The present invention relates to spinal instrumentation, and in particular to various devices that are adapted to mimic the natural function of the structural posterior elements.
The vertebrae in a patient's spinal column are linked to one another by the disc and the facet joints, which control movement of the vertebrae relative to one another. Each vertebra has a pair of articulating surfaces located on the left side, and a pair of articulating surfaces located on the right side, and each pair includes a superior articular surface, which faces upward, and an inferior articular surface, which faces downward. Together the superior and inferior articular surfaces of adjacent vertebra form a facet joint. Facet joints are synovial joints, which means that each joint is surrounded by a capsule of connective tissue and produces a fluid to nourish and lubricate the joint. The joint surfaces are coated with cartilage allowing the joints to move or articulate relative to one another.
Diseased, degenerated, impaired, or otherwise painful facet joints and/or discs can require surgery to restore function to the three joint complex. Subsequent surgery may also be required after a laminectomy, as a laminectomy predisposes the patient to instability and may lead to post-laminectomy kyphosis (abnormal forward curvature of the spine), pain, and neurological dysfunction. Damaged, diseased levels in the spine were traditionally fused to one another. While such a technique may relieve pain, it effectively prevents motion between at least two vertebrae. As a result, additional stress may be applied to the adjoining levels, thereby potentially leading to further damage.
More recently, techniques have been developed to restore normal function to the facet joints. One such technique involves covering the facet joint with a cap to preserve the bony and articular structure. Capping techniques, however, are limited in use as they will not remove the source of the pain in osteoarthritic joints. Caps are also disadvantageous as they must be available in a variety of sizes and shapes to accommodate the wide variability in the anatomical morphology of the facets. Caps also have a tendency to loosen over time, potentially resulting in additional damage to the joint and/or the bone support structure containing the cap.
Other techniques for restoring the normal function to the posterior element involve arch replacement, in which superior and inferior prosthetic arches are implanted to extend across the vertebra. The arches may have rigid surfaces that can articulate relative to one another to replace the articulating function of the facet joints. However, aligning two articulating rigid surfaces for facet replacements can be very difficult given the variations in patient anatomy and various motion required (i.e., flexion, extension, lateral bending, and translations).
Accordingly, there remains a need for improved systems and methods that are adapted to mimic the natural function of the facet joints.
The present invention provides various methods and devices for repairing and/or replacing a damaged facet joint, and optionally for replacing other posterior elements, including, for example, the lamina, the posterior ligaments, and/or other features of a patient's spinal column. In one exemplary embodiment, an implantable device for replacing and/or stabilizing one or more facet joints in a patient's spinal column is provided and it generally includes a first member that is adapted to couple to a first vertebra and having a bearing element rotatably disposed therein with an opening formed therethrough, and a second member that is adapted to couple to a second vertebra adjacent to the first vertebra. The second member can include an extension rod that is adapted to extend through the opening formed in the bearing element to control movement between the first and second vertebrae.
While the first and second members can have a variety of configurations, in one exemplary embodiment the first member can be substantially U-shaped with opposed arms extending from a central portion, and the second member can be substantially Y-shaped with opposed arms extending from a terminal end of the extension rod. In use, each arm on the first and second members can be adapted to be received within a receiving head of a bone engaging element, such as a bone screw, to attach each arm to a vertebra. The device can also include at least one compressive element positioned between the central portion of the first member and the central portion of the second member, and at least one compressive element positioned between the central portion of the second member and a terminal end of the extension rod. The compressive element(s) can be adapted to facilitate controlled movement of the adjacent vertebrae.
The bearing element can also have a variety of configurations, but in one exemplary embodiment the bearing element can be a ball bearing having an opening formed therethrough. The opening formed through the bearing element can include a coating formed thereon that is adapted to reduce friction between the bearing element and the extension rod. The bearing element can also be disposed at various locations on the first member, but in one exemplary embodiment the bearing element can be freely rotatably disposed within the central portion of the first member. In particular, the central portion can include a substantially spherical opening formed therein for rotatably seating the bearing element.
