The present invention relates to an artificial soil particle including a plurality of fillers having a small hole that are bound together using a binder, and a method for producing such an artificial soil particle.
There have in recent years been an increasing number of plant factories, which allow for growing of plants, such as vegetables, etc., in an environment under controlled growth conditions. In most conventional plant factories, leaf vegetables, such as lettuce, etc., are hydroponically grown. More recently, there has been a move toward attempts to grow root vegetables, which are not suitable for hydroponic cultivation, in a plant factory. In order to grow root vegetables in a plant factory, it is necessary to develop an artificial soil that has good basic soil functions and high quality, and is easy to handle.
Here, the basic functions and quality of soil significantly depend on the structure of soil particles included in the soil. This holds true for artificial soils. For example, characteristics such as water retentivity, fertilizer retentivity, etc. of an artificial soil vary depending on the porous structure of artificial soil particles included in the artificial soil. In other words, there is a close relationship between the structure and characteristics of an artificial soil particle. Therefore, if the structure of an artificial soil particle can be flexibly controlled, various artificial soils having different characteristics can be developed.
However, for artificial soils so far developed, the control of the structure of artificial soil particles has been little studied, and the relationship between the structure and characteristics of an artificial soil particle has not been sufficiently clarified. Among artificial soils so far developed is an aggregate-structure zeolite that is an aggregate of zeolite powder particles bonded together using a binder including a water-soluble polymer, such as, for example, that described in Patent Document 1. In such an aggregate-structure zeolite, porosity is imparted to the particles by moisture attached to the zeolite surface being vaporized due to heat during drying. Patent Document 1 describes an artificial soil having a particle structure that is determined, depending on the rate of vaporization of moisture. It is not easy to precisely control such an artificial soil particle structure.
Patent Document 1: Japanese Unexamined Patent Application Publication No. 2000-336356
When an artificial soil is developed, it is, for example, desirable to impart, to the artificial soil, the control function capable of appropriately supplying water or nutrients to a plant to be grown while achieving the ability to grow plants that is similar to that of natural soil. In other words, artificial soils are required to have well-balanced basic soil functions. Therefore, in the future development of artificial soils, an attempt is expected to be made to clarify the relationship between the structure and characteristics of an artificial soil particle, and based on such a finding, control the structure of the artificial soil particle.
With the above problems in mind, the present invention has been made. It is an object of the present invention to pay attention to the relationship between the structure and characteristics of an artificial soil particle, which has so far been little studied, and provide a novel artificial soil particle having great potential to achieve various advantages, and a technique of producing such an artificial soil particle.
To achieve the above object, an artificial soil particle according to the present invention is an artificial soil particle including a plurality of fillers having a small hole, the fillers bonding with each other through a binder, in which the artificial soil particle has a self-organized structure formed by competition between the fillers and the binder.
During the course of formation of an artificial soil particle, fillers that are a main material for the artificial soil particle normally fall into a disordered state over time according to the law of entropy increase. On the other hand, in the case of the artificial soil particle having this configuration, fillers compete against a binder during granulation of the fillers through the binder, and therefore, a self-organized structure having a certain order is formed in the particle. This self-organized structure is a certain specific structure, which has an influence on characteristics of the artificial soil particle. In addition, the self-organized structure of the artificial soil particle can be controlled based on a condition under which the fillers are granulated.
Therefore, the artificial soil particle having this configuration can be used to provide a novel artificial soil that is different from conventional artificial soils even in terms of concept, and can be expected to provide an artificial soil having a high added value and great potential to achieve various advantages.
In the artificial soil particle of the present invention, the self-organized structure is preferably a three-dimensional network structure in which the plurality of fillers bond with each other in a three-dimensional fashion.
In the artificial soil particle thus configured, the three-dimensional network structure formed as the self-organized structure has a three-dimensional framework having a high strength, which can contribute to stabilization of the structure of the artificial soil particle. In addition, an interstice formed in the three-dimensional framework of the three-dimensional network structure can hold various substances, and therefore, an artificial soil that makes the most of characteristics of the held substance can be provided.
