The present disclosure relates to implantable devices, and more particularly, to prosthetic valves for implantation into body ducts such as native heart valve annuluses.
The human heart can suffer from various valvular diseases, which can result in significant malfunctioning of the heart and ultimately require replacement of the native heart valve with an artificial valve. There are a number of known artificial valves and a number of known methods of implanting these artificial valves in humans.
One method of implanting an artificial heart valve in a human patient is via open-chest surgery, during which the patient's heart is stopped and the patient is placed on cardiopulmonary bypass (a so-called “heart-lung machine”). In one common surgical procedure, the diseased native valve leaflets are excised and a prosthetic valve is sutured to the surrounding tissue at the native valve annulus. Because of the trauma associated with the procedure and the attendant duration of extracorporeal blood circulation, some patients do not survive the surgical procedure or die shortly thereafter. It is well known that the risk to the patient increases with the amount of time required on extracorporeal circulation. Due to these risks, a substantial number of patients with defective native valves are deemed inoperable because their condition is too frail to withstand the procedure. By some estimates, more than 50% of the subjects suffering from aortic stenosis who are older than 80 years cannot be operated on for aortic valve replacement.
Because of the drawbacks associated with conventional open-chest surgery, percutaneous and minimally-invasive surgical approaches are in some cases preferred. In one such technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization. For instance, U.S. Pat. Nos. 7,393,360, 7,510,575, and 7,993,394, which are hereby incorporated herein by reference, describe collapsible transcatheter prosthetic heart valves that can be percutaneously introduced in a compressed state on a catheter and expanded to a functional size at the desired position by balloon inflation or by utilization of a self-expanding frame or stent.
An important design parameter of a transcatheter prosthetic heart valve is the diameter of the folded or crimped profile. The diameter of the crimped profile is important because it directly influences the physician's ability to advance the prosthetic valve through a femoral artery or vein. More particularly, a smaller profile allows for treatment of a wider population of patients, with enhanced safety.
The present disclosure is directed toward new and non-obvious implantable prosthetic devices. In some cases, an implantable prosthetic valve comprises an inflow end, an outflow end, a central longitudinal axis extending from the inflow end to the outflow end, a radially collapsible and expandable annular frame comprising a plurality of commissure attachment posts and a plurality of sets of struts, and a valve member supported within an interior of the radially collapsible and expandable annular frame. In some cases, the plurality of commissure attachment posts are angularly spaced apart from each other around the central longitudinal axis, each set of struts extends circumferentially partially around the central longitudinal axis from a first respective commissure attachment post to a second respective commissure attachment post and comprises a plurality of rows of angled struts arranged in a zig-zag pattern in each row of angled struts, and each set of struts comprises at least one complete row of angled struts extending from the first respective commissure attachment post to the second respective commissure attachment post and at least two partial rows of angled struts extending between the first and second respective commissure attachment posts.
In some cases, each set of struts comprises exactly one complete row of angled struts extending circumferentially around the central longitudinal axis from the first respective commissure attachment post to the second respective commissure attachment post. In some cases, each set of struts comprises exactly two partial rows of angled struts extending between the first and second respective commissure attachment posts. In some cases, the two partial rows of angled struts are positioned on opposite sides of the complete row of angled struts.
In some cases, each set of struts further comprises a plurality of vertical struts extending between and connecting a first partial row of angled struts to the at least one complete row of angled struts. In some cases, a set of struts further comprises at least one additional strut extending between and connecting an end of the first partial row of angled struts and an apex of the at least one complete row of angled struts. In some cases, a second partial row of angled struts is coupled to apices of the at least one complete row of angled struts. In some cases, a set of struts further comprises at least one additional strut extending between and connecting an apex of the second partial row of angled struts and a commissure attachment post.
In some cases, each set of struts comprises an upper perimeter and a lower perimeter, each of the upper and lower perimeters having an overall concave shape facing in a direction of the outflow end of the implantable prosthetic valve. In some cases, the radially collapsible and expandable annular frame is configured to be self-expandable from a radially collapsed state. In some cases, the radially collapsible and expandable annular frame has an outer diameter of about 19 French in the radially collapsed state.
