. Once foot 24 is disposed within a blood vessel V, a pull wire moves the foot proximally and pivots the foot laterally so that the foot extends along an axis A of the vessel, as illustrated in FIG. 11B. The foot can then be pulled proximally against an inner surface of the vessel wall W to ensure that the needle receptacles 52 are properly positioned.


As can be understood with reference to FIGS. 11C and D, hollow needle 38′ and needle 38 advance to engage fittings 40 within receptacles 52. Hollow needle 38′ draws first end 76 of suture 34 distally through vessel wall W, and detachable tip 78 is secured into an associated fitting 40 using the barb and tab interaction described above. As short suture 74 extends between fittings 40, and as detachable tip 78 can pull free of hollow needle 38′ when the needles are withdrawn, this effectively couples needle 38 to first end 76 of suture 34. The detachable tip riding partially within the hollow needle (or vice versa) so that the assembly remains together under compression. Hence, needle 38 can pull the suture distally along the needle path formed by hollow needle 38′, across the puncture P, and proximally along the needle path formed by needle 38, as illustrated in FIG. 11D.



FIGS. 11D and E show that the knot can be completed by pulling needle 38, short suture 74, and second end 76 of suture 34 (together with the fittings 40 and detachable needle tip 78) proximally through bight 80. Second end 82 of suture 34 can be pulled to free bight 80, and the ends of the suture can be tightened and the probe removed to provide permanent hemostasis.


It will be recognized that removal of probe 70 can be facilitated by coupling first end 76 to bight 80 over an outer surface of the probe, and by arranging suture 34 and hollow needle 38′ so that the suture can pull free of the needle when detachable tip 78 is released, for example, by having the suture exit the needle proximally of the tip through a channel that extends to the tip so that the needle does not encircle the suture. By including such provisions, after foot 24 is returned to the narrow configuration, the probe can be pulled proximally from the tissue tract leaving the pre-tied knot in place.


Alternative arrangements (using the detachable needle ends of probe 70) are possible to provide the benefit of a pre-tied knot and the like for closure of a vessel puncture. For example, a probe having a pair of needles in which each needle included a detachable tip might be used to pull first end 76 through a bight, so that the bight need not encircle the needle path of one of the needles.


In some cases, particularly for closure of large punctures, it may be advantageous to provide multiple suture loops across the puncture, either in parallel, in an “X” pattern, or the like. As illustrated in FIGS. 12A and B, the present invention encompasses the use of more than two needles and associated receptacles, fittings, sutures, and the like. Multiple loop systems may have four, six, eight, or more needles, or may even have odd numbers of needles and fittings, particularly where one or more fittings have a plurality of suture ends extending therefrom. This allows a wide variety of stitching patterns to be provided by such multiple loop probes.


The method of use of the probes of FIGS. 1-7 can be understood with reference to FIGS. 13A-G. After accessing a blood vessel V (often using the Seldinger technique), a guidewire GW is left extending into skin S and down through tissue T along tissue tract TT. Guidewire GW enters vessel V through a puncture P in vessel wall W, and extends along the vessel throughout many endovascular procedures. As illustrated in FIG. 13A, distal guidebody 22 is advanced over the guidewire GW in a monorail fashion, so that the guidewire helps to direct the probe along the tissue tract TT and into the vessel through puncture P. FIG. 13B shows that when sensor 36 is disposed within the vessel, blood can flow from the sensor port and through a lumen in shaft 12 to the proximal handle to notify the operator that foot 24 has been advanced far enough for deployment.


Deployment of the foot is effected by actuation of the foot deployment handle, as described and illustrated above with reference to FIGS. 2 and 2B. As described above, guidebody 22 helps to align the probe with the axis of vessel V. Guidebody 22 may be set at an angle and/or offset relative to shaft 12 as appropriate to aid in alignment with a particular vessel access technique. As shown in FIG. 13C, the deployed foot 24 extends laterally from the shaft, so that foot 24 adjacent receptacles 52 can be drawn up against vessel wall W by gently pulling shaft 12. Hence, the foot helps to accurately position the needle guides 54 at a distance from the vessel wall.


