Artificial spinal unit assemblies

Information

  • Patent Grant
  • 7909869
  • Patent Number
    7,909,869
  • Date Filed
    Thursday, February 12, 2004
    20 years ago
  • Date Issued
    Tuesday, March 22, 2011
    13 years ago
Abstract
An artificial functional spinal unit is provided comprising, generally, an expandable artificial intervertebral implant that can be placed via a posterior surgical approach and used in conjunction with one or more artificial facet joints to provide an anatomically correct range of motion. Expandable artificial intervertebral implants in both lordotic and non-lordotic designs are disclosed, as well as lordotic and non-lordotic expandable cages for both PLIF (posterior lumber interbody fusion) and TLIF (transforaminal lumbar interbody fusion) procedures. The expandable implants may have various shapes, such as round, square, rectangular, banana-shaped, kidney-shaped, or other similar shapes. By virtue of their posteriorly implanted approach, the disclosed artificial FSU's allow for posterior decompression of the neural elements, reconstruction of all or part of the natural functional spinal unit, restoration and maintenance of lordosis, maintenance of motion, and restoration and maintenance of disc space height.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable


FIELD OF THE INVENTION

The present invention generally relates to functional spinal implant assemblies for insertion into the intervertebral space between adjacent vertebral bones and reconstruction of the posterior elements to provide stability, flexibility and proper biomechanical motion. More specifically, the present invention relates to artificial functional spinal units comprising an expandable artificial intervertebral implant that can be inserted via a posterior surgical approach and used in conjunction with one or more artificial facet joints to provide a more anatomically correct range of motion. While a posterior surgical approach is preferred, the invention described herein may also be used in conjunction with an anterior surgical approach.


BACKGROUND OF THE INVENTION

The human spine is a complex mechanical structure composed of alternating bony vertebrae and fibrocartilaginous discs that are connected by strong ligaments and supported by musculature that extends from the skull to the pelvis and provides axial support to the body. The intervertebral discs primarily serve as a mechanical cushion between adjacent vertebral segments of the spinal column and generally comprise three basic components: the nucleus pulposus, the anulus fibrosis, and two vertebral end plates. The end plates are made of thin cartilage overlying a thin layer of hard cortical bone that attaches to the spongy, cancellous bone of the vertebral body. The anulus fibrosis forms the disc's perimeter and is a tough outer ring that binds adjacent vertebrae together. The vertebrae generally comprise a vertebral foramen bounded by the anterior vertebral body and the neural arch, which consists of two pedicles and two laminae that are united posteriorly. The spinous and transverse processes protrude from the neural arch. The superior and inferior articular facets lie at the root of the transverse process. The term “functional spinal unit” (“FSU”) refers to the entire motion segment: the anterior disc and the posterior facet joints, along with the supporting ligaments and connective tissues.


The spine as a whole is a highly flexible structure capable of a high degree of curvature and twist in nearly every direction. However, genetic or developmental irregularities, trauma, chronic stress, and degenerative wear can result in spinal pathologies for which surgical intervention maybe necessary.


It is common practice to remove a spinal disc in cases of spinal disc deterioration, disease or spinal injury. The discs sometimes become diseased or damaged such that the intervertebral separation is reduced. Such events cause the height of the disc nucleus to decrease, which in turn causes the anulus to buckle in areas where the laminated plies are loosely bonded. As the overlapping laminated plies of the anulus begin to buckle and separate, either circumferential or radial anular tears may occur. Such disruption to the natural intervertebral separation produces pain, which can be alleviated by removal of the disc and maintenance of the natural separation distance. In cases of chronic back pain resulting from a degenerated or herniated disc, removal of the disc becomes medically necessary.


In some cases, the damaged disc may be replaced with a disc prosthesis intended to duplicate the function of the natural spinal disc. U.S. Pat. No. 4,863,477 discloses a resilient spinal disc prosthesis intended to replace the resiliency of a natural human spinal disc. U.S. Pat. No. 5,192,326teaches a prosthetic nucleus for replacing just the nucleus portion of a human spinal disc.


In other cases it is desired to fuse the adjacent vertebrae together after removal of the disc, sometimes referred to as “intervertebral fusion” or “interbody fusion.”


Many