Artifact reduction in iterative inversion of geophysical data

Information

  • Patent Grant
  • 8694299
  • Patent Number
    8,694,299
  • Date Filed
    Thursday, March 10, 2011
    13 years ago
  • Date Issued
    Tuesday, April 8, 2014
    10 years ago
Abstract
Method for reducing artifacts in a subsurface physical properties model (120) inferred by iterative inversion (140) of geophysical data (130), wherein the artifacts are associated with some approximation (110) made during the iterative inversion. In the method, some aspect of the approximation is changed (160) as the inversion is iterated such that the artifacts do not increase by coherent addition.
Description
FIELD OF THE INVENTION

The invention relates generally to the field of geophysical prospecting, and more particularly to geophysical data processing. Specifically, the invention pertains to reducing artifacts in iterative inversion of data resulting from approximations made in the inversion.


BACKGROUND OF THE INVENTION

Geophysical inversion [1,2] attempts to find a model of subsurface properties that optimally explains observed data and satisfies geological and geophysical constraints. There are a large number of well known methods of geophysical inversion. These well known methods fall into one of two categories, iterative inversion and non-iterative inversion. The following are definitions of what is commonly meant by each of the two categories:

    • Non-iterative inversion—inversion that is accomplished by assuming some simple background model and updating the model based on the input data. This method does not use the updated model as input to another step of inversion. For the case of seismic data these methods are commonly referred to as imaging, migration, diffraction tomography or Born inversion.
    • Iterative inversion—inversion involving repetitious improvement of the subsurface properties model such that a model is found that satisfactorily explains the observed data. If the inversion converges, then the final model will better explain the observed data and will more closely approximate the actual subsurface properties. Iterative inversion usually produces a more accurate model than non-iterative inversion, but is much more expensive to compute.


Two iterative inversion methods commonly employed in geophysics are cost function optimization and series methods. Cost function optimization involves iterative minimization or maximization of the value, with respect to the model M, of a cost function S(M) which is a measure of the misfit between the calculated and observed data (this is also sometimes referred to as the objective function), where the calculated data is simulated with a computer using the current geophysical properties model and the physics governing propagation of the source signal in a medium represented by a given geophysical properties model. The simulation computations may be done by any of several numerical methods including but not limited to finite difference, finite element or ray tracing. Series methods involve inversion by iterative series solution of the scattering equation (Weglein [3]). The solution is written in series form, where each term in the series corresponds to higher orders of scattering. Iterations in this case correspond to adding a higher order term in the series to the solution.


Cost function optimization methods are either local or global [4]. Global methods simply involve computing the cost function S(M) for a population of models {M1, M2, M3, . . . } and selecting a set of one or more models from that population that approximately minimize S(M). If further improvement is desired this new selected set of models can then be used as a basis to generate a new population of models that can be again tested relative to the cost function S(M). For global methods each model in the test population can be considered to be an iteration, or at a higher level each set of populations tested can be considered an iteration. Well known global inversion methods include Monte Carlo, simulated annealing, genetic and evolution algorithms.


Local cost function optimization involves:

    • 1. selecting a starting model,
    • 2. computing the gradient of the cost function S(M) with respect to the parameters that describe the model,
    • 3. searching for an updated model that is a perturbation of the starting model in the gradient direction that better explains the observed data.


      This procedure is iterated by using the new updated model as the starting model for another gradient search. The process continues until an updated model is found which satisfactorily explains the observed data. Commonly used local cost function inversion methods include gradient search, conjugate gradients and Newton's method.


As discussed above, iterative inversion is preferred over non-iterative inversion, because it yields more accurate subsurface parameter models. Unfortunately, iterative inversion is so computationally expensive that it is impractical to apply it to many problems of interest. This high computational expense is the result of the fact that all inversion techniques require many compute intensive forward and/or reverse simulations. Forward simulation means computation of the data forward in time, and reverse simulation means computation of the data backward in time.


Due to its high computational cost, iterative inversion often requires application of some type of approximation that speeds up the computation. Unfortunately, these approximations usually result in errors in the final inverted model which can be viewed as artifacts of the approximations employed in the inversion.


What is needed is a general method of iteratively inverting data that allows for the application of approximations without generating artifacts in the resulting inverted model. The present invention satisfies this need.


SUMMARY OF THE INVENTION

A physical properties model gives one or more subsurface properties as a function of location in a region. Seismic wave velocity is one such physical property, but so are (for example) density, p-wave velocity, shear wave velocity, several anisotropy parameters, attenuation (q) parameters, porosity, permeability, and resistivity. The invention is a method for reducing artifacts in a subsurface physical property model caused by an approximation, other than source encoding, in an iterative, computerized geophysical data inversion process, said method comprising varying the approximation as the iterations progress. In one particular embodiment, the invention is a computer-implemented method for inversion of measured geophysical data to determine a physical properties model for a subsurface region, comprising:


(a) assuming a physical properties model of the subsurface region, said model providing values of at least one physical property at locations throughout the subsurface region;


(b) selecting an iterative data inversion process having a step wherein a calculation is made of an update to the physical properties model that makes it more consistent with the measured geophysical data;


(c) making in said calculation an approximation that either speeds up the selected iterative data inversion process other than by source encoding, or that works an accuracy tradeoff;


(d) executing, using the computer, one cycle of the selected iterative data inversion process with said approximation and using the physical properties model;


(e) executing, using the computer, a next iterative inversion cycle, wherein a selection is made to either change some aspect of the approximation or not to change it;


(f) repeating (e) as necessary, changing the approximation in some or all of the iteration cycles, until a final iteration wherein a selected convergence criterion is met or another stopping condition is reached; and


(g) downloading the updated physical properties model from the final iteration or saving it to computer storage.