Referring now to FIG. 13D, flexible needles 38 are deflected laterally by needle guides 54 toward receptacles 52 of the deployed foot. As a result, the needles advance in cantilever both distally and laterally when needle actuation handle 20 is pressed (see FIG. 2C), and the tapering surfaces of receptacles 52 help to push the needles back into alignment with the fittings so as to overcome any unintended deflection of the needles by tissue T or vessel wall W. This ensures that needles 38 securingly engage fittings 40 within receptacles 52, thereby coupling the ends of suture 34 to the needles. While suture 34 is here illustrated running along the side of shaft 12 outside foot receptacle 30 to a lumen within guidebody 22, it should be understood that the suture loop might instead extend proximally in a lumen of shaft 12, might be routed through the foot and/or foot receptacle, and/or might be stored in a spool adjacent foot 24. Regardless, suture 34 should able to pull free of the probe between its ends to form a continuous loop across puncture P.


Referring now to FIGS. 13E and F, fittings 40 and the ends of suture 34 are drawn proximally through the vessel wall W along the needle paths formed by needles 38. Optionally, the needles may be withdrawn proximally out of the tissue tract and clear of shaft 12, or they may remain coupled to the shaft within needle guides 54. The foot actuator is moved to store foot 24 along shaft 12, and the shaft can then be pulled proximally from the tissue tract. Guidebody 22, which may comprise a soft, compliant polymer, may temporarily extend at least partially into tissue tract TT and through puncture P to help reduce the loss of blood until the loop is secured.


Now referring to FIG. 13G, once shaft 12 has been withdrawn sufficiently to expose needle guides 54, the ends of the suture loop can be grasped by the operator. Tying of a knot in suture 34 can then proceed in a conventional manner. The use of a clinch knot may facilitate gradual tightening of the knot while removing guidebody 22, although a wide variety of knot and knot advancing techniques might be used.


While the exemplary embodiments have been described in some detail for clarity of understanding, a wide variety of modifications, adaptations, and changes will be obvious to those of skill in the art. For example, some of the benefits of the present invention might be provided by actuating a foot disposed outside the blood vessel within the tissue tract, and advancing needles from within the blood vessel proximally through the vessel wall toward the actuated foot. Hence, the scope of the present invention is limited solely by the appended claims.

Claims
  • 1. A system for suturing a blood vessel, the vessel having a vessel wall, the system comprising: a first needle having a proximal end and a distal end suitable for forming a first needle path through the vessel wall;a flexible filament;a first fitting attached to the filament, the first fitting securingly engaging the first needle when the first needle advances through the vessel wall so that the first fitting and at least a portion of the filament can be withdrawn proximally along the first needle path by the first needle;a shaft having a proximal handle and a distal end suitable for insertion into the vessel through the first needle path; anda foot mounted near the distal end of the shaft, the foot having a first needle receptacle and articulatable from a small profile configuration to a large profile configuration by actuation of the handle,wherein the first fitting is removably mounted adjacent the first needle receptacle, and wherein the first needle is advanceable from the shaft to the first needle receptacle on the articulated foot.
  • 2. The system of claim 1, wherein the filament comprises a first suture and couples the first fitting to a second fitting.
  • 3. The system of claim 2, further comprising a second needle receptacle disposed near the distal end of the shaft and a second needle advanceable from the shaft to the second needle receptacle to withdraw the second fitting proximally through the vessel wall and form a suture loop across the puncture.
  • 4. The system of claim 3, wherein the second fitting is coupled to the filament and disposed within the second needle receptacle.
  • 5. The system of claim 4, wherein the second needle is adapted to form a second needle path through the vessel wall and having a second suture releasably mounted thereon, wherein the second fitting couples the filament to the second suture so that the second suture can be withdrawn proximally along the first needle path through the vessel wall formed by the first needle to form a suture loop across the puncture.
  • 6. The system of claim 5, wherein the second fitting has an opening and at least one tab that extends into the opening, wherein the tab securely engages the engagement surface of the second needle when the second needle advances through the vessel wall and into the opening.
  • 7. The system of claim 1, wherein the first needle comprises a recessed engagement surface adjacent the distal end, and the first fitting comprises an opening and at least one tab extending into the opening, the tab securingly engaging the engagement surface when the first needle advances through the vessel wall and into the opening so that the first fitting and at least a portion of the filament can be withdrawn proximally along the first needle path by the first needle.
  • 8. The system of claim 1, wherein the first fitting includes at least one tab, the at least one tab resiliently deflects into an indentation adjacent the engagement surface when the first needle advances into the opening.
  • 9. The system of claim 1, wherein the first fitting comprises a tube having a proximal end and a distal end, the opening extending into the proximal end, the at least one tab formed of tube material by cutting slots through the tube, wherein the filament extends distally from the distal end of the tube.