In some cases, a valve further comprises a skirt secured to the radially collapsible and expandable annular frame. In some cases, the skirt is secured to the radially collapsible and expandable annular frame with sutures securing the skirt to the plurality of sets of struts. In some cases, the skirt is secured to the radially collapsible and expandable annular frame with sutures securing the skirt to the radially collapsible and expandable annular frame through openings in the commissure attachment posts. In some cases, each set of struts comprises no more than 19 struts, 16 nodes, and 4 open cells. In some cases, a frame comprises exactly three commissure attachment posts and exactly three sets of struts.
In some cases, an implantable prosthetic valve comprises, an inflow end, an outflow end, a central longitudinal axis extending in an axial direction from the inflow end to the outflow end, a radially collapsible and expandable annular frame comprising a plurality of commissure attachment posts and a plurality of sets of struts, and a valve member supported within an interior of the radially collapsible and expandable annular frame. In some cases, the plurality of commissure attachment posts are angularly spaced apart from each other around, and are aligned with, the central longitudinal axis, each set of struts extends circumferentially partially around the central longitudinal axis from a first respective commissure attachment post to a second respective commissure attachment post, and each set of struts comprises no more than two rows of struts along any axis aligned with the central longitudinal axis.
In some cases, each set of struts comprises exactly one complete row of angled struts extending circumferentially around the central longitudinal axis from the first respective commissure attachment post to the second respective commissure attachment post. In some cases, each set of struts comprises exactly two partial rows of angled struts extending between the first and second respective commissure attachment posts. In some cases, the two partial rows of angled struts are positioned axially on opposite sides of the complete row of angled struts.
In some cases, an implantable prosthetic valve comprises an inflow end, an outflow end, a central longitudinal axis extending from the inflow end to the outflow end, a radially collapsible and expandable annular frame comprising a plurality of commissure attachment posts and a plurality of sets of struts, and a valve member supported within an interior of the radially collapsible and expandable annular frame. In some cases, the plurality of commissure attachment posts are angularly spaced apart from each other around the central longitudinal axis, and each set of struts extends circumferentially partially around the central longitudinal axis from a first respective commissure attachment post to a second respective commissure attachment post and comprises a plurality of rows of angled struts arranged in a zig-zag pattern in each row of angled struts, wherein each set of struts comprises exactly two complete rows of angled struts extending from the first respective commissure attachment post to the second respective commissure attachment post and exactly two partial rows of angled struts extending between the first and second respective commissure attachment posts.
In some cases, respective upper peripheries of each of the sets of struts comprise an uppermost node which is located closer to the inflow end of the valve than an uppermost portion of the attachment posts. In some cases, the respective upper peripheries of the sets of struts include a top apex which is located closer to the inflow end of the valve than the uppermost node. In some cases, the partial rows of angled struts are positioned on opposite sides of the complete rows of angled struts. In some cases, each set of struts further comprises a plurality of vertical struts extending between and connecting a first complete row of angled struts to a second complete row of angled struts. In some cases, a first partial row of angled struts is coupled to apices of a first complete row of angled struts and a second partial row of angled struts is coupled to apices of a second complete row of angled struts.
In some cases, each set of struts comprises an upper perimeter and a lower perimeter, each of the upper and lower perimeters having an overall concave shape facing in a direction of the outflow end of the implantable prosthetic valve. In some cases, a valve further comprises a skirt secured to the radially collapsible and expandable annular frame. In some cases, the skirt is secured to the radially collapsible and expandable annular frame with sutures securing the skirt to the plurality of sets of struts. In some cases, the skirt is secured to the radially collapsible and expandable annular frame with sutures securing the skirt to the radially collapsible and expandable annular frame through openings in the commissure attachment posts.