In some embodiments of the invention, one or more artifact types are identified in inversion results as being caused by the approximation, and the aspect of the approximation that is changed in some or all iteration cycles is selected for having an effect on artifacts of the one or more identified artifact types. The effect on artifacts may be such that artifacts from one approximation do not add constructively with artifacts from another iteration cycle that uses an approximation with a changed aspect.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings in which:



FIG. 1 is a flow chart showing basic steps in a general method disclosed herein;



FIG. 2 is a flow chart showing basic steps in a particular embodiment of the method of FIG. 1 wherein the objective function is approximated by encoding and summing the sources;



FIGS. 3-5 pertain to an example application of the invention embodiment of FIG. 2:



FIG. 3 shows the seismic velocity model from which seismic data were computed for the example;



FIG. 4 shows inversion of data from the seismic velocity model in FIG. 3 using the inversion method summarized in FIG. 2;



FIG. 5 shows inversion of data from the seismic velocity model in FIG. 3 using the inversion method summarized in FIG. 2 without the step in which the code used to encode the sources is changed between iterations;



FIG. 6 is a flow chart showing basic steps in a particular embodiment of the method of FIG. 1 wherein the approximation is varying the size of the grid cells used in the numerical inversion so as to use a fine grid only where needed;



FIGS. 7-9 pertain to an example application of the invention embodiment of FIG. 6:



FIG. 7 is the seismic velocity model from which seismic data were computed for the example;



FIG. 8 shows an inversion of data from the seismic velocity model in FIG. 7 using the inversion method summarized in FIG. 6;



FIG. 9 is an inversion of data from the seismic velocity model in FIG. 7 using the inversion method summarized in FIG. 6 without the step in which the depth of the artificial reflection generator is changed between iterations;



FIG. 10 is a flow chart showing basic steps in a particular embodiment of the method of FIG. 1, wherein the approximation is using only a subset of measured data;



FIGS. 11-13 pertain to an example application of the invention embodiment of FIG. 10:



FIG. 11 shows the seismic velocity model from which seismic data were computed for the example;



FIG. 12 shows an inversion of data from the seismic velocity model in FIG. 11 using the inversion method summarized in FIG. 10; and



FIG. 13 shows an inversion of data from the seismic velocity model in FIG. 11 using the inversion method summarized in FIG. 10 without the step in which the subset of measured data is changed randomly between iterations.





Due to patent constraints, FIGS. 3-5, 7-9, and 11-13 are gray-scale conversions of color displays.


The invention will be described in connection with its preferred embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.


DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is a method for reducing artifacts caused by the application of approximations during iterative inversion of geophysical data. Geophysical inversion attempts to find a model of subsurface properties that optimally explains observed geophysical data. The example of seismic data is used throughout to illustrate the inventive method, but the method may be advantageously applied to any method of geophysical prospecting and any type of geophysical data. The data inversion is most accurately performed using iterative methods. Unfortunately iterative inversion is often prohibitively expensive computationally. The majority of compute time in iterative inversion is spent performing expensive forward and/or reverse simulations of the geophysical data (here forward means forward in time and reverse means backward in time). The high cost of these simulations is partly due to the fact that each geophysical source in the input data must be computed in a separate computer run of the simulation software. Thus, the cost of simulation is proportional to the number of sources in the geophysical data, typically on the order of 1,000 to 10,000 sources for a geophysical survey. In typical practice, approximations are applied during the inversion to reduce the cost of inversion. These approximations result in errors, or artifacts, in the inverted model. This invention mitigates these artifacts by changing some aspect of the approximation between iterations of inversion so that the artifact during one iteration does not add constructively with the artifact in other iterations. Therefore the artifact is reduced in the inverted model.


Some common approximations made during iterative inversion that result in artifacts include:

    • 1. Processing applied to the measured data
    • 2. Inaccurate boundary conditions in the simulation
    • 3. Approximations in the simulation (e.g. low order approximations of derivatives used in the simulator or the size of the grid cells used in the calculation)
    • 4. Approximations in the parameterization of the model (e.g. use of a spatial grid of parameters that is too coarse to accurately represent variations in the model).


      Two iterative inversion methods commonly employed in geophysics are cost function optimization and series methods. The present invention can be applied to both of these methods. A summary of each of these methods follows next.


      Iterative Cost Function Optimization


Cost function optimization is performed by minimizing the value, with respect to a subsurface model M, of a cost function S(M) (sometimes referred to as an objective function), which is a measure of misfit between the observed (measured) geophysical data and corresponding data calculated by simulation of the assumed model. A simple cost function S often used in geophysical inversion is:










S


(
M
)


=




g
=
1


N
g







r
=
1


N
r







t
=
1


N

t














ψ
calc



(

M
,
g
,
r
,
t
,

w
g


)


-


ψ
obs



(

g
,
r
,
t
,

w
g


)





N








(
1
)








where

  • N=norm for cost function (typically the least squares or L2-Norm is used in which case N=2)
  • M=subsurface model,
  • g=gather index (for point source data this would correspond to the individual sources),
  • Ng=number of gathers,
  • r=receiver index within gather,
  • Nr=number of receivers in a gather,
  • t=time sample index within a data record,
  • Nt=number of time samples,
  • ψcalc=calculated geophysical data from the model M,
  • ψobs=measured geophysical data, and
  • wg=source signature for gather g, i.e. source signal without earth filtering effects.


The gathers in Equation 1 can be any type of gather that can be simulated in one run of a forward modeling program. For seismic data, the gathers correspond to a seismic shot, although the shots can be more general than point sources [5]. For point sources, the gather index g corresponds to the location of individual point sources. For plane wave sources, g would correspond to different plane wave propagation directions. This generalized source data, ψobs, can either be acquired in the field or can be synthesized from data acquired using point sources. The calculated data ψcalc on the other hand can usually be computed directly by using a generalized source function when forward modeling (e.g. for seismic data, forward modeling typically means solution of the anisotropic visco-elastic wave propagation equation or some approximation thereof). For many types of forward modeling, including finite difference modeling, the computation time needed for a generalized source is roughly equal to the computation time needed for a point source. The model M is a model of one or more physical properties of the subsurface region. Seismic wave velocity is one such physical property, but so are (for example) p-wave velocity, shear wave velocity, several anisotropy parameters, attenuation (q) parameters, porosity, and permeability. The model M might represent a single physical property or it might contain many different parameters depending upon the level of sophistication of the inversion. Typically, a subsurface region is subdivided into discrete cells, each cell being characterized by a single value of each parameter.


One major problem with iterative inversion is that computing ψcalc takes a large amount of computer time, and therefore computation of the cost function, S, is very time consuming. Furthermore, in a typical inversion project this cost function must be computed for many different models M.


