The invention relates to an artificial joint element for use in a human finger joint, with an essentially concave joint shell and with an essentially convex joint head. Furthermore, the invention relates to a gripping tool equipped with such a joint element.
Such an artificial joint element is known for example from U.S. Pat. No. 5,674,297 A which describes an artificial finger joint with a convex joint head and with a concave joint shell which independently of one another can be attached with a shaft in the end of a bone and are movable in an articulation plane from an extension position with parallel shaft axes into a hyperextension position or in an articulation end position. The joint head and the joint shell form a hinged joint here.
Furthermore, U.S. Pat. No. 4,231,121 shows a finger joint which consists of a joint head made as a ball head with attached shaft and a ball socket-shaped joint shell with a shaft likewise molded theron. The joint head and joint shell thus have a common articulation surface.
An artificial joint element is also the subject matter of EP 11 360 47 A1 which describes an artificial finger joint with a convex joint head and a concave joint shell. The joint head and the joint shell can be attached independently of one another in one end of the bone by means of a shaft and can be moved out of an extension position with parallel shaft axes into a hyperextension position or into an articulation end position. By attaching a second stop in the position in which a first stop for the hyperextension position is reached and in which an instantaneous center for continuation of rotation would form, movement is stopped and thus sliding of the joint head off the joint shell is avoided.
DE 43 37 922 A1 discloses a finger joint prosthesis, from whose joint shell a pin projects which on its free end bears a ball which forms an articulation surface with the joint shell. The ball is encompassed by the shell for purposes of locking in order to prevent unwanted laterally sliding.
EP 07 36 293 A 1 furthermore describes an artificial finger joint with a first and a second hollow anchoring projection which can be inserted into the tubular finger bone. Between the anchoring projections there is a hinge joint in the form of a ball joint, the first anchoring projection being connected to the ball cage of the hinged joint, in which a joint ball provided with another anchoring projection is supported. The anchoring projection passes through the slot of the ball cage and is connected to the second anchoring projection, the slot in the ball cage widening continuously in the extension position of the joint to the location at which the anchoring projection passes through the ball cage in the bending position of the joint.
DE 90 05 372 U1 also discloses a joint part prosthesis which is intended especially for a finger joint, with a bearing body which has a bearing surface and a shaft which can be embedded in the bone. The bearing body is made as a thin-walled shell element of high-strength metallic material with a thickness of a maximum 1 mm. The bearing surface functionally mimics that of a human finger joint in idealized form, and similar to a natural finger joint allows small lateral movements relative to the other joint part, in addition to the bending motion.
Furthermore, DE 196 50 816 A1 relates to an artificial finger joint. In order to move the finger again into the extended position with a tear of an extension ligament, the joint parts which are connected to the bone are connected by means of a flexible connecting element which develops a restoration force which opposes the bending.
In all known existing artificial joint elements the disadvantage is the associated movement capacity of the joint which can simulate natural joint properties only to a limited degree. Due to the differing joint properties, the artificial joint, due to the associated movement process, is often perceived by the patient as a foreign object and therefore as bothersome.
DE 102 31 538 C1 discloses an artificial joint, comprising a first joint compartment which is formed by a first joint head and a first joint socket, a second joint compartment which is formed by a second joint head and a second joint socket, the contact surfaces of the respective joint compartments in the primary function plane having an offset. In order to improve the properties of the artificial joint, the contact surfaces of the two joint compartments are configured tilted such that the surface normals of the contact surfaces have a common intersection point for each angle of flexion.
Therefore the object of the invention is to devise a possibility for creating a joint element which more or less approaches natural motion, comprising a joint shell and a joint head, in particular the degrees of the freedom which essentially determine the dynamic behavior are to be matched as required. Furthermore the object of the invention is to devise a gripping tool which is equipped with this artificial joint element.
The first object is achieved according to the invention with an artificial joint element according to the features of claim 1. Dependent claims 2 to 10 relate to especially advantageous developments of the invention.
According to the invention, there is therefore an artificial joint element in which the joint element has at least four degrees of freedom for use in a proximal interphalangeal joint (PIP) or in a distal interphalangeal joint (DIP), and especially for use in a metacarpophalangeal joint (MCP), has five degrees of freedoms. The invention is based on the finding that the properties of movement of the artificial joint can be caused to optimally approach natural behavior when the artificial joint allows additional degrees of freedom and thus clearly divergent kinematic coupling by way of the degrees of freedom which can be accomplished with the hinged joint known in the prior art.