In some cases, an implantable prosthetic valve comprises an inflow end, an outflow end, a central longitudinal axis extending from the inflow end to the outflow end, a radially collapsible and expandable annular frame comprising a plurality of commissure attachment posts and a plurality of sets of struts, and a valve member supported within an interior of the radially collapsible and expandable annular frame. In some cases, the plurality of commissure attachment posts are angularly spaced apart from each other around the central longitudinal axis, and each set of struts extends circumferentially partially around the central longitudinal axis from a first respective commissure attachment post to a second respective commissure attachment post and comprises no more than 19 struts, no more than 20 nodes, and no more than 4 open cells.
In some cases, each set of struts comprises a first partial row of struts, a second partial row of struts, and a third partial row of struts extending circumferentially around the central longitudinal axis from the first respective commissure attachment post to the second respective commissure attachment post, and the second and third partial rows of angled struts are positioned on opposite sides of the first row of angled struts. In some cases, each set of struts further comprises a plurality of vertical struts extending between and connecting the first partial row of angled struts to the second partial row of angled struts. In some cases, a set of struts further comprises a fourth partial row of angled struts axially offset from the first partial row of angled struts toward the second partial row of struts by a distance which is half a length of the vertical struts. In some cases, the fourth partial row of angled struts forms a zig-zag arrangement which is inverted from the zig-zag arrangement of struts in the first partial row.
In some cases, an implantable prosthetic valve comprises an inflow end, an outflow end, a central longitudinal axis extending in an axial direction from the inflow end to the outflow end, a radially collapsible and expandable annular frame comprising a plurality of commissure attachment posts and a plurality of sets of struts, and a valve member supported within an interior of the radially collapsible and expandable annular frame. In some cases, the plurality of commissure attachment posts are angularly spaced apart from each other around, and are aligned with, the central longitudinal axis, each set of struts extends circumferentially partially around the central longitudinal axis from a first respective commissure attachment post to a second respective commissure attachment post, and each set of struts comprises no more than two rows of struts along any axis aligned with the central longitudinal axis. In some cases, each set of struts comprises exactly two rows of struts along any axis aligned with the central longitudinal axis and passing through the set of struts.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
When implanted, the frame 102 allows the prosthetic valve 100 to retain its overall structure, and the leaflet structure 104 allows the prosthetic valve 100 to function as a replacement for a native valve, allowing fluid to flow in one direction through the prosthetic valve 100, but not the other direction. The prosthetic valve 100 (and thus the frame 102 which is a component thereof) has a “lower” end 108 and an “upper” end 110. In the context of the present application, the terms “lower” and “upper” are used interchangeably with the terms “inflow” and “outflow,” respectively. Thus, for example, when implanted in the aortic valve, the lower end 108 of the prosthetic valve 100 is its inflow end and the upper end 110 of the prosthetic valve 100 is its outflow end.
The prosthetic valve 100 and the frame 102 are configured to be radially collapsible to a collapsed or crimped state for introduction into the body on a delivery catheter and radially expandable to an expanded state for implanting the prosthetic valve 100 at a desired location in the body (e.g., the native aortic valve). The frame 102 can be made of a plastically-expandable material that permits crimping of the prosthetic valve 100 to a smaller profile for delivery and expansion of the prosthetic valve 100 using an expansion device such as the balloon of a balloon catheter. Suitable plastically-expandable materials that can be used to form the frame 102 include, without limitation, stainless steel, cobalt chromium, a nickel based alloy (e.g., a nickel-cobalt-chromium alloy), polymers, or combinations thereof. In particular embodiments, the frame 102 is made of a nickel-cobalt-chromium-molybdenum alloy, such as MP35N® alloy (SPS Technologies), which is equivalent to UNS R30035 (covered by ASTM F562-02). MP35N® alloy/UNS R30035 comprises 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight. It has been found that the use of MP35N® alloy to form a frame provides superior structural results over stainless steel. In particular, when MP35N® alloy is used as the frame material, less material is needed to achieve the same or better performance in radial and crush force resistance, fatigue resistances, and corrosion resistance. Moreover, since less material is required, the crimped profile of the frame 102 can be reduced, thereby providing a lower profile prosthetic valve assembly for percutaneous delivery to the treatment location in the body.