Iterative Series Inversion


Besides cost function optimization, geophysical inversion can also be implemented using iterative series methods. A common method for doing this is to iterate the Lippmann-Schwinger equation [3]. The Lippmann-Schwinger equation describes scattering of waves in a medium represented by a physical properties model of interest as a perturbation of a simpler model. The equation is the basis for a series expansion that is used to determine scattering of waves from the model of interest, with the advantage that the series only requires calculations to be performed in the simpler model. This series can also be inverted to form an iterative series that allows the determination of the model of interest, from the measured data and again only requiring calculations to be performed in the simpler model. The Lippmann-Schwinger equation is a general formalism that can be applied to all types of geophysical data and models, including seismic waves. This method begins with the two equations:

LG=−I  (2)
L0G0=−I  (3)

where L, L0 are the actual and reference differential operators, G and G0 are the actual and reference Green's operators respectively and I is the unit operator. Note that G is the measured point source data, and G0 is the simulated point source data from the initial model. The Lippmann-Schwinger equation for scattering theory is:

G=G0+G0VG  (4)

where V=L−L0 from which the difference between the true and initial models can be extracted.


Equation 4 is solved iteratively for V by first expanding it in a series (assuming G=G0 for the first approximation of G and so forth) to get:

G=G0+G0VG0+G0VG0VG0+ . . .  (5)

Then V is expanded as a series:

V=V(1)+V(2)+V(3)+ . . .  (6)

where V(n) is the portion of V that is nth order in the residual of the data (here the residual of the data is G−G0 measured at the surface). Substituting Equation 6 into Equation 5 and collecting terms of the same order yields the following set of equations for the first 3 orders:

G−G0=G0V(1)G0  (7)
0=G0V(2)G0+G0V(1)G0V(1)G0  (8)
0=G0V(3)G0+G0V(1)G0V(2)G0+G0V(2)G0V(1)G0+G0V(1)G0V(1)G0V(1)G0  (9)

and similarly for higher orders in V. These equations may be solved iteratively by first solving Equation 7 for V(1) by inverting G0 on both sides of V(1) to yield:

V(1)=G0−1(G−G0)G0−1  (10)

V(1) from Equation 10 is then substituted into Equation 8 and this equation is solved for V(2) to yield:

V(2)=−G0−1G0V(1)G0V(1)G0G0−1  (11)

and so forth for higher orders of V.


Equation 10 involves a sum over sources and frequency which can be written out explicitly as:










V

(
1
)


=



ω





s





G
0

-
1




(


G
s

-

G

0

s



)




G

0

s


-
1









(
12
)








where Gs is the measured data for source s, G0s is the simulated data through the reference model for source s and G0s−1 can be interpreted as the downward extrapolated source signature from source s. Equation 10 when implemented in the frequency domain can be interpreted as follows: (1) Downward extrapolate through the reference model the source signature for each source (the G0s−1 term), (2) For each source, downward extrapolate the receivers of the residual data through the reference model (the G0−1(Gs−G0s) term), (3) multiply these two fields then sum over all sources and frequencies. The downward extrapolations in this recipe can be carried out using geophysical simulation software, for example using finite differences.


Example Embodiment

The flowchart of FIG. 1 shows basic steps in one embodiment of the present inventive method. In step 110, an approximation is selected that will improve some aspect of the inversion process. The improvement may be in the form of a speedup rather than increased accuracy. Examples of such approximations include use of an approximate objective function or use of an approximation in the simulation software. These approximations will often be chosen to reduce the computational cost of inversion. However, rather than a computational speed-up, the improvement may instead work an accuracy tradeoff, i.e. accept more inaccuracy in one aspect of the computation in return for more accuracy in some other aspect. In step 140, an update to an assumed physical properties model 120 is generated based on the measured data 130. In step 140 the approximation chosen in 110 is used to perform the update computations. Using iterative local cost function optimization as an example of iterative inversion, the “update computations” as that term is used herein include, without limitation, computing the objective (cost) function, the objective function gradient, and all forward modeling required to accomplish the preceding. Step 140 produces an updated physical properties model 150, which should be closer to the actual subsurface properties than were those of the assumed physical properties model 120. Conventionally this updated physical properties model 150 would be further improved by feeding it and the measured data 130 back into the update method in step 140 to produce a further improved physical properties model. This conventional iterative inversion method has the disadvantage that any artifacts in the inversion that result from the approximation chosen in step 110 will likely reinforce constructively in the inversion and contaminate the final inverted result.


Rather than directly returning to step 140, the present inventive method interposes step 160 in which some aspect of the approximation chosen in step 110 is changed in a manner such that the artifact caused by the approximation will change and therefore not be reinforced by the iterations of step 140. By this means the artifact resulting from the approximation chosen in step 110 will be mitigated.


Examples of Approximations and Corresponding Artifacts


The following table contains examples of step 110, i.e. of approximations that might advantageously be used in data inversion, and that are suitable (step 160) for application of the present invention. The first column of the table lists approximations that could be used with this invention. The second column lists the artifact associated with each approximation. The last column lists a feature of the approximation that could be varied between iterations to cause a change in the artifact between iterations that will cause it to add incoherently to the final inverted model and thus be mitigated.














Approximation
Artifact
Features to vary







Encoded simultaneous
Cross-talk noise between
Vary the encoding of the


source seismic data [6]
the encoded sources
sources [ref. 6, claim 3]


Use of a subset of
Footprints of source
Vary randomly the subset


measured data
position in the inverted
of measured data



models caused by source



positions


Imperfect absorbing
Inaccuracy at the edges of
Vary the thickness of the


boundary condition in the
the inverted models caused
absorbing boundary layer


simulator
by artificial reflections



from the edges


Use of reflecting
Inaccuracy at the edges of
Vary the reflecting


boundaries in the simulator
the inverted models caused
boundary condition type



by artificial reflections
(e.g. vary between Dirchlet



from the edges
or Neumann boundary




conditions)