In the artificial soil particle of the present invention, the self-organized structure is preferably a lamella structure in which the plurality of fillers are aligned in a predetermined direction.
In the artificial soil particle thus configured, the lamella structure formed as the self-organized structure has anisotropy in a specific direction, and therefore, an artificial soil that has significant characteristics under a specific condition can be provided.
In the artificial soil particle of the present invention, a communication hole is preferably formed between the fillers.
In the artificial soil particle thus configured, the communication hole formed between the fillers can be caused to have a function different from that of the small hole of the filler, and therefore, a multi-functional artificial soil can be provided.
In the artificial soil particle of the present invention, the small hole preferably has a size ranging from the subnanometer to the submicrometer scale, and the communication hole preferably has a size ranging from the submicrometer to the submillimeter scale.
In the artificial soil particle thus configured, the small hole of the filler has a size ranging from the subnanometer to the submicrometer scale, and therefore, can effectively capture nutrients required for improving the quality of a plant. In addition, the communication hole has a size ranging from the submicrometer to the submillimeter scale, and therefore, can effectively absorb moisture essential for growth of a plant. Thus, the small hole and the communication hole have different sizes, and therefore, a multi-functional artificial soil that has well-balanced basic soil functions can be provided.
In the artificial soil particle of the present invention, the small hole preferably has ion exchange capability.
In the artificial soil particle thus configured, the ion exchange capability allows the small hole to hold fertilizer components, and therefore, an artificial soil that can maintain fertilizer retentivity over a long time can be provided.
The artificial soil particle of the present invention preferably has an average particle size of 0.2 to 10 mm.
The artificial soil particle thus configured has an average particle size of 0.2 to 10 mm, and therefore, an easy-to-handle artificial soil that is particularly suitable for cultivation of root vegetables can be provided.
An artificial soil particle production method according to the present invention is a method for producing an artificial soil particle including a plurality of fillers having a small hole, the fillers bonding with each other through a binder, the method including causing the fillers to perform self-organization by competition between the fillers and the binder.
The artificial soil particle production method thus configured provides good advantages similar to those of the above artificial soil particle. Specifically, in the artificial soil particle production method having this configuration, fillers compete against a binder during granulation of the fillers through the binder, and therefore, a self-organized structure having a certain order is formed in the particle. This self-organized structure is a certain specific structure, which has an influence on characteristics of the artificial soil particle. In addition, the self-organized structure of the artificial soil particle can be controlled based on a condition under which the fillers are granulated.
Therefore, the artificial soil particle produced by the artificial soil particle production method having this configuration can be used to provide a novel artificial soil that is different from conventional artificial soils even in terms of concept, and can be expected to provide an artificial soil having a high added value and great potential to achieve various advantages.
Embodiments of an artificial soil particle according to the present invention and a method for producing such an artificial soil particle will now be described with reference to
<Configuration of Artificial Soil Particle>
The artificial soil particle 10 is formed of a plurality of the fillers 1 that bond with each other through a binder. In
The size of the small hole 2 of the filler 1 (the average value of the size x of the void 2a or the interlayer space 2b in
The small hole 2 of the filler 1 is preferably formed of a material having ion exchange capability so that the artificial soil particle 10 has sufficient fertilizer retentivity. As the material having ion exchange capability, a material having cation exchange capability, a material having anion exchange capability, or a mixture thereof may be employed. Alternatively, a porous material (e.g., a polymeric foam material, glass foam material, etc.) that does not have ion exchange capability may be separately prepared, the above material having ion exchange capability may be introduced into the small holes of the porous material by injection, impregnation, etc., and the resultant material may be used as the filler 1. Examples of the material having cation exchange capability include cation exchange minerals, humus, and cation exchange resins. Examples of the material having anion exchange capability include anion exchange minerals and anion exchange resins.
