The invention relates generally to the field of geophysical prospecting, and more particularly to geophysical data processing. Specifically, the invention pertains to reducing artifacts in iterative inversion of data resulting from approximations made in the inversion.
Geophysical inversion [1,2] attempts to find a model of subsurface properties that optimally explains observed data and satisfies geological and geophysical constraints. There are a large number of well known methods of geophysical inversion. These well known methods fall into one of two categories, iterative inversion and non-iterative inversion. The following are definitions of what is commonly meant by each of the two categories:
Two iterative inversion methods commonly employed in geophysics are cost function optimization and series methods. Cost function optimization involves iterative minimization or maximization of the value, with respect to the model M, of a cost function S(M) which is a measure of the misfit between the calculated and observed data (this is also sometimes referred to as the objective function), where the calculated data is simulated with a computer using the current geophysical properties model and the physics governing propagation of the source signal in a medium represented by a given geophysical properties model. The simulation computations may be done by any of several numerical methods including but not limited to finite difference, finite element or ray tracing. Series methods involve inversion by iterative series solution of the scattering equation (Weglein [3]). The solution is written in series form, where each term in the series corresponds to higher orders of scattering. Iterations in this case correspond to adding a higher order term in the series to the solution.
Cost function optimization methods are either local or global [4]. Global methods simply involve computing the cost function S(M) for a population of models {M1, M2, M3, . . . } and selecting a set of one or more models from that population that approximately minimize S(M). If further improvement is desired this new selected set of models can then be used as a basis to generate a new population of models that can be again tested relative to the cost function S(M). For global methods each model in the test population can be considered to be an iteration, or at a higher level each set of populations tested can be considered an iteration. Well known global inversion methods include Monte Carlo, simulated annealing, genetic and evolution algorithms.
Local cost function optimization involves:
As discussed above, iterative inversion is preferred over non-iterative inversion, because it yields more accurate subsurface parameter models. Unfortunately, iterative inversion is so computationally expensive that it is impractical to apply it to many problems of interest. This high computational expense is the result of the fact that all inversion techniques require many compute intensive forward and/or reverse simulations. Forward simulation means computation of the data forward in time, and reverse simulation means computation of the data backward in time.
Due to its high computational cost, iterative inversion often requires application of some type of approximation that speeds up the computation. Unfortunately, these approximations usually result in errors in the final inverted model which can be viewed as artifacts of the approximations employed in the inversion.
What is needed is a general method of iteratively inverting data that allows for the application of approximations without generating artifacts in the resulting inverted model. The present invention satisfies this need.
A physical properties model gives one or more subsurface properties as a function of location in a region. Seismic wave velocity is one such physical property, but so are (for example) density, p-wave velocity, shear wave velocity, several anisotropy parameters, attenuation (q) parameters, porosity, permeability, and resistivity. The invention is a method for reducing artifacts in a subsurface physical property model caused by an approximation, other than source encoding, in an iterative, computerized geophysical data inversion process, said method comprising varying the approximation as the iterations progress. In one particular embodiment, the invention is a computer-implemented method for inversion of measured geophysical data to determine a physical properties model for a subsurface region, comprising:
(a) assuming a physical properties model of the subsurface region, said model providing values of at least one physical property at locations throughout the subsurface region;
(b) selecting an iterative data inversion process having a step wherein a calculation is made of an update to the physical properties model that makes it more consistent with the measured geophysical data;
(c) making in said calculation an approximation that either speeds up the selected iterative data inversion process other than by source encoding, or that works an accuracy tradeoff;
(d) executing, using the computer, one cycle of the selected iterative data inversion process with said approximation and using the physical properties model;
(e) executing, using the computer, a next iterative inversion cycle, wherein a selection is made to either change some aspect of the approximation or not to change it;
(f) repeating (e) as necessary, changing the approximation in some or all of the iteration cycles, until a final iteration wherein a selected convergence criterion is met or another stopping condition is reached; and
(g) downloading the updated physical properties model from the final iteration or saving it to computer storage.
In some embodiments of the invention, one or more artifact types are identified in inversion results as being caused by the approximation, and the aspect of the approximation that is changed in some or all iteration cycles is selected for having an effect on artifacts of the one or more identified artifact types. The effect on artifacts may be such that artifacts from one approximation do not add constructively with artifacts from another iteration cycle that uses an approximation with a changed aspect.
The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings in which:
Due to patent constraints,
The invention will be described in connection with its preferred embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.
The present invention is a method for reducing artifacts caused by the application of approximations during iterative inversion of geophysical data. Geophysical inversion attempts to find a model of subsurface properties that optimally explains observed geophysical data. The example of seismic data is used throughout to illustrate the inventive method, but the method may be advantageously applied to any method of geophysical prospecting and any type of geophysical data. The data inversion is most accurately performed using iterative methods. Unfortunately iterative inversion is often prohibitively expensive computationally. The majority of compute time in iterative inversion is spent performing expensive forward and/or reverse simulations of the geophysical data (here forward means forward in time and reverse means backward in time). The high cost of these simulations is partly due to the fact that each geophysical source in the input data must be computed in a separate computer run of the simulation software. Thus, the cost of simulation is proportional to the number of sources in the geophysical data, typically on the order of 1,000 to 10,000 sources for a geophysical survey. In typical practice, approximations are applied during the inversion to reduce the cost of inversion. These approximations result in errors, or artifacts, in the inverted model. This invention mitigates these artifacts by changing some aspect of the approximation between iterations of inversion so that the artifact during one iteration does not add constructively with the artifact in other iterations. Therefore the artifact is reduced in the inverted model.
