Articulating suturing device and method

Abstract
Devices, systems, and methods for suturing of body lumens allow the suturing of vascular puncture sites located at the distal end of a percutaneous tissue tract. An elongated articulated foot near a distal end of a shaft is inserted through the penetration and actuated so that the foot extends along the lumenal axis. The foot carries suturing attachment cuffs, and needles are advanced from the shaft through the vessel wall outside of the penetration and into engagement with the needle cuffs after the foot has been drawn proximally up against the endothelial surface of the blood vessel. The cross-section of the shaft within the tissue tract can be minimized by laterally deflecting the needles as they leave the shaft, while tapered depressions within the foot can guide the advancing needles into engagement with the cuffs. The cuffs lockingly engage the needles and can be withdrawn proximally along the needle paths and through the tissue tract so as to form a loop of suture across the puncture. The articulating foot may be realigned with the shaft and withdrawn proximally through the tissue tract without dilating the tissue tract.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to apparatus and methods for the suturing of body lumens. More particularly, the present invention relates to techniques for percutaneous closure of arterial and venous puncture sites, which are usually accessed through a tissue tract.


A number of diagnostic and interventional vascular procedures are now performed translumenally. A catheter is introduced to the vascular system at a convenient access location and guided through the vascular system to a target location using established techniques. Such procedures require vascular access, which is usually established during the well-known Seldinger technique, as described, for example, in William Grossman's “Cardiac Catheterization and Angioplasty,” 3rd Ed., Lea and Febiger, Philadelphia, 1986, incorporated herein by reference. Vascular access is generally provided through an introducer sheath, which is positioned to extend from outside the patient body into the vascular lumen.


When vascular access is no longer required, the introducer sheath is removed and bleeding at the puncture site stopped. One common approach for providing hemostasis (the cessation of bleeding) is to apply external force near and upstream from the puncture site, typically by manual or “digital” compression. This approach suffers from a number of disadvantages. It is time consuming, frequently requiring one-half hour or more of compression before hemostasis is assured. Additionally, such compression techniques rely on clot formation, which can be delayed until anticoagulants used in vascular therapy procedures (such as for heart attacks, stent deployment, non-optical PTCA results, and the like) wear off. This can take two to four hours, thereby increasing the time required before completion of the compression technique. The compression procedure is further uncomfortable for the patient and frequently requires analgesics to be tolerable. Moreover, the application of excessive pressure can at times totally occlude the underlying blood vessel, resulting in ischemia and/or thrombosis. Following manual compression, the patient typically remains recumbent from four to as much as twelve hours or more under close observation so as to assure continued hemostasis. During this time renewed bleeding may occur, resulting in blood loss through the tract, hematoma and/or pseudoaneurysm formation, as well as arteriovenous fistula formation. These complications may require blood transfusion and/or surgical intervention.


The incidence of complications from compression-induced hemostasis increases when the size of the introducer sheath grows larger, and/or when the patient is anticoagulated. It is clear that the compression technique for arterial closure can be risky, and is expensive and onerous to the patient. Although the risk of complications can be reduced by using highly trained individuals, dedicating such personnel to this task is both expensive and inefficient. Nonetheless, as the number and efficacy of translumenally performed diagnostic and interventional vascular procedures increases, the number of patients requiring effective hemostasis for a vascular puncture continues to increase.


To overcome the problems associated with manual compression, the use of bioabsorbable fasteners or sealing bodies to stop bleeding has previously been proposed. Generally, these approaches rely on the placement of a thrombogenic and bioabsorbable material, such as collagen, at the superficial arterial wall over the puncture site. While potentially effective, this approach suffers from a number of problems. It can be difficult to properly locate the interface of the overlying tissue and the adventitial surface of the blood vessel. Locating the fastener too far from that interface can result in failure to provide hemostasis, and subsequent hematoma and/or pseudo-aneurysm formation. Conversely, if the sealing body intrudes into the arterial lumen, intravascular clots and/or collagen pieces with thrombus attached can form and embolize downstream, causing vascular occlusion. Also, thrombus formation on the surface of a sealing body protruding into the lumen can cause a stenosis, which can obstruct normal blood flow. Other possible complications include infection, as well as adverse reaction to the collagen or other implant.


A more effective approach for vascular closure has been proposed in U.S. Pat. Nos. 5,417,699, 5,613,974; and PCT published Patent Application No. PCT/US96/10271 filed on Jun. 12, 1996, the full disclosures of which are incorporated herein by reference. A suture-applying device is introduced through the tissue tract with a distal end of the device extending through the vascular puncture. One or more needles in the device are then used to draw suture through the blood vessel wall on opposite sides of the puncture, and the suture is secured directly over the adventitial surface of the blood vessel wall to provide highly reliable closure.


While a significant improvement over the use of manual pressure, clamps, and collagen plugs, certain design criteria have been found to be important to successful suturing to achieve vascular closure. For example, it is highly beneficial to properly direct the needles through the blood vessel wall at a significant distance from the puncture so that the suture is well anchored in the tissue and can provide tight closure. It is also highly beneficial to insure that the needle deployment takes place when the device is properly positioned relative to the vessel wall. The ease of deployment and efficacy of the procedure can further be enhanced by reducing the cross-section of that portion of the device, which is inserted into the tissue tract and/or the vessel itself, which may also allow closure of the vessel in a relatively short amount of time without imposing excessive injury to the tissue tract or vessel.


For the above reasons, it would be desirable to provide improved devices, systems, and methods for suturing vascular punctures. The new device should have the capability of delivering a pre-tied knot to an incision site. It would be particularly beneficial if these improved devices provided some or all of the benefits while overcoming one or more of the disadvantages discussed above.


2. Description of the Background Art


U.S. Pat. Nos. 5,700,273, 5,836,956, and 5,846,253 describe a wound closure apparatus and method in which needles are threaded with suture inside a blood vessel. U.S. Pat. No. 5,496,332 describes a wound closure apparatus and method for its use, while U.S. Pat. No. 5,364,408 describes an endoscopic suture system.


U.S. Pat. No. 5,374,275 describes a surgical suturing device and method of use, while U.S. Pat. No. 5,417,699 describes a device and method for the percutaneous suturing of a vascular puncture site. An instrument for closing trocar puncture wounds is described in U.S. Pat. No. 5,470,338, and a related device is described in U.S. Pat. No. 5,527,321. U.S. Pat. No. 5,507,757 also describes a method of closing puncture wounds.


SUMMARY OF THE INVENTION

The present invention provides improved devices, systems, and methods for suturing of body lumens. The device often allows the suturing of vascular puncture sites located at the distal end of a percutaneous tissue tract with greater ease, in less time, and with less patient trauma than known systems. These improvements are generally provided through the use of shafts having smaller cross-sections than prior suturing systems. In the exemplary embodiment, an elongate articulated foot near a distal end of a shaft is inserted through the penetration and actuated so that the foot extends along the lumenal axis. The foot carries suture attachment cuffs, and can be drawn proximally up against the endothelial surface of the blood vessel. Needles are advanced from the shaft, through the vessel wall beyond the penetration, and into engagement with the needle cuffs. The cross-section of the shaft within the tissue tract can be minimized by laterally deflecting the needles before they leave the shaft, while tapered depressions within the foot can help guide the advancing needles into engagement with the cuffs. The cuffs lockingly engage the needles so that the cuffs can be withdrawn proximally along the needle paths through the tissue tract so as to form a loop of suture across the puncture without having to thread the needles directly with the suture inside the blood vessel. The suture loop may be drawn distally from the shaft, proximally from within the blood vessel, or laterally down one of the needle paths, across the puncture, and out the opposing path. Regardless, the articulating foot may be realigned with the shaft and withdrawn proximally through the tissue tract in a small profile configuration. The use of an articulatable foot in combination with lateral deflection of the needles can avoid dilation of the tissue tract, as was often necessary using known puncture closure systems.


In a first aspect, the invention provides a method for suturing a puncture through a vessel wall of a blood vessel. The puncture is disposed within a tissue tract of a patient body, and the method comprises attaching a flexible filament to a first fitting. The first fitting is inserted through the tissue tract and positioned adjacent the vessel wall, and a needle path is formed by advancing a first needle through the vessel wall. The needle is coupled with the first fitting, and the first needle, the first fitting, and at least a portion of the filament are withdrawn through the vessel wall along the needle path.


First and second fittings will often be coupled to the flexible filament, and will generally be positioned so that the puncture is disposed therebetween. The flexible filament will often comprise a suture extending between the first and second fittings, with each fitting being drawn proximally by an associated needle so as to form the suture loop. Alternatively, at least one of the needles may include a detachable tip and may advance a suture distally along the needle path as the needle penetrates through the vessel wall. The flexible filament can again couple the first and second fittings, here allowing both fittings to be withdrawn along a single needle path so that the suture advances down along the first needle path, laterally across the puncture, and then out the other needle-path.


Positioning of the fittings is generally effected by articulating an elongate foot within the blood vessel so that the foot extends along the vessel axis. A confirmation lumen may extend along a shaft supporting the foot to ensure that the foot is positioned within the vessel prior to articulation. Once the foot is properly articulated, it can be withdrawn to firmly engage the endothelial layer of the vessel. The foot will preferably include tapering depressions, which direct the advancing needle toward the fitting, and the suture or other flexible filament adjacent the fittings will often be releasably restrained within a narrow slot extending from the depression. The suture or other flexible filament and its associated slot will preferably be arranged to avoid entanglement of the advancing needle in the suture, and to ensure that the fitting and suture can be withdrawn proximally as the needle is retracted. An atraumatic, flexible monorail guidebody may extend from the shaft and/or the articulatable foot to facilitate alignment of the foot with the vessel, and also to help provide hemostasis while the knot is tied. A wide variety of foot articulation mechanisms may be provided, with deployment preferably being effected when the foot is disposed entirely within the vessel and using an actuator and foot motion that avoid dilation of the puncture.


In another aspect, the invention provides a method for suturing an opening in a tissue. The method comprises inserting a distal end of a probe through the opening, the probe defusing a probe axis. An elongated foot of the probe is articulated so that first and second ends of the foot extend laterally with the opening aligned therebetween. A first needle path is formed from the probe, through the tissue, and to the first end of the foot. A second needle path is formed from the probe, through the tissue, and to the second end of the foot. Suture is advanced along the first and second needle paths to position a suture loop across the opening.


In another aspect, the invention provides a method for suturing a blood vessel. The vessel has a vessel wall, and the method comprises advancing a shaft toward the vessel wall. The shaft has an axis and a plurality of needle guides. A foot is deployed adjacent the vessel wall so that the foot extends laterally from the shaft. A plurality of needles is advanced from the needle guides of the shaft to the foot to form needle paths through the vessel wall. The needle guides deflect the needles laterally so that a needle path width between the needles is greater than a cross-sectional dimension of the shaft. Suture is advanced along the needle paths to position at least one suture loop across the puncture.


In yet another method of the present invention, a blood vessel is sutured through a tissue tract of a patient body. The vessel has a vessel wall, and the method comprises inserting a distal end of a probe through the puncture and into the blood vessel. A first end of the suture is advanced from the probe within the tissue tract, through the vessel wall, and into the vessel. The first end of the suture is withdrawn from the vessel through the vessel wall, and through a bight of the suture to form a loop of suture across the puncture. The first end of the suture and a second end of the suture adjacent the bight are tensioned to detach the bight from the probe and form a knot affixing the loop of suture across the puncture. Advantageously, the bight of suture may be pre-tied before the probe is inserted into the tissue tract, the bight optionally being releasably attached to the probe.


In a device aspect, the invention provides a system for suturing a blood vessel. The vessel has a vessel wall, and the system comprises a needle having a proximal end and a distal end suitable for forming a needle path through the vessel wall. The needle has a recessed engagement surface adjacent the distal end. The system further comprises a flexible filament and a fitting attached to the filament. The fitting has an opening and a tab extending into the opening, the tab securingly engaging the engagement surface when the needle advances through the vessel wall and into the opening, so that the fitting and at least a portion of the filament can be withdrawn proximally along the needle path by the needle.


In a further device aspect, the invention provides a system for suturing a puncture of a blood vessel within a tissue tract. The vessel has a vessel wall and defines an axis, and the system comprises a shaft having a proximal handle and a distal end suitable for insertion along the tissue tract and into the vessel through the puncture. A foot is mounted near the distal end of the shaft. The foot has plurality of needle receptacles extendable laterally from the shaft. A flexible filament extends between the receptacles of the foot. A plurality of needles is advanceable distally and laterally from the shaft, through the vessel wall outside the puncture, and to the receptacles of the foot.