Alternatively, the prosthetic valve 100 can be a so-called self-expanding prosthetic valve 100 wherein the frame 102 is made of a self-expanding material such as Nitinol. A self-expanding prosthetic valve 100 can be crimped to a smaller profile and held in the crimped state with a restraining device such as a sheath covering the prosthetic valve. When the prosthetic valve 100 is positioned at or near the target site, the restraining device is removed to allow the prosthetic valve to self-expand to its expanded, functional size.
As shown in
Similarly, a more stretchable and/or compressible material such as silicon can allow for a smaller crimping profile of the prosthetic valve 100. Other materials that can be used to form the skirt 106 include, but are not limited to, PTFE, ePTFE, polyurethane, polyolefins, hydrogels, biological materials (e.g., pericardium or biological polymers such as collagen, gelatin, or hyaluronic acid derivatives) or combinations thereof. The skirt 106 can be made of an auxetic and/or swelling material, such as synthetic or natural hydrogels. Skirt 106 can serve several functions, including, for example, sealing and decreasing perivalvular leakage, anchoring the leaflet structure 104 to the frame 102, and protecting leaflets 152 from damage caused by being pinched during crimping or working cycles of the prosthetic valve 100 itself. Further details regarding the skirt 106 are available in U.S. Pat. No. 7,993,394, which is incorporated by reference.
The leaflet structure 104 can comprise three leaflets 152 which can be arranged to collapse in a tricuspid arrangement, as best shown in
The leaflet structure 104 can be attached to the skirt 106 and/or the frame 102, and the skirt 106 can be secured to the inside of the frame 102, thereby coupling the leaflet structure 104 to the frame 102. In one particular exemplary embodiment, the lower edge 160 of each leaflet 152 can be stitched to the skirt 106. As shown in
As another particular example, the frame 102 can be dipped into liquid silicone to form a skirt of silicone, which can cover the entire frame and in some cases span the openings of open cells in the frame 102. Further details regarding the methods of securing the various components of the prosthetic valve 100, including the frame 102, the leaflet structure 104, and the skirt 106 to one another are available in U.S. Pat. No. 7,993,394, which is incorporated by reference.
The struts 120 of the main row 118 can be further arranged so that the zig-zag pattern includes three top apices 122 pointing toward the upper end 110 of the frame 102 and four bottom apices 124 pointing toward the lower end 108 of the frame 102. A vertical strut 126 can be attached to a top apex 122 and extend away from the top apex 122 toward the lower end 108 of the frame 102. In the embodiment illustrated in
Each set of struts 114 can further comprise a secondary row 128 adjacent the inflow end 108 of the frame 102 comprising four individual struts 130. The struts 130 can be arranged in a generally zig-zag or saw-tooth pattern extending circumferentially partially around the axis 116. Thus, each strut 130 can be parallel to and displaced from one of the struts 120 in the main row. The struts 130 can be further arranged so that the zig-zag pattern includes one secondary top apex 132 pointing toward the upper end 110 of the frame 102 and two secondary bottom apices 134 pointing toward the lower end 108 of the frame 102. The secondary row 128 has first and second ends 136, 138, respectively, that desirably are spaced from and not connected to the commissure attachment posts 112A, 112B. The first end 136, second end 138, and secondary top apex 132 can be connected to respective vertical struts 126, thus, as illustrated in
Each set of struts 114 can further comprise a tertiary row 144 comprising a first pair 148 and a second pair 150 of angled struts. The first pair of struts 148 can comprise angled struts 146A and 146B, and the second pair of struts 150 can comprise angled struts 146C and 146D. The strut 146A can be connected at one end to the attachment post 112A and the first end 140 of the main row 118, and at its other end to an adjacent end of the strut 146B to form a top apex 156. The strut 146B can be connected at one end to the top apex 156 and at its other end to a respective top apex 122 of the main row.