Use of random boundary
Inaccuracy at the edges of
Vary the distribution of the


conditions in the simulator
the inverted models caused
random boundary


[7]
by artificial reflections



from the edges


Spatial variation of size of
Errors at the boundaries
Vary the location of the


grid cells in a finite
between changes in the
boundaries separating


difference simulator
grid cell size caused by
regions with different grid



artificial reflections from
cell sizes



those boundaries


Spatial variation of the
Errors at the boundaries
Vary the location of the


accuracy of the simulation
between changes in the
boundaries separating


operator
simulator's operator
regions with different



accuracy caused by
operator accuracies



artificial reflections from



those boundaries


Use of a grid cell size in
Spatial discretization
Vary the grid cell size or


the simulation that is too
errors
the origin of the grid


coarse to accurately


represent variations in the


model


Use of a large time step in
Discretization errors
Vary the time step interval


a time domain simulator










The above list is not exhaustive. The list includes examples only of approximations that reduce computation time. Sometimes it is advantageous to trade inaccuracy in one area to gain more accuracy in another. An example of such an accuracy tradeoff type of approximation is to use less accurate absorbing boundary conditions in the forward modeling in order to make the gradient computations more accurate. Absorbing boundary conditions are needed to solve the differential equation (s) governing the wave propagation, e.g. the anisotropic visco-elastic wave propagation equation (or some approximation thereof) in the case of seismic data, or Maxwell's equations in the case of electromagnetic data. In general, an accuracy tradeoff involves sacrificing accuracy in one aspect of the method in return for increased accuracy in another aspect.


Test Example 1
Encoded Objective Function


FIGS. 2-5 represent a synthetic example of performing inversion using an approximation to the objective function in which the seismic sources in the measured data are encoded then summed; see U.S. Application Publication No. 2010-0018718 by Jerome Krebs et al. This approximation speeds up the inversion, because the encoded objective function can be evaluated using one run of the simulation software rather than running it once for each source as is the case for conventional inversion. FIG. 2 is a self-explanatory flow chart that focuses FIG. 1 on this particular embodiment, with step 210 showing the encoding approximation.


The geophysical properties model in this example is just a model of the acoustic wave velocity. FIG. 3 shows the base velocity model, i.e., the “unknown” model that will be inverted for and which was used to generate the data to be inverted for this example. The shading indicates the velocity at each depth and lateral location, as indicated by the “color” bar to the right. FIG. 4 shows the inversion resulting from application of this invention as summarized by the flow chart in FIG. 2. In this example the sources are encoded by randomly multiplying them by either plus or minus one. The encoding of the sources is changed, in step 260, by changing the random number seed used to generate the codes used to encode the sources. Note the good match to the base model shown in FIG. 3.



FIG. 5 shows the result of applying the inversion method outlined in the flowchart in FIG. 2, but eliminating the inventive feature of step 260. Note the inversion in FIG. 5 is dominated by crosstalk noise (the speckled appearance of the inversion), whereas this crosstalk noise artifact is largely invisible in the inversion resulting from the present invention (FIG. 4).


Encoding of simultaneous sources was previously disclosed (and claimed) in U.S. Application Publication No. 2010-0018718 by Jerome Krebs et al. along with the technique of varying the encoding from one iteration to the next; see paragraph 62 and claim 3 in that patent publication. However, U.S. Application Publication No. 2010-0018718 by Jerome Krebs et al. neither appreciates nor discloses that the encoding invention is a specific example of the generic invention disclosed herein.


Test Example 2
Approximation that Generates an Artificial Reflection


FIGS. 6-9 illustrate a synthetic example of performing inversion using an approximation to the simulator that generates an artificial reflection. An example of such an approximation is using a finite difference simulator such that the size of the cells in the grid are changed with depth from the surface. This approximation speeds up the inversion, because the grid in the simulator could be adjusted to optimize it in a depth varying manner. Typically smaller grid cells are required for the shallow portion of a finite difference simulator than are required deeper in the model. The artifact generated by this approximation is an artificial reflection at the boundaries between changes in the grid cell size.



FIG. 6 is a flow chart for the embodiment of the present invention illustrated in this example. In this example, a variable grid simulator was not actually used to generate the artificial reflector. Instead (step 610) an artificial reflection is generated by placing a fictitious discontinuity in the density model at 500 meters depth. This discontinuous density model was used by the simulator for model updating, but a constant density model was used to generate the measured data (630 in FIG. 6). Inversion is then performed in a manner such that only the velocity model is updated (640), so that the fictitious density discontinuity remains throughout the iterations of inversion.


The geophysical properties model in this example is just a model (620) of the acoustic wave velocity. FIG. 7 shows the base velocity model (the model that will be inverted for and which was used to generate the data to be inverted) for this example. The shading indicates the velocity at each depth. FIG. 8 shows the inversion resulting from application of the present invention as summarized by the flow chart of FIG. 6. In this example, in step 660, the depth of the fictitious density contrast is randomly changed using a normal distribution centered on 500 meters and with a variance of 100 meters. Note the good match to the base model shown in FIG. 7. In FIGS. 7-9 and 11-13, velocity is plotted as a dimensionless relative velocity equal to the inverted velocity divided by an initial velocity, the latter being the starting guess for what the velocity model is expected to be.



FIG. 9 shows the result of applying the inversion method outlined in the flowchart of FIG. 6, but eliminating the inventive feature that is step 660. It may be noted that the inversion in FIG. 9 has a clearly visible artificial reflection 910 at 500 meters depth, whereas this artificial reflection is largely invisible in the inversion that used the present inventive method (FIG. 8).


Test Example 3
Random Subsets of Measured Data


FIGS. 10-13 represent a synthetic example of performing inversion using an approximation to the measured data. An example of such an approximation is using a subset of the measured data (1010 in FIG. 10). This approximation reduces the amount of measured data, which speeds up the inversion, because the computational time of the inversion is directly proportional to the number of measured data. In a typical inversion, all of the measured data are needed to maintain a high horizontal resolution, and thus in typical practice this approximation is not used. The artifact generated by this approximation is footprints in the inverted models caused by sparse source positions and degradation of the horizontal resolution. FIG. 10 is a flow chart that focuses the steps of FIG. 1 on the embodiment of the invention used in this example. In this example, a subset of the measured data (1030 in FIG. 10) is used in the inversion, e.g. a subset of 5 data among 50 measured data.


The geophysical properties model in this example is just a model of the acoustic wave velocity. FIG. 11 is the base velocity model (the model that will be inverted for and which was used to generate the data to be inverted) for this example. The shading indicates the velocity at each depth. FIG. 12 is the inversion resulting from application of this invention as summarized by the flow chart in FIG. 10. In this example, in step 1060, a subset of the measured data is randomly selected as inversion iteration increases. This results in a different subset of the data being used in each iteration cycle. FIG. 12 shows a good match to the base model shown in FIG. 11 using ten percent of the measured data.