In yet another device aspect, the invention provides a system for suturing a puncture of a blood vessel, within a tissue tract. The vessel has a vessel wall, and the system comprises a shaft having a proximal handle and a distal end suitable for insertion along the tissue tract and into the vessel through the puncture. A foot is mounted near the distal end of the shaft. The foot has a first needle receptacle and is articulatable from a small profile configuration to a large profile configuration by actuation of the handle. A first fitting is removably mounted adjacent the first needle receptacle. A filament is coupled to the first fitting. A first needle is advanceable from the shaft to the first needle receptacle on the articulated foot. The first fitting securely engages the first needle so that the secured first fitting and at least a portion of the filament can be drawn through the vessel wall by the first needle.


In a still further device aspect, the invention provides a probe for suturing an opening in a tissue. The probe comprises a shaft having a proximal end and a distal end and defining an axis therebetween. The shaft has a size and configuration suitable for insertion through the opening in the tissue. An elongate foot is movably mounted to the shaft. An actuator extends along the shaft distally to the foot. Movement of the actuator slides the foot axially and pivots the foot from a low profile configuration to a deployed configuration extending laterally from the shaft. The foot supports a suture, and a needle is advanceable from the shaft, through the tissue, and to the deployed foot.


In another aspect, the invention provides a suturing device having a first penetrator and a second penetrator for suturing an incision. The first penetrator is configured to form a first penetration about a periphery of the incision. The first penetrator also carries a pre-tied knot disposed about a periphery of the first penetrator for delivery to the incision. The second penetrator is configured to form a second penetration about the periphery of the incision. The second penetrator also includes suture disposed thereon that is drawn by the first penetrator through the first penetration and through the pre-tied knot during retraction of the first and second penetrators from around the periphery of the incision. The first penetrator draws the suture through the first penetration via a connection between the first penetrator and the suture. Moreover, as the first penetrator draws the suture, the suture delivers the pre-tied knot to the incision for closure of the incision.


In another aspect, the invention provides a suturing device for suturing an incision formed in an artery. The suturing device includes a first penetrator, a second penetrator and a receiver. The first penetrator, which forms a first penetration about a periphery of the incision, includes a pre-tied knot disposed about the first penetrator. The second penetrator, which forms a second penetration about the periphery of the incision, has suture disposed thereon, which retracts through the first penetration. The suture retracts through the first penetration into the pre-tied knot during retraction of both the first penetrator and the second penetrator from around the periphery of the incision. In addition, during retraction, the suture delivers the pre-tied knot to the incision for suturing of the incision. The suturing device also includes a receiver for receiving both the first penetrator and the second penetrator upon penetration formation. The receiver connects the suture to both the first penetrator and the second penetrator and allows retraction of the suture through the first penetration as the first penetrator and the second penetrator retract.


In another aspect, the invention provides a suturing device for suturing an opening of an artery of a patient during a surgical procedure. The suturing device includes a first penetrator, a second penetrator and a foot. The first penetrator is disposed about a periphery of the suturing device and the second penetrator is located opposite the first penetrator on the suturing device. The first penetrator includes a pre-tied knot configured to receive suture releasably engaged with the second penetrator during suturing of the opening of the artery. The foot, which is movably coupled to the suturing device distal to the first penetrator and the second penetrator, includes a first cuff and a second cuff. The first cuff and the second cuff, which couple to one another via a link, receive the first penetrator and a detachable end of the second penetrator respectively. The first and second penetrators penetrate the artery at a proximal end of the suturing device and couple with the first cuff and the second cuff upon penetration of the artery. The first and second penetrators couple with the first cuff and second cuff such that during retraction of the first penetrator and the second penetrator from the artery, the suture delivers the pre-tied knot to the incision for closure of the incision.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective of a percutaneous blood vessel closure device according the principles of the present invention.



FIG. 2 illustrates the vessel closure device of FIG. 1 in which an elongate foot is shown in a deployed position.



FIGS. 2A-C illustrate actuation of a foot and advancement of needles from a shaft to the articulated foot in a probe similar to the probe of FIG. 1.



FIG. 3A is a detailed view showing the foot of the vessel closure device of FIG. 1 in a parked position prior to deployment.



FIG. 3B is a detailed view showing the foot of the vessel closure device of FIG. 1 in a deployed position.



FIGS. 4 and 4A are perspective views illustrating a suture attachment cuff and an associated barbed needle for use in the vessel closure device of FIG. 1.



FIG. 5 is a cross-sectional view showing the barbed needles securingly engaging the suture cuffs of the deployed foot.



FIGS. 6A-C illustrate one embodiment of a deployable foot, in which the foot slides and pivots when drawn proximally by a tension member.



FIG. 7 illustrates the suture cuff positioned within a needle receptacle, and also shows how the suture is releasably secured within a slot extending radially from the needle receptacle.



FIGS. 8A-C illustrate an alternative foot articulation mechanism in which lateral slots on the foot receive pins from the shaft to allow the foot to pivot and slide axially.



FIGS. 9A and B illustrate a still further alternative foot actuation mechanism in which the foot slides axially within a slot.



FIGS. 9C and D illustrate a further foot actuation mechanism in which relative movement between the sides of a two-part shaft actuates the foot.



FIGS. 10A-D illustrate alternative structures and techniques for avoiding entanglement of the needle with the suture.



FIGS. 11A-E illustrate an alternative closure system and method for its use in which a first needle advances the suture to the foot, while a second needle engages and withdraws both the first and second suture cuffs, a flexible filament connecting the suture cuffs, and at least a portion of the suture from within the blood vessel so as to complete a pre-tied knot.



FIGS. 12A and B illustrate an alternative probe having two pairs of needles and a foot with four needle receptacles so as to form two loops of suture across a puncture of a blood vessel.



FIGS. 13A-G illustrate a method for use of a suture system so as to effect hemostasis of a blood vessel puncture through a tissue tract.



FIGS. 14A and 14B are enlarged partial side views of a suturing device in accordance with one embodiment of the present invention.



FIGS. 15A through 15F are enlarged cross-sectional views of the embodiment of the suturing device of FIGS. 14A and 14B.



FIGS. 16A and 16B are schematic views of a suture bight having a pre-tied knot in accordance with one embodiment of the present invention.



FIGS. 17A through 17D show enlarged partial cross-sectional views of an embodiment of the suturing device in accordance with the invention, in which one embodiment of a penetrator tip and cuff engagement, penetrator tip disengagement, and cuff ejection sequence is illustrated.



FIG. 18A is an enlarged partial cross-sectional view of an embodiment of a foot in accordance with the present invention, showing the link routing through the suture bearing surfaces of the foot.



FIG. 18B is an enlarged partial cross-sectional view of an embodiment of a device in accordance with the present invention, showing the link routing through a suture-bearing surface located distal to the foot.



FIGS. 19A and 19B are enlarged partial cross-sectional views of an embodiment of a foot in accordance with the present invention, showing an alternate penetrator tip and cuff engagement, penetrator tip disengagement, and cuff ejection sequence.



FIGS. 20A through 20C are enlarged partial cross-sectional views of an embodiment of a foot in accordance with the present invention, showing an alternate penetrator tip and cuff engagement, penetrator tip disengagement, and cuff ejection sequence.



FIG. 21 is an enlarged perspective view of an embodiment of the pre-tied knot in accordance with the present invention.



FIGS. 22A through 22C show an alternate embodiment of a foot in accordance with the invention.



FIGS. 23A through 23C show another alternate embodiment of a foot in accordance with the invention.



FIGS. 24A and 24B are perspective views of an alternative embodiment of a penetrator tip in accordance with the invention.



FIGS. 25A through 25C are schematic views of an alternate embodiment of a vessel closure device in accordance with the present invention.



FIGS. 26A through 26D are schematic views of alternate embodiments of a vessel closure device in accordance with the invention.



FIG. 27 shows a schematic view of one embodiment of a link and cuff assembly in accordance with the invention.





DETAILED DESCRIPTION

A suturing device, which delivers a pre-tied knot to an incision, is disclosed. As an overview, a suturing device in accordance with the present invention includes a first penetrator having a pre-tied knot disposed thereabout and a second penetrator having suture disposed thereon. During operation of the suturing device, the first penetrator and the second penetrator penetrate the tissue about a periphery of an incision in a body lumen. Upon penetration, a penetrator tip releasably engaged with the first penetrator couples with a foot of the suturing device. As the first and second penetrators retract from the body lumen, the penetrator tip and the suture coupled with the penetrator tip retract through a penetration formed in the body lumen by the first penetrator. As will be discussed in greater detail with reference to the accompanying Figures, as the suture retracts, the pre-tied knot receives the suture, forming a knot for suturing the incision in the body lumen.


Referring now to FIG. 1, a vessel closure device 10 generally has a shaft 12 having a proximal end 14 and a distal end 16. A proximal housing 18 supports a needle actuation handle 20. A flexible, atraumatic monorail guidebody 22 extends distally of distal end 16 of shaft 12.


As can be seen with reference to FIG. 2, a foot 24 is articulatably mounted near the distal end of shaft 12. Foot 24 moves between a low profile configuration, in which the foot is substantially aligned along an axis of shaft 12 (as illustrated in FIG. 1), to a deployed position, in which the foot extends laterally from the shaft, upon actuation of a foot actuation handle 26 disposed on proximal housing 18.



FIGS. 2A through C illustrate the structure and actuation of foot 24 of a preferred probe 10′ having a modified proximal housing, and also show how needles 38 can be advanced distally from shaft 12 to the foot by depressing needle actuation handle 20.


Actuation of foot 24 is illustrated more clearly in FIGS. 3A and B. In the parked position illustrated in FIG. 3A, foot 24 extends substantially along axis 28 of shaft 12. Note that the axis of the shaft need not be straight, as the shaft may curve somewhat, particularly adjacent the foot. In the exemplary embodiment, foot 24 is substantially disposed within a foot receptacle 30 of shaft 12 so as to minimize the cross-section of the device adjacent the foot prior to deployment. Advantageously, prior to deployment of the foot, device 10 can have a cross-section adjacent foot 24 of about 7 Fr or less, ideally having a cross-section of about 6 Fr or less for the entire device distally of the proximal end 14 of shaft 12.


Actuation of foot handle 26 slides a foot actuation wire 32 proximally, pulling foot 24 from a parked position to the deployed position illustrated in FIG. 3B. Once deployed, a first end 24a and a second end 24b of foot 24 extend laterally from the shaft. Suture 34 here comprises a continuous filament with ends disposed in needle receptacles adjacent each end of the foot. An intermediate portion of suture 34 may extend proximally along a suture lumen of shaft 12 to and/or beyond proximal housing 18. Alternatively, in preferred probe 10′, the length of suture between the ends may extend distally within flexible guidebody 22, preferably in a dedicated lumen (separate from the monorail guidewire lumen). In still further alternatives described below, a short length of suture or some other flexible filament may extend substantially directly between the needle receptacles.


Shaft 12 also includes a foot position verification lumen that extends distally from a position verification port 36 to a position indicator at housing 18. When the foot is properly positioned within the blood vessel, blood pressure will cause blood to flow proximally through the indicator lumen to the indicator. The indicator may optionally comprise a blood exit port, a clear receptacle in which blood is visible, or the like. In the exemplary embodiment, the indicator of handle 18 comprises a length of clear tubing extending from housing 18 (not shown) in which the blood is clearly visible. It should be understood that a wide variety of alternative position verifications sensors might be used, including electrical pressure sensors, electrolytic fluid detectors, or the like.


The structures used in positioning a loop of suture across the puncture can be understood with reference to FIGS. 4, 4A, and 5. In general terms, needles 38 extend from shaft 12 into secured engagement with fittings 40 attached to sutures 34. More specifically, needles 38 include a barbed end 42 defining a recessed engagement surface 44. Fittings 40 are roughly cylindrical structures having an axial channel 46 that receives barbed end 44 of needle 38 therein. A first slot is cut in fitting 44 so as to define at least one tab 48. Tabs 48 can be resiliently biased inward into channel 46. As needle 38 advances into fitting 40, barbed end 42 resiliently displaces tab 48 clear of channel 46 so as to allow the barbed end to pass axially into the fitting. Once barbed end 42 is disposed axially beyond tab 48, the tab resiliently flexes back into the channel, capturing needle 38 by engagement between the tab and recessed surface 44. As each tab can hold the fitting in place on the needle, the use of more than one tab increases the reliability of the system. Ideally, three tabs are provided, as illustrated in FIG. 4A.