The second pair of struts 150 can have an arrangement similar to that of the first pair 148. Thus, the strut 146D can be connected at one end to the attachment post 112B and the second end 142 of the main row 118, and at its other end to an adjacent end of the strut 146C to form a top apex 158. The strut 146C can be connected at one end to the top apex 158 and at its other end to a respective top apex 122 of the main row. As shown in
Adjacent struts in one of the main, secondary, and/or tertiary rows can be connected to one another to form an angle A. The selection of angle A can affect the strength of the frame 102 when expanded and can affect the ease with which the frame 102 can be crimped and/or expanded in the manner described below. In some embodiments, the angle A is between ninety and one hundred and ten degrees, with about one hundred degrees being a specific example.
In accordance with the foregoing description, a set of struts 114 can be described as comprising a plurality of individual struts 200 connected at a series of nodes (a node includes either the location of a connection between two struts or the location of a connection between a strut and an attachment post) 202, thereby defining a cellular structure having a plurality of open cells (including cells formed partially by an attachment post) 204. As shown in
As also shown in
Similarly, a lower periphery of the set of struts 114 can include a bottom apex of the main row (e.g., one of bottom apices 124) that is located above a lowermost portion of the attachment posts 112A, 112B, such as by a distance D5.
The frame 102 illustrated in
As noted above, the secondary row 128 is without any struts connecting it to the attachment posts 112A, 112B. Also, the tertiary row 144 is without any struts disposed between the struts 146B and 146C. Thus, the secondary and tertiary rows are partial rows of struts extending partially between the attachment posts 112A, 112B. As can be seen in
Stated differently, the main row 118 and the secondary row 128 define a lower perimeter of the struts 114 having an overall concave shape facing in the direction of the outflow end 110, and the main row 118 and the tertiary row 144 define an upper perimeter of the struts 114 having an overall concave shape facing in the direction of the outflow end 110. Thus, the set of struts 114 comprises no more than two rows of angled struts along any axis aligned with the central longitudinal axis 116 (which can be aligned with the attachment posts and vertical struts 126). In determining the number of rows of struts that exist along an axis aligned with the central longitudinal axis, vertical struts such as the vertical struts 126 are not counted. In other words, no line that is parallel to the central axis 116 intersects more than two angled struts.
In certain embodiments, a larger or smaller number of rows of individual struts 200 can be provided. In other embodiments, a larger or smaller number of struts can be provided in each of the rows of struts. In general, providing additional struts can increase the overall profile of the prosthetic valve 100 in its crimped state, but can increase the strength of the prosthetic valve 100 when in its expanded, functional state. Similarly, reducing the number of struts in the frame 102 can decrease the overall profile of the prosthetic valve 100 in its crimped state, but can also decrease the strength of the prosthetic valve 100 in its expanded, functional state.
Thus, set of struts 500 can include additional struts 502 and 504 in the secondary row of struts 524, which can extend in a generally zig-zag or saw-tooth configuration from the bottom of a first vertical strut 528 to the attachment post 522A, thereby forming a secondary bottom apex 532. Set of struts 500 can also include additional struts 518 and 520 in the secondary row of struts 524, which can extend in a generally zig-zag or saw-tooth configuration from the bottom of a second vertical strut 530 to the attachment post 522B, thereby forming a secondary bottom apex 534. Quaternary row of struts 526 can include struts 506, 508, 510, 512, 514, and 516, which can extend in a generally zig-zag or saw-tooth configuration from secondary bottom apex 532 to secondary bottom apex 534. As shown in
Sets of struts 600, 700 can be used in place of any set of struts, and/or in combination with any prosthetic valve or components thereof, as described herein or known in the art. Sets of struts 600, 700 can provide increased strength and/or stability to a prosthetic valve in its expanded, functional state, as compared to the strength and/or stability of known strut configurations.
In alternative embodiments, a pair of adjacent or connected struts can be connected to each other by a respective, generally U-shaped crown structure, or crown portion. Crown structures can each include a horizontal portion extending between and connecting the adjacent ends of the struts such that a gap is defined between the adjacent ends and the crown structure connects the adjacent ends at a location offset from the strut's natural point of intersection. Crown structures can significantly reduce strains on the frame 102 during crimping and expanding of the frame 102. Further details regarding crown structures are available in U.S. Pat. No. 7,993,394, which is incorporated by reference.