  • 10. A system for suturing a blood vessel, the vessel having a vessel wall, the system comprising: a first needle having a proximal end and a distal end suitable for forming a first needle path through the vessel wall;a flexible filament;
  • 11. The system of claim 10, further comprising: a suture supported by the foot; anda needle advanceable from the shaft through the tissue and to the deployed foot.
  • 12. The system of claim 11, wherein the foot includes a first needle receptacle.
  • 13. The system of claim 10, wherein the first fitting includes at least one tab, the at least one tab resiliently deflects into an indentation adjacent the engagement surface when the first needle advances into the opening.
  • 14. The system of claim 10, wherein the first fitting comprises a tube having a proximal end and a distal end, the opening extending into the proximal end, the at least one tab formed of tube material by cutting slots through the tube, wherein the filament extends distally from the distal end of the tube.
  • 15. The system of claim 14, wherein the first fitting further comprises a collar disposed about the filament, the collar crimped over an end of the filament.
  • 16. A system for suturing a blood vessel, the vessel having a vessel wall, the system comprising: a first needle having a proximal end and a distal end suitable for forming a first needle path through the vessel wall;a flexible filament;
  • 17. The system of claim 16, wherein each receptacle surface tapers from a small cross-section adjacent the first fitting to a large cross-section oriented toward the advancing first needle.
  • 18. The system of claim 16, further comprising a slot disposed along the receptacle surface, wherein the filament is releasably disposed in the slot, the slot configured to avoid engagement of the first needle with the flexible filament.
Parent Case Info

The present application is a continuation application of U.S. patent application Ser. No. 10/729,541, filed Dec. 5, 2003 now U.S. Pat. No. 7,837,696, which is a continuation of, U.S. patent application Ser. No. 09/651,344, filed Aug. 29, 2000, now U.S. Pat. No. 7,001,400, which is a divisional application of U.S. patent application Ser. No. 09/262,402, filed on Mar. 4, 1999, now U.S. Pat. No. 6,136,010, all of which are incorporated herein by reference.

US Referenced Citations (516)
Number Name Date Kind
312408 Wackerhagen Feb 1885 A
597165 Hall Jan 1898 A
659422 Shidler Oct 1900 A
989231 Davis Apr 1911 A
1574362 Callahan Sep 1922 A
1625602 Gould et al. Apr 1927 A
1940351 Howard Mar 1933 A
2012776 Roeder Aug 1935 A
2131321 Hart Oct 1937 A
2127903 Bowen Aug 1938 A
2371978 Perham Mar 1945 A
2397823 Walter Apr 1946 A
RE22857 Ogburn Mar 1947 E
2595086 Larzelere Nov 1948 A
2588589 Tauber Mar 1952 A
2646045 Priestley Jul 1953 A
2692599 Creelman Oct 1954 A
2941489 Fischbein Jun 1960 A
2959172 Held Nov 1960 A
3033156 Verlish May 1962 A
3104666 Hale et al. Sep 1963 A
3197102 Bates et al. Jul 1965 A
3359983 Northey Dec 1967 A
3413397 Bierbaum et al. Nov 1968 A
3422181 Chirgwin, Jr. Jan 1969 A
3470875 Johnson Oct 1969 A
3485234 Stevens Dec 1969 A
3587115 Shiley Jun 1971 A
3630205 Listner Dec 1971 A
3653388 Tenckhoff Apr 1972 A
3665926 Flores May 1972 A
3776237 Hill et al. Dec 1973 A
3802438 Wolvek Apr 1974 A
3820544 Semm Jun 1974 A
3840017 Violante Oct 1974 A
3874388 King et al. Apr 1975 A
3878848 Hiebert Apr 1975 A