To facilitate attachment of fitting 40 to suture 34, a second slot cut in the tubular fitting structure defines a suture attachment collar 50. Optionally, collar 50 may be crimped about suture 34 to mechanically affix the suture to fitting 40. In addition and/or instead of mechanical crimping, suture 34 may be bonded to fitting 40 using an adhesive, heat, fasteners, knots, or the like.


Fitting 40 is quite small in size, and is generally configured to facilitate withdrawing the fitting (and the attached suture) along with needle 38 axially through the vessel wall along the needle path. Needle 38 will generally have a cross-sectional width of between about 0.010 inches and 0.020 inches. Barb 42 will extend laterally so as to define an engagement surface 44 having a protruding length of between about 0.002 inches and 0.005 inches. Fitting 40 will preferably have a cross-sectional size roughly corresponding to or only slightly larger than needle 38. Fitting 40 will typically have an outer lateral width of between about 0.014 inches and 0.025 inches, and an axial length of between about 0.035 inches and 0.050 inches. Channel 46 will be sized to receive at least a portion of needle 38, and will generally have a width of between about 0.010 inches and 0.020 inches. Suture 34 will preferably extend axially opposite the open end of channel 46 so as to minimize drag when the suture is drawn proximally along the needle path. In the exemplary embodiment, needle 38 has a diameter of about 0.020 inches, while the fitting comprises a tube having an outer diameter of about 0.020 inches, an inner diameter of about 0.016 inches, and an overall length of about 0.047 inches. The fitting will typically comprise a resilient material, preferably comprising a metal, and in the exemplary embodiment, comprising stainless steel.


Needles 38 typically have a length of between about 5.0 inches and 6.0 inches, and will preferably be sufficiently stiff to be advanced in compression through the vessel wall (and adjacent tissues) for up to 0.5 inches when supported in cantilever. Nonetheless, the needles will ideally be flexible enough to be laterally deflected within shaft 12, as can be understood with reference to FIG. 5. Needles 38 generally comprise a high strength metal, ideally comprising stainless steel. Fittings 40 will also preferably comprise a flexible material to allow tab 48 to flex out of the way of barbed end 42, and to resiliently rebound and engage recessed surface 44. In the exemplary embodiment, barbed end 42 has a diameter of about 0.015 inches, with the diameter of the needle decreasing to about 0.008 inches proximally of the barb so as to define the recessed engagement surface.


As was generally described above, foot 24 includes needle receptacles 52 adjacent the ends of the foot. A fitting 40 (with an associated end of suture 34) is disposed within each needle receptacle, and a surface of the receptacle tapers proximally and outwardly so as to guide the advancing needles 38 into engagement with fittings 40 when foot 24 is in the deployed position. As fittings 40 (and associated portions of suture 34) are releasably supported in the foot, needles 38 can be withdrawn proximally so as to draw the fittings and suture ends from the foot proximally into (and optionally through) shaft 12. The needle receptacles of the exemplary embodiment taper outward at an angle between 20 and 35 degrees from the centerline of fitting 40, and the fitting is held in a recess having a diameter of about 0.0230 inches and a length of about 0.042 inches. A lateral opening or window through the side of foot to the fitting recess may be provided to facilitate needle and/or cuff positioning during assembly of the probe, and a protruding collar near the proximal end of the fitting recess may help keep the fitting in position.



FIG. 5 also illustrates the lateral deflection of needles 38 by needle guides 54 of shaft 12. This lateral deflection of the needles allows the use of a small diameter shaft, while still encompassing sufficient tissue within the suture loop on opposite sides of the puncture so as to effect hemostasis when the suture looped is tightened and secured. In the exemplary embodiment, shaft 12 comprises an outer casing of a biocompatible material such as stainless steel, carbon fiber, nylon, another suitable polymer, or the like. Needle guides 54 may be defined at least in part as lumens formed within the casing of a polymeric material such as nylon or the like. In some embodiments, shaft 12 may comprise a carbon fiber filled nylon, or carbon fiber filled with an alternative material.


One example of a suitable structure and articulation motion for foot 24 is illustrated in FIGS. 6A and B. Foot actuation wire 32 (see FIG. 3A) rides in a lumen of shaft 12, and draws foot 24 from a parked position (shown in FIG. 6A) to a deployed position (shown in FIG. 6B) through a combination of sliding and pivoting of the foot. The foot remains supported throughout its range of motion by arms disposed laterally on either side of the foot, the arms defining (at least in part) foot receptacle 30. Once foot 24 is deployed, needle receptacles 52 and/or the fittings disposed therein will preferably define a lateral suturing width 56 in a range from about 0.260 inches to about 0.300 inches. Foot 24 may be machined or cast from a polymer or metal, but will preferably comprise a polymer such as carbon fiber filled nylon. In some cases, foot 24 may be molded as two separate halves that can subsequently be affixed together. Needles 38 advance from the fixed needle guides 54, and are laterally directed into fittings 40 by receptacles 52, as illustrated in FIG. 6C. In general, a shape memory alloy such as Nitinol™ in its superelastic regime provides a particularly advantageous actuator wire for manipulating foot 24.


Referring now to FIG. 7, fittings 40 and suture 34 will be withdrawn proximally by the needles from needle receptacles 52. To releasably support fittings 40 and suture 34 and avoid entanglement of the suture in the needles, suture 34 is fittingly received within a slot 58 that extends laterally from needle receptacles 52. As the needles pull the fitting axially from needle receptacles 52, suture 34 is pulled from slot 58 and free from foot 24. Bending of the suture proximally within the suture slot can also locally increase the suture width, so that the interaction between the bent suture and the slot can help hold the fitting in the recess.


A wide variety of foot actuation mechanisms might be used within the scope of the present invention. A first alternative foot actuation arrangement is illustrated in FIGS. 8A-C. In this embodiment, a shaft 12i has pins 60 which ride in associated slots 62 of a foot 24i. Proximal motion of an actuation wire causes foot 24i to move axially and rotationally, with pins 60 sliding along slot 62, and the foot pivoting about the pins. In this embodiment, guidebody 22 extends directly from the foot, as illustrated in FIG. 8C.


A still further alternative foot actuation mechanism is illustrated in FIGS. 9A and B. In this embodiment, slidable foot 24ii is slidingly received within a receptacle 30 of shaft 12ii. Sliding of the foot 24ii from the parked position of FIG. 9A to the deployed position of FIG. 9B places the needle receptacles 52 in the paths of needles from the shaft 12ii without pivoting of the foot. Guidebody 22 (see FIG. 1) will extend here from a distal end of shaft 12ii at a fixed angle from the shaft. Optionally, insertion through the tissue tract may be facilitated by including an additional bend in the shaft axis adjacent the guidebody on many embodiments.


Yet another foot actuation mechanism can be understood with reference to FIGS. 9C and D. Shaft 12iii is formed in two parts, which slide axially relative to each other when foot actuation lever 26iii moves, using an offset crank arrangement. A similar offset crank supports foot 24iii, so that the sliding shaft parts cause the foot to pivot as shown.


A variety of features may be included in the articulatable foot, the needle receptacle, and/or the needle to avoid tangling of the needle in the suture as the needle is directed to the fitting. As illustrated in FIG. 10A, a moveable flap 64 may extend over slot 58 so that the advancing needle slides along the flap toward the fitting, rather than entering the slot and engaging the suture directly. Flap 64 may be affixed along one side of the slot, with the other side of the flap flexing into the receptacle to release the suture from slot 58 when the fitting and suture are withdrawn by the needle.


An alternative mechanism for avoiding entanglement of the needle with the suture is illustrated in FIG. 10B. In this embodiment, needle receptacles 52i have tangential slots 58i which extends substantially tangentially to the surface of the receptacle. As a result of this tangential arrangement, a needle entering the receptacle 52i will be directed toward the fitting contained therein, but will generally not be able to enter and advance within the tangential slot 58i so as to become entangled with the suture. As illustrated in this embodiment, the slots may optionally extend laterally through the foot so that the loop of suture can be pulled from one side of the shaft without interference.


A still further alternative mechanism for avoiding entanglement between the suture and the needle is illustrated in FIGS. 10C and D. Two-part needle 38i includes an outer sheath 66 and an inner core 68. The parts of these needles initially advance together into the receptacles with the needle core 68 withdrawn so that the needle presents a smooth tapered tip (the combined tip preferably being larger in diameter than the slot containing the suture) as illustrated in FIG. 10C. Once two-part needle 38i is fully positioned within the needle receptacle, needle core 68 may extend axially to expose barbed tip 42 and recessed engagement surface 44 and to secure the needle to the fitting within the needle receptacle. In the exemplary embodiment of FIGS. 4 and 5, barbed tip 42 is formed integrally with the rest of the needle structure, but the tip has a larger cross-section than radial slot 58 containing the suture 34. As a result, the barbed tip is unable to enter the slot, thereby avoiding entanglement between the needle and suture.


An alternative vessel closure probe 70 will be explained with reference to FIGS. 11A through 11E. This embodiment includes an articulatable foot 24 having a pair of needle receptacles 52, as described above. Although each needle receptacle 52 contains a fitting 40 for coupling a flexible filament to a tip of an associated needle, the filament in this case comprises a short length of suture 74 (or some temporary connecting filament, as shown schematically in phantom in FIG. 11A) spanning directly between the needle receptacles. Rather than pulling the two ends of an extended loop through the needle paths and proximally out the tissue tract for tying, closure system 70 advances a single end of the suture distally along one needle path, across the puncture, and then proximally along the other needle path. To provide this interaction, at least one needle includes means for attaching suture 34 to short suture 74, here in the form of a detachable coupling structure carried on the at least one needle. This structure facilitates the use of a pre-tied knot.


Referring now to FIGS. 11A and B, the distal end of probe 70 advances distally through skin S and into a tissue T of the patient while the probe is in the small profile configuration with foot 24 aligned along the axis of the probe. Here, however, an end 76 of suture 34 is affixed to a detachable needle tip 78 of a hollow needle 38′. Detachable tip 78 comprises a fitting having an opening receiving an end of suture similar to fitting 40, attached to a barbed needle end (similar to that of needle 38). Suture 34 may extend proximally within hollow needle 38 where the needle has an open channel along its length, may exit the hollow needle just proximally of detachable tip 78, or may be disposed alongside a solid needle. Needle 38 (opposite hollow needle 38′) has a fixed barbed tip, as described above, and a bight of suture 80 is releasably attached to the probe shaft encircling the opening of needle guide 54 of the fixed tip needle. The bight of suture may be releasably disposed within a slot of the probe, may be temporarily held in place by a weak adhesive or coating, or the like. A second end 82 of suture 34 extends proximally along the shaft of the probe, the second end of the suture optionally also being releasably held along the shaft.


Bight 80 will define a knot when first end suture passes therethrough, as can be understood with reference to FIGS. 11Ai and 11Aii. Bight 80 will often include more than one loop, and may be pre-arranged so as to define a square knot (using the layout schematically illustrated in FIG. 11Ai), a clinch knot (FIG. 11Aii), or a variety of known or new surgical knots.


Probe 70 advances along tissue tract TT to puncture P in blood vessel V. Once foot 24 is disposed within a blood vessel V, a pull wire moves the foot proximally and pivots the foot laterally so that the foot extends along an axis A of the vessel, as illustrated in FIG. 11B. The foot can then be pulled proximally against an inner surface of the vessel wall W to ensure that the needle receptacles 52 are properly positioned.


As can be understood with reference to FIGS. 11C and D, hollow needle 38′ and needle 38 advance to engage fittings 40 within receptacles 52. Hollow needle 38′ draws first end 76 of suture 34 distally through vessel wall W, and detachable tip 78 is secured into an associated fitting 40 using the barb and tab interaction described above. As short suture 74 extends between fittings 40, and as detachable tip 78 can pull free of hollow needle 38′ when the needles are withdrawn, this effectively couples needle 38 to first end 76 of suture 34. The detachable tip riding partially within the hollow needle (or vice versa) so that the assembly remains together under compression. Hence, needle 38 can pull the suture distally along the needle path formed by hollow needle 38′, across the puncture P, and proximally along the needle path formed by needle 38, as illustrated in FIG. 11D.