Some common approximations made during iterative inversion that result in artifacts include:
Cost function optimization is performed by minimizing the value, with respect to a subsurface model M, of a cost function S(M) (sometimes referred to as an objective function), which is a measure of misfit between the observed (measured) geophysical data and corresponding data calculated by simulation of the assumed model. A simple cost function S often used in geophysical inversion is:
where
The gathers in Equation 1 can be any type of gather that can be simulated in one run of a forward modeling program. For seismic data, the gathers correspond to a seismic shot, although the shots can be more general than point sources [5]. For point sources, the gather index g corresponds to the location of individual point sources. For plane wave sources, g would correspond to different plane wave propagation directions. This generalized source data, ψobs, can either be acquired in the field or can be synthesized from data acquired using point sources. The calculated data ψcalc on the other hand can usually be computed directly by using a generalized source function when forward modeling (e.g. for seismic data, forward modeling typically means solution of the anisotropic visco-elastic wave propagation equation or some approximation thereof). For many types of forward modeling, including finite difference modeling, the computation time needed for a generalized source is roughly equal to the computation time needed for a point source. The model M is a model of one or more physical properties of the subsurface region. Seismic wave velocity is one such physical property, but so are (for example) p-wave velocity, shear wave velocity, several anisotropy parameters, attenuation (q) parameters, porosity, and permeability. The model M might represent a single physical property or it might contain many different parameters depending upon the level of sophistication of the inversion. Typically, a subsurface region is subdivided into discrete cells, each cell being characterized by a single value of each parameter.
One major problem with iterative inversion is that computing ψcalc takes a large amount of computer time, and therefore computation of the cost function, S, is very time consuming Furthermore, in a typical inversion project this cost function must be computed for many different models M.
Iterative Series Inversion
Besides cost function optimization, geophysical inversion can also be implemented using iterative series methods. A common method for doing this is to iterate the Lippmann-Schwinger equation [3]. The Lippmann-Schwinger equation describes scattering of waves in a medium represented by a physical properties model of interest as a perturbation of a simpler model. The equation is the basis for a series expansion that is used to determine scattering of waves from the model of interest, with the advantage that the series only requires calculations to be performed in the simpler model. This series can also be inverted to form an iterative series that allows the determination of the model of interest, from the measured data and again only requiring calculations to be performed in the simpler model. The Lippmann-Schwinger equation is a general formalism that can be applied to all types of geophysical data and models, including seismic waves. This method begins with the two equations:
LG=−I (2)
L0G0=−I (3)
where L, L0 are the actual and reference differential operators, G and G0 are the actual and reference Green's operators respectively and I is the unit operator. Note that G is the measured point source data, and G0 is the simulated point source data from the initial model. The Lippmann-Schwinger equation for scattering theory is:
G=G0+G0VG (4)
where V=L−L0 from which the difference between the true and initial models can be extracted.
Equation 4 is solved iteratively for V by first expanding it in a series (assuming G=G0 for the first approximation of G and so forth) to get:
G=G0+G0VG0+G0VG0VG0+ (5)
Then V is expanded as a series:
V=V(1)+V(2)+V(3)+ (6)
where V(n) is the portion of V that is nth order in the residual of the data (here the residual of the data is G−G0 measured at the surface). Substituting Equation 6 into Equation 5 and collecting terms of the same order yields the following set of equations for the first 3 orders:
G−G0=G0V(1)G0 (7)
0=G0V(2)G0+G0V(1)G0V(1)G0 (8)
0=G0V(3)G0+G0V(1)G0V(2)G0+G0V(2)G0V(1)G0+G0V(1)G0V(1)G0V(1)G0 (9)
and similarly for higher orders in V. These equations may be solved iteratively by first solving Equation 7 for V(1) by inverting G0 on both sides of V(1) to yield:
V(1)=G0−1(G−G0)G0−1 (10)
V(1) from Equation 10 is then substituted into Equation 8 and this equation is solved for V(2) to yield:
V(2)=−G0−1G0V(1)G0V(1)G0G0−1 (11)
and so forth for higher orders of V.
Equation 10 involves a sum over sources and frequency which can be written out explicitly as:
where Gs is the measured data for source s, G0s is the simulated data through the reference model for source s and G0s−1 can be interpreted as the downward extrapolated source signature from source s. Equation 10 when implemented in the frequency domain can be interpreted as follows: (1) Downward extrapolate through the reference model the source signature for each source (the G0s−1 term), (2) For each source, downward extrapolate the receivers of the residual data through the reference model (the G0−1(Gs−G0s) term), (3) multiply these two fields then sum over all sources and frequencies. The downward extrapolations in this recipe can be carried out using geophysical simulation software, for example using finite differences.
Example Embodiment
The flowchart of
Rather than directly returning to step 140, the present inventive method interposes step 160 in which some aspect of the approximation chosen in step 110 is changed in a manner such that the artifact caused by the approximation will change and therefore not be reinforced by the iterations of step 140. By this means the artifact resulting from the approximation chosen in step 110 will be mitigated.
Examples of Approximations and Corresponding Artifacts
The following table contains examples of step 110, i.e. of approximations that might advantageously be used in data inversion, and that are suitable (step 160) for application of the present invention. The first column of the table lists approximations that could be used with this invention. The second column lists the artifact associated with each approximation. The last column lists a feature of the approximation that could be varied between iterations to cause a change in the artifact between iterations that will cause it to add incoherently to the final inverted model and thus be mitigated.