3918455 Coplan Nov 1975 A
3926194 Greenberg et al. Dec 1975 A
3939820 Grayzel Feb 1976 A
3985138 Jarvik Oct 1976 A
4018228 Goosen Apr 1977 A
4069825 Akiyama Jan 1978 A
4109658 Hughes Aug 1978 A
4128100 Wendorff Dec 1978 A
4135623 Thyen Jan 1979 A
4161951 Scanlan, Jr. Jul 1979 A
4168073 LaRue Sep 1979 A
4182339 Hardy, Jr. Jan 1980 A
4185636 Gabbay et al. Jan 1980 A
4216776 Downie et al. Aug 1980 A
4217665 Bex et al. Aug 1980 A
4235177 Arbuckle Nov 1980 A
4235238 Ogiu et al. Nov 1980 A
4316469 Kapitanov Feb 1982 A
4317445 Robinson Mar 1982 A
4411654 Boarini et al. Oct 1983 A
4412832 Kling et al. Nov 1983 A
4437465 Nomoto et al. Mar 1984 A
4469101 Coleman et al. Sep 1984 A
4492229 Grunwald Jan 1985 A
4493323 Albright et al. Jan 1985 A
4553543 Amarasinghe Nov 1985 A
4586614 Ger May 1986 A
4587969 Gillis May 1986 A
4596559 Fleischhacker Jun 1986 A
4610248 Rosenberg Sep 1986 A
4629450 Suzuki et al. Dec 1986 A
4651733 Mobin-Uddin Mar 1987 A
4655211 Sakamoto et al. Apr 1987 A
4702250 Ovil et al. Oct 1987 A
4723549 Wholey et al. Feb 1988 A
4738666 Fuqua Apr 1988 A
4744364 Kensey May 1988 A
4748982 Horzewski et al. Jun 1988 A
4782954 Reynolds Nov 1988 A
4803984 Narayanan et al. Feb 1989 A
4836205 Barrett Jun 1989 A
4845851 Warthen Jul 1989 A
4848341 Ahmad Jul 1989 A
4852568 Kensey Aug 1989 A
4890612 Kensey Jan 1990 A
4898155 Ovil et al. Feb 1990 A
4911164 Roth Mar 1990 A
4917089 Sideris Apr 1990 A
4926860 Stice et al. May 1990 A
4929246 Sinofsky May 1990 A
4935027 Yoon Jun 1990 A
4950285 Wilk Aug 1990 A
4957498 Caspari et al. Sep 1990 A
4966600 Songer et al. Oct 1990 A
4981149 Yoon et al. Jan 1991 A
4983168 Moorehead Jan 1991 A
4984581 Stice Jan 1991 A
5002563 Pyka et al. Mar 1991 A
5009643 Reich et al. Apr 1991 A
5021059 Kensey et al. Jun 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5047039 Avant et al. Sep 1991 A
5059201 Asnis Oct 1991 A
5061274 Kensey Oct 1991 A
5074874 Yoon et al. Dec 1991 A
5078721 McKeating Jan 1992 A
5080664 Jain Jan 1992 A
5100419 Ehlers Mar 1992 A
5100422 Berguer et al. Mar 1992 A
5100432 Matsutani Mar 1992 A
5108421 Fowler Apr 1992 A
5109780 Slouf et al. May 1992 A
5129882 Weldon et al. Jul 1992 A
5129912 Noda et al. Jul 1992 A
5129913 Ruppert Jul 1992 A
5144961 Chen et al. Sep 1992 A
5147373 Ferzli Sep 1992 A
5156788 Chesterfield et al. Oct 1992 A
5160339 Chen et al. Nov 1992 A
5163946 Li Nov 1992 A
5169041 Tan Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5176691 Pierce Jan 1993 A
5178629 Kammerer Jan 1993 A
5192294 Blake, III Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5192302 Kensey et al. Mar 1993 A
5201744 Jones Apr 1993 A
5207703 Jain May 1993 A
5211650 Noda May 1993 A
5217470 Weston Jun 1993 A
5217485 Liv et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222974 Kensey et al. Jun 1993 A
5234443 Phan et al. Aug 1993 A
5234445 Walker et al. Aug 1993 A
5237985 Hodgson et al. Aug 1993 A
5242427 Bilweis Sep 1993 A
5250033 Evans et al. Oct 1993 A
5250053 Snyder Oct 1993 A
5250054 Li Oct 1993 A
5254105 Haaga Oct 1993 A
5254113 Wilk Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5258003 Ciaglia et al. Nov 1993 A
5259846 Granger et al. Nov 1993 A
5275616 Fowler Jan 1994 A
5279311 Snyder Jan 1994 A
5281236 Bagnato et al. Jan 1994 A
5281237 Gimpelson Jan 1994 A
5284485 Kammerer et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290284 Adair Mar 1994 A
5290297 Phillips Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292309 Van Tassel et al. Mar 1994 A