FIGS. 11D and E show that the knot can be completed by pulling needle 38, short suture 74, and second end 76 of suture 34 (together with the fittings 40 and detachable needle tip 78) proximally through bight 80. Second end 82 of suture 34 can be pulled to free bight 80, and the ends of the suture can be tightened and the probe removed to provide permanent hemostasis.


It will be recognized that removal of probe 70 can be facilitated by coupling first end 76 to bight 80 over an outer surface of the probe, and by arranging suture 34 and hollow needle 38′ so that the suture can pull free of the needle when detachable tip 78 is released, for example, by having the suture exit the needle proximally of the tip through a channel that extends to the tip so that the needle does not encircle the suture. By including such provisions, after foot 24 is returned to the narrow configuration, the probe can be pulled proximally from the tissue tract leaving the pre-tied knot in place.


Alternative arrangements (using the detachable needle ends of probe 70) are possible to provide the benefit of a pre-tied knot and the like for closure of a vessel puncture. For example, a probe having a pair of needles in which each needle included a detachable tip might be used to pull first end 76 through a bight, so that the bight need not encircle the needle path of one of the needles.


In some cases, particularly for closure of large punctures, it may be advantageous to provide multiple suture loops across the puncture, either in parallel, in an “X” pattern, or the like. As illustrated in FIGS. 12A and B, the present invention encompasses the use of more than two needles and associated receptacles, fittings, sutures, and the like. Multiple loop systems may have four, six, eight, or more needles, or may even have odd numbers of needles and fittings, particularly where one or more fittings have a plurality of suture ends extending therefrom. This allows a wide variety of stitching patterns to be provided by such multiple loop probes.


The method of use of the probes of FIGS. 1-7 can be understood with reference to FIGS. 13A-G. After accessing a blood vessel V (often using the Seldinger technique), a guidewire GW is left extending into skin S and down through tissue T along tissue tract TT. Guidewire GW enters vessel V through a puncture P in vessel wall W, and extends along the vessel throughout many endovascular procedures. As illustrated in FIG. 13A, distal guidebody 22 is advanced over the guidewire GW in a monorail fashion, so that the guidewire helps to direct the probe along the tissue tract TT and into the vessel through puncture P. FIG. 13B shows that when sensor 36 is disposed within the vessel, blood can flow from the sensor port and through a lumen in shaft 12 to the proximal handle to notify the operator that foot 24 has been advanced far enough for deployment.


Deployment of the foot is effected by actuation of the foot deployment handle, as described and illustrated above with reference to FIGS. 2 and 2B. As described above, guidebody 22 helps to align the probe with the axis of vessel V. Guidebody 22 may be set at an angle and/or offset relative to shaft 12 as appropriate to aid in alignment with a particular vessel access technique. As shown in FIG. 13C, the deployed foot 24 extends laterally from the shaft, so that foot 24 adjacent receptacles 52 can be drawn up against vessel wall W by gently pulling shaft 12. Hence, the foot helps to accurately position the needle guides 54 at a distance from the vessel wall.


Referring now to FIG. 13D, flexible needles 38 are deflected laterally by needle guides 54 toward receptacles 52 of the deployed foot. As a result, the needles advance in cantilever both distally and laterally when needle actuation handle 20 is pressed (see FIG. 2C), and the tapering surfaces of receptacles 52 help to push the needles back into alignment with the fittings so as to overcome any unintended deflection of the needles by tissue T or vessel wall W. This ensures that needles 38 securingly engage fittings 40 within receptacles 52, thereby coupling the ends of suture 34 to the needles. While suture 34 is here illustrated running along the side of shaft 12 outside foot receptacle 30 to a lumen within guidebody 22, it should be understood that the suture loop might instead extend proximally in a lumen of shaft 12, might be routed through the foot and/or foot receptacle, and/or might be stored in a spool adjacent foot 24. Regardless, suture 34 should able to pull free of the probe between its ends to form a continuous loop across puncture P.


Referring now to FIGS. 13E and F, fittings 40 and the ends of suture 34 are drawn proximally through the vessel wall W along the needle paths formed by needles 38. Optionally, the needles may be withdrawn proximally out of the tissue tract and clear of shaft 12, or they may remain coupled to the shaft within needle guides 54. The foot actuator is moved to store foot 24 along shaft 12, and the shaft can then be pulled proximally from the tissue tract. Guidebody 22, which may comprise a soft, compliant polymer, may temporarily extend at least partially into tissue tract TT and through puncture P to help reduce the loss of blood until the loop is secured.


Now referring to FIG. 13G, once shaft 12 has been withdrawn sufficiently to expose needle guides 54, the ends of the suture loop can be grasped by the operator. Tying of a knot in suture 34 can then proceed in a conventional manner. The use of a clinch knot may facilitate gradual tightening of the knot while removing guidebody 22, although a wide variety of knot and knot advancing techniques might be used.



FIGS. 14A and 14B show an embodiment of a vessel closure device 100. This embodiment includes an articulatable foot 114 (FIG. 14B) having a pair of penetrator receptacles (described below). Although each penetrator receptacle contains a fitting (or cuff) for coupling a flexible filament to a tip of an associated penetrator, the filament in this case may be a short length of suture such as a link 112 spanning directly between the penetrator receptacles. Rather than pulling the two ends of an extended loop through the needle paths and proximally out the tissue tract for tying, closure system 100 advances a single end of the suture distally along one needle path, across the puncture, and then proximally along the other needle path. To provide this interaction, at least one needle includes means for attaching suture 102 to the link 112, here in the form of a detachable coupling structure carried on the at least one needle. This structure facilitates the use of a pre-tied knot.



FIG. 15A shows a side, cross-sectional view of the device 100 in a position prior to deployment of the foot 114. The device 100 has been advanced through the incision 105 in the arterial wall W. For ease of description, reference numeral 122 indicates the anterior side of the device, and reference numeral 124 denotes the posterior side of the device. Device 100 has a rigid shaft 118 that has channels defined therein to carry the elongate bodies or penetrators 106 and 106′. Penetrator 106′ may also be referred to as the anterior penetrator, and penetrator 106 may be referred to as the posterior penetrator. For purposed of description and not limitation, the anterior penetrator 106′ carries the pre-tied knot 104, and posterior penetrator 106 carries the detachable coupling structure or penetrator tip 108. Anterior penetrator 106′ defines a penetrator tip 108′ at its distal end.


The articulatable foot 114 includes anterior and posterior penetrator receptacles 116′ and 116, respectively. These receptacles are also referred to as cuff pockets. Cuffs 110 are shown positioned in cuff pockets 116′ and 116. A link 112 extends between the cuffs 110.



FIG. 15B shows the foot 114 deployed so as to position the cuff pockets 116 to receive the first and second penetrators 106′ and 106. As shown in FIG. 15B, the anterior penetrator 106′ has the pre-tied knot 104 disposed about a proximal portion of its length. Alternatively, the pre-tied knot 104 may be disposed about the periphery of a knot tube, through which the anterior penetrator 106′ may pass (as described in further detail below).



FIG. 15B illustrates the suturing device 100 deployed within a lumen 107 in accordance with an embodiment of the present invention. As may be seen with reference to the Figure, the suturing device 100 includes an elongate body 106′ having a penetrator tip 108′. The elongate bodies 106 and 106′ deploy to form penetrations 109 and 109′ within the vessel wall W. The configuration of the penetrator tip 308 allows penetration of the vessel wall W immediately surrounding the incision 105 to form the penetration 309. As such, the penetration of the penetrator tip 108 through the tissue wall W allows for passage of the elongate body 106 through the tissue and into the lumen 107. The elongate body 106 holds the suture 102 as the elongate body 106 passes through the tissue wall W immediately adjacent the incision 105 and into the foot 114.


As may be seen with reference to FIG. 15B, in this embodiment, the foot 114 has a single unit design where the cuffs 110 and 110′ are disposed on opposite sides of the suturing device 100 and the foot 114. This orientation allows balance of forces during the deployment of the elongate bodies 106 and 106′, thereby allowing precise suturing and minimizing the possibility of incorrectly suturing the incision 105. Also, as may be seen with reference to the Figure, the suturing device 100 delivers the suture longitudinally relative to the lumen 107, thereby minimizing arterial diameter constriction. Likewise, in this embodiment, the foot 114 is positioned at an angle “Q” relative to the shaft 118 of the suturing device 100. Preferably, the angle “Q” is in a range between about 20 degrees and about 60 degrees and more preferably is about 40 degrees. The angle “Q” approximates the puncture angle commonly used to access the femoral artery. The angle Q and the rigid character of the shaft 118 serve to provide accurate, virtually simultaneous “cuff capture” by both the anterior and posterior penetrators. Moreover, since the device 100 is preferably used without an introducer sheath, the rigid nature of the shaft 118 provides the control of the travel of penetrators as they move distally to engage the cuffs. The device 100 can therefore be used in the same femoral artery access puncture without disturbing the existing tissue tract and causing undue discomfort to the patient.


When both the elongate bodies 106 and 106′ and the suture 102 pass through the lumen wall W and into the lumen 107, the elongate bodies 106 and 106′ engage with the foot 114. The penetrator tip 108 and anterior penetrator tip 108′ of the elongate bodies 106 and 106′ engage with cuffs 110 and 110′ of the foot 114. The cuffs 110 and 110′ include a link 112 that connects the cuffs 110 and 110′ to one another. It should be noted that the cuffs 110 and 110′ facilitate connection of the penetrator tip 108 with the anterior penetrator tip 108′ such that the penetrator tip 108 and the anterior penetrator tip 108′ are coupled to one another via the link 112.



FIGS. 16A and 16B show the suture bight in the pre-deployed state (FIG. 16A) and the deployed state (FIG. 16B). The suture 102 is arranged to provide the pre-tied knot 104 that automatically travels down from the shaft of the device where it is stored prior to delivery to the tissue wall. The loop 104 of suture 102 serves to pull the knot 104 down the rail portion 140 of the suture during deployment. It should be noted that it would be desirable to be able to distinguish the ends 140 and 150 of the suture 102 during deployment so that the correct end is pulled by the operator to advance the knot. Should the non-rail end be pulled, the knot may be prematurely tightened before it is advance to its deployed position at the wall of the vessel.


The ends of the suture may be distinguished from each other by changing the color of one end (e.g. with dye), providing an attachment on one end (e.g. shrink wrap tubing, a bead, etc.) or with the suture itself (e.g. tying a knot in one end).



FIG. 15C shows the penetrator tips fully deployed into and engaged with the cuffs 110. FIG. 15D shows the penetrators being retracted after the tips have engaged the cuffs 110. On the anterior side 122, the penetrator 106′ is pulling the anterior cuff 110 distally. On the posterior side 124, the penetrator tip 108 has been disengaged from the penetrator 106, via a mechanism described below. As shown in FIG. 15D, the link 112 is now coupled to one end of the suture via posterior cuff 110. Suture 102 is also shown exiting the posterior penetrator shank via an opening in the side of the penetrator shank.


Referring to FIG. 15E, after deployment of the foot 114, the suture 102 moves as indicated by directional arrows X1. As the suture 102 moves, a suture loop 103 also moves in a direction indicated by directional arrow X2 towards the foot 114 and the incision (not shown). The suture 102 moves through the foot 114 and through an opening distal to the foot 114 that defines a suture-bearing surface 111. The suture-bearing surface 111 is disposed at a distal end of the suturing device 100 separate from the foot 114, in this embodiment. The suture bearing surface 111 bears forces placed on the suture 102 during suturing. As such, the suture-bearing surface 111 minimizes forces placed on an incision during incision tensioning, thereby minimizing the possibility of damaging tissue immediately surrounding the incision. In this embodiment, the suture bearing 111 is a slot disposed at a distal end of the suturing device 100, which includes a passage for the suture 102 during incision suturing as shown with reference to the Figure.


As the suture loop 103 and the suture 102 move, the pre-tied suture knot 104 also moves in the same direction as the suture loop 103 towards the foot 114 and the incision. The suture loop 103 continues to move the pre-tied suture knot 104 towards the incision until the suture 102 and the pre-tied suture knot 104 suture the incision formed in the arterial wall. It should be noted that a suture trimmer might be used to assist the delivery of the knot 104 to an arteriotomy. The suture trimmer may be any device suitable for pushing the knot towards the arteriotomy and trimming suture immediately adjacent the knot 104 once the knot is tightened.