Examples of the cation exchange minerals include smectite minerals such as montmorillonite, bentonite, beidellite, hectorite, saponite, stevensite, etc., mica minerals, vermiculite, zeolite, etc. Examples of the cation exchange resins include weakly acidic cation exchange resins and strongly acidic cation exchange resins. Of them, zeolite or bentonite is preferable. The cation exchange minerals and the cation exchange resins may be used in combination. The cation exchange capacity of the cation exchange mineral and cation exchange resin is set to 10 to 700 meq/100 g, preferably 20 to 700 meq/100 g, and more preferably 30 to 700 meq/100 g. When the cation exchange capacity is less than 10 meq/100 g, sufficient nutrients cannot be taken in, and nutrients taken in are likely to flow out quickly due to watering, etc. On the other hand, even when the cation exchange capacity is greater than 700 meq/100 g, the fertilizer retentivity is not significantly improved, which is not cost-effective.
Examples of the anion exchange minerals include natural layered double hydroxides having a double hydroxide as a main framework such as hydrotalcite, manasseite, pyroaurite, sjogrenite, patina, etc., synthetic hydrotalcite and hydrotalcite-like substances, and clay minerals such as allophane, imogolite, kaolinite, etc. Examples of the anion exchange resins include weakly basic anion exchange resins and strongly basic anion exchange resins. Of them, hydrotalcite is preferable. The anion exchange minerals and the anion exchange resins may be used in combination. The anion exchange capacity of the anion exchange mineral and anion exchange resin is set to 5 to 500 meq/100 g, preferably 20 to 500 meq/100 g, and more preferably 30 to 500 meq/100 g. When the anion exchange capacity is less than 5 meq/100 g, sufficient nutrients cannot be taken in, and nutrients taken in are likely to flow out quickly due to watering, etc. On the other hand, even when the anion exchange capacity is greater than 500 meq/100 g, the fertilizer retentivity is not significantly improved, which is not cost-effective.
<Techniques of Granulating Fillers>
The artificial soil particle 10 is formed by causing a plurality of the fillers 1 to be clustered together in the form of a grain. To granulate the fillers 1, for example, a polymeric gelling agent is used as a binder. The polymeric gelling agent causes the fillers 1 to bond with each other by means of a gelling reaction. Examples of the gelling reaction of a polymeric gelling agent include a gelling reaction between an alginate and a multivalent metal ion, a gelling reaction of carboxymethyl cellulose (CMC), and a gelling reaction caused by a double helix structure forming reaction of a polysaccharide such as carrageenan, etc. Of them, a gelling reaction between an alginate and a multivalent metal ion is suitable as a means for forming a “self-organized structure” described below that is a feature of the present invention. Sodium alginate, which is an alginate, is a neutral salt formed by the carboxyl group of alginic acid bonding with a Na ion. While alginic acid is insoluble in water, sodium alginate is water-soluble. When an aqueous solution of sodium alginate is added to an aqueous solution containing a multivalent metal ion (e.g., a Ca ion), sodium alginate molecules are ionically cross-linked together to form a gel. The gelling reaction may, for example, be performed by the following steps. Initially, an alginate is dissolved in water to formulate an aqueous solution of the alginate, and the fillers 1 are added to the aqueous alginate solution, followed by thorough stirring, to form a mixture solution that is the aqueous alginate solution in which the fillers 1 are dispersed. Next, the mixture solution is dropped into an aqueous solution of a multivalent metal ion, thereby gelling the alginate contained in the mixture solution into grains.
Here, the gelling reaction between an alginate and a multivalent metal ion will be discussed. During the course of the gelling reaction, an ionic cross-link between alginate molecules interacts with and competes against the dispersion force of the fillers 1 in an aqueous alginate solution, leading to organization. Although the fillers 1 normally fall into a disordered state (i.e., a random state) over time according to the law of entropy, the artificial soil particle 10 of this embodiment is formed while the fillers 1 compete against an alginate as a binder, and therefore, a self-organized structure having a certain order is formed in the particle. This self-organized structure is a certain specific structure, which has an influence on characteristics of the artificial soil particle 10 as a final product.