In another embodiment of the invention, the extension rod can include at least one stop member formed thereon and adapted to limit slidable movement of the extension rod relative to the bearing element. For example, the extension rod can include first and second stop members formed on first and second terminal ends thereof. The stop member(s) can have a variety of configurations, and it can be formed from a variety of materials including, for example, a compressive material. In one embodiment, the stop member(s) can be in the form of a ring-shaped member that is disposed around the extension rod. An exemplary ring-shaped member has a diameter that is greater than a diameter of the opening in the bearing element.
In yet another embodiment, the first member can be substantially L-shaped with a first portion that is adapted to mate to a bone engaging element, and a second portion having the bearing element rotatably disposed therein. The first portion of the first member can include an opening formed therein for receiving a portion of a locking mechanism adapted to couple the first portion of the first member to a bone engaging element. The first portion of the first member can also include an articulating surface formed thereon and that is adapted to be received within a complementary surface formed on a bone engaging element. In one exemplary embodiment, the articulating surface can be substantially spherical.
In another exemplary embodiment, the second member can be a substantially elongate member having a first portion that is adapted to mate to a bone engaging element and a second portion that is adapted to be disposed through the bearing element. The first and second portions of the second member can be axially offset from one another. The second member can also include a stop formed thereon between the first and second portions. The stop can be adapted to limit movement of the second portion relative to the bearing.
One exemplary method for stabilizing the posterior element in adjacent vertebrae is also provided. The method can include coupling a first member to a first vertebra and a second member to a second vertebra such that an extension rod on the first member extends through a bearing element rotatably disposed within the second member to control movement of the first and second vertebrae relative to one another. The method can also include positioning the extension rod at a predetermined angle relative to a central axis of the first and second vertebrae.
In one exemplary embodiment, the first member can be coupled to the first vertebra by implanting first and second bone engaging members in the first vertebra and mating a portion of the first member to the first and second bone engaging members, and the second member can be coupled to the second vertebra by implanting first and second bone engaging members in the second vertebra and mating a portion of the second member to the first and second bone engaging members. The first and second bone engaging members can be implanted an opposed lateral sides of each vertebra.
In another exemplary embodiment, the first member can be coupled to the first vertebra by implanting a bone engaging member in the first vertebra and mating a portion of the first member to the bone engaging member, and the second member can be coupled to the second vertebra by implanting a bone engaging member in the second vertebra and mating a portion of the second member to the bone engaging member.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
The present invention provides various methods and devices for replacing damaged, injured, diseased, or otherwise unhealthy posterior elements, such as the facet joints, the lamina, the posterior ligaments, and/or other features of a patient's spinal column. In one exemplary embodiment, the methods and devices are effective to mimic the natural function of the spine by allowing flexion, extension, and lateral bending of the spine, while substantially restricting posterior-anterior shear and rotation of the spine. A person skilled in the art will appreciate that, while the methods and devices are especially configured for use in restoring and/or replacing the facet joints and optionally other posterior elements of a patient's spine, the methods and devices can be used for a variety of other purposes in a variety of other surgical procedures.