FIG. 13 shows the results of applying the inversion method outlined in the flowchart in FIG. 6, but eliminating the inventive, artifact-reducing step 1060. It may be noted that the inversion in FIG. 13 has artificial footprints at deeper parts below 2000 meters and short wavelength noises in the overall inverted model, whereas these footprint noises are mitigated in the inversion using the present inventive method (FIG. 12), and the short wavelength noises are invisible.


It should be understood that the flow charts of FIGS. 2, 6 and 10 represent examples of specific embodiments of the invention that is described more generally in FIG. 1.


The foregoing patent application is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined in the appended claims. Persons skilled in the art will readily recognize that in practical applications of the invention, at least some of the steps in the present inventive method (typically steps 140-160, and often generating the model in 120) are performed on a computer, i.e. the invention is computer implemented. In such cases, the resulting updated physical properties model of the subsurface may either be downloaded or saved to computer storage.


REFERENCES



  • 1. Tarantola, A., “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, 1259-1266 (1984).

  • 2. Sirgue, L., and Pratt G. “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, 231-248 (2004).

  • 3. Weglein, A. B., Araujo, F. V., Carvalho, P. M., Stolt, R. H., Matson, K. H., Coates, R. T., Corrigan, D., Foster, D. J., Shaw, S. A., and Zhang, H., “Inverse scattering series and seismic exploration,” Inverse Problems 19, R27-R83 (2003).

  • 4. Fallat, M. R., Dosso, S. E., “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, 3219-3230 (1999).

  • 5. Berkhout, A. J., “A real shot record technology,” Journal of Seismic Exploration 1, 251-264 (1992).

  • 6. Krebs, Jerome et al., “Iterative Inversion of Data from Simultaneous Geophysical Sources”, U.S. Patent Application Publication No. 2010-0018718 (Jan. 28, 2010).

  • 7. Clapp, R. G., “Reverse time migration with random boundaries,” SEG International Exposition and Meeting (Houston), Expanded Abstracts, 2809-2813 (2009).


Claims
  • 1. A method for reducing artifacts in an inverted subsurface physical property model caused by an approximation, other than source encoding, in an iterative, geophysical data inversion process, wherein the model is updated at the end of each iteration cycle, said method comprising: identifying an artifact-causing approximation, other than source encoding, made in the course of (i) processing or selecting measured data to invert, or (ii) parameterization of the model, or (iii) simulation of synthetic data to compare to measured data; andreducing the artifact by varying the approximation in consecutive iteration cycles so as to cause the artifact in the updates to not add constructively in leading to a final model as the inversion progresses from one iteration to a next,wherein the inversion is performed using a computer.
  • 2. The method of claim 1, wherein the iterative data inversion process comprises: (a) selecting measured data to invert;(b) processing the selected data as needed;(c) selecting a physical properties model of a subsurface region, said model providing values of at least one physical property at locations throughout the subsurface region;(d) selecting a computational grid, and using it and the selected physical properties model to generate synthetic data corresponding to the selected data from (b);(e) comparing the synthetic data to the measured data from (b) and generating an update to the physical properties model that makes it more consistent with the measured data; and(f) repeating (a)-(e), selecting the updated model from the previous iteration as the selected model in (c), until a final iteration wherein a selected convergence criterion is met or another stopping condition is reached.
  • 3. The method of claim 2, wherein one or more artifact types are identified in an updated subsurface physical property model as being caused by the approximation.
  • 4. The method of claim 3, wherein varying the approximation comprises changing an aspect of the approximation, and the aspect of the approximation that is changed is selected for having an effect on artifacts of the one or more identified artifact types.
  • 5. The method of claim 4, wherein said effect is such that artifacts from one approximation do not add constructively with artifacts from another iteration cycle that uses an approximation with a changed aspect.
  • 6. The method of claim 1, wherein artifact is footprints of source position in the inverted model, and the approximation is to select a subset of the measured geophysical data for inputting to the iterative inversion process, and varying the approximation is selecting a different subset.
  • 7. The method of claim 6, wherein each different subset is selected randomly.
  • 8. The method of claim 1, wherein the artifact is inaccuracy at edges of the inverted model caused by artificial reflections from the edges, and the approximation is imperfect absorbing boundaries in simulation of synthetic data in the iterative inversion process, and the variation of the approximation is to vary thickness of an absorbing boundary layer.
  • 9. The method of claim 1, wherein the artifact is inaccuracy at edges of the inverted model caused by artificial reflections from the edges, and the approximation is using a type of reflecting boundary condition in simulation of synthetic data in the iterative inversion process, and the variation of the approximation is using a different type of reflecting boundary condition.
  • 10. The method of claim 1, wherein the artifact is inaccuracy at edges of the inverted model caused by artificial reflections from the edges, and the approximation is random boundary conditions in simulation of synthetic data in the iterative inversion process, and the variation of the approximation is varying distribution of the random boundary.
  • 11. The method of claim 1, wherein the approximation is spatial variation of grid cell size in a finite difference simulator in the iterative inversion process, and the artifact is errors at boundaries between changes in grid cell size caused by artificial reflections from those boundaries, and the variation of the approximation is varying location of a boundary separating regions with different grid cell sizes.
  • 12. The method of claim 1, wherein the approximation is spatial variation in simulator accuracy in the iterative inversion process, and the artifact is errors at boundaries between changes in simulator accuracy caused by artificial reflections from those boundaries, and the variation of the approximation is varying location of a boundary separating regions with different simulator accuracies.
  • 13. The method of claim 1, wherein the artifact is spatial discretization errors, and the approximation is use of a grid cell size in simulation of synthetic data in the iterative inversion process, wherein the grid cell size is too coarse to accurately represent variations in the model, and the variation of the approximation is varying the grid cell size or origin of the grid.
  • 14. The method of claim 1, wherein the artifact is discretization errors, and the approximation is use of discrete time steps in a time domain simulator in the iterative inversion process, and the variation of the approximation is to use in one iteration a time step larger than time steps used in other iterations.
  • 15. The method of claim 1, wherein the iterative geophysical data inversion process includes forward modeling of synthetic data and computing gradients of a cost function, and the approximation is using absorbing boundary conditions in the forward modeling, and the variation of the approximation is using less accurate absorbing boundary conditions in the forward modeling, thereby trading forward modeling accuracy for more accurate gradient computations.
  • 16. The method of claim 1, wherein the approximation speeds up the iterative inversion process or works an accuracy trade-off.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 61/332,463, filed May 7, 2010, entitled ARTIFACT REDUCTION IN ITERATIVE INVERSION OF GEOPHYSICAL DATA, the entirety of which is incorporated by reference herein.