Examples of an alginate that can be used as the binder 5 in the gelling reaction include sodium alginate, potassium alginate, and ammonium alginate. These alginates may be used in combination. The concentration of the aqueous alginate solution is 0.1 to 5% by weight, preferably 0.2 to 5% by weight, and more preferably 0.2 to 3% by weight. When the concentration of the aqueous alginate solution is less than 0.1% by weight, the gelling reaction is less likely to occur. When the concentration of the aqueous alginate solution exceeds 5% by weight, the viscosity of the aqueous alginate solution is excessively high, and therefore, it is difficult to stir the mixture solution containing the fillers 1 added, or drop the mixture solution to the aqueous multivalent metal ion solution.
The aqueous multivalent metal ion solution to which the aqueous alginate solution is dropped may be any aqueous solution of a divalent or higher-valent metal ion that reacts with the alginate to form a gel. Examples of such an aqueous multivalent metal ion solution include an aqueous solution of a multivalent metal chloride such as calcium chloride, barium chloride, strontium chloride, nickel chloride, aluminum chloride, iron chloride, cobalt chloride, etc., an aqueous solution of a multivalent metal nitrate such as calcium nitrate, barium nitrate, aluminum nitrate, iron nitrate, copper nitrate, cobalt nitrate, etc., an aqueous solution of a multivalent metal lactate such as calcium lactate, barium lactate, aluminum lactate, zinc lactate, etc., and an aqueous solution of a multivalent metal sulfate such as aluminum sulfate, zinc sulfate, cobalt sulfate, etc. These aqueous multivalent metal ion solutions may be used in combination. The concentration of the aqueous multivalent metal ion solution is 1 to 20% by weight, preferably 2 to 15% by weight, and more preferably 3 to 10% by weight. When the concentration of the aqueous multivalent metal ion solution is less than 1% by weight, the gelling reaction is less likely to occur. When the concentration of the aqueous multivalent metal ion solution exceeds 20% by weight, it takes a long time to dissolve the metal salt, and an excessive amount of the material is required, which is not cost-effective.
<Control of Self-Organized Structure>
The self-organized structure of the artificial soil particle 10 that emerges from competition between the fillers 1 and an alginate as the binder 5, may be controlled based on a condition under which the fillers 1 are granulated (gelled). Examples of the condition for controlling the self-organized structure of the artificial soil particle 10 will now be described.
To form the three-dimensional network structure of
To form the lamella structure of
<Porous Structure of Artificial Soil Particle>
The artificial soil particle 10 having the self-organized structure is a porous particle in which a communication hole 3 is formed between the fillers 1 having a small hole 2. The particle size of the artificial soil particle 10 (the average value of the size z of the artificial soil particle 10 in
In the artificial soil particle 10, the small holes 2 are distributed and arranged around the communication hole 3 so that the communication hole 3 can take in water and nutrients from the outside and the small holes 2 can receive the nutrients from the communication hole 3.