As shown in
The first member 20 of the implant 10, which is shown in more detail in
As noted above, the first portion 20a is adapted to mate to a vertebra. While various techniques can be used to allow the first portion 20a to mate to a vertebra, in the illustrated exemplary embodiment the first portion 20a includes an opening 24 extending therethrough for receiving a portion of a fastening element and/or a bone engaging element. The opening 24 can vary in shape and size depending on the type of bone engaging element and fastening element being used. In an exemplary embodiment, as shown in
The second portion 20b of the first member 20 can also have a variety of configurations, but as noted above the exemplary second portion 20b includes a bearing element 22 disposed therein for receiving the extension rod 32 on the second member 30. Various bearing elements 22 known in the art can be used, but in the illustrated embodiment the bearing element 22 is a standard ball bearing that includes an opening 22i formed therethrough. The bearing element 22 can be disposed within the second portion 20b of the first member 20 using a variety of techniques, but in an exemplary embodiment the bearing element 22 is preferably freely rotatable relative to the second portion 20b of the first member 20. This will allow the bearing element 22 to pivot/rotate as the first and second members 20, 22 move relative to one another as a result of movement of the vertebrae 60s, 60i relative to one another. As shown in
In order to facilitate free rotation/movement of the bearing element 22 within the recess 28, the bearing element 22 and/or the recess 28 can include a coating to reduce friction and reduce wear. The opening 22i in the bearing element 22 can also include a coating formed therein to reduce friction and wear on the bearing element 22 caused by movement of the extension rod 32 therethrough. Suitable exemplary materials for coating the bearing element 22, the recess 28, and/or the extension rod 32 include, by way of non-limiting example, titanium nitrite coating, titanium carbon-nitrite coating, diamond-like carbon coating, and other similar materials. The bearing element 22, the recess 28, and/or the extension rod 32, which will be discussed in more detail below, can also be formed from certain materials that are adapted to withstand wear, such as, for example, stainless steel, titanium, cobalt chrome, plastics such as polyethylene and polyurethane, and various ceramics.
The second member 30 of the implant 10 can also have a variety of configurations, but in one exemplary embodiment, as shown in more detail in
As noted above, the first portion 30a of the second member 30 can be adapted to couple to a bone engaging element to mate the first portion 30a to the superior vertebra 60s. Accordingly, the first portion 30a can have a variety of configurations depending on the type of bone engaging element used. In the exemplary embodiment shown in
The extension rod 32 of the second member 30 can also have a variety of configurations, but it should be adapted to be extend through and slidably move relative to the bearing element 22. In the illustrated exemplary embodiment, the extension rod 32 has a substantially cylindrical shape with a diameter dr that is only slightly less than an inner diameter di of the opening formed through the bearing element 22.
The extension rod 32 can also include one or more physical stops formed thereon to limit movement thereof relative to the bearing element 22. While the physical stop(s) can have a variety of shapes and sizes, in the illustrated exemplary embodiment the first portion 30a and the extension rod 32 are separated by a substantially circular flange 34 that forms a physical stop. The flange 34 can be adapted to abut against a superior surface 20s (
The extension rod 32 can also include one or more compressive elements disposed there around and adapted to act as a cushion for preventing hard contact between the extension rod 32 and the bearing element 22, or the second portion 20b of the first member 20. As shown in
In use, the implant 10 can replace and/or augment one or more of the posterior elements of the spine, including, for example, the facet joints, the lamina, the posterior ligaments, and/or other features of a patient's spinal column. The particular configuration and use of the implant 100 can, however, vary depending on the specific procedure being performed. For example, where a laminectomy is performed and the facet joints are not removed, the implant can be used to reduce the load on the facet joints. Where the facet joints are removed, it may be necessary to add an anti-rotation feature, as will be discussed in more detail below, to prevent rotation of the bone screws relative to the vertebrae. Where the posterior ligaments are removed, it may be desirable to use one or more compressive elements to facilitate control of flexion of the vertebrae. The implant 10 can also be adapted to function with either a natural vertebral disc, or with an artificial disc as previously discussed. Regardless, as noted above, the implant 10 is preferably adapted to allow flexion, extension, and lateral bending of the spine, while substantially restricting posterior-anterior shear and rotation of the spine. While an exemplary method of implanting only one posterior stabilizing implant 10 will be discussed, a person skilled in the art will appreciate that, in an exemplary embodiment, two implants 10, 10′ are implanted on opposed lateral sides of adjacent vertebrae. Moreover, any number of implants can be used to couple multiple adjacent vertebrae depending on the needs of the patient.