US Referenced Citations (148)
Number Name Date Kind
3812457 Weller May 1974 A
3864667 Bahjat Feb 1975 A
4159463 Silverman Jun 1979 A
4168485 Payton et al. Sep 1979 A
4545039 Savit Oct 1985 A
4562540 Devaney Dec 1985 A
4575830 Ingram et al. Mar 1986 A
4594662 Devaney Jun 1986 A
4636956 Vannier et al. Jan 1987 A
4675851 Savit et al. Jun 1987 A
4686654 Savit Aug 1987 A
4707812 Martinez Nov 1987 A
4715020 Landrum, Jr. Dec 1987 A
4766574 Whitmore et al. Aug 1988 A
4780856 Becquey Oct 1988 A
4823326 Ward Apr 1989 A
4924390 Parsons et al. May 1990 A
4953657 Edington Sep 1990 A
4969129 Currie Nov 1990 A
4982374 Edington et al. Jan 1991 A
5012193 Chen Apr 1991 A
5260911 Mason et al. Nov 1993 A
5469062 Meyer, Jr. Nov 1995 A
5583825 Carrazzone et al. Dec 1996 A
5677893 de Hoop et al. Oct 1997 A
5715213 Allen Feb 1998 A
5717655 Beasley Feb 1998 A
5719821 Sallas et al. Feb 1998 A
5721710 Sallas et al. Feb 1998 A
5790473 Allen Aug 1998 A
5798982 He et al. Aug 1998 A
5822269 Allen Oct 1998 A
5838634 Jones et al. Nov 1998 A
5852588 de Hoop et al. Dec 1998 A
5878372 Tabarovsky et al. Mar 1999 A
5920838 Mostow et al. Jul 1999 A
5924049 Beasley et al. Jul 1999 A
5999488 Smith Dec 1999 A
5999489 Lazaratos Dec 1999 A
6014342 Lazaratos Jan 2000 A
6021094 Ober et al. Feb 2000 A
6028818 Jeffryes Feb 2000 A
6058073 VerWest May 2000 A
6125330 Robertson et al. Sep 2000 A
6219621 Hornbostel Apr 2001 B1
6225803 Chen May 2001 B1
6311133 Lailly et al. Oct 2001 B1
6317695 Zhou et al. Nov 2001 B1
6327537 Ikelle Dec 2001 B1
6374201 Grizon et al. Apr 2002 B1
6381543 Guerillot et al. Apr 2002 B1
6388947 Washbourne et al. May 2002 B1
6480790 Calvert et al. Nov 2002 B1
6522973 Tonellot et al. Feb 2003 B1
6545944 de Kok Apr 2003 B2
6549854 Malinverno et al. Apr 2003 B1
6574564 Lailly et al. Jun 2003 B2
6593746 Stolarczyk Jul 2003 B2
6662147 Fournier et al. Dec 2003 B1
6665615 Van Riel et al. Dec 2003 B2
6687619 Moerig et al. Feb 2004 B2
6687659 Shen Feb 2004 B1
6704245 Becquey Mar 2004 B2
6714867 Meunier Mar 2004 B2
6735527 Levin May 2004 B1
6754590 Moldoveanu Jun 2004 B1
6766256 Jeffryes Jul 2004 B2
6826486 Malinverno Nov 2004 B1
6836448 Robertsson et al. Dec 2004 B2
6842701 Moerig et al. Jan 2005 B2
6859734 Bednar Feb 2005 B2
6865487 Charron Mar 2005 B2
6865488 Moerig et al. Mar 2005 B2
6876928 Van Riel et al. Apr 2005 B2
6882938 Vaage et al. Apr 2005 B2
6882958 Schmidt et al. Apr 2005 B2
6901333 Van Riel et al. May 2005 B2
6903999 Curtis et al. Jun 2005 B2
6927698 Stolarczyk Aug 2005 B2
6944546 Xiao et al. Sep 2005 B2
6947843 Fisher et al. Sep 2005 B2
6954698 Tryggvason Oct 2005 B2
6954721 Webber Oct 2005 B2
6970397 Castagna et al. Nov 2005 B2
6977866 Huffman et al. Dec 2005 B2
6999880 Lee Feb 2006 B2
7046581 Calvert May 2006 B2
7050356 Jeffryes May 2006 B2
7069149 Goff et al. Jun 2006 B2
7072767 Routh et al. Jul 2006 B2
7092823 Lailly et al. Aug 2006 B2
7110900 Adler et al. Sep 2006 B2
7184367 Yin Feb 2007 B2
7230879 Herkenhoff et al. Jun 2007 B2
7271747 Baraniuk et al. Sep 2007 B2
7330799 Lefebvre et al. Feb 2008 B2
7337069 Masson et al. Feb 2008 B2
7373251 Hamman et al. May 2008 B2
7373252 Sherrill et al. May 2008 B2
7376046 Jeffryes May 2008 B2
7376539 Lecomte May 2008 B2
7400978 Langlais et al. Jul 2008 B2
7436734 Krohn Oct 2008 B2
7480206 Hill Jan 2009 B2
7584056 Koren Sep 2009 B2
7599798 Beasley et al. Oct 2009 B2
7602670 Jeffryes Oct 2009 B2
7620534 Pita et al. Nov 2009 B2
7640110 Abubakar et al. Dec 2009 B2
7646924 Donoho Jan 2010 B2
7672194 Jeffryes Mar 2010 B2
7672824 Dutta et al. Mar 2010 B2
7675815 Saenger et al. Mar 2010 B2
7679990 Herkenhoff et al. Mar 2010 B2
7715985 Van Manen et al. May 2010 B2
7725266 Sirgue et al. May 2010 B2
7791980 Robertsson et al. Sep 2010 B2
7835072 Izumi Nov 2010 B2
7840625 Candes et al. Nov 2010 B2
7974824 Song Jul 2011 B2
8121823 Krebs et al. Feb 2012 B2
20020099504 Cross et al. Jul 2002 A1
20020120429 Ortoleva Aug 2002 A1
20020183980 Guillaume Dec 2002 A1
20040199330 Routh et al. Oct 2004 A1
20060235666 Assa et al. Oct 2006 A1
20070036030 Baumel et al. Feb 2007 A1
20070274155 Ikelle Nov 2007 A1
20080175101 Saenger et al. Jul 2008 A1
20080279434 Cassill Nov 2008 A1
20080306692 Singer et al. Dec 2008 A1
20090067041 Izumi Mar 2009 A1
20090070042 Birchwood et al. Mar 2009 A1
20090083006 Mackie Mar 2009 A1
20090164186 Haase et al. Jun 2009 A1
20090164756 Dokken et al. Jun 2009 A1
20090187391 Wendt et al. Jul 2009 A1
20090248308 Luling Oct 2009 A1
20090254320 Lovatini et al. Oct 2009 A1
20090259406 Khadhraoui et al. Oct 2009 A1
20090319240 Inada Dec 2009 A1
20100008184 Hegna et al. Jan 2010 A1
20100018718 Krebs et al. Jan 2010 A1
20100039894 Abma Feb 2010 A1
20100054082 McGarry et al. Mar 2010 A1
20100088035 Etgen et al. Apr 2010 A1
20100103772 Eick et al. Apr 2010 A1
20100142316 Keers et al. Jun 2010 A1
Foreign Referenced Citations (10)
Number Date Country
1 094 338 Apr 2001 EP
1 746 443 Jan 2007 EP
2 390 712 Jan 2004 GB
2 391 665 Feb 2004 GB
WO 2006037815 Apr 2006 WO
WO 2007046711 Apr 2007 WO
WO 2008042081 Apr 2008 WO
WO 2008123920 Oct 2008 WO
WO 2009067041 May 2009 WO
WO 2009117174 Sep 2009 WO
Non-Patent Literature Citations (99)
Entry
Ernst et al, Geophysics, vol. 72, No. 5, Sep.-Oct. 2007, pp. 153-164.
Kim et al, “Efficient Imaging of Crosshole Electromagnetic Data”, Lawrence Berkley National Laboratory, Sep. 3, 2002.
Mufti et al, Finite Difference Depth Migration of Exploration-Scale 3-D Seismic Data, Geophysics, Vol, 61, No. 3, May-Jun. 1996.