Now making reference to FIG. 15F, the suturing device 100 delivers the pre-tied suture knot 104 to the incision and the foot 114 is returned to its non-deployed position. The penetrators (not shown) have been retracted, the link has been fully retracted through the knot, and the knot has been advanced to the vicinity of the arterial wall. When the body of the device is removed, a stitch will remain in place across the incision in the artery. It should be noted that embodiments of the device described herein place a stitch of suture in a longitudinal orientation with respect to the vessel so as to minimize transverse vessel constriction and also to take advantage of the transverse orientation of the fibers of the vessel tissue.



FIGS. 16A and 16B show the suture bight in the pre-deployed state (FIG. 16A) and the deployed state (FIG. 16B). The suture 102 is arranged to provide the pre-tied knot 104 that automatically travels down from the shaft of the device where it is stored prior to delivery to the tissue wall. The loop 104 of suture 102 serves to pull the knot 104 down the rail portion 140 of the suture during deployment. It should be noted that it would be desirable to distinguish the ends 140 and 150 of the suture 102 during deployment so that the correct end is pulled by the operator to advance the knot. Should the non-rail end be pulled, the knot may be prematurely tightened before it is advanced to its deployed position at the wall of the vessel.


The ends may be distinguished from each other by changing the color of one end (e.g. with dye), providing an attachment on one end (e.g. shrink wrap tubing, a bead, etc.) or with the suture itself (e.g. tying a knot in on end).



FIG. 17A shows an enlarged detail of the posterior portion of the foot of one embodiment of suturing device 300. In an accordance with an embodiment of the present invention, the elongate body 306 may be any type of structure capable of penetrating the wall of a lumen, such as an artery, a blood vessel, or the like. In addition to the penetration capability, the elongate body 306 may be a hollow tube capable of holding suture. Examples of such structures may include a hypodermic needle or the like. The suturing device 300 stores the elongate body 306 within its shaft (not shown). As previously described with reference to FIGS. 2A through 2C, a user deploys a handle (not shown) of the suturing device 300 thereby deploying the elongate body 306 and the penetrator tip 308. During deployment, the elongate body 306 and the penetrator tip 308 penetrate the lumen wall W immediately surrounding the incision 305 and enter the lumen 307 of a patient, as shown with reference the following FIG. 17B.


Once the penetrator tip 308 engages with the cuff 310, the elongate body 306 and the penetrator tip 308, along with the cuff 310, proceed through the foot 314 and into the lumen 307. As may be seen with reference to FIG. 17B, the cuff 310 is pushed through the foot 314, such that the cuff 310 is pushed out of a pocket 316 and through the foot 314 into the lumen 307. Once the cuff 310 and the elongate body 306 enter the lumen 307, the penetrator tip 308 detaches from the elongate body 306 via a push mandrel 315 as shown with reference to FIG. 17C.



FIG. 17C illustrates the detachment of the penetrator tip 308 from the elongate body 306 in accordance with one embodiment of the present invention. Upon engagement of the penetrator tip 308 with the cuff 310, the push mandrel 315 is further advanced such that it contacts a proximal surface 308b of the penetrator tip 308, and further still until the penetrator tip 308 detaches from the elongate body 306. Upon detachment of the penetrator tip 308 from the elongate body 306, the push mandrel 315 and the elongate body 306 retract from the foot 314, as shown with reference to FIG. 17D.


As shown in FIG. 17D, after the penetrator tip 308 detaches from the elongate body 306, the elongate body 306 retracts from the penetrator tip 308 and cuff 310. Meanwhile, on the anterior side of the device (not shown in FIG. 17D), the elongate body 306′ also includes the needle tip 308′ which engages with the cuff 310′ as previously described with reference to FIG. 15C. The needle tip 308′ does not disengage from the elongate body 306′ upon engagement with the cuff 310′. Therefore, during retraction of the elongate body 306′ from within the lumen 307, the needle tip 308′ also retracts from the lumen 307 through the penetration 309′. As the needle tip 308′ retracts through the penetration 309′, the elongate body 306′ also retracts the cuff 310′. As previously described, the cuff 310′ couples with the cuff 310 via the link 312. During retraction of the cuff 310′ through the penetration 309′, the cuff 310 and the suture 302 also retract through the penetration 309′, thereby drawing the suture 302 through the penetration 309′. It should be noted that the foot 314 may provide suture bearing surface for the suture 302 during operation of the suturing device 300, as shown with reference to FIG. 18A.



FIG. 18A shows an embodiment of the present invention illustrating the passage of the suture 302 through the lumen 307 and the passageways 309 and 309′. As may be seen with reference to the Figure, the cuff pockets 316 of the foot 314 provide a suture-bearing surface for the suture 302 as the suture 302 is drawn through the passageways. The suture bearing surfaces of the foot 314 minimize the possibility of the suture 302 damaging tissue surrounding the incision 305.


In another embodiment shown in FIG. 18B, the suturing device 300 also provides a suture bearing surface for the suture 302. During retraction of the elongate bodies 306 and 306′ from the lumen 307, the suture 302 retracts through the foot suture bearing surfaces 314a and the suture-bearing surface 311 formed distally of the foot. The distal suture bearing surface 311 and the foot suture bearing surfaces 314a guide the suture 302 in order to minimize the possibility of the suture 302 damaging the patient during retraction of the elongate bodies 306 and 306′ from the lumen 307. In this embodiment, suture-bearing surface 311 is a slot defined in the body of the device distal of the foot. The slot includes a passage for the link and suture, and an edge 311a. It is contemplated that the edge 311a may contact the edge of the incision in the artery and become caught on the adventitia of the blood vessel. Various devices may be provided, such as flaps, o-rings, etc., that provide a smoother transition over the slot and edge 311a as the device is inserted through the incision.



FIGS. 19A and 19B illustrate an alternative embodiment of the present invention for releasing the cuff 310 from the foot 314. In this embodiment, the foot 314 includes link passageway 313 through which the link 312 passes. After the elongate body 306 engages the penetrator tip 308 with the cuff 310, the elongate body 306, during retraction from the foot 314, removes the cuff 310 and the penetrator tip 308 from the foot 314. The force holding the penetrator tip 308 on the elongate body 306 overcomes the force holding the cuff 310 in the cuff pocket 316. Once the cuff 310 clears the foot 314 and attains the orientation shown with reference to FIG. 19B, the previously described push mandrel (not shown) detaches the penetrator tip 308 from the elongate body 306. Upon detachment of the penetrator tip 308 from the elongate body 306, the link 312, along with the cuff 310 and the penetrator tip 308, retracts through the passageway 313 via the link 312 and the elongate body 306′. In an alternate embodiment, the cuff 310 and penetrator tip 308 may be pulled off the elongated body 306 by tension in the link 312.


In yet another alternate embodiment shown in FIGS. 20A through 20C, the cuff 310 and penetrator tip 308 may be detached from the elongate body 306 before being removed from the cuff pocket 316. In this embodiment, after the elongate body 306 and the penetrator tip 308 engage with the cuff 310, the push mandrel 315 detaches the penetrator tip 308 from the elongate body 306, leaving it in the cuff pocket 316 to be removed by tension in the link 312, as shown in FIG. 20C.


It should be noted that other methods might be used to detach the penetrator tip 308 from the elongate body 306. These methods include, but are not limited to, detachment through friction or tension. Making reference to FIG. 20B, in an embodiment where friction between the cuff pocket 316 and the cuff causes detachment of the penetrator tip 308 from the elongate body 306, a surface 308c of the penetrator tip 308 frictionally engages with a cuff surface 316a of the cuff pocket 316. During retraction of the elongate body 306 from the foot 314, the frictional engagement between the cuff surface 316a and the penetrator tip surface 308c causes detachment of the penetrator tip 308 from the elongate body 306. In an embodiment where link tension causes detachment of the penetrator tip 308 from the elongate body 306, the link 312 is tensioned such that the link 312 is taut between the cuffs 310 and 310′. As such, the tension of the link 312 prevents movement of the cuff 310 out of the foot 314 along with the elongate body 306 during retraction of the elongate body 306 from the foot 314, thereby causing detachment of the penetrator tip 308 from the cuff 310.


After detachment, during retraction of the elongate body 306 and the elongate body 306′ (not shown), the link 312 may draw the cuff 310 and the penetrator tip 308 from the cuff pocket 316. As discussed earlier, the cuff 310′ engages with the elongate body 306′ and pulls the cuff 310 via the link 312 as the elongate body 306′ retracts from the lumen 307. As such, retracting the link 312 pulls on the cuff 310, thereby pulling the cuff 310 from the cuff pocket 316 and through the lumen 307 along with the suture 302, as shown with respect to FIG. 20C.



FIG. 21 shows the pre-tied suture knot 304 disposed about a periphery of a knot tube 301. In this embodiment, the knot tube 301 includes a hollow center 301a configured to allow passage of an elongate body (not shown) as the suturing device 300 sutures the incision. However, it should be noted that in an alternative embodiment of the present invention, the elongate body (not shown) might also store the suture 302. In the alternative embodiment, the suture 302 and the pre-tied suture knot 304 are disposed about a periphery of the elongate body where the pre-tied suture knot 304 may reside within a pocket (not shown) of the elongate body.


Embodiments of the suturing device of the invention may also include additional configurations for a foot, as shown with reference to FIGS. 22A through 22C. In this embodiment, the suturing device 300 includes a foot 319 having cuff pockets 319a and 319b. The configuration of the cuff pockets 319a and 319b allow the foot 319 to hold the cuffs 310 and 310′ during use of the suturing device 300. The foot pivots from a first orientation shown with reference to FIG. 22A to a second orientation shown with reference to FIG. 22B via a hinge 320 as shown in FIG. 22C.



FIG. 22C shows the hinge 320, which allows rotation of the foot 319 in a direction indicated by directional arrow Y. The hinge 320 may be any device capable of rotatably coupling the foot 319 to the suturing device 300, such as pin assembly or the like. In addition to the hinge 320, the foot 319 includes a connector 322 that couples the cuffs 310 and 310′ with one another. The connector 322 also includes a flexible portion 322c (shown with respect to FIG. 22C) that allows flexing of the connector 322 as the connector 322 resides within passage 317 of the foot 314. The connector also includes ends 322a and 322b that facilitate connection with the penetrator tip 308 and the needle tip 308′ of the elongate bodies 306′ and 306.


In an embodiment of the present invention where the suturing device 300 employs the foot 319, during use of the suturing device 300, upon insertion of the suturing device 300 within the lumen 307, a user deploys the foot 319 as shown with reference to FIG. 22A. Upon deployment of the foot 319, the user deploys the elongate body 306 (not shown) that engages with the cuff 310 (not shown) as previously described. Once the penetrator tip 308 detaches from the elongate body 306 via the push mandrel 315, or other means previously described, the user rotates the foot 319 into the orientation shown with reference to FIG. 22B. Upon orientation of the foot 319 as shown with respect to FIG. 22B, the user deploys the elongate body 306′ (not shown) which engages with the cuff 310′ (not shown). After the elongate body 306′ engages with the cuff 310′, the user retracts the elongate body 306′ along with the cuffs 310 and 310′ and the suture 302 to suture an incision as previously described.


Another embodiment of the suturing device 300 includes feet 324 and 328 as shown with reference to FIG. 23A. FIG. 23A illustrates an embodiment of the present invention in which the suturing device 300 includes the feet 324 and 328. As may be seen with reference to FIG. 23B, the foot 324 is hollow such that the foot 328 fits within the foot 324 during both insertion and retraction of the suturing device 300 within the lumen 307. The feet 324 and 328 also include cuff pockets 324a and 328a and cam surfaces 324b and 328b. The configuration of the cuff pockets 324a and 328a allow placement of the cuffs 310 and 310′ within the feet 324 and 328 during use of the suturing device 300; allowing engagement of the elongate bodies 306 and 306′ during suturing. The cam surfaces 324a and 328a contact cam surfaces 326a in order to deploy the feet 324 and 328. Once the feet 324 and 328 deploy, the suturing device 300 attains the configuration shown with reference to FIG. 23C.