One exemplary procedure can begin by implanting a bone screw 50 in the inferior vertebra 60i, and implanting a bone screw 54 in the superior vertebra 60s. As shown in
While not shown, where the implant 10 is used to replace the facet joints, it may be desirable to include an anti-rotation feature to prevent rotation of the bone screws that are implanted in the superior vertebra 60s. While various anti-rotation techniques can be used, in one embodiment the bone screws can include spikes or other surface protrusions formed on a proximal end of the shank or on the head of the screws to prevent rotation thereof. In another embodiment, a cross-connector can be connected to and extend between the first portion of the second member of each implant, thereby preventing rotation of the bone screw mated thereto.
Once the implant 10 is coupled to the adjacent vertebrae 60s, 60i, the implant 10 can control movement of the vertebrae 60s, 60i relative to one another. In particular, during movement of the spine, the bearing element 22 rotates as the extension rod 32 slidably moves therethrough to control movement of the vertebrae 60s, 60i. Due to the configuration of the implant 10, the bearing element 22 and the extension rod 32 can also substantially prevent axial rotation of the vertebrae 60s, 60i relative to one another, and anterior-posterior shearing can be substantially resisted.
While the extension rod 32 can be positioned to be substantially parallel to the central axis X of the vertebrae 60s, 60i, the extension rod 32 can be positioned at a particular angle relative to the central axis X of the vertebrae 60s, 60i to control the movement of the vertebrae 60s, 60i. As shown in
While not shown, the procedure can also include the step of placing a sheath or protective member partially or fully around the implant 10 for preventing tissue from growing on the implant 10 and into the bearing element 22, and for preventing debris from migrating into the spinal canal.
As shown in
The first member 120 of the implant 100, which is shown in more detail in
The first and second arms 120b, 120c can mate to the inferior vertebra 160i using a variety of techniques. In the illustrated exemplary embodiment, the arms 120b, 120c are in the form of rods having a generally elongate, substantially cylindrical configuration. This allows each arm 120b, 120c to be received within a receiving head of a bone engaging element. In the embodiment shown in
As noted above, the first member 120 also includes a bearing element 122 disposed therein. The bearing element 122 can have a configuration that is the same as or similar to the configuration previously described with respect to bearing element 22 shown in
The second member 130 of the implant 10 can also have a variety of configurations, but in an exemplary embodiment, as shown in more detail in
Each arm 130b, 130c can be mated to the vertebra 160s using a variety of techniques, however in an exemplary embodiment each arm 130b, 130c is in the form of a rod having a substantially elongate cylindrical shape such that the arms 130b, 130c can mate to a receiving head of a bone engaging element, such as bone screws 150c and 150d as shown. As previously described, the bone screws 150c, 150d can be polyaxial bone screws to allow the position of the second member 130 to be angularly adjusted as desired, and in particular to allow the extension rod 132 to be positioned as desired relative to the bearing element 122. A locking element, such as a set screw 152c, 152d can be used to lock the arms 130b, 130c to the bone screws 150c, 150d.
The extension rod 132 of the second member 130 can also have a variety of configurations, but in an exemplary embodiment the extension rod 132 is similar to extension rod 22 previously described with respect to
As previously described with respect to
The extension rod 132 can also include one or more compressive elements disposed there around, as previously described with respect to
While not shown, in another exemplary embodiment the extension rod 132 can be adjustable relative to the first and second arms 130b, 130c. For example, the extension rod 132 can be rotatably mated to the central portion 130a, and the central portion 130a can include a locking mechanism that is adapted to lock the extension rod 132 in a desired fixed position. Such a configuration is particularly desirable where the bone screws 150c, 150d used to attach the arms 130b, 130c to the vertebra 160s are not polyaxial. The extension rod 132 can thus be positioned at a desired angle relative to the vertebra 160s, and then locked in place to maintain it at the desired angular position. A person skilled in the art will appreciate that a variety of other techniques can be used to allow the extension rod 132 to be adjusted relative to the remainder of the second member 130.