In certain embodiments, various struts can have differing cross sections. For example, any of the struts can have a generally circular, triangular, quadrilateral, or other appropriately shaped cross section. Further, the various individual struts 200 can have differing thicknesses or diameters. In one exemplary embodiment, some of the individual struts 200 can have a thickness of about 0.42 mm and some of the individual struts 200 can have a thickness of about 0.38 mm. A larger thickness of the individual struts 200 can enhance the radial strength of the frame 102 and/or allow for more uniform expansion of the frame. Additionally, the cross-sectional area and/or the cross-sectional shape of a particular strut can be variable along its length.
The skirt 106, described above, can protect against damage to the leaflet structure 104 during crimping by providing a barrier between the leaflets 152 and the open cells 204 of the frame 102. In addition, since the unique frame design eliminates the struts along a length of the prosthetic valve 100 adjacent the outflow end 110, a significant portion of the leaflets 152 do not come in contact with the individual struts 200 of the frame 102 during crimping, which can further protect against damage to the leaflets 152.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
The present application is a continuation of U.S. Non-Provisional application Ser. No. 14/171,221, filed Feb. 3, 2014, which claims the benefit of U.S. patent application Ser. No. 61/763,852, filed Feb. 12, 2013, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3409013 | Berry | Nov 1968 | A |
3472230 | Fogarty | Oct 1969 | A |
3548417 | Kisher | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3755823 | Hancock | Sep 1973 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4470157 | Love | Sep 1984 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4797901 | Goerne et al. | Jan 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Sammuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5108370 | Walinsky | Apr 1992 | A |
5141494 | Danforth et al. | Aug 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5192297 | Hull | Mar 1993 | A |
5232446 | Arney | Aug 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane | May 1995 | A |
5411522 | Trott | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5558644 | Boyd et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5980570 | Simpson | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245040 | Inderbitzen et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6299637 | Shaolian | Oct 2001 | B1 |
6302906 | Goecoechea et al. | Oct 2001 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | Di Matteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6527979 | Constantz | Mar 2003 | B2 |
6569196 | Vesely et al. | May 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll | Aug 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6869444 | Gabbay | Mar 2005 | B2 |
6878162 | Bales et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7160322 | Gabbay | Jan 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7579381 | Dove | Aug 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7655034 | Mitchell et al. | Feb 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8007992 | Tian et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8167932 | Bourang | May 2012 | B2 |
8348963 | Wilson | Jan 2013 | B2 |
8407380 | Matsunaga et al. | Mar 2013 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
9168129 | Valdez et al. | Oct 2015 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020026094 | Roth | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020138135 | Duerig et al. | Sep 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20030036795 | Andersen et al. | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030158597 | Quiachon et al. | Aug 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050149160 | McFerran | Jul 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060142837 | Haverkost et al. | Jun 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070005231 | Seguchi | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070027534 | Bergheim et al. | Feb 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070270943 | Solem | Nov 2007 | A1 |
20080004688 | Spenser et al. | Jan 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100262233 | He | Oct 2010 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110098802 | Braido et al. | Apr 2011 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20130023985 | Khairkhahan et al. | Jan 2013 | A1 |
20130317598 | Rowe et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2246526 | Mar 1973 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049814 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
0103546 | Mar 1984 | EP |