<Mechanisms for Water Retentivity and Fertilizer Retentivity of Artificial Soil Particle>
The artificial soil particle 10 of the present invention includes the small hole 2 and the communication hole 3 that have different sizes, and therefore, can be used to provide a multi-functional artificial soil that has well-balanced basic soil functions (water retentivity and fertilizer retentivity). Here, mechanisms for the water retentivity and fertilizer retentivity of the artificial soil particle 10 will be described in detail with reference to
As shown in
<Physical Properties of Artificial Soil Particle>
The small holes 2 and the communication holes 3 of the artificial soil particle 10 are preferably configured so that the total volume of the communication holes 3 is greater than the total volume of the small holes 2. This is because such a configuration allows the communication hole 3 to have sufficient water retentivity and also allows for smooth movement of nutrients from the communication hole 3 to the small holes 2. Also, if the total volume of the communication holes 3 is greater than the total volume of the small holes 2, the artificial soil particle 10 has light weight and low bulk density, and therefore, provides an easy-to-handle artificial soil. In order to cause the total volume of the communication holes 3 to be greater than the total volume of the small holes 2, it is effective to provide a three-dimensional network shown in
The strength of the artificial soil particle 10 may be evaluated using a volume change rate that is measured when repeated compression loads are applied. The artificial soil particle 10 of the present invention is designed so that the volume change rate after repeated compression loads of 25 KPa are applied is 20% or less. The volume change rate is preferably 15% or less. When the volume change rate exceeds 20%, the artificial soil particle 10 is easily destroyed when the artificial soil is put into a planter, etc., or a plant is transplanted, so that the structure of the artificial soil particle 10 (in the structure, the small holes 2 of the fillers 1 are distributed and arranged around the communication hole 3 between the fillers 1, and the fillers 1 are joined together into a three-dimensional network) is likely to be destroyed. As a result, the balance between water retentivity and fertilizer retentivity is lost. Also, when the structure of the artificial soil particle 10 is destroyed, the artificial soil is likely to be compacted and solidified, which may have an adverse influence on growing of root vegetables.
While the artificial soil particle 10 of the present invention is suitable for growing of root vegetables, the water retentivity, which is good for artificial soil, allows for growing of leaf vegetables that have so far been mostly hydroponically grown. Here, the water retentivity of artificial soil may be evaluated based on the amount of water retained during passage of water. The amount of water retained during passage of water is calculated as the amount of water retained per 100 mL of the artificial soil particles, which is given in units of percent (%). In the artificial soil particle 10 of the present invention, the small holes 2 of the fillers 1 are distributed and arranged around the communication hole 3 between the fillers 1, and the fillers 1 are joined together into a three-dimensional network, i.e., a particular configuration, whereby the amount of water retained during passage of water can be set to 20 to 70%. When the amount of water retained during passage of water is less than 20%, it is difficult to retain sufficient water for growing a plant. When the amount of water retained during passage of water exceeds 70%, the air permeability of artificial soil deteriorates, likely leading to an adverse influence on the growth of a plant. Air permeability can be represented by the gas phase rate of artificial soil in a dry state. The gas phase rate of an artificial soil employing the artificial soil particle 10 of the present invention can be set to 20 to 80%, preferably 40 to 80%, and more preferably 50 to 80%. When the gas phase rate is less than 20%, the amount of air supplied to the roots of a plant is likely to be insufficient. When the gas phase rate exceeds 80%, the water retentivity is likely to be insufficient.
The artificial soil particle 10 may be designed so that the water retentivity of the communication hole 3 is increased. An example technique of improving the water retentivity of the communication hole 3 is to introduce a water retention material into the communication hole 3 of the artificial soil particle 10. The water retention material may, for example, be introduced into the communication hole 3 by filling the communication hole 3 with the water retention material or coating a surface of the communication hole 3 with a film of the water retention material. In this case, the water retention material may be provided to at least a portion of the communication hole 3. The water retention material may, for example, be introduced by impregnating the artificial soil particle 10 with a polymer solution that is formulated by dissolving a polymeric material having water retentivity in a solvent.
Examples of a polymeric material that can be used as the water retention material include synthetic polymer water retention materials, such as polyacrylate polymers, polysulfonate polymers, polyacrylamide polymers, polyvinyl alcohol polymers, polyalkylene oxide polymers, etc., and natural polymer water retention materials, such as polyaspartate polymers, polyglutamate polymers, polyalginate polymers, cellulose polymers, starch, etc. These water retention materials may be used in combination.