5292327 Dodd et al. Mar 1994 A
5292332 Lee Mar 1994 A
5293881 Green et al. Mar 1994 A
5295993 Green Mar 1994 A
5300085 Yock Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5304185 Taylor Apr 1994 A
5306254 Nash et al. Apr 1994 A
5312024 Grant et al. May 1994 A
5312423 Rosenbluth et al. May 1994 A
5318578 Hasson Jun 1994 A
5320629 Noda et al. Jun 1994 A
5320632 Heidmueller Jun 1994 A
5330445 Haaga Jul 1994 A
5330491 Walker et al. Jul 1994 A
5334217 Das Aug 1994 A
5336229 Noda Aug 1994 A
5336230 Leichtling et al. Aug 1994 A
5336231 Adair Aug 1994 A
5342369 Harryman, II Aug 1994 A
5353974 Brinkerhoff et al. Oct 1994 A
5354312 Brinkerhoff et al. Oct 1994 A
5364407 Poll Nov 1994 A
5364408 Gordon Nov 1994 A
5368595 Lewis Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5374275 Bradley et al. Dec 1994 A
5374278 Chesterfield et al. Dec 1994 A
5376096 Foster Dec 1994 A
5383896 Gershony et al. Jan 1995 A
5383905 Golds et al. Jan 1995 A
5385569 Swor Jan 1995 A
5387221 Bisgaard Feb 1995 A
5387227 Grice Feb 1995 A
5391176 de la Torre Feb 1995 A
5391182 Chin Feb 1995 A
5395332 Ressemann et al. Mar 1995 A
5395349 Quiachon et al. Mar 1995 A
5397310 Chu et al. Mar 1995 A
5397325 Della Badia et al. Mar 1995 A
5397326 Mangum Mar 1995 A
5403329 Hinchcliffe Apr 1995 A
5403331 Chesterfield et al. Apr 1995 A
5403338 Milo Apr 1995 A
5405352 Weston Apr 1995 A
5411481 Allen et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5417684 Jackson et al. May 1995 A
5417699 Klein et al. May 1995 A
5419765 Weldon et al. May 1995 A
5425705 Evard et al. Jun 1995 A
5425737 Burbank et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5433700 Peters Jul 1995 A
5452733 Sterman et al. Sep 1995 A
5454822 Schob et al. Oct 1995 A
5454834 Boebel et al. Oct 1995 A
5458574 Machold et al. Oct 1995 A
5462560 Stevens Oct 1995 A
5462561 Voda Oct 1995 A
5464426 Bonutti Nov 1995 A
5466241 Leroy et al. Nov 1995 A
5470338 Whitfield et al. Nov 1995 A
5474568 Scott Dec 1995 A
5476469 Hathaway et al. Dec 1995 A
5476470 Fitzgibbons, Jr. Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5480407 Wan et al. Jan 1996 A
5486190 Green Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5496332 Sierra et al. Mar 1996 A
5507744 Tay et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5507757 Sauer et al. Apr 1996 A
5507758 Thomason et al. Apr 1996 A
5509902 Raulerson Apr 1996 A
5520655 Davila et al. May 1996 A
5520665 Fleetwood May 1996 A
5520691 Branch May 1996 A
5520702 Sauer et al. May 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
D372310 Hartnett Jul 1996 S
5531700 Moore et al. Jul 1996 A
5536273 Lehrer Jul 1996 A
5540701 Sharkey et al. Jul 1996 A
5540703 Barker, Jr. et al. Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5545171 Sharkey et al. Aug 1996 A
5545178 Kensey et al. Aug 1996 A
5545180 Le et al. Aug 1996 A
5549618 Fleenor et al. Aug 1996 A
5549631 Bonutti Aug 1996 A
5554162 DeLange Sep 1996 A
5562684 Kammerer Oct 1996 A
5562686 Sauer et al. Oct 1996 A
5562688 Riza Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5567435 Hubbell et al. Oct 1996 A
5569269 Hart et al. Oct 1996 A
5569271 Hoel Oct 1996 A
5571120 Yoon Nov 1996 A
5573540 Yoon Nov 1996 A
5584842 Fogarty et al. Dec 1996 A
5591177 Lehrer Jan 1997 A
5591179 Edelstein Jan 1997 A
5591206 Moufarrege Jan 1997 A
5593421 Bauer Jan 1997 A
5601572 Middleman et al. Feb 1997 A
5603718 Xu Feb 1997 A
5607435 Sachdeva et al. Mar 1997 A