In use, the implant 100 can replace and/or augment one or more of the posterior elements of the spine, including, for example, the facet joints, the lamina, the posterior ligaments, and/or other features of a patient's spinal column. The implant 100 can also be adapted to function with either a natural vertebral disc, or with an artificial disc as previously discussed. Regardless, as noted above, the implant 100 is preferably adapted to allow flexion, extension, and lateral bending of the spine, while substantially restricting posterior-anterior shear and rotation of the spine. The particular configuration and use of the implant 100 can, however, vary depending on the specific procedure being performed. For example, where a laminectomy is performed and the facet joints are not removed, the implant can be used to reduce the load on the facet joints. Where the facet joints are removed, it may be necessary to add an anti-rotation feature as previously discussed to prevent rotation of the bone screws relative to the vertebrae. Where the posterior ligaments are removed, it may be desirable to use one or more compressive elements to facilitate control of flexion of the vertebrae.
One exemplary procedure can begin by implanting two bone screws 150a, 150b in the inferior vertebra 160i, and implanting two bone screws 150c, 150d in the superior vertebra 160s. As shown in
Once the implant 100 is coupled to the adjacent vertebrae 160s, 160i, the implant 100 can control movement of the vertebrae 160s, 160i relative to one another. In particular, during movement of the spine, the bearing element 122 rotates as the extension rod 132 slidably moves therethrough to control movement of the vertebrae 160s, 160i. Due to the configuration of the implant 100, the bearing element 122 and the extension rod 132 can also substantially prevent axial rotation of the vertebrae 160s, 160i relative to one another, and anterior-posterior shearing can be substantially resisted.
While not shown, the procedure can also include the step of placing a sheath or protective member partially or fully around the implant 100 for preventing tissue from growing on the implant 100 and into the bearing element 122, and for preventing debris from migrating into the spinal canal.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3648691 | Lumb et al. | Mar 1972 | A |
3693616 | Roaf et al. | Sep 1972 | A |
4448191 | Rodnyansky et al. | May 1984 | A |
4743260 | Burton | May 1988 | A |
5084049 | Asher et al. | Jan 1992 | A |
5092866 | Breard | Mar 1992 | A |
5152303 | Allen | Oct 1992 | A |
5176680 | Vignaud et al. | Jan 1993 | A |
5190543 | Schlapfer | Mar 1993 | A |
5261911 | Carl | Nov 1993 | A |
5282863 | Burton | Feb 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5360429 | Jeanson et al. | Nov 1994 | A |
5375823 | Navas et al. | Dec 1994 | A |
5387213 | Breard | Feb 1995 | A |
5403316 | Ashman | Apr 1995 | A |
5415661 | Holmes | May 1995 | A |
5425732 | Ulrich | Jun 1995 | A |
5437669 | Yuan et al. | Aug 1995 | A |