The above list is not exhaustive. The list includes examples only of approximations that reduce computation time. Sometimes it is advantageous to trade inaccuracy in one area to gain more accuracy in another. An example of such an accuracy tradeoff type of approximation is to use less accurate absorbing boundary conditions in the forward modeling in order to make the gradient computations more accurate. Absorbing boundary conditions are needed to solve the differential equation(s) governing the wave propagation, e.g. the anisotropic visco-elastic wave propagation equation (or some approximation thereof) in the case of seismic data, or Maxwell's equations in the case of electromagnetic data. In general, an accuracy tradeoff involves sacrificing accuracy in one aspect of the method in return for increased accuracy in another aspect.
Test Example 1—Encoded Objective Function
The geophysical properties model in this example is just a model of the acoustic wave velocity.
Encoding of simultaneous sources was previously disclosed (and claimed) in U.S. Application Publication No. 2010-0018718 by Jerome Krebs et al. along with the technique of varying the encoding from one iteration to the next; see paragraph 62 and claim 3 in that patent publication. However, U.S. Application Publication No. 2010-0018718 by Jerome Krebs et al. neither appreciates nor discloses that the encoding invention is a specific example of the generic invention disclosed herein.
Test Example 2—Approximation that Generates an Artificial Reflection
The geophysical properties model in this example is just a model (620) of the acoustic wave velocity.
Test Example 3—Random Subsets of Measured Data
The geophysical properties model in this example is just a model of the acoustic wave velocity.
It should be understood that the flow charts of
The foregoing patent application is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined in the appended claims. Persons skilled in the art will readily recognize that in practical applications of the invention, at least some of the steps in the present inventive method (typically steps 140-160, and often generating the model in 120) are performed on a computer, i.e. the invention is computer implemented. In such cases, the resulting updated physical properties model of the subsurface may either be downloaded or saved to computer storage.
This application is a continuation of U.S. patent application Ser. No. 14/192,497, filed Feb. 27, 2014, entitled ARTIFACT REDUCTION IN ITERATIVE INVERSION OF GEOPHYSICAL DATA, which is a continuation of U.S. patent application Ser. No. 13/045,215, filed Mar. 10, 2011, entitled ARTIFACT REDUCTION IN ITERATIVE INVERSION OF GEOPHYSICAL DATA and claims the benefit of U.S. Provisional Patent Application 61/332,463, filed May 7, 2010, entitled ARTIFACT REDUCTION ITERATIVE INVERSION OF GEOPHYSICAL DATA. The entirety of U.S. patent application Ser. Nos. 14/192,497, 13/045,215 and U.S. Provisional Patent Application 61/332,463 are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3812457 | Weller | May 1974 | A |
3864667 | Bahjat | Feb 1975 | A |
4159463 | Silverman | Jun 1979 | A |
4168485 | Payton et al. | Sep 1979 | A |
4545039 | Savit | Oct 1985 | A |
4562650 | Nagasawa et al. | Jan 1986 | A |
4575830 | Ingram et al. | Mar 1986 | A |
4594662 | Devaney | Jun 1986 | A |
4636957 | Vannier et al. | Jan 1987 | A |
4675851 | Savit et al. | Jun 1987 | A |
4686654 | Savit | Aug 1987 | A |
4707812 | Martinez | Nov 1987 | A |
4715020 | Landrum, Jr. | Dec 1987 | A |
4766574 | Whitmore et al. | Aug 1988 | A |
4780856 | Becquey | Oct 1988 | A |
4823326 | Ward | Apr 1989 | A |
4924390 | Parsons et al. | May 1990 | A |
4953657 | Edington | Sep 1990 | A |
4969129 | Currie | Nov 1990 | A |
4982374 | Edington et al. | Jan 1991 | A |
5260911 | Mason et al. | Nov 1993 | A |
5469062 | Meyer, Jr. | Nov 1995 | A |
5583825 | Carrazzone et al. | Dec 1996 | A |
5586082 | Anderson | Dec 1996 | A |
5677893 | de Hoop et al. | Oct 1997 | A |
5715213 | Allen | Feb 1998 | A |
5717655 | Beasley | Feb 1998 | A |
5719821 | Sallas et al. | Feb 1998 | A |
5721710 | Sallas et al. | Feb 1998 | A |
5790473 | Allen | Aug 1998 | A |
5798982 | He | Aug 1998 | A |
5822269 | Allen | Oct 1998 | A |
5838634 | Jones et al. | Nov 1998 | A |
5852588 | de Hoop et al. | Dec 1998 | A |
5878372 | Tabarovsky et al. | Mar 1999 | A |
5920838 | Norris et al. | Jul 1999 | A |
5924049 | Beasley et al. | Jul 1999 | A |
5999488 | Smith | Dec 1999 | A |
5999489 | Lazaratos | Dec 1999 | A |
6014342 | Lazaratos | Jan 2000 | A |
6021094 | Ober et al. | Feb 2000 | A |
6028818 | Jeffryes | Feb 2000 | A |
6058073 | VerWest | May 2000 | A |
6067340 | Eppstein | May 2000 | A |