As the solvent for dissolving the polymeric material that is used as the water retention material, selected is one that can well dissolve the polymeric material that is used. In other words, suitably selected is a combination of a polymeric material and a solvent that have their solubility parameter values (SP values) close to each other. For example, a combination of a polymeric material and a solvent whose SP values have a difference of 5 or less (e.g., a combination of nitro cellulose, having an SP value of about 10, and methanol, having an SP value of about 14.5) is selected. Examples of such a solvent include methanol, ethanol, isopropanol, butanol, ethyl acetate, acetone, methyl ethyl ketone, and methyl isobutyl ketone. These solvents may be used in combination.
Another technique of improving the water retentivity of the communication hole 3 is to use a water retention filler as all or a portion of the filler 1 that is a material used in formulation of the artificial soil particle 10. In this case, the produced artificial soil particle 10 itself has water retentivity, and therefore, a particular post-treatment for improving water retentivity is not required. As the water retention filler, a hydrophilic filler or a porous grain may be employed. Examples of the hydrophilic filler include zeolite, smectite minerals, mica minerals, talc, silica, double hydroxides, etc. Examples of the porous grain include foam glass, porous metals, porous ceramics, polymer porous materials, hydrophilic fibers, etc.
<Artificial Soil Aggregate>
The artificial soil particles 10 of the present invention may be aggregated into an artificial soil aggregate that can be used as an artificial soil.
The artificial soil aggregate 100 has a cluster structure in which a plurality of the artificial soil particles 10 are linked together. The cluster structure is obtained by bonding the artificial soil particles 10 together using a second binder. The second binder used in the aggregation may be the same as the binder (first binder) that is used in the formation of the artificial soil particle 10, or may be a different binder. The size of the artificial soil aggregate 100 (the average value of a size w of the artificial soil aggregate 100 of
The artificial soil aggregate 100 that is obtained by aggregating the artificial soil particles 10 of the present invention has water retentivity and fertilizer retentivity that are well balanced, and therefore, can suitably supply water and nutrients to a plant to be grown. Therefore, the artificial soil aggregate 100 of the present invention is useful as an artificial soil that is easy to maintain and handle.
Example artificial soil particles having a self-organized structure according to the present invention will now be described. As an example, the gelling reaction between an aqueous sodium alginate solution and an aqueous calcium chloride solution was utilized to formulate an artificial soil particle having a self-organized structure that is formed by competition between fillers and sodium alginate. In addition, an aggregation of each example artificial soil particle was formed as an artificial soil aggregate. Characteristics of the artificial soil particles and artificial soil aggregates were evaluated using techniques described in (1) to (7) below.
(1) Particle Size
Artificial soil particles or artificial soil aggregates were previously classified according to predetermined particle sizes using sieves, and the particle sizes of the classified particles or aggregates were measured by the measurement technique using image processing described in the above embodiment. The classified particles or aggregates were used as samples.
(2) Hole Diameter
The hole diameter of the small hole of the filler included in the artificial soil particle was measured using the gas adsorption technique. The hole diameter of the communication hole between the fillers was measured by the measurement technique using image processing described in the above embodiment.
(3) Cation Exchange Capacity
An extraction liquid of the artificial soil particle was prepared using the general extraction and filter unit “CEC-10 Ver. 2,” manufactured by Fujihira Industry Co., Ltd., and was used as a sample for measurement of cation exchange capacity. The cation exchange capacity (CEC) of the artificial soil particle was measured using the soil plant general analyzer “SFP-3,” manufactured by Fujihira Industry Co., Ltd.
(4) Anion Exchange Capacity
Twenty milliliters of 0.05 M calcium nitrate solution was added to 2 g of the artificial soil particles, followed by stirring for 1 h. The solution was centrifuged (10,000 rpm) for 1 min at room temperature, and the supernatant was used as a measurement sample. For the measurement sample, the absorbance at a wavelength of 410 nm was measured using an ultraviolet and visible spectrophotometer to obtain the calcium nitrate concentration. The amount of nitrate nitrogen absorbed per unit weight was calculated based on the difference between the obtained calcium nitrate concentration and the calcium nitrate concentration of a blank, and was converted into an anion exchange capacity (AEC) per unit volume using the specific gravity.