During use of a suturing device implementing the feet 324 and 328, a user inserts the suturing device into an incision as the foot 328 resides within the foot 324. Upon insertion of the suturing device within the incision, the user deploys the feet 324 and 328 by moving the feet 324 and 328 towards the cam surfaces 326a, in order to deploy the feet 324 and 328, as previously described. After deployment of the feet 324 and 328 within a lumen, the user deploys the elongate bodies 306 and 306′ whereby the penetrator tip 308 and needle tip 308′ engage with the cuffs 310 and 310′ residing within the cuff pockets 324a and 328a. Upon engagement with the cuffs 310 and 310′ the user retracts the elongate bodies 306 and 306′ and sutures the incision.


In addition to the alternative configurations for the foot of the suturing device 300, the suturing device 300 may also include alternative cuff configurations that allow engagement of the elongate bodies 306 and 306′ with the link 312. An example of such an alternative configuration is shown with respect to FIG. 24A. FIG. 24A illustrates a perspective view of an alternative embodiment of the penetrator tip 330. In this embodiment, a penetrator tip 330 includes mating surfaces 330a which engage with the previously described cuff tabs 310a of the cuff 310 when the penetrator tip 330 engages with the cuff 310, as shown with reference to FIG. 24B. As such, a user detaches the elongate body 306 from the penetrator tip 330 with the push mandrel 315 after engagement of the penetrator tip windows 330a with the cuff tabs 310, as discussed with reference to the penetrator tip 308 and the cuff 310. The mating surfaces 330a may be cut-outs, such as windows, formed within the penetrator tip 330. The elongate bodies 306 and 306′ may also engage with the link 312.



FIG. 25A shows an alternative method of coupling the elongate bodies 306 and 306′ with the link 312. In this embodiment, the elongate body 306′ includes a loop 332 (shown in FIG. 25B) which engages with the link 312 as the elongate body 306′ enters the foot 314. In this embodiment, the link 312 is constructed of a resilient material capable of flexing in response to the loop 332 contacting the link 312, such as polypropylene or any other material having spring-like characteristics. The elongate body 306′ moves in a downward direction as indicated by directional arrow A until the loop 332 comes into contact with an end 312a of the link 312. When the loop 332 contacts the end 312a, the loop 332 moves the end 312a in a direction F1 indicated by directional arrow F1. The catch 332 continues to move the end 312a of the link 312 in the direction F1 until the loop 332 contacts the end 312a, as shown with reference to FIG. 25B.


Referring to FIGS. 25A-C, the link 312 is constructed of a material having spring like properties. Therefore, when the loop 332a comes into contact with the end 312a, the resilient properties of the link 312 move the end 312a in a direction F2, as indicated by directional arrow F2 in FIG. 25A. The end 312a moves in the direction F2 such that the end 312a moves into the loop 332a, as shown with reference to FIG. 25B. Once the end 312a moves into the loop 332a, a user retracts the loop 332 along with the end 312a and the link 312 in a direction B as indicated by directional arrow B of FIG. 25C. As the loop 332a and the catch 332 move in the direction B, the loop 332a clamps the link 312 against a surface 306a of the elongate body 306′. Thus, during retraction of the suturing device 300 from the foot 314, the link 312 remains engaged with the elongate body 306′, as shown with reference to FIG. 25C. As the elongate body 306′ and the catch 332 retract from the foot 314, the catch 332 pulls the link 312 through the foot 314, also as shown with reference to FIG. 25C. While the catch 332 pulls the link 312, the cuff 310 (not shown) and the suture 302 (not shown) move through the foot 314 in order to enable suturing of an incision.


In another embodiment, the suturing device 300 may also employ a clip and ring assembly 338 which couples the elongate bodies 306 and 306′ with the link 312, as shown with reference to FIG. 26A. FIG. 26A illustrates a schematic view of the clip and ring assembly 338 for coupling the elongate bodies 306 and 306′ with the link 312 in accordance with an embodiment of the present invention. The elongate bodies 306 and 306′ include a clip 336 in place of the penetrator tip 308 and the needle tip 308′ where the clip 336 has a configuration as shown with reference to the Figure. The clips 336 include flexible arms 336a and a passageway 336b.


The clip and ring assembly 338 also includes a ring 334 that engages with the clip 336. The link 312 couples with the ring 334 using any suitable technique, such as tying or the like. The ring 334 has a circular configuration as shown with respect to FIG. 26B such that as the elongate bodies 306 and 306′ engage with the foot 314, the clip 336 couples with the ring 334. As the clips 336 engage with the ring 334, the flexible anus 336a flex in a direction indicated by directional arrows Y and Z thereby increasing a width Wi of the passageway 336b in order to allow passage of the ring 334 through the clip 336 as shown with regards to FIG. 28C.


Referring to FIG. 26D, there is shown a top view of the foot 314 where the foot 314 includes cuff pockets 314b-1 and 314b-2. The cuff pocket 314b-1 holds the ring 334 prior to engagement with the clip 336. The cuff pocket 314b-2 is configured such that as the elongate bodies 306 and 306′ enter the foot 314, the clips 336 enter the cuff pocket 314b-2 and engage with the ring 334 as shown with reference to the Figure. Once the clip 336 engages with the ring 334, the clip 336 coupled with the elongate body 306 detaches from the clip 336 while the elongate body 306′ remains engaged with the clip 336. During retraction of the elongate bodies 306 and 306′ from the foot 314, the elongate body 306′ pulls the link 312 and the suture 302 through the foot 314 in order to suture an incision.



FIG. 27 shows an embodiment of a cuff 410 and link 412 assembly that may be provide with the various embodiments of the present invention. Cuff 411 has a penetrator tip receiving end 434 and a tapered end 432. Link 412 has two ends 442 (only one shown in FIG. 27). An example of a preferred link material is expanded Polytetrafluoroethylene (ePTFE). PTFE is commonly referred to as Teflon. ePTFE is particularly suited for use as the link material in the vessel closure devices described herein because of its low friction, high strength properties.


To assemble the link and cuff assembly, a length of link material is first threaded through the cuff. The end of the link material extending from the penetrator tip receiving end 434 of the cuff 410 is then heated so that it expands. The link is then pull through the cuff 410 such that the expanded end portion 442 is seated in the interior tapered end 432 of the cuff 410.


The present invention offers surgeons an automated method for delivering a pre-tied knot to an incision formed in a lumen. The present invention minimizes the problems associated with a surgeon manually delivering a knot to an incision site. Thus, the present invention reduces the time required to accurately and precisely place a suture knot in close proximity to an incision formed in a lumen, thereby decreasing both the overall time a patient spends in surgery and the costs associated with spending time in surgery.


While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. For example, the various features of each embodiment may be altered or combined to obtain the desired device or method characteristics. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.

Claims
  • 1. A method for closing an opening in tissue, comprising: forming an opening in tissue having an upper surface and a lower surface, the lower surface being disposed distally from an exterior skin with the upper surface being disposed proximal the lower surface;performing a medical procedure;disposing an entirety of a length of suture, having a proximal end, a distal end, and an intermediate portion extending from the proximal end to the distal end, distally from the lower surface and through the opening before a portion of the length of suture and a needle associated with the length of suture are withdrawn proximally through tissue adjacent the opening to be closed;retrieving the portion of the length of suture by advancing the needle disposed proximal to the upper surface distally through the tissue; andsuturing the opening closed with a suturing device, the length of suture being initially disposed across the opening to be closed with the suturing device, the entire length of suture and the needle associated with the length of suture being withdrawn proximally through tissue adjacent the opening.
  • 2. The method of claim 1, further including the step of delivering a pre-tied knot adjacent the opening.
  • 3. The method according to claim 2, further including the step of applying tension to the length of suture to cinch the knot.
  • 4. The method according to claim 3, further including the step of trimming the suture adjacent the knot.
  • 5. The method according to claim 2, further including the step of using a knot pusher to advance the knot to the opening.
  • 6. The method according to claim 1, wherein the step of suturing further comprises, inserting the suturing device through the opening in the tissue, causing the device to place the length of suture across the opening and through tissue adjacent the opening, such that ends of the suture element extend from the tissue adjacent the opening.
  • 7. The method according to claim 6, further including the step of passing one of the ends of the length of suture through a bight to form a knot.
  • 8. The method according to claim 7, further including the step of tightening the knot, thereby to at least partially close the opening in the tissue.
  • 9. The method according to claim 8, wherein the tightening of the knot formation comprises pulling on one of the ends of the suture.
  • 10. The method according to claim 1, wherein the medical procedure is a diagnostic procedure and/or an interventional procedure.
  • 11. The method of claim 1, wherein the intermediate portion of the length of suture is disposed in a slot of the suturing device, the slot being disposed below the lower surface of the tissue to be sutured before the entirety of the length of suture is withdrawn through tissue adjacent the opening to be closed.
  • 12. A method for closing an opening in tissue, comprising: performing a medical procedure through an opening formed in tissue, the tissue having an upper surface and a lower surface, the lower surface being disposed distally from an exterior skin with the upper surface being disposed proximal the lower surface; andclosing the opening in the tissue by providing a suturing device, the suturing device being configured to dispose a length of suture across the opening, the length of suture having a proximal end, a distal end, and an intermediate portion extending from the proximal end to the distal end, the entirety of the length of suture being disposed distally from the lower surface of the tissue to be sutured and through the opening before the entire length of suture and a needle associated with the length of suture are withdrawn through tissue adjacent the opening to be closed to close the opening, the needle being disposed proximal to the upper surface of the tissue and advanced distally through the tissue to retrieve the length of suture, the suturing device comprising: a shaft having a proximal end and a distal end;at least one foot on the distal end of the shaft, the at least one foot being movable with respect to the shaft; anda flexible guidebody extending from the distal end of the shaft.
  • 13. The method according to claim 12, wherein the suturing device is further configured to form a knot in the suture adjacent the opening.
  • 14. The method according to claim 13, further comprising tensioning the suture across the opening.
  • 15. A method according to claim 12 wherein the suturing device further comprises both a first foot on the distal end of the shaft and a second foot on the distal end of the shaft, both the first and the second foot being movable with respect to the shaft.
Parent Case Info

This application is a continuation of and claims the benefit of priority from application Ser. No. 10/152,272, filed May 20, 2002, now U.S. Pat. No. 6,964,668, which is a continuation-in-part of and claims the benefit of priority from application Ser. No. 09/651,344, filed Aug. 29, 2000, now U.S. Pat. No. 7,001,400, which is a division of and claims the benefit of priority from application Ser. No. 09/262,402, filed on Mar. 4, 1999, now U.S. Pat. No. 6,136,010. The disclosures of both application Ser. No. 09/651,344 and U.S. Pat. No. 6,136,010 are hereby incorporated by reference.