6125330 | Robertson et al. | Sep 2000 | A |
6219621 | Hornbostel | Apr 2001 | B1 |
6225803 | Chen | May 2001 | B1 |
6246963 | Cross | Jun 2001 | B1 |
6311133 | Lailly et al. | Oct 2001 | B1 |
6317695 | Zhou et al. | Nov 2001 | B1 |
6327537 | Ikelle | Dec 2001 | B1 |
6374201 | Grizon et al. | Apr 2002 | B1 |
6381543 | Guerillot et al. | Apr 2002 | B1 |
6388947 | Washbourne et al. | May 2002 | B1 |
6480790 | Calvert et al. | Nov 2002 | B1 |
6522973 | Tonellot et al. | Feb 2003 | B1 |
6545944 | de Kok | Apr 2003 | B2 |
6549854 | Malinverno et al. | Apr 2003 | B1 |
6574564 | Lailly et al. | Jun 2003 | B2 |
6593746 | Stolarczyk | Jul 2003 | B2 |
6662147 | Fournier et al. | Dec 2003 | B1 |
6665615 | Van Riel et al. | Dec 2003 | B2 |
6687619 | Moerig et al. | Feb 2004 | B2 |
6687659 | Shen | Feb 2004 | B1 |
6704245 | Becquey | Mar 2004 | B2 |
6714867 | Meunier | Mar 2004 | B2 |
6735527 | Levin | May 2004 | B1 |
6754588 | Cross | Jun 2004 | B2 |
6754590 | Moldoveanu | Jun 2004 | B1 |
6766256 | Jeffryes | Jul 2004 | B2 |
6826486 | Malinverno | Nov 2004 | B1 |
6836448 | Robertsson et al. | Dec 2004 | B2 |
6842701 | Moerig et al. | Jan 2005 | B2 |
6859734 | Bednar | Feb 2005 | B2 |
6865487 | Charron | Mar 2005 | B2 |
6865488 | Moerig et al. | Mar 2005 | B2 |
6876928 | Van Riel et al. | Apr 2005 | B2 |
6882938 | Vaage et al. | Apr 2005 | B2 |
6882958 | Schmidt et al. | Apr 2005 | B2 |
6901333 | Van Riel et al. | May 2005 | B2 |
6903999 | Curtis et al. | Jun 2005 | B2 |
6905916 | Bartsch et al. | Jun 2005 | B2 |
6906981 | Vauge | Jun 2005 | B2 |
6927698 | Stolarczyk | Aug 2005 | B2 |
6944546 | Xiao et al. | Sep 2005 | B2 |
6947843 | Fisher et al. | Sep 2005 | B2 |
6970397 | Castagna et al. | Nov 2005 | B2 |
6977866 | Huffman et al. | Dec 2005 | B2 |
6999880 | Lee | Feb 2006 | B2 |
7046581 | Calvert | May 2006 | B2 |
7050356 | Jeffryes | May 2006 | B2 |
7069149 | Goff et al. | Jun 2006 | B2 |
7027927 | Routh et al. | Jul 2006 | B2 |
7072767 | Routh et al. | Jul 2006 | B2 |
7092823 | Lailly et al. | Aug 2006 | B2 |
7110900 | Adler et al. | Sep 2006 | B2 |
7184367 | Yin | Feb 2007 | B2 |
7230879 | Herkenoff et al. | Jun 2007 | B2 |
7271747 | Baraniuk et al. | Sep 2007 | B2 |
7330799 | Lefebvre et al. | Feb 2008 | B2 |
7337069 | Masson et al. | Feb 2008 | B2 |
7373251 | Hamman et al. | May 2008 | B2 |
7373252 | Sherrill et al. | May 2008 | B2 |
7376046 | Jeffryes | May 2008 | B2 |
7376539 | Lecomte | May 2008 | B2 |
7400978 | Langlais et al. | Jul 2008 | B2 |
7436734 | Krohn | Oct 2008 | B2 |
7480206 | Hill | Jan 2009 | B2 |
7584056 | Koren | Sep 2009 | B2 |
7599798 | Beasley et al. | Oct 2009 | B2 |
7602670 | Jeffryes | Oct 2009 | B2 |
7616523 | Tabti et al. | Nov 2009 | B1 |
7620534 | Pita et al. | Nov 2009 | B2 |
7620536 | Chow | Nov 2009 | B2 |
7646924 | Donoho | Jan 2010 | B2 |
7672194 | Jeffryes | Mar 2010 | B2 |
7672824 | Dutta et al. | Mar 2010 | B2 |
7675815 | Saenger et al. | Mar 2010 | B2 |
7679990 | Herkenhoff et al. | Mar 2010 | B2 |
7684281 | Vaage et al. | Mar 2010 | B2 |
7710821 | Robertsson et al. | May 2010 | B2 |
7715985 | Van Manen et al. | May 2010 | B2 |
7715986 | Nemeth et al. | May 2010 | B2 |
7725266 | Sirgue et al. | May 2010 | B2 |
7791980 | Robertsson et al. | Sep 2010 | B2 |
7835072 | Izumi | Nov 2010 | B2 |
7840625 | Candes et al. | Nov 2010 | B2 |
7940601 | Ghosh | May 2011 | B2 |
8068384 | Saenger | Nov 2011 | B2 |
8121823 | Krebs | Feb 2012 | B2 |
8223587 | Krebs | Jul 2012 | B2 |
8248886 | Neelamani et al. | Aug 2012 | B2 |
8428925 | Krebs et al. | Apr 2013 | B2 |
8437998 | Routh et al. | May 2013 | B2 |
8547794 | Gulati et al. | Oct 2013 | B2 |
8688381 | Routh et al. | Apr 2014 | B2 |
8781748 | Laddoch et al. | Jul 2014 | B2 |
8812282 | Krebs | Aug 2014 | B2 |
8923094 | Jing | Dec 2014 | B2 |
20020099504 | Cross et al. | Jul 2002 | A1 |
20020120429 | Ortoleva | Aug 2002 | A1 |
20020183980 | Guillaume | Dec 2002 | A1 |
20040199330 | Routh et al. | Oct 2004 | A1 |
20040225438 | Okoniewski et al. | Nov 2004 | A1 |
20060235666 | Assa et al. | Oct 2006 | A1 |
20070036030 | Baumel et al. | Feb 2007 | A1 |
20070038691 | Candes et al. | Feb 2007 | A1 |
20070274155 | Ikelle | Nov 2007 | A1 |
20080175101 | Saenger et al. | Jul 2008 | A1 |
20080306692 | Singer et al. | Dec 2008 | A1 |
20090006054 | Song | Jan 2009 | A1 |
20090067041 | Krauklis et al. | Mar 2009 | A1 |
20090070042 | Birchwood et al. | Mar 2009 | A1 |
20090083006 | Mackie | Mar 2009 | A1 |
20090164186 | Haase et al. | Jun 2009 | A1 |
20090164756 | Dokken et al. | Jun 2009 | A1 |
20090187391 | Wendt et al. | Jul 2009 | A1 |
20090248308 | Luling | Oct 2009 | A1 |
20090254320 | Lovatini et al. | Oct 2009 | A1 |
20090259406 | Khadhraoui et al. | Oct 2009 | A1 |