5609597 Lehrer Mar 1997 A
5611794 Sauer et al. Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5613975 Christy Mar 1997 A
5624446 Harryman, II Apr 1997 A
5626588 Sauer et al. May 1997 A
5643289 Sauer et al. Jul 1997 A
5643295 Yoon Jul 1997 A
5643318 Tsukernik et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5662664 Gordon et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5676689 Kensey et al. Oct 1997 A
5700273 Buelna et al. Dec 1997 A
5707379 Fleenor et al. Jan 1998 A
5713910 Gordon et al. Feb 1998 A
5716369 Riza Feb 1998 A
5720574 Barella Feb 1998 A
5720757 Hathaway et al. Feb 1998 A
5722981 Stevens Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5728109 Schulze et al. Mar 1998 A
5728114 Evans et al. Mar 1998 A
5728133 Kontos Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5741276 Poloyko et al. Apr 1998 A
5741280 Fleenor Apr 1998 A
5746755 Wood et al. May 1998 A
5749890 Shaknovich May 1998 A
5755727 Kontos May 1998 A
5759188 Yoon Jun 1998 A
5766183 Sauer Jun 1998 A
5766186 Faraz et al. Jun 1998 A
5766217 Christy Jun 1998 A
5769862 Kammerer et al. Jun 1998 A
5779719 Klein et al. Jul 1998 A
5782860 Epstein et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5792151 Heck et al. Aug 1998 A
5792152 Klein et al. Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797929 Andreas et al. Aug 1998 A
5799661 Boyd et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810850 Hathaway et al. Sep 1998 A
5814069 Schulze et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5820631 Nobles Oct 1998 A
5824010 McDonald Oct 1998 A
5824111 Schall et al. Oct 1998 A
5830125 Scribner et al. Nov 1998 A
5836955 Buelna et al. Nov 1998 A
5836956 Buelna et al. Nov 1998 A
5846253 Buelna et al. Dec 1998 A
5848714 Robson et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860963 Azam et al. Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5871490 Schulze et al. Feb 1999 A
5871502 Suryadevara Feb 1999 A
5873876 Christy Feb 1999 A
5876411 Kontos Mar 1999 A
5897487 Ouchi Apr 1999 A
5897564 Schulze et al. Apr 1999 A
5902311 Andreas et al. May 1999 A
5904597 Doi et al. May 1999 A
5904690 Middleman et al. May 1999 A
5904697 Gifford, III et al. May 1999 A
5906631 Imran May 1999 A
5919207 Taheri Jul 1999 A
5921994 Andreas et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5951590 Goldfarb Sep 1999 A
5954732 Hart et al. Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5957938 Zhu et al. Sep 1999 A
5964773 Greenstein Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5976161 Kirsch et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5997555 Kontos Dec 1999 A
6001109 Kontos Dec 1999 A
6022372 Kontos Feb 2000 A
6024747 Kontos Feb 2000 A
6036699 Andreas et al. Mar 2000 A
6042601 Smith Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6048354 Lawrence Apr 2000 A
6048357 Kontos Apr 2000 A
6068603 Suzuki May 2000 A
6077276 Kontos Jun 2000 A
6077279 Kontos Jun 2000 A
6117144 Nobles et al. Sep 2000 A
6117145 Wood et al. Sep 2000 A
6126675 Shchervinsky et al. Oct 2000 A
6132439 Kontos Oct 2000 A
6132440 Hathaway et al. Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6139556 Kontos Oct 2000 A
6152936 Christy et al. Nov 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6190396 Whitin et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6206895 Levinson Mar 2001 B1
6245079 Nobles et al. Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6296657 Brucker Oct 2001 B1