0144167 | Jun 1985 | EP |
0592410 | Apr 1994 | EP |
0597967 | May 1994 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1570809 | Sep 2005 | EP |
1796597 | Jun 2007 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
2056023 | Mar 1981 | GB |
1271508 | Nov 1986 | SU |
9117720 | Nov 1991 | WO |
9217118 | Oct 1992 | WO |
9301768 | Feb 1993 | WO |
9640008 | Dec 1996 | WO |
9724080 | Jul 1997 | WO |
9829057 | Jul 1998 | WO |
0850607 | Jul 1998 | WO |
9933414 | Jul 1999 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
0018333 | Apr 2000 | WO |
0041652 | Jul 2000 | WO |
0047139 | Aug 2000 | WO |
0128459 | Apr 2001 | WO |
0135878 | May 2001 | WO |
0149213 | Jul 2001 | WO |
0162189 | Aug 2001 | WO |
0154624 | Aug 2001 | WO |
0154625 | Aug 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0241789 | May 2002 | WO |
0243620 | Jun 2002 | WO |
0247575 | Jun 2002 | WO |
0249540 | Jun 2002 | WO |
03047468 | Jun 2003 | WO |
2005034812 | Apr 2005 | WO |
2005087140 | Sep 2005 | WO |
2005084595 | Sep 2005 | WO |
2005102015 | Nov 2005 | WO |
2006014233 | Feb 2006 | WO |
2006034008 | Mar 2006 | WO |
2006108090 | Oct 2006 | WO |
2006111391 | Oct 2006 | WO |
2006138173 | Dec 2006 | WO |
2007047488 | Apr 2007 | WO |
2007067942 | Jun 2007 | WO |
2007097983 | Aug 2007 | WO |
2008005405 | Jan 2008 | WO |
2008035337 | Mar 2008 | WO |
2008091515 | Jul 2008 | WO |
2008147964 | Dec 2008 | WO |
2008150529 | Dec 2008 | WO |
2009033469 | Mar 2009 | WO |
2009116041 | Sep 2009 | WO |
2010121076 | Oct 2010 | WO |
Entry |
---|
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53. |
Ai-Khaja, N., et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal ofCardiothoracic Surgery 3:305-311, Jun. 30, 2009. |
Almagor, M.D., Yaron, et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, vol. 16, No. 6, pp. 1310-1314, Nov. 1, 1990; ISSN 0735-1097. |
Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” European Heart Journal (1992), 13, 704-708. |
Andersen, Henning Rud, “History of Percutaneous Aortic Valve Prosthesis,” Herz 34 2009 Nr. 5, Urban & Vogel, pp. 343-346, Skejby University Hospital Department of Cardiology, Aarhus, Denmark. |
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994. |
Benchimol, Alberto, et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977 vol. 273, No. 1, pp. 55-62. cited byapplicant. |
Dake, Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms, New Engl.J.Med., 1994; 331:1729-34. |
Dotter, M.D., Charles T., “Transluminal Treatment of Arteriosclerotic Obstruction,” University of Oregon's Minthorn Memorial Laboratory for Cardiovascular Research through Radiology, Circulation, vol. XXX, Nov. 1964, pp. 654-670. |
Inoune, M.D., Kanji, et al, “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery 87:394-402, 1984. |
Kolata, Gina, “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” nytimes.com, http://www.nytinnes.com/1991/01/03/health/device-that-opens-clogged-arter- ies-gets-a-faili . . . , Jul. 29, 2009, 2 pages. |
Lawrence, Jr., M.D., David D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology 1897; 163: 357-360. |
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154. |
Porstmann, W., et al., “Der Verschlu.beta. des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskulare Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203. |
Rashkind, M.D., William J., “Creation of an Atrial Septal Defect Withoput Thoracotomy,” the Journal of the American Medical Association, vol. 196, No. 11, Jun. 13, 1966, pp. 173-174. |
Rashkind, M.D., William J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Interventional Cardiology, pp. 363-367. |
Rosch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Intery Radial 2003; 14:841-853. |
Ross, F.R.C.S., D.N., “Aortic Valve Surgery,” Guy's Hospital, London, pp. 192-197, approximately 1968. |
Sabbah, Ph.D., Hani N., et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989; ISSN 0886-0440. |
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538. |
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989)10, 774-782, pp. 37-45, Jun. 13, 1989. |
Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Chapter 48, Textbook of Interventional Cardiology, 2.sup.nd Edition, W.B. Saunders Company, Philadelphia, PA, .Copyrgt. 1994, 1990, pp. 803-815. |
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187. |
Urban, M.D., Philip, “Coronary Artery Stenting,” Editions Medecine et Hygiene, Geneve, 1991, pp. 5-47. |
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, 227-230. |
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 416-424, Butterworths 1986. |
Number | Date | Country | |
---|---|---|---|
20160045309 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61763852 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14171221 | Feb 2014 | US |
Child | 14922055 | US |