20100008184 | Hegna et al. | Jan 2010 | A1 |
20100018718 | Krebs et al. | Jan 2010 | A1 |
20100039894 | Abma et al. | Feb 2010 | A1 |
20100054082 | McGarry et al. | Mar 2010 | A1 |
20100088035 | Etgen et al. | Apr 2010 | A1 |
20100103772 | Eick et al. | Apr 2010 | A1 |
20100118651 | Liu et al. | May 2010 | A1 |
20100142316 | Keers et al. | Jun 2010 | A1 |
20100161233 | Saenger et al. | Jun 2010 | A1 |
20100161234 | Saenger et al. | Jun 2010 | A1 |
20100185422 | Hoversten | Jul 2010 | A1 |
20100208554 | Chiu et al. | Aug 2010 | A1 |
20100212902 | Baumstein et al. | Aug 2010 | A1 |
20100246324 | Dragoset, Jr. et al. | Sep 2010 | A1 |
20100265797 | Robertsson et al. | Oct 2010 | A1 |
20100270026 | Lazaratos et al. | Oct 2010 | A1 |
20100286919 | Lee et al. | Nov 2010 | A1 |
20100299070 | Abma | Nov 2010 | A1 |
20110000678 | Krebs et al. | Jan 2011 | A1 |
20110040926 | Donderici et al. | Feb 2011 | A1 |
20110051553 | Scott et al. | Mar 2011 | A1 |
20110090760 | Rickett et al. | Apr 2011 | A1 |
20110131020 | Meng | Jun 2011 | A1 |
20110134722 | Virgilio et al. | Jun 2011 | A1 |
20110182141 | Zhamikov et al. | Jul 2011 | A1 |
20110182144 | Gray | Jul 2011 | A1 |
20110191032 | Moore | Aug 2011 | A1 |
20110194379 | Lee et al. | Aug 2011 | A1 |
20110213556 | Yu | Sep 2011 | A1 |
20110222370 | Downton et al. | Sep 2011 | A1 |
20110227577 | Zhang et al. | Sep 2011 | A1 |
20110235464 | Brittan et al. | Sep 2011 | A1 |
20110238390 | Krebs et al. | Sep 2011 | A1 |
20110246140 | Abubakar et al. | Oct 2011 | A1 |
20110267921 | Mortel et al. | Nov 2011 | A1 |
20110267923 | Shin | Nov 2011 | A1 |
20110276320 | Krebs et al. | Nov 2011 | A1 |
20110288831 | Tan et al. | Nov 2011 | A1 |
20110299361 | Shin | Dec 2011 | A1 |
20110320180 | Al-Saleh | Dec 2011 | A1 |
20120010862 | Costen | Jan 2012 | A1 |
20120014215 | Saenger et al. | Jan 2012 | A1 |
20120014216 | Saenger et al. | Jan 2012 | A1 |
20120051176 | Liu | Mar 2012 | A1 |
20120073824 | Routh | Mar 2012 | A1 |
20120073825 | Routh | Mar 2012 | A1 |
20120082344 | Donoho | Apr 2012 | A1 |
20120143506 | Routh et al. | Jun 2012 | A1 |
20120215506 | Rickett et al. | Aug 2012 | A1 |
20120218859 | Soubaras | Aug 2012 | A1 |
20120275264 | Kostov et al. | Nov 2012 | A1 |
20120275267 | Neelamani et al. | Nov 2012 | A1 |
20120290214 | Huo et al. | Nov 2012 | A1 |
20120314538 | Washbourne et al. | Dec 2012 | A1 |
20120316790 | Washbourne et al. | Dec 2012 | A1 |
20120316844 | Shah et al. | Dec 2012 | A1 |
20130081752 | Kurimura et al. | Apr 2013 | A1 |
20130238246 | Krebs et al. | Sep 2013 | A1 |
20130279290 | Poole | Oct 2013 | A1 |
20130282292 | Wang et al. | Oct 2013 | A1 |
20130311151 | Plessix | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2 796 631 | Nov 2011 | CA |
1 094 338 | Apr 2001 | EP |
1 746 443 | Jan 2007 | EP |
2 390 712 | Jan 2004 | GB |
2 391 665 | Feb 2004 | GB |
WO 2006037815 | Apr 2006 | WO |
WO 2007046711 | Apr 2007 | WO |
WO 2008042081 | Apr 2008 | WO |
WO 2008123920 | Oct 2008 | WO |
WO 2009067041 | May 2009 | WO |
WO 2009117174 | Sep 2009 | WO |
WO 2010085822 | Jul 2010 | WO |
WO 2011040926 | Apr 2011 | WO |
WO 2011091216 | Jul 2011 | WO |
WO 2011093945 | Aug 2011 | WO |
WO 2012024025 | Feb 2012 | WO |
WO 2012041834 | Apr 2012 | WO |
WO 2012083234 | Jun 2012 | WO |
WO 2012134621 | Oct 2012 | WO |
WO 2012170201 | Dec 2012 | WO |
WO 2013081752 | Jun 2013 | WO |
Entry |
---|
Abubakar et al., 2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements, 2008, Geophysics vol. 73, No. 4, pp. F165-F177. |
Abt, D.L. et al. (2010), “North American lithospheric discontinuity structured imaged by Ps and Sp receiver functions”, J Geophys. Res., 24 pgs. |
Akerberg, P., et al. (2008), “Simultaneous source separation by sparse radon transform,” 78th SEG Annual International Meeting, Expanded Abstracts, pp. 2801-2805. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods Volume I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods Volume I,” W.H. Freeman and Co., p. 173. |
Anderson, J.E. et al. (2008), “Sources Near the Free-Surface Boundary: Pitfalls for Elastic Finite-Difference Seismic Simulation and Multi-Grid Waveform Inversion,” 70th EAGE Conf. & Exh., 4 pgs. |
Baumstein, A. et al. (2009), “Scaling of the Objective Function Gradient for Full Wavefield Inversion,” SEG Houston 2009 Int'l. Expo and Annual Meeting, pp. 224-2247. |
Beasley, C. (2008), “A new look at marine simultaneous sources,” The Leading Edge 27(7), pp. 914-917. |
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh-wave dispersion studies,” Geophysics 68(3), pp. 782-790. |
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631. |
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Exposition and 72th Annl. Mtg., 4 pgs. |