6348059 Hathaway et al. Feb 2002 B1
6355050 Andreas et al. Mar 2002 B1
6358258 Arcia et al. Mar 2002 B1
6395015 Borst et al. May 2002 B1
6428472 Haas Aug 2002 B1
6428549 Kontos Aug 2002 B1
6436109 Kontos Aug 2002 B1
6443963 Baldwin et al. Sep 2002 B1
6451031 Kontos Sep 2002 B1
6511489 Field et al. Jan 2003 B2
6517553 Klein et al. Feb 2003 B2
6533812 Swanson et al. Mar 2003 B2
6551330 Bain et al. Apr 2003 B1
6558399 Isbell et al. May 2003 B1
6562052 Nobles et al. May 2003 B2
6569185 Ungs May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6610072 Christy et al. Aug 2003 B1
6623509 Ginn Sep 2003 B2
6623510 Carly et al. Sep 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6641592 Sauer et al. Nov 2003 B1
6663655 Ginn et al. Dec 2003 B2
6676685 Pedros et al. Jan 2004 B2
6695867 Ginn et al. Feb 2004 B2
6716228 Tal Apr 2004 B2
6743195 Zucker Jun 2004 B2
6743259 Ginn Jun 2004 B2
6749621 Pantages et al. Jun 2004 B2
6749622 McGuckin, Jr. et al. Jun 2004 B2
6837906 Ginn Jan 2005 B2
6846319 Ginn et al. Jan 2005 B2
6890343 Ginn et al. May 2005 B2
6896692 Ginn et al. May 2005 B2
6911034 Nobles et al. Jun 2005 B2
6939357 Navarro et al. Sep 2005 B2
6964668 Modesitt et al. Nov 2005 B2
6969397 Ginn Nov 2005 B2
7001400 Modesitt et al. Feb 2006 B1
7029480 Klein et al. Apr 2006 B2
7029481 Burdulis, Jr. et al. Apr 2006 B1
7048747 Arcia et al. May 2006 B2
7063710 Takamoto et al. Jun 2006 B2
7083635 Ginn Aug 2006 B2
7108710 Anderson Sep 2006 B2
7112225 Ginn Sep 2006 B2
7160309 Voss Jan 2007 B2
7179266 Kontos Feb 2007 B2
7229458 Boecker et al. Jun 2007 B2
7235087 Modesitt et al. Jun 2007 B2
7316704 Bagaoisan et al. Jan 2008 B2
7326230 Ravikumar Feb 2008 B2
7331979 Khosravi et al. Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
7361183 Ginn Apr 2008 B2
7361185 O'Malley et al. Apr 2008 B2
7377927 Burdulis, Jr. et al. May 2008 B2
7390328 Modesitt Jun 2008 B2
7393363 Ginn Jul 2008 B2
7442198 Gellman et al. Oct 2008 B2
7445626 Songer et al. Nov 2008 B2
7449024 Stafford Nov 2008 B2
7462188 McIntosh Dec 2008 B2
7753923 St. Goar et al. Jul 2010 B2
7837696 Modesitt et al. Nov 2010 B2
7842047 Modesitt et al. Nov 2010 B2
7842048 Ma Nov 2010 B2
7842049 Voss Nov 2010 B2
7846170 Modesitt et al. Dec 2010 B2
7850701 Modesitt et al. Dec 2010 B2
8211122 McIntosh Jul 2012 B2
20010046518 Sawhney Nov 2001 A1
20020045908 Nobles et al. Apr 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020099389 Michler et al. Jul 2002 A1
20020106409 Sawhney et al. Aug 2002 A1
20020177876 Roby et al. Nov 2002 A1
20030093093 Modesitt et al. May 2003 A1
20030195529 Takamoto et al. Oct 2003 A1
20040009205 Sawhney Jan 2004 A1
20040092964 Modesitt et al. May 2004 A1
20040093027 Fabisiak et al. May 2004 A1
20040097978 Modesitt et al. May 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040143290 Brightbill Jul 2004 A1
20040158127 Okada Aug 2004 A1
20040158287 Cragg et al. Aug 2004 A1
20040167511 Buehlmann et al. Aug 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186487 Klein et al. Sep 2004 A1
20040191277 Sawhney et al. Sep 2004 A1
20040215232 Belhe et al. Oct 2004 A1
20040225301 Roop et al. Nov 2004 A1
20040267193 Bagaoisan et al. Dec 2004 A1
20040267308 Bagaoisan et al. Dec 2004 A1
20050059982 Zung et al. Mar 2005 A1
20050070923 McIntosh Mar 2005 A1
20050075665 Brenzel et al. Apr 2005 A1
20050085851 Fiehler et al. Apr 2005 A1
20050085854 Ginn Apr 2005 A1
20050085855 Forsberg Apr 2005 A1