Baumstein, A. et al. (2009), “Scaling of the Objective Function Gradient for Full Wavefield Inversion,” SEG Houston 2009 Int'l. Expo and Annual Meeting, pp. 224-2247.
Burstedde, G. et al. (2009), “Algorithmic strategies for full waveform inversion: 1D experiments,” Geophysics 74(6), pp. WCC17-WCC46.
Dai, W. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124.
Delprat-Jannuad, F. et al. (2005), “A fundamental limitation for the reconstruction of impedance profiles from seismic data,” Geophysics 70(1), pp. R1-R14.
Dunkin, J.W. et al. (1973), “Effect of Normal Moveout on a Seismic Pluse,” Geophysics 38(4), pp. 635-642.
Igel, H. et al. (1996), “Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio,” Geophys. J Int. 124i, pp. 363-371.
Lancaster, S. et al. (2000), “Fast-track ‘colored’ inversion,” 70th SEG Ann. Meeting, Expanded Abstracts, pp. 1572-1575.
Lazaratos, S. et al. (2009), “Inversion of Pre-migration Spectral Shaping,” 2009 SEG Houston Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2383-2387.
Lazaratos, S. (2006), “Spectral Shaping Inversion for Elastic and Rock Property Estimation,” Research Disclosure, Issue 511, pp. 1453-1459.
Lee, S. et al. (2010), “Subsurface parameter estimation in full wavefield inversion and reverse time migration,” SEG Denver 2010 Annual Meeting, pp. 1065-1069.
Malmedy, V. et al. (2009), “Approximating Hessians in unconstrained optimization arising from discretized problems,” Computational Optimization and Applications, pp. 1-16.
Martin, G.S. et al. (2006), “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge, pp. 156-166.
Moghaddam, P.P. et al. (2010), “Randomized full-waveform inversion: a dimenstionality-reduction approach,” 80th SEG Ann. Meeting, Expanded Abstracts, pp. 977-982.
Nocedal, J. et al. (2006), “Numerical Optimization, Chapt. 7—Large-Scale Unconstrained Optimization,” Springer, New York, 2nd Edition, pp. 165-176.
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs.
Pica, A. et al. (2005), “3D Surface-Related Multiple Modeling, Principles and Results,” 2005 SEG Ann. Meeting, SEG Expanded Abstracts 24, pp. 2080-2083.
Rawlinson, N. et al. (2008), “A dynamic objective function technique for generating multiple solution models in seismic tomography,” Geophys. J. Int. 178, pp. 295-308.
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs.
Sheen, D-H. et al. (2006), “Time domain Gauss-Newton seismic waveform inversion in elastic media,” Geophysics J. Int. 167, pp. 1373-1384.
Shih, R-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158.
Tarantola, A. (1986), “A strategy for nonlinear elastic inversion of seismic reflection data,” Geophysics 51(10), pp. 1893-1903.
van Groenestijn, G.J.A. et al. (2009), “Estimating primaries by sparse inversion and application to near-offset reconstruction,” Geophyhsics 74(3), pp. A23-A28.
Verschuur, D.J. et al. (1992), “Adaptive surface-related multiple elimination,” Geophysics 57(9), pp. 1166-1177.
Verschuur, D.J. (1989), “Wavelet Estimation by Prestack Multiple Elimination,” SEG Expanded Abstracts 8, pp. 1129-1132.
Wang, Y. (2007), “Multiple prediction through inversion: Theoretical advancements and real data application,” Geophysics 72(2), pp. V33-V39.
Wang, K. et al. (2009), “Simultaneous full-waveform inversion for source wavelet and earth model,” SEG Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2537-2541.
Wu R-S. et al. (2006), “Directional illumination analysis using beamlet decomposition and propagation,” Geophysics 71(4), pp. S147-S159.
Anderson, J.E. et al. (2008), “Sources Near the Free-Surface Boundary: Pitfalls for Elastic Finite-Difference Seismic Simulation and Multi-Grid Waveform Inversion,” 70th EAGE Conf. & Exh., 4 pgs.
Dickens, T.A. et al. (2011), RTM angle gathers using Poynting vectors, SEG Expanded Abstracts 30, pp. 3109-3113.
Helbig, K. (1994), “Foundations of Anisotropy for Exploration Seismics,” Chapter 5, pp. 185-194.
Hu, L.Z. et al. (1987), “Wave-field transformations of vertical seismic profiles,” Geophysics 52, pp. 307-321.
Huang, Y. et al. (2012), “Multisource least-squares migration of marine streamer and land data with frequency-division encoding,” Geophysical Prospecting 60, pp. 663-680.
Lazaratos, S. et al. (2011), “Improving the convergence rate of full wavefield inversion using spectral shaping,” SEG Expanded Abstracts 30, pp. 2428-2432.
Liu, F. et al. (2007), “Reverse-time migration using one-way wavefield imaging condition,” SEG Expanded Abstracts 26, pp. 2170-2174.
Liu, F. et al. (2011), “An effective imaging condition for reverse-time migration using wavefield decomposition,” Geophysics 76, pp. S29-S39.
Mora, P. (1987), “Elastic Wavefield Inversion,” PhD Thesis, Stanford University, pp. 22-25.
Mora, P. (1989), “Inversion = migration + tomography,” Geophysics 64, pp. 888-901.
Pratt, R.G. (1999), “Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model,” Geophysics 64, pp. 888-901.
Routh, P. et al. (2011), “Encoded Simultaneous Source Full-Wavefield Inversion for Spectrally-Shaped Marine Streamer Data,” SEG San Antonio 2011 Ann. Meeting, pp. 2433-2438.
Simard, P.Y. et al. (1990), “Vector Field Restoration by the Method of Convex Projections,” Computer Vision, Graphics and Image Processing 52, pp. 360-385.
Tang, Y. (2008), “Wave-equation Hessian by phase encoding,” SEG Expanded Abstracts 27, pp. 2201-2205.