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142. |
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264. |
Berkhout, A.J. (2008), “Changing the mindset in seismic data acquisition,” The Leading Edge 27(7), pp. 924-938. |
Ben-Hadj-Ali, H. et al. (2009), “Three-dimensional frequency-domain full waveform inversion with phase encoding,” SEG Expanded Abstracts, pp. 2288-2292. |
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108. |
Bonomi, E. et al. (2006), “Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data,” Geophysical Prospecting 54, pp. 505-514. |
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 1044-1049. |
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 3120-3124. |
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473. |
Burstedde, G. et al. (2009), “Algorithmic strategies for full waveform inversion: 1D experiments,” Geophysics 74(6), pp. WCC17-WCC46. |
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515. |
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG International Exposition and Meeting, Expanded Abstracts, pp. 2809-2813. |
Dai, W. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124. |
Delprat-Jannuad, F. et al. (2005), “A fundamental limitation for the reconstruction of impedance profiles from seismic data,” Geophysics 70(1), pp. R1-R14. |
Dickens, T.A. et al. (2011), RTM angle gathers using Poynting vectors, SEG Expanded Abstracts 30, pp. 3109-3113. |
Dunkin, J.W. et al. (1973), “Effect of Normal Moveout on a Seismic Pluse,” Geophysics 38(4), pp. 635-642. |
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356. |
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116. |
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248. |
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles”, Geophysics 55(1), pp. 39-50. |
Fallat, M.R. et al. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, pp. 3219-3230. |
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104. |
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734. |
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397. |
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54. |
Griewank, A. (2000), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 49 pgs. |
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45. |
Griewank, A. et al. (1996), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167. |
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.ca/˜haber/pubs/PdeOptStochV5.pdf. |
Hampson, D.P. et al. (2005), “Simultaneous inversion of pre-stack seismic data,” SEG 75th Annual Int'l. Meeting, Expanded Abstracts, pp. 1633-1637. |
Helbig, K. (1994), “Foundations of Anisotropy for Exploration Seismics,” Chapter 5, pp. 185-194. |
Herrmann, F.J. (2010), “Randomized dimensionality reduction for full-waveform inversion,” EAGE abstract G001, EAGE Barcelona meeting, 5 pgs. |
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transforms,” Geophys. J. Int. 163, pp. 463-478. |
Hu, L.Z. et al. (1987), “Wave-field transformations of vertical seismic profiles,” Geophysics 52, pp. 307-321. |
Huang, Y. et al. (2012), “Multisource least-squares migration of marine streamer and land data with frequency-division encoding,” Geophysical Prospecting 60, pp. 663-680. |
Igel, H. et al. (1996), “Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio,” Geophys. J. Int. 124, pp. 363-371. |
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG International Exposition and 70th Annual Meeting Expanded Abstracts, pp. 786-789. |
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms”, Geophys. J. Int. 104, pp. 153-163. |
Krebs, J.R. (2008), “Fast Full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188. |
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731. |
Kroode, F.T. et al. (2009), “Wave Equation Based Model Building and Imaging in Complex Settings,” OTC 20215, 2009 Offshore Technology Conf., Houston, TX, May 4-7, 2009, 8 pgs. |
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270. |
Lancaster, S. et al. (2000), “Fast-track ‘colored’ inversion,” 70th SEG Ann. Meeting, Expanded Abstracts, pp. 1572-1575. |
Lazaratos, S. et al. (2009), “Inversion of Pre-migration Spectral Shaping,” 2009 SEG Houston Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2383-2387. |
Lazaratos, S. (2006), “Spectral Shaping Inversion for Elastic and Rock Property Estimation,” Research Disclosure, Issue 511, pp. 1453-1459. |
Lazaratos, S. et al. (2011), “Improving the convergence rate of full wavefield inversion using spectral shaping,” SEG Expanded Abstracts 30, pp. 2428-2432. |
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663. |
Lee, S. et al. (2010), “Subsurface parameter estimation in full wavefield inversion and reverse time migration,” SEG Denver 2010 Annual Meeting, pp. 1065-1069. |