US Referenced Citations (567)
Number Name Date Kind
312408 Wackerhagen Feb 1885 A
597165 Hall Jan 1898 A
659422 Shidler Oct 1900 A
989231 Davis Apr 1911 A
1574362 Callahan Sep 1922 A
1625602 Gould et al. Apr 1927 A
1940351 Howard Mar 1933 A
2012776 Roeder Aug 1935 A
2131321 Hart Oct 1937 A
2108206 Meeker Feb 1938 A
2127903 Bowen Aug 1938 A
2371978 Perham Mar 1945 A
2397823 Walter Apr 1946 A
RE22857 Ogburn Mar 1947 E
2595086 Larzelere Nov 1948 A
2588589 Tauber Mar 1952 A
2610631 Calicchio Sep 1952 A
2646045 Priestley Jul 1953 A
2692599 Creelman Oct 1954 A
2941489 Fischbein Jun 1960 A
2959172 Held Nov 1960 A
3033156 Verlish May 1962 A
3104666 Hale et al. Sep 1963 A
3197102 Bates et al. Jul 1965 A
3359983 Northey Dec 1967 A
3413397 Bierbaum et al. Nov 1968 A
3422181 Chirgwin, Jr. Jan 1969 A
3470875 Johnson Oct 1969 A
3485234 Stevens Dec 1969 A
3587115 Shiley Jun 1971 A
3630205 Listner Dec 1971 A
3653388 Tenckhoff Apr 1972 A
3665926 Flores May 1972 A
3776237 Hill et al. Dec 1973 A
3802438 Wolvek Apr 1974 A
3814104 Irnich et al. Jun 1974 A
3820544 Semm Jun 1974 A
3840017 Violante Oct 1974 A
3874388 King et al. Apr 1975 A
3878848 Hiebert Apr 1975 A
3908662 Razgulov et al. Sep 1975 A
3918455 Coplan Nov 1975 A
3926194 Greenberg et al. Dec 1975 A
3939820 Grayzel Feb 1976 A
3985138 Jarvik Oct 1976 A
4011872 Komiya Mar 1977 A
4018228 Goosen Apr 1977 A
4109658 Hughes Aug 1978 A
4128100 Wendorff Dec 1978 A
4135623 Thyen Jan 1979 A
4161951 Scanlan, Jr. Jul 1979 A
4168073 LaRue Sep 1979 A
4182339 Hardy, Jr. Jan 1980 A
4185636 Gabbay et al. Jan 1980 A
4216776 Downie et al. Aug 1980 A
4217665 Bex et al. Aug 1980 A
4235177 Arbuckle Nov 1980 A
4235238 Ogiu et al. Nov 1980 A
4316469 Kapitanov Feb 1982 A
4317445 Robinson Mar 1982 A
4411654 Boarini et al. Oct 1983 A
4412832 Kling et al. Nov 1983 A
4437465 Nomoto et al. Mar 1984 A
4469101 Coleman et al. Sep 1984 A
4492229 Grunwald Jan 1985 A
4493323 Albright et al. Jan 1985 A
4501276 Lombardi Feb 1985 A
4553543 Amarasinghe Nov 1985 A
4586614 Ger May 1986 A
4587969 Gillis May 1986 A
4596559 Fleischhacker Jun 1986 A
4610248 Rosenberg Sep 1986 A
4629450 Suzuki et al. Dec 1986 A
4651733 Mobin-Uddin Mar 1987 A
4655211 Sakamoto et al. Apr 1987 A
4702250 Ovil et al. Oct 1987 A
4723549 Wholey et al. Feb 1988 A
4738666 Fuqua Apr 1988 A
4744364 Kensey May 1988 A
4748982 Horzewski et al. Jun 1988 A
4782954 Reynolds Nov 1988 A
4803984 Narayanan et al. Feb 1989 A
4830002 Semm May 1989 A
4836205 Barrett Jun 1989 A
4845851 Warthen Jul 1989 A
4848341 Ahmad Jul 1989 A
4852568 Kensey Aug 1989 A
4890612 Kensey Jan 1990 A
4898155 Ovil et al. Feb 1990 A
4911164 Roth Mar 1990 A
4917089 Sideris Apr 1990 A
4926860 Stice et al. May 1990 A
4929246 Sinofsky May 1990 A
4935027 Yo on Jun 1990 A
4950285 Wilk Aug 1990 A
4957498 Caspari et al. Sep 1990 A
4966600 Songer et al. Oct 1990 A
4981149 Yoon et al. Jan 1991 A
4983168 Moorehead Jan 1991 A
4984581 Stice Jan 1991 A
5002563 Pyka et al. Mar 1991 A
5009643 Reich et al. Apr 1991 A
5021059 Kensey et al. Jun 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5047039 Avant et al. Sep 1991 A
5059201 Asnis Oct 1991 A
5061274 Kensey Oct 1991 A
5074874 Yoon et al. Dec 1991 A
5078721 McKeating Jan 1992 A
5080664 Jain Jan 1992 A
5100419 Ehlers Mar 1992 A
5100422 Berguer et al. Mar 1992 A
5100432 Matsutani Mar 1992 A
5108421 Fowler Apr 1992 A
5109780 Slouf et al. May 1992 A
5129882 Weldon et al. Jul 1992 A
5129912 Noda et al. Jul 1992 A
5129913 Ruppert Jul 1992 A
5144961 Chen et al. Sep 1992 A
5147373 Ferzli Sep 1992 A
5156788 Chesterfield et al. Oct 1992 A
5160339 Chen et al. Nov 1992 A
5163946 Li Nov 1992 A
5169041 Tan Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5176691 Pierce Jan 1993 A
5178629 Kammerer Jan 1993 A
5192287 Fournier et al. Mar 1993 A
5192294 Blake, III Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5192302 Kensey et al. Mar 1993 A
5201744 Jones Apr 1993 A
5207703 Jain May 1993 A
5211650 Noda May 1993 A
5217470 Weston Jun 1993 A
5217471 Burkhart Jun 1993 A
5217485 Liv et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222974 Kensey et al. Jun 1993 A
5234443 Phan et al. Aug 1993 A
5234445 Walker et al. Aug 1993 A
5237985 Hodgson et al. Aug 1993 A
5237996 Waldman Aug 1993 A
5242427 Bilweis Sep 1993 A
5250033 Evans et al. Oct 1993 A
5250053 Snyder Oct 1993 A
5250054 Li Oct 1993 A
5254105 Haaga Oct 1993 A
5254113 Wilk Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5258003 Ciaglia et al. Nov 1993 A
5259846 Granger et al. Nov 1993 A
5275616 Fowler Jan 1994 A
5279311 Snyder Jan 1994 A
5281236 Bognato et al. Jan 1994 A
5281237 Gimpelson Jan 1994 A
5284485 Kammerer et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290284 Adair Mar 1994 A
5290297 Phillips Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292309 VanTassel et al. Mar 1994 A
5292327 Dodd et al. Mar 1994 A
5292332 Lee Mar 1994 A
5293881 Green et al. Mar 1994 A
5295993 Green Mar 1994 A
5300085 Yock Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5304185 Taylor Apr 1994 A
5306254 Nash et al. Apr 1994 A
5312024 Grant et al. May 1994 A
5312423 Rosenbluth et al. May 1994 A
5318578 Hasson Jun 1994 A
5320629 Noda et al. Jun 1994 A
5320632 Heidmueller Jun 1994 A
5330445 Haaga Jul 1994 A
5330491 Walker et al. Jul 1994 A
5334217 Das Aug 1994 A
5336229 Noda Aug 1994 A
5336230 Leichtling et al. Aug 1994 A
5336231 Adair Aug 1994 A
5342369 Harryman, II Aug 1994 A
5353974 Brinkerhoff et al. Oct 1994 A
5354279 Hofling Oct 1994 A
5354312 Brinkerhoff et al. Oct 1994 A
5364407 Poll Nov 1994 A
5364408 Gordon Nov 1994 A
5368595 Lewis Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5374275 Bradley et al. Dec 1994 A
5374278 Chesterfield et al. Dec 1994 A
5376096 Foster Dec 1994 A
5383896 Gershony et al. Jan 1995 A
5383905 Golds et al. Jan 1995 A
5385569 Swor Jan 1995 A
5387221 Bisgaard Feb 1995 A
5387227 Grice Feb 1995 A
5391176 de la Torre Feb 1995 A
5391182 Chin Feb 1995 A
5395332 Ressemann et al. Mar 1995 A
5395349 Quiachon et al. Mar 1995 A
5397310 Chu et al. Mar 1995 A
5397325 Delia Badia et al. Mar 1995 A
5397326 Mangum Mar 1995 A
5403329 Hinchcliffe Apr 1995 A
5403330 Tuason Apr 1995 A
5403331 Chesterfield et al. Apr 1995 A
5403338 Milo Apr 1995 A
5405352 Weston Apr 1995 A
5411481 Allen et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5417684 Jackson et al. May 1995 A
5417699 Klein et al. May 1995 A
5419765 Weldon et al. May 1995 A
5425705 Evard et al. Jun 1995 A
5425737 Burbank et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5433700 Peters Jul 1995 A
5452733 Sterman et al. Sep 1995 A
5454822 Schob et al. Oct 1995 A
5454834 Boebel et al. Oct 1995 A
5458574 Machold et al. Oct 1995 A
5462560 Stevens Oct 1995 A
5462561 Voda Oct 1995 A
5464426 Bonutti Nov 1995 A
5466241 Leroy et al. Nov 1995 A
5470338 Whitfield et al. Nov 1995 A
5474568 Scott Dec 1995 A
5476469 Hathaway et al. Dec 1995 A
5476470 Fitzgibbons, Jr. Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480407 Wan et al. Jan 1996 A
5486190 Green Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5492119 Abrams Feb 1996 A
5496332 Sierra et al. Mar 1996 A
5507744 Tay et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5507757 Sauer et al. Apr 1996 A
5507758 Thomason et al. Apr 1996 A
5509902 Raulerson Apr 1996 A
5520655 Davila et al. May 1996 A
5520665 Fleetwood May 1996 A
5520691 Branch May 1996 A
5520702 Sauer et al. May 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
D372310 Hartnett Jul 1996 S
5531700 Moore et al. Jul 1996 A
5536267 Edwards Jul 1996 A
5536273 Lehrer Jul 1996 A
5540701 Sharkey et al. Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5545171 Sharkey et al. Aug 1996 A
5545178 Kensey et al. Aug 1996 A
5545180 Le et al. Aug 1996 A
5549618 Fleenor et al. Aug 1996 A
5549631 Bonutti Aug 1996 A
5554162 DeLange Sep 1996 A
5562684 Kammerer Oct 1996 A
5562686 Sauer et al. Oct 1996 A
5562688 Riza Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5567435 Hubbell et al. Oct 1996 A
5569269 Hart et al. Oct 1996 A
5569271 Hoel Oct 1996 A
5571120 Yoon Nov 1996 A
5573540 Yoon Nov 1996 A
5584842 Fogarty et al. Dec 1996 A
5591177 Lehrer Jan 1997 A
5591179 Edelstein Jan 1997 A
5591206 Moufarrege Jan 1997 A
5593421 Bauer Jan 1997 A
5603718 Xu Feb 1997 A
5607435 Sachdeva et al. Mar 1997 A
5609597 Lehrer Mar 1997 A
5611794 Sauer et al. Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5613975 Christy Mar 1997 A
5624446 Harryman, II Apr 1997 A
5626588 Sauer et al. May 1997 A
5643289 Sauer et al. Jul 1997 A
5643295 Yoon Jul 1997 A
5643318 Tsukernik et al. Jul 1997 A
5647372 Tovey et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5662664 Gordon et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5674231 Green et al. Oct 1997 A
5676689 Kensey et al. Oct 1997 A
5693061 Pierce et al. Dec 1997 A
5700273 Buelna et al. Dec 1997 A
5707379 Fleenor et al. Jan 1998 A
5713899 Marnay et al. Feb 1998 A
5713910 Gordon et al. Feb 1998 A
5716369 Riza Feb 1998 A
5720574 Barella Feb 1998 A
5720757 Hathaway et al. Feb 1998 A
5722981 Stevens Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5728109 Schulze et al. Mar 1998 A
5728114 Evans et al. Mar 1998 A
5728133 Kontos Mar 1998 A
5728143 Gough et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5741276 Poloyko et al. Apr 1998 A
5741280 Fleenor Apr 1998 A
5746755 Wood et al. May 1998 A
5749890 Shaknovich May 1998 A
5755727 Kontos May 1998 A
5759188 Yoon Jun 1998 A
5759189 Ferragamo et al. Jun 1998 A
5766183 Sauer Jun 1998 A
5766186 Faraz et al. Jun 1998 A
5766217 Christy Jun 1998 A
5769862 Kammerer et al. Jun 1998 A
5779719 Klein et al. Jul 1998 A
5782860 Epstein et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5792151 Heck et al. Aug 1998 A
5792152 Klein et al. Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797929 Andreas et al. Aug 1998 A
5799661 Boyd et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810850 Hathaway et al. Sep 1998 A