Tang, Y. (2009), “Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian,” Geophysics 74, pp. WCA95-WCA107.
Tang, Y. et al. (2010), “Preconditioning full waveform inversion with phase-encoded Hessian,” SEG Expanded Abstracts 29, pp. 1034-1037.
Tsvankin, I. (2001), “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier Science, p. 8.
Xie, X. et al. (2002), “Extracting angle domain information from migrated wavefield,” SEG Expanded Abstracts21, pp. 1360-1363.
Xie, X.-B. et al. (2006), “Wave-equation-based seismic illumination analysis,” Geophysics 71(5), pp. S169-S177.
Yoon, K. et al. (2004), “Challenges in reverse-time migration,” SEG Expanded Abstracts 23, pp. 1057-1060.
Young, J. et al. (2011), “An application of random projection to parameter estimation in partial differential equations,” SIAM, 20 pgs.
Abt, D.L. et al. (2010), “North American lithospheric discontinuity structured imaged by Ps and Sp receiver functions”, J Geophys. Res., 24 pgs.
Akerberg, P., et al. (2008), “Simultaneous source separation by sparse radon transform,” 78th Annual International Meeting, SEG, Expanded Abstracts, pp. 2801-2805.
Aid, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318.
Aid, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I,” W.H. Freeman and Co., p. 173.
Beasley, C. (2008), “A new look at marine simultaneous sources,” The Leading Edge 27(7), pp. 914-917.
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108.
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh-wave dispersion studies,” Geophysics 68(3), pp. 782-790.
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631.
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Exposition and 72th Annl. Mtg., 4 pgs.
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142.
Berkhout, A.J. (2008), “Changing the mindset in seismic data acquisition,” The Leading Edge 27(7), pp. 924-938.
Ben-Hadj-Ali, H. et al. (2009), “Three-dimensional frequency-domain full waveform inversion with phase encoding,” SEG Expanded abstracts, pp. 2288-2292.
Bonomi, E. et al. (2006), “Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data,” Geophysical Prospecting 54, pp. 505-514.
Boonyasiriwat, C. et al. (2010), “3D Multisource Full-Waveform Inversion using Dynamic Random Phase Encoding,” SEG Denver 2010 Annual Meeting, pp. 1044-1049.
Boonyasiriwat, C. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124.
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473.
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515.
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG International Exposition and Meeting, Expanded Abstracts, pp. 2809-2813.
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356.
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116.
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248.
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles,” Geophysics 55(1), pp. 39-50.
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104.
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734.
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397.
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54.
Griewank, A. (2000), “Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation,” Society for Industrial and Applied Mathematics, pp. 121-167.
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45.
Griewank, A. et al. (1996), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167.
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.ca/˜haber/pubs/PdeOptStochV5.pdf.
Herrmann, F.J. (2010), “Randomized dimensionality reduction for full-waveform inversion,” EAGE abstract G001, EAGE Barcelona meeting, 5 pgs.
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transforms,” Geophys. J. Int. 163, pp. 463-478.
Ikelle, L.T. (2007), “Coding and decoding: Seismic data modeling, acquisition, and processing,” 77th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 66-70.
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181.
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG International Exposition and 70th Annual Meeting Expanded Abstracts, pp. 786-789.
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms,” Geophys. J. Int. 104, pp. 153-163.
Krebs, J.R. (2008), “Full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188.
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731.
Kroode, F.T. et al. (2009), “Wave Equation Based Model Building and Imaging in Complex Settings,” OTC 20215, 2009 Offshore Technology Conf., Houston, TX, May 4-7, 2009, 8 pgs.
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270.
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663.
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whiley & Sons, New York, pp. 1-18.
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059.
Marcinkovich, C. et al. (2003), “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” J. of Geophysical Research 108(B5), 2276.
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264.
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG Int'l. Exposition and Meeting, Expanded Abstracts, pp. 2809-2813.
Fallat, M.R. et al. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, pp. 3219-3230.
Tarantola, A. (1984), “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, pp. 1259-1266.
Related Publications (1)
Number Date Country
20110276320 A1 Nov 2011 US
Provisional Applications (1)
Number Date Country
61332463 May 2010 US