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059. |
Liu, F. et al. (2007), “Reverse-time migration using one-way wavefield imaging condition,” SEG Expanded Abstracts 26, pp. 2170-2174. |
Liu, F. et al. (2011), “An effective imaging condition for reverse-time migration using wavefield decomposition,” Geophysics 76, pp. S29-S39. |
Malmedy, V. et al. (2009), “Approximating Hessians in unconstrained optimization arising from discretized problems,” Computational Optimization and Applications, pp. 1-16. |
Marcinkovich, C. et al. (2003), “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” J. of Geophysical Research 108(B5), 2276. |
Martin, G.S. et al. (2006), “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge, pp. 156-166. |
Moghaddam, P.P. et al. (2010), “Randomized full-waveform inversion: a dimenstionality-reduction approach,” 80th SEG Ann. Meeting, Expanded Abstracts, pp. 977-982. |
Mora, P. (1987), “Elastic Wavefield Inversion,” PhD Thesis, Stanford University, pp. 22-25. |
Mora, P. (1989), “Inversion = migration + tomography,” Geophysics 64, pp. 888-901. |
Nocedal, J. et al. (2006) “Numerical Optimization, Chapt. 7—Large-Scale Unconstrained Optimization,” Springer, New York, 2nd Edition, pp. 165-176. |
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs. |
Pica, A. et al. (2005), “3D Surface-Related Multiple Modeling, Principles and Results,” 2005 SEG Ann. Meeting, SEG Expanded Abstracts 24, pp. 2080-2083. |
Pratt, R.G. (1999), “Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model,” Geophysics 64, pp. 888-901. |
Routh, P. et al. (2011), “Encoded Simultaneous Source Full-Wavefield Inversion for Spectrally-Shaped Marine Streamer Data,” SEG San Antonio 2011 Ann. Meeting, pp. 2433-2438. |
Sears, T.J. et al. (2008), “Elastic full waveform inversion of multi-component OBC seismic data,” Geophysical Prospecting 56, pp. 843-862. |
Sheen, D-H. et al. (2006), “Time domain Gauss-Newton seismic waveform inversion in elastic media,” Geophysics J. Int. 167, pp. 1373-1384. |
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs. |
Shih, R-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158. |
Simard, P.Y. et al. (1990), “Vector Field Restoration by the Method of Convex Projections,” Computer Vision, Graphics and Image Processing 52, pp. 360-385. |
Tang, Y. (2008), “Wave-equation Hessian by phase encoding,” SEG Expanded Abstracts 27, pp. 2201-205. |
Tang, Y. (2009), “Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian,” Geophysics 74, pp. WCA95-WCA107. |
Tang, Y. et al. (2010), “Preconditioning full waveform inversion with phase-encoded Hessian,” SEG Expanded Abstracts 29, pp. 1034-1037. |
Tarantola, A. (1984), “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, pp. 1259-1266. |
Tarantola, A. (1986), “A strategy for nonlinear elastic inversion of seismic reflection data,” Geophysics 51(10), pp. 1893-1903. |
Tarantola, A. (2005), “Inverse Problem Theory and Methods for Model Parameter Estimation,” SIAM, pp. 79. |
Tsvankin, I. (2001), “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier Science, p. 8. |
van Manen, D.J. (2005), “Making wave by time reversal,” SEG International Exposition and 75th Annual Meeting, Expanded Abstracts, pp. 1763-1766. |
van Groenestijn, G.J.A. et al. (2009), “Estimating primaries by sparse inversion and application to near-offset reconstruction,” Geophyhsics 74(3), pp. A23-A28. |
Verschuur, D.J. et al. (1992), “Adaptive surface-related multiple elimination,” Geophysics 57(9), pp. 1166-1177. |
Verschuur, D.J. (1989), “Wavelet Estimation by Prestack Multiple Elimination,” SEG Expanded Abstracts 8, pp. 1129-1132. |
Wang, Y. (2007), “Multiple prediction through inversion: Theoretical advancements and real data application,” Geophysics 72(2), pp. V33-V39. |
Wang, K. et al. (2009), “Simultaneous full-waveform inversion for source wavelet and earth model,” SEG Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2537-2541. |
Wu R-S. et al. (2006), “Directional illumination analysis using beamlet decomposition and propagation,” Geophysics 71(4), pp. S147-S159. |
Xie, X. et al. (2002), “Extracting angle domain information from migrated wavefield,” SEG Expanded Abstracts21, pp. 1360-1363. |
Xie, X.-B. et al. (2006), “Wave-equation-based seismic illumination analysis,” Geophysics 71(5), pp. S169-S177. |
Yoon, K. et al. (2004), “Challenges in reverse-time migration,” SEG Expanded Abstracts 23, pp. 1057-1060. |
Young, J. et al. (2011), “An application of random projection to parameter estimation in partial differential equations,” SIAM, 20 pgs. |
Biondi, B. (1992), “Velocity estimation by beam stack,” Geophysics 57(8), pp. 1034-1104. |