5437671 | Lozier et al. | Aug 1995 | A |
5474086 | McCormick et al. | Dec 1995 | A |
5486174 | Fournet-Fayard et al. | Jan 1996 | A |
5496318 | Howland et al. | Mar 1996 | A |
5540688 | Navas | Jul 1996 | A |
5556431 | Buttner-Janz | Sep 1996 | A |
5562737 | Graf | Oct 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5601554 | Howland et al. | Feb 1997 | A |
5672175 | Martin | Sep 1997 | A |
5681312 | Yuan et al. | Oct 1997 | A |
5716355 | Jackson | Feb 1998 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5733284 | Martin et al. | Mar 1998 | A |
5755796 | Ibo et al. | May 1998 | A |
5766254 | Gelbard | Jun 1998 | A |
5810815 | Morales et al. | Sep 1998 | A |
RE36221 | Breard | Jun 1999 | E |
5928233 | Apfelbaum et al. | Jul 1999 | A |
5938663 | Petreto | Aug 1999 | A |
5961516 | Graf | Oct 1999 | A |
6019760 | Metz-Stavenhagen et al. | Feb 2000 | A |
RE36758 | Fitz | Jun 2000 | E |
6132464 | Martin | Oct 2000 | A |
6241730 | Alby | Jun 2001 | B1 |
6248106 | Ferree | Jun 2001 | B1 |
6267764 | Elberg | Jul 2001 | B1 |
6273888 | Justis | Aug 2001 | B1 |
6355038 | Pisharodi | Mar 2002 | B1 |
6364883 | Santilli | Apr 2002 | B1 |
6419703 | Fallin | Jul 2002 | B1 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6468276 | McKay | Oct 2002 | B1 |
6547790 | Harkey | Apr 2003 | B2 |
6551322 | Lieberman | Apr 2003 | B1 |
6551332 | Nguyen et al. | Apr 2003 | B1 |
6554831 | Rivard | Apr 2003 | B1 |
6554832 | Shluzas | Apr 2003 | B2 |
6565605 | Goble | May 2003 | B2 |
6579319 | Goble | Jun 2003 | B2 |
6610091 | Reiley | Aug 2003 | B1 |
6626904 | Jammet et al. | Sep 2003 | B1 |
6626909 | Chin | Sep 2003 | B2 |
6626944 | Taylor | Sep 2003 | B1 |
6645207 | Dixon | Nov 2003 | B2 |
6669729 | Chin | Dec 2003 | B2 |
6811567 | Reiley | Nov 2004 | B2 |
7011685 | Arnin et al. | Mar 2006 | B2 |
7074237 | Goble et al. | Jul 2006 | B2 |
7104992 | Bailey | Sep 2006 | B2 |
7189236 | Taylor et al. | Mar 2007 | B2 |
7270665 | Morrison et al. | Sep 2007 | B2 |
20020029039 | Zucherman et al. | Mar 2002 | A1 |
20020055740 | Lieberman | May 2002 | A1 |
20020065557 | Goble | May 2002 | A1 |
20020072800 | Goble | Jun 2002 | A1 |
20020123806 | Reiley | Sep 2002 | A1 |
20020133155 | Ferree | Sep 2002 | A1 |
20020151978 | Zacouto et al. | Oct 2002 | A1 |
20030004572 | Goble | Jan 2003 | A1 |
20030028250 | Reiley | Feb 2003 | A1 |
20030055427 | Graf | Mar 2003 | A1 |
20030083657 | Drewry | May 2003 | A1 |
20030093078 | Ritland | May 2003 | A1 |
20030109880 | Shirado | Jun 2003 | A1 |
20030135277 | Bryan et al. | Jul 2003 | A1 |
20030153912 | Graf | Aug 2003 | A1 |
20030171749 | Le Couedic | Sep 2003 | A1 |
20030171750 | Chin | Sep 2003 | A1 |
20030176926 | Boehm et al. | Sep 2003 | A1 |
20030187438 | Assaker et al. | Oct 2003 | A1 |
20030187454 | Gill et al. | Oct 2003 | A1 |
20030191470 | Ritland | Oct 2003 | A1 |
20030191532 | Goble | Oct 2003 | A1 |
20030220642 | Freudiger | Nov 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20040002708 | Ritland | Jan 2004 | A1 |
20040006391 | Reiley | Jan 2004 | A1 |
20040015174 | Null et al. | Jan 2004 | A1 |