5814069 Schulze et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5820631 Nobles Oct 1998 A
5824010 McDonald Oct 1998 A
5824111 Schall et al. Oct 1998 A
5830125 Scribner et al. Nov 1998 A
5836955 Buelna et al. Nov 1998 A
5836956 Buelna et al. Nov 1998 A
5846253 Buelna et al. Dec 1998 A
5848714 Robson et al. Dec 1998 A
5855576 LeVeen et al. Jan 1999 A
5855585 Kontos Jan 1999 A
5860963 Azam et al. Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5871490 Schulze et al. Feb 1999 A
5871502 Suryadevara Feb 1999 A
5873876 Christy Feb 1999 A
5876411 Kontos Mar 1999 A
5897487 Ouchi Apr 1999 A
5897564 Schulze et al. Apr 1999 A
5902311 Andreas et al. May 1999 A
5904597 Doi et al. May 1999 A
5904690 Middleman et al. May 1999 A
5904697 Gifford, III et al. May 1999 A
5906631 Imran May 1999 A
5919207 Taheri Jul 1999 A
5921994 Andreas et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5951547 Gough et al. Sep 1999 A
5951590 Goldfarb Sep 1999 A
5954732 Hart et al. Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5957938 Zhu et al. Sep 1999 A
5964773 Greenstein Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5976161 Kirsch et al. Nov 1999 A
5980517 Gough et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5993466 Yoon Nov 1999 A
5993476 Groiso Nov 1999 A
5997555 Kontos Dec 1999 A
6001109 Kontos Dec 1999 A
6009877 Edwards Jan 2000 A
6022372 Kontos Feb 2000 A
6024747 Kontos Feb 2000 A
6036699 Andreas et al. Mar 2000 A
6042601 Smith Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6048354 Lawrence Apr 2000 A
6048357 Kontos Apr 2000 A
6056744 Edwards May 2000 A
6068603 Suzuki May 2000 A
6077276 Kontos Jun 2000 A
6077279 Kontos Jun 2000 A
6083242 Cook Jul 2000 A
6117144 Nobles et al. Sep 2000 A
6117145 Wood et al. Sep 2000 A
6126675 Shchervinsky et al. Oct 2000 A
6132439 Kontos Oct 2000 A
6132440 Hathaway et al. Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6139556 Kontos Oct 2000 A
6143004 Davis Nov 2000 A
6152936 Christy et al. Nov 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6190396 Whitin et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6206895 Levinson et al. Mar 2001 B1
6221084 Fleenor Apr 2001 B1
6245079 Nobles et al. Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6296657 Brucker Oct 2001 B1
6306081 Ishikawa et al. Oct 2001 B1
6322580 Kanner Nov 2001 B1
6348059 Hathaway et al. Feb 2002 B1
6355050 Andreas et al. Mar 2002 B1
6358258 Arcia et al. Mar 2002 B1
6395015 Borst et al. May 2002 B1
6397110 Kuzma May 2002 B1
6428472 Haas Aug 2002 B1
6428549 Kontos Aug 2002 B1
6436109 Kontos Aug 2002 B1
6443963 Baldwin et al. Sep 2002 B1
6451031 Kontos Sep 2002 B1
6461366 Seguin Oct 2002 B1
6511489 Field et al. Jan 2003 B2
6517498 Burbank et al. Feb 2003 B1
6517553 Klein et al. Feb 2003 B2
6533812 Swanson et al. Mar 2003 B2
6551330 Bain et al. Apr 2003 B1
6558399 Isbell et al. May 2003 B1
6562052 Nobles et al. May 2003 B2
6569159 Edwards et al. May 2003 B1
6569185 Ungs May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6610072 Christy et al. Aug 2003 B1
6623509 Ginn Sep 2003 B2
6623510 Carly et al. Sep 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6641592 Sauer et al. Nov 2003 B1
6663655 Ginn et al. Dec 2003 B2
6676685 Pedros et al. Jan 2004 B2
6689051 Nakada et al. Feb 2004 B2
6695867 Ginn et al. Feb 2004 B2
6716228 Tal Apr 2004 B2
6743195 Zucker Jun 2004 B2
6743259 Ginn Jun 2004 B2
6745079 King Jun 2004 B2
6746457 Dana et al. Jun 2004 B2
6749621 Pantages et al. Jun 2004 B2
6749622 McGuckin, Jr. et al. Jun 2004 B2
6767356 Kanner et al. Jul 2004 B2
6776785 Yencho et al. Aug 2004 B1
6837906 Ginn Jan 2005 B2
6846319 Ginn et al. Jan 2005 B2
6890343 Ginn et al. May 2005 B2
6896692 Ginn et al. May 2005 B2
6911034 Nobles et al. Jun 2005 B2
6939357 Navarro et al. Sep 2005 B2
6964668 Modesitt et al. Nov 2005 B2
6969397 Ginn Nov 2005 B2
7001400 Modesitt et al. Feb 2006 B1
7029480 Klein et al. Apr 2006 B2
7029481 Burdulis, Jr. et al. Apr 2006 B1
7048747 Arcia et al. May 2006 B2
7060084 Loshakove et al. Jun 2006 B1
7063661 Okada Jun 2006 B2
7063710 Takamoto et al. Jun 2006 B2
7063711 Loshakove et al. Jun 2006 B1
7083635 Ginn Aug 2006 B2
7112225 Ginn Sep 2006 B2
7122002 Okada Oct 2006 B2
7147646 Dana et al. Dec 2006 B2
7160309 Voss Jan 2007 B2
7179266 Kontos Feb 2007 B2
7229458 Boecker et al. Jun 2007 B2
7235087 Modesitt et al. Jun 2007 B2
7270672 Singer Sep 2007 B1
7316704 Bagaoisan et al. Jan 2008 B2
7326230 Ravikumar Feb 2008 B2
7331979 Khosravi et al. Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
7361183 Ginn Apr 2008 B2
7361185 O'Malley et al. Apr 2008 B2
7377927 Burdulis, Jr. et al. May 2008 B2
7390328 Modesitt Jun 2008 B2
7393363 Ginn Jul 2008 B2
7431727 Cole et al. Oct 2008 B2
7445626 Songer et al. Nov 2008 B2
7449024 Stafford Nov 2008 B2
7462188 McIntosh Dec 2008 B2
7507200 Okada Mar 2009 B2
7727249 Rahmani Jun 2010 B2
7731655 Smith et al. Jun 2010 B2
7749249 Gelbart et al. Jul 2010 B2
7837696 Modesitt et al. Nov 2010 B2
20010046518 Sawhney Nov 2001 A1
20020045908 Nobles et al. Apr 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020099389 Michler et al. Jul 2002 A1
20020106409 Sawhney et al. Aug 2002 A1
20020177876 Roby et al. Nov 2002 A1
20020188275 McGuckin et al. Dec 2002 A1
20030093093 Modesitt et al. May 2003 A1
20030195529 Takamoto et al. Oct 2003 A1
20030233095 Urbanski et al. Dec 2003 A1
20040009205 Sawhney Jan 2004 A1
20040092964 Modesitt et al. May 2004 A1
20040093027 Fabisiak et al. May 2004 A1
20040097978 Modesitt et al. May 2004 A1
20040122449 Modesitt Jun 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040143290 Brightbill Jul 2004 A1
20040158127 Okada Aug 2004 A1
20040158287 Cragg et al. Aug 2004 A1
20040167511 Buehlmann et al. Aug 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186487 Klein et al. Sep 2004 A1
20040191277 Sawhney et al. Sep 2004 A1
20040210251 Kontos Oct 2004 A1
20040215232 Belhe et al. Oct 2004 A1
20040225301 Roop et al. Nov 2004 A1
20040267193 Bagaoisan et al. Dec 2004 A1
20040267308 Bagaoisan et al. Dec 2004 A1
20050059982 Zung et al. Mar 2005 A1
20050070923 McIntosh Mar 2005 A1
20050075665 Brenzel et al. Apr 2005 A1
20050085851 Fiehler et al. Apr 2005 A1
20050085854 Ginn Apr 2005 A1
20050085855 Forsberg Apr 2005 A1
20050121042 Belhe et al. Jun 2005 A1
20050143761 Modesitt Jun 2005 A1
20050149117 Khosravi et al. Jul 2005 A1
20050177189 Ginn et al. Aug 2005 A1
20050222614 Ginn et al. Oct 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050267528 Ginn et al. Dec 2005 A1
20050273137 Ginn Dec 2005 A1
20060034930 Khosravi et al. Feb 2006 A1
20060047313 Khanna et al. Mar 2006 A1
20060089635 Young et al. Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060100664 Pai et al. May 2006 A1
20060142785 Modesitt Jun 2006 A1
20060167477 Arcia et al. Jul 2006 A1
20060173469 Klein et al. Aug 2006 A1
20060253037 Ginn et al. Nov 2006 A1
20060253072 Pai et al. Nov 2006 A1
20060259049 Harada et al. Nov 2006 A1
20070032798 Pantages et al. Feb 2007 A1
20070032799 Pantages et al. Feb 2007 A1
20070032801 Pantages et al. Feb 2007 A1
20070049967 Sibbitt, Jr. et al. Mar 2007 A1
20070049968 Sibbitt, Jr. et al. Mar 2007 A1
20070060895 Sibbitt, Jr. et al. Mar 2007 A1
20070060950 Khosravi et al. Mar 2007 A1
20070112304 Voss May 2007 A1
20070123817 Khosravi et al. May 2007 A1
20070167959 Modesitt Jul 2007 A1
20070203506 Sibbitt, Jr. et al. Aug 2007 A1
20080009794 Bagaoisan et al. Jan 2008 A1
20080065151 Ginn Mar 2008 A1
20080065152 Carley Mar 2008 A1
20080287967 Andreas et al. Nov 2008 A1
20080319458 Reynolds Dec 2008 A1
20090005793 Pantages et al. Jan 2009 A1
20090036906 Stafford Feb 2009 A1
20090048615 McIntosh Feb 2009 A1
20090088779 Zung et al. Apr 2009 A1
Foreign Referenced Citations (87)
Number Date Country
912619 May 1954 DE
4210724 Jul 1993 DE
9217932 Jul 1993 DE
4220283 Dec 1993 DE
10211360 Oct 2003 DE
0 140 557 May 1985 EP
0 207 545 Jan 1987 EP
0 474 887 Mar 1992 EP
0 478 358 Apr 1992 EP
0 478 887 Apr 1992 EP
0 589 409 Sep 1992 EP
0 543 499 Oct 1992 EP
0 624 343 Apr 1993 EP
0 542 126 May 1993 EP
0 568 098 Nov 1993 EP
0 669 101 Aug 1995 EP
0 669 102 Aug 1995 EP
0 669 103 Aug 1995 EP
0 684 012 Nov 1995 EP
0 812 571 Mar 1997 EP
0 941 698 Sep 1999 EP
1059544 Mar 1954 FR
2768324 Mar 1999 FR
51143386 Nov 1976 JP
5220794 Feb 1977 JP
2119866 May 1990 JP
542161 Feb 1993 JP
820810 Apr 1981 SU
993922 Feb 1983 SU
1093329 May 1984 SU
1174036 Aug 1985 SU
1544383 Feb 1990 SU
1648400 May 1991 SU
WO 8503858 Sep 1985 WO
WO 0135833 Feb 1994 WO
WO 9405213 Mar 1994 WO
WO 9413211 Jun 1994 WO
WO 9427503 Dec 1994 WO
WO 9428801 Dec 1994 WO
WO 9505121 Feb 1995 WO
WO 9513021 May 1995 WO
WO 9525468 Sep 1995 WO
WO 9535065 Dec 1995 WO
WO 9609006 Mar 1996 WO
WO 9700046 Jan 1997 WO
WO 9703613 Feb 1997 WO
WO 9707745 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9713461 Apr 1997 WO
WO 9717901 May 1997 WO
WO 9720505 Jun 1997 WO
WO 9727897 Aug 1997 WO
WO 9804195 Feb 1998 WO
WO 9842262 Oct 1998 WO
WO 9947049 Sep 1999 WO
WO 0012013 Mar 2000 WO
WO 0051498 Sep 2000 WO
WO 0069342 Nov 2000 WO
WO 0119259 Mar 2001 WO
WO 0236021 May 2002 WO
WO 02062234 Aug 2002 WO
WO 03003925 Jan 2003 WO
WO 03094748 Nov 2003 WO
WO 03099134 Dec 2003 WO
WO 2005000126 Jan 2005 WO
WO 2005023119 Mar 2005 WO
WO 2005025430 Mar 2005 WO
WO 2005030060 Apr 2005 WO
WO 2005041782 May 2005 WO
WO 2005063129 Jul 2005 WO
WO 2005065549 Jul 2005 WO
WO 2005092204 Oct 2005 WO
WO 2005112782 Dec 2005 WO
WO 2006026116 Mar 2006 WO
WO 2006052611 May 2006 WO
WO 2006052612 May 2006 WO
WO 2006078578 Jul 2006 WO
WO 2006115901 Nov 2006 WO
WO 2006115904 Nov 2006 WO
WO 2006118877 Nov 2006 WO
WO 2007019016 Feb 2007 WO
WO 2007025014 Mar 2007 WO
WO 2007025017 Mar 2007 WO
WO 2007025018 Mar 2007 WO
WO 2007025019 Mar 2007 WO
WO 2007081836 Jul 2007 WO
WO 2010031050 Mar 2010 WO
Related Publications (1)
Number Date Country
20060079914 A1 Apr 2006 US
Divisions (1)
Number Date Country
Parent 09262402 Mar 1999 US
Child 09651344 US
Continuation in Parts (1)
Number Date Country
Parent 09651344 Aug 2000 US
Child 11273107 US