In this connection, according to one practical embodiment the concave joint shell has a first curved contact line which runs on its surface, with a first radius, and the convex joint head has a second curved contact line which runs on its surface, with a second radius, the first radius of the first curved contact line at least in a partial region between the extreme locations of the joint position being larger than the second radius of the second curved contact line.
In this way there is therefore controlled incongruence of the joint head relative to the joint shell by which a contact region forms which is shaped especially as a line or point. Due to the additional degrees of freedom, moreover for especially impact-like loading peaks, damage to the artificial joint is avoided because a deflection movement of the joint is enabled. Moreover, due to the two angles of rotation which are implemented in this way significantly different force ratios arise due to the altered lever arm, so that even slight changes of the kinematics of movement lead to major changes of muscle forces. In particular, both a rolling motion around the contact point between the two contact lines as well as a sliding motion by the rotary motion around the center of the radius assigned to the joint shell or the joint head are thus conceivable. Furthermore, in conjunction with the synovial fluid which fills the gap, due to overflow or displacement of the fluid due to the change of the joint gap depending on the respective joint motion, an additional force component is produced which leads for example to a reduction of surface pressure and thus to improved wear behavior.
One especially advantageous embodiment of this invention is obtained in that the difference between the first radius and the second radius is at least 1 mm, especially between 2 mm and 4 mm. This results in optimum dynamic behavior due to the degrees of freedom which are determined by the difference of radii according to their amount, the difference of the radii of the MCP compared to the DIP and the difference of the radii of the PIP relative to the DIP increasing. Here the differences are especially dependent on the assignment to different finger joints, for the metacarpophalangeal joint (MCP) the difference of the radii is 3.8 mm, for the proximal interphalangeal joint (PIP) the difference of the radii is 1.3 mm, and for the distal interphalangeal joint (DIP) the difference of the radii is 1 mm.
An embodiment of this invention is also especially practical for which the difference between the first radius and the second radius in the bent joint position is larger than in the extended joint position so that the relative movement of the joint parts is determined by the respective angular position. In particular mobility is increased as a result of the increasing incongruence in the bent position. For this purpose, the convex joint head is composed of at least two ball segments which are made to meet one another in the region of a common tangent and thus enable continuous movement.
While the joint element to replace the MCP is made without concave regions, that is, in particular consists of a single joint head, conversely the joint head which is designed for use in PIP or DIP has two convex regions which are connected by a concavity. Deflection of the joint parts due to the external action of force from the relative desired position of the hinge head which is predefined for the respective joint position to the joint shell in conjunction with the tension force of the ligaments which initiate the motion leads to restoring motion into the desired position.
In this connection, according to one especially promising configuration of the artificial joint element the joint head and the joint shell each have two contact lines which are situated on the convex region between the concave connection region and the maximum distal extension, so that in particular the relative displacement of the joint parts in the transverse plane leads to a restoring force which counteracts the lifting of the contact region. The path of the contact line which deviates from the base which is enclosed by the two convex regions therefore leads to self-stabilization of the joint element designed in this way.
Furthermore, it is especially advantageous if the surface normals of the contact surfaces for each flexion angle have a common intersection point. This configuration of the contact surfaces yields self-stabilization of the joint both for initiation of rotational motion or torsion, and also for initiation of lateral forces.
The joint shell and the joint head could be made as a solid functional element with a connecting region for the finger bone. Conversely, a modification of this invention is especially advantageous in which the joint element is made as a thin molded part with a material thickness between 1 mm and 5 mm. In this way a major reduction in the loss of bone substance is achieved which moreover makes it possible to largely retain serviceable component regions of the natural joint.
Another likewise practical design is obtained, in contrast to use in human or animal joints, when a gripping tool equipped with at least one artificial joint according to one or more of the preceding claims can be actuated with a tension means which is connected by a drive unit. In this way a technical gripping tool is implemented which moreover allows simple control of movement and also a high reaction speed for transfer of a large force.
The invention allows different embodiments. To further illustrate its basic principle, one embodiment is shown in the drawings and is described below.
A joint system according to the invention for use of a human finger joint is detailed using the drawings,
In addition,
In addition,
Number | Date | Country | Kind |
---|---|---|---|
10 2004 058 546.6 | Dec 2004 | DE | national |
10 2005 020 779.0 | May 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE05/02162 | 11/30/2005 | WO | 10/15/2007 |