G. Bilbao et al., Adenoviral/retroviral vector chimeras: a novel strategy to achieve high-efficiency stable transduction in vivo, The FASEB Journal, vol. 11, 624-634 (Jul. 1997). |
BC Horsburgh et al., Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes, Gene Therapy, 6, 922-930 (1999). |
G. Ketner et al., Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone, Proc. Natl. Acad. Science, USA, vol. 91, pp. 6186-6190, (Jun. 1994). |
Y. Saeki et al., Herpes Simplex Virus Type 1 DNA Amplified as Bacterial Artificial Chromosome in Eschericia coli; Rescue of Replication-Compentent Virus Progeny and Packaging of Amplicon Vectors, Human Gene Therapy, 9:2787-2794 (Dec. 10, 1998). |
X. Yang et al., Homologous recombination based modification in Escherchia coli and germlike transmission in transgenic mice of a bacterial artificial chromosome, Nature Biotechnology, vol. 15, 859-865, (Sep. 1997). |
Ascenzioni et al., “Mammalian artificial chromosomes—vectors for somatic gene therapy”, Cancer Letters, 118:135-142 (1997). |
Burke, “Special Section: Yeast Artificial Chromosome Cloning; YAC cloning: options and problems”, GATA, 7:94-99 (1990). |
Chiou et al., “Mutations in the Herpes Simplex Virus Major DNA-Binding Protein Gene Leading to Altered Sensitivity to DNA Polymerase Inhibitors”, Virology, 145:213-226 (1985). |
Messerle et al., “Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome”, Proc. Natl. Acad. Sci USA, 94:14759-14763 (1997). |
Shizuya et al., “Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector”, Proc. Natl. Acad. Sci. USA, 89:8794-8797 (1992). |
Wang et al., “Complete Nucleotide Sequence of Two Generations of a Bacterial Artificial Chromosome Cloning Vector”, BioTechniques, 23:992-994 (1997). |
Monaco et al., Tibtech, vol. 12, pp. 280-286, Jul. 1994. |