(5) Strength
The strength of the artificial soil particle was evaluated based on a volume change rate that is obtained when repeated compression loads are applied. The volume change rate was measured by the following technique. One hundred milliliters of the artificial soil as a sample was loaded in a sample cylinder (inner diameter: about 5 cm, height: about 5 cm, and volume: 100 mL) for evaluation of the soil, and a cylindrical weight (weight: 5 kg) having a diameter slightly smaller than that of the sample cylinder was gently placed on the sample. The sample was allowed to stand for 60 sec before the weight was removed. These operations were repeated 10 times (repeated compression loads: 25 KPa). After the application of the repeated compression loads was completed, the sample was allowed to stand for 60 sec. The volume V of the sample was measured using a graduated cylinder, etc., and the volume change rate ΔV was calculated by:
ΔV(%)=(100−V)/100×100 [1]
(6) Amount of Retained Water
One hundred milliliters of the artificial soil particles was packed into an empty chromatography column. The amount of water retained in the artificial soil as 200 mL of water was gently poured into the column from the top, is referred to as the “amount of water retained during passage of water.”
(7) Gas Phase Rate
An artificial soil including the artificial soil particles was immersed in tap water for 24 h to prepare a water-saturated sample. The sample was allowed to stand for 1 h. After water that falls down due to its weight was allowed to flow out from the sample, the sample was extracted and placed into a 100-mL sample cylinder while the shape of the sample was maintained unchanged to the extent possible. The sample cylinder was set in a digital actual volumenometer “DIK-1150,” manufactured by Daiki Rika Kogyo Co., Ltd., to measure the gas phase rate.
[Artificial Soil Particle]
To 100 parts by weight of a 0.5% aqueous sodium alginate solution, 10 parts by weight of an artificial zeolite “Ryukyu-lite 600,” manufactured by ECOWEL Inc., and 10 parts by weight of a reagent, hydrotalcite, manufactured by Wako Pure Chemical Industries, Ltd., were added, followed by mixing. The mixture solution was dropped into a 5% aqueous calcium chloride solution at a rate of 1 drop/sec. After the drops were gelled into particles, the gel particles were collected and washed with water, followed by drying using a drying machine at 55° C. for 24 h. The dried gel particles were classified by sieving, thereby obtaining a artificial soil particle having a size between 2 mm and 4 mm. The obtained artificial soil particle had a three-dimensional network structure. This artificial soil particle had a cation exchange capacity of 14 meq/100 cc and an anion exchange capacity of 15 meq/100 cc. An artificial soil employing the artificial soil particles had a strength (volume change rate) of 13%, an amount of retained water (the amount of water retained during passage of water) of 26%, and a gas phase rate of 33%.
[Artificial Soil Aggregate]
One hundred parts by weight of the artificial soil particle 100 having a three-dimensional network structure, and five parts by weight of a vinyl acetate resin adhesive “BONDO (registered trademark) for wood,” manufactured by Konishi Co., Ltd., as the second binder, were mixed. The mixture was introduced into a granulation machine to form an aggregate. As a result, an artificial soil aggregate was obtained. The artificial soil aggregate thus obtained had a particle size of 3 to 18 mm, and a cluster structure in which a plurality of artificial soil particles are linked together.
The artificial soil particle of the present invention and a method for producing the artificial soil particle are applicable to an artificial soil for use in a plant factory, etc., and other applications, such as indoor horticultural soils, greening soils, molded soils, soil conditioners, soils for interior decoration, etc.
Number | Date | Country | Kind |
---|---|---|---|
2013-099366 | May 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/060508 | 4/11/2014 | WO | 00 |