20040049189 | Le Couedic | Mar 2004 | A1 |
20040049190 | Biedermann et al. | Mar 2004 | A1 |
20040049272 | Reiley | Mar 2004 | A1 |
20040049273 | Reiley | Mar 2004 | A1 |
20040049274 | Reiley | Mar 2004 | A1 |
20040049275 | Reiley | Mar 2004 | A1 |
20040049276 | Reiley | Mar 2004 | A1 |
20040049277 | Reiley | Mar 2004 | A1 |
20040049278 | Reiley | Mar 2004 | A1 |
20040049281 | Reiley | Mar 2004 | A1 |
20040073215 | Carli | Apr 2004 | A1 |
20040097950 | Foley et al. | May 2004 | A1 |
20040111154 | Reiley | Jun 2004 | A1 |
20040116927 | Graf | Jun 2004 | A1 |
20040127989 | Dooris et al. | Jul 2004 | A1 |
20040133203 | Young et al. | Jul 2004 | A1 |
20040138660 | Serhan | Jul 2004 | A1 |
20040143264 | McAfee | Jul 2004 | A1 |
20040147928 | Landry et al. | Jul 2004 | A1 |
20040186475 | Falahee | Sep 2004 | A1 |
20040186575 | Varga et al. | Sep 2004 | A1 |
20040236329 | Panjabi | Nov 2004 | A1 |
20040249379 | Winslow et al. | Dec 2004 | A1 |
20040267259 | Mazda et al. | Dec 2004 | A1 |
20050033431 | Gordon et al. | Feb 2005 | A1 |
20050033432 | Gordon et al. | Feb 2005 | A1 |
20050033434 | Berry | Feb 2005 | A1 |
20050033439 | Gordon et al. | Feb 2005 | A1 |
20050049708 | Atkinson et al. | Mar 2005 | A1 |
20050055096 | Serhan et al. | Mar 2005 | A1 |
20050101954 | Simonson | May 2005 | A1 |
20050101956 | Simonson | May 2005 | A1 |
20050113927 | Malek | May 2005 | A1 |
20050119748 | Reiley et al. | Jun 2005 | A1 |
20050131409 | Chervitz et al. | Jun 2005 | A1 |
20050171610 | Humphreys et al. | Aug 2005 | A1 |
20050203518 | Biedermann et al. | Sep 2005 | A1 |
20050228381 | Kirschman | Oct 2005 | A1 |
20050228501 | Miller et al. | Oct 2005 | A1 |
20050240265 | Kuiper et al. | Oct 2005 | A1 |
20050245929 | Winslow et al. | Nov 2005 | A1 |
20050256578 | Blatt et al. | Nov 2005 | A1 |
20050277922 | Trieu et al. | Dec 2005 | A1 |
20050277930 | Parsons | Dec 2005 | A1 |
20060036240 | Colleran et al. | Feb 2006 | A1 |
20060052785 | Augostino et al. | Mar 2006 | A1 |
20060079896 | Kwak et al. | Apr 2006 | A1 |
20060084976 | Borgstrom et al. | Apr 2006 | A1 |
20060084984 | Kim | Apr 2006 | A1 |
20060084991 | Borgstrom et al. | Apr 2006 | A1 |
20060129239 | Kwak | Jun 2006 | A1 |
20060149229 | Kwak et al. | Jul 2006 | A1 |
20060149230 | Kwak et al. | Jul 2006 | A1 |
20060189983 | Fallin et al. | Aug 2006 | A1 |
20060200130 | Hawkins et al. | Sep 2006 | A1 |
20060241771 | Gordon et al. | Oct 2006 | A1 |
20060265074 | Krishna et al. | Nov 2006 | A1 |
20060271046 | Kwak et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
0576379 | Dec 1993 | EP |
0669109 | Feb 1994 | EP |
0612507 | Aug 1994 | EP |
1153577 | Nov 2001 | EP |
2694182 | Feb 1994 | FR |
2697428 | May 1994 | FR |
2701833 | Sep 1994 | FR |
WO-0145576 | Jun 2001 | WO |
WO-0217803 | Mar 2002 | WO |
WO-0243603 | Jun 2002 | WO |
WO-02102259 | Dec 2002 | WO |
WO-03007828 | Jan 2003 | WO |
WO-03009737 | Feb 2003 | WO |
2004024011 | Mar 2004 | WO |
WO-2004034916 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060149229 A1 | Jul 2006 | US |