20050121042 Belhe et al. Jun 2005 A1
20050149117 Khosravi et al. Jul 2005 A1
20050177189 Ginn et al. Aug 2005 A1
20050222614 Ginn et al. Oct 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050267528 Ginn et al. Dec 2005 A1
20050273137 Ginn Dec 2005 A1
20060034930 Khosravi et al. Feb 2006 A1
20060047313 Khanna et al. Mar 2006 A1
20060079914 Modesitt et al. Apr 2006 A1
20060100664 Pai et al. May 2006 A1
20060167477 Arcia et al. Jul 2006 A1
20060173469 Klein et al. Aug 2006 A1
20060253037 Ginn et al. Nov 2006 A1
20060253072 Pai et al. Nov 2006 A1
20070032798 Pantages et al. Feb 2007 A1
20070032799 Pantages et al. Feb 2007 A1
20070032801 Pantages et al. Feb 2007 A1
20070060950 Khosravi et al. Mar 2007 A1
20070123817 Khosravi et al. May 2007 A1
20070276410 McIntosh Nov 2007 A1
20070282354 McIntosh Dec 2007 A1
20080009794 Bagaoisan et al. Jan 2008 A1
20080065151 Ginn Mar 2008 A1
20080065152 Carley Mar 2008 A1
20080287967 Andreas et al. Nov 2008 A1
20080319458 Reynolds Dec 2008 A1
20090005793 Pantages et al. Jan 2009 A1
20090036906 Stafford Feb 2009 A1
20090048615 McIntosh Feb 2009 A1
20090088779 Zung et al. Apr 2009 A1
20090157105 Zung et al. Jun 2009 A1
20120053600 Fortson Mar 2012 A1
20120150201 Pantages et al. Jun 2012 A1
Foreign Referenced Citations (81)
Number Date Country
912619 May 1954 DE
4210724 Jul 1993 DE
9217932 Jul 1993 DE
4220283 Dec 1993 DE
10211360 Oct 2003 DE
0 140 557 May 1985 EP
0 207 545 Jan 1987 EP
0 474 887 Mar 1992 EP
0 478 358 Apr 1992 EP
0 478 887 Apr 1992 EP
0 542 126 May 1993 EP
0 568 098 Nov 1993 EP
0 589 409 Mar 1994 EP
0 624 343 Nov 1994 EP
0 669 101 Aug 1995 EP
0 669 102 Aug 1995 EP
0 669 103 Aug 1995 EP
0 684 012 Nov 1995 EP
0 812 571 Dec 1997 EP
0 941 698 Sep 1999 EP
1059544 Mar 1954 FR
2768324 Mar 1999 FR
51143386 Nov 1976 JP
5220794 Feb 1977 JP
2119866 May 1990 JP
542161 Feb 1993 JP
820810 Apr 1981 SU
993922 Feb 1983 SU
1093329 May 1984 SU
1174036 Aug 1985 SU
1544383 Feb 1990 SU
1648400 May 1991 SU
WO 8503858 Sep 1985 WO
WO 0135833 Feb 1994 WO
WO 9405213 Mar 1994 WO
WO 9413211 Jun 1994 WO
WO 9427503 Dec 1994 WO
WO 9428801 Dec 1994 WO
WO 9505121 Feb 1995 WO
WO 9513021 May 1995 WO
WO 9525468 Sep 1995 WO
WO 9535065 Dec 1995 WO
WO 9609006 Mar 1996 WO
WO 9700046 Jan 1997 WO
WO 9703613 Feb 1997 WO
WO 9707745 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9713461 Apr 1997 WO
WO 9717901 May 1997 WO
WO 9720505 Jun 1997 WO
WO 9727897 Aug 1997 WO
WO 9804195 Feb 1998 WO
WO 9842262 Oct 1998 WO
WO 9947049 Sep 1999 WO
WO 0012013 Mar 2000 WO
WO 0051498 Sep 2000 WO
WO 0069342 Nov 2000 WO
WO 0119259 Mar 2001 WO
WO 0236021 May 2002 WO
WO 02062234 Aug 2002 WO
WO 03003925 Jan 2003 WO
WO 03094748 Nov 2003 WO
WO 03099134 Dec 2003 WO
WO 2005000126 Jan 2005 WO
WO 2005023119 Mar 2005 WO
WO 2005025430 Mar 2005 WO
WO 2005030060 Apr 2005 WO
WO 2005041782 May 2005 WO
WO 2005063129 Jul 2005 WO
WO 2005065549 Jul 2005 WO
WO 2005092204 Oct 2005 WO
WO 2005112782 Dec 2005 WO
WO 2006026116 Mar 2006 WO
WO 2006052611 May 2006 WO
WO 2006052612 May 2006 WO
WO 2006078578 Jul 2006 WO
WO 2006115901 Nov 2006 WO
WO 2006115904 Nov 2006 WO
WO 2006118877 Nov 2006 WO
WO 2007019016 Feb 2007 WO
WO 2007081836 Jul 2007 WO
Related Publications (1)
Number Date Country
20110066184 A1 Mar 2011 US
Divisions (1)
Number Date Country
Parent 09262402 Mar 1999 US
Child 09651344 US
Continuations (2)
Number Date Country
Parent 10729541 Dec 2003 US
Child 12950338 US
Parent 09651344 Aug 2000 US
Child 10729541 US