Choi, Y. et al. (2011), “Application of encoded multisource waveform inversion to marine-streamer acquisition based on the global correlation,” 73rd EAGE Conference, Abstract, pp. F026. |
Choi, Y et al. (2012), “Application of multi-source waveform inversion to marine stream data using the global correlation norm,” Geophysical Prospecting 60, pp. 748-758. |
Ikelle, L.T. (2007), “Coding and decoding: Seismic data modeling, acquisition, and processing,” 77th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 66-70. |
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181. |
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whiley & Sons, New York, pp. 1-18. |
Maharramov, M. et al. (2007) , “Localized image-difference wave-equation tomography,” SEG Annual Meeting, Expanded Abstracts, pp. 3009-3013. |
Meier, M.A. et al. (2009), “Converted wave resolution,” Geophysics, 74(2):doi:10.1190/1.3074303, pp. Q1-Q16. |
Mora, P. (1987), “Nonlinear two-dimensional elastic inversion of multi-offset seismic data,” Geophysics 52, pp. 1211-1228. |
Nazarian, S. et al. (1983), “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems,” Transport Res. Record 930, pp. 38-45. |
Neelamani, R., (2008), “Simultaneous sourcing without compromise,” 70th Annual Int'l Conf. and Exh., EAGE, 5 pgs. |
Neelamani, R. (2009), “Efficient seismic forward modeling using simultaneous sources and sparsity,” SEG Expanded Abstracts, pp. 2107-2111. |
Plessix, R.E. et al. (2004), “Frequency-domain finite-difference amplitude preserving migration.” Geophys. J. Int. 157, pp. 975-987. |
Park, C.B. et al. (1999), “Multichannel analysis of surface waves,” Geophysics 64(3), pp. 800-808. |
Park, C.B. et al. (2007), “Multichannel analysis of surface waves (MASW)—active and passive methods,” The Leading Edge, pp. 60-64. |
Porter, R.P. (1989), “Generalized holography with application to inverse scattering and inverse source problems,” In E. Wolf. editor, Progress in Optics XXVII, Elsevier. pp. 317-397. |
Pratt, R.G. et al. (1998), “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,” Geophys. J. Int. 133, pp. 341-362. |
Rayleigh, J.W.S. (1899), “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil. Mag. 47, pp. 375-384. |
Romero, L.A. et al. (2000), Phase encoding of shot records in prestack migration, Geophysics 65, pp. 426-436. |
Ryden, N. et al. (2006), “Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra,” Geophysics 71(4), pp. R49-R58. |
Schuster, G.T. et al. (2010), “Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics,” SEG Denver 2010 Ann. Meeting, pp. 3110-3114. |
Sheng, J. et al. (2006), “Early arrival waveform tomography on near-surface refraction data,” Geophysics 71, pp. U47-U57. |
Sheriff, R.E.et al. (1982), “Exploration Seismology”, pp. 134-135. |
Shin, C. et al. (2001), “Waveform inversion using a logarithmic wavefield,” Geophysics 49, pp. 592-606. |
Sirgue, L. (2004), “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, pp. 231-248. |
Soubaras, R. et al. (2007), “Velocity model building by semblance maximization of modulated-shot gathers,” Geophysics 72(5), pp. U67-U73. |
Spitz, S. (2008), “Simultaneous source separation: a prediction-subtraction approach,” 78th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2811-2815. |
Stefani, J. (2007), “Acquisition using simultaneous sources,” 69th Annual Conf. and Exh., EAGE Extended Abstracts, 5 pgs. |
Symes, W.W. (2007), “Reverse time migration with optimal checkpointing,” Geophysics 72(5), pp. P.SM213-P.SM221. |
Tarantola, A. (1988), “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation,” Pure and Applied Geophysics 128, pp. 365-399. |
Trantham, E.C. (1994), “Controlled-phase acquisition and processing,” SEG Expanded Abstracts 13, pp. 890-894. |
Verschuur, D.J. (2009), Target-oriented, least-squares imaging of blended data, 79th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2889-2893. |
Vigh, D. et al. (2008), “3D prestack plane-wave, full-waveform inversion,” Geophysics 73(5), pp. VE135-VE144. |
Weglein, A.B. (2003), “Inverse scattering series and seismic exploration,” Inverse Problems 19, pp. R27-R83. |
Xia, J. et al. (2004), “Utilization of high-frequency Rayleigh waves in near-surface geophysics,” The Leading Edge, pp. 753-759. |
Zhang, Y. (2005), “Delayed-shot 3D depth migration,” Geophysics 70, pp. E21-E28. |
Ziolkowski, A. (1991), “Why don't we measure seismic signatures?,” Geophysics 56(2), pp. 190-201. |
Number | Date | Country | |
---|---|---|---|
20140379315 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61332463 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14192497 | Feb 2014 | US |
Child | 14484603 | US | |
Parent | 13045215 | Mar 2011 | US |
Child | 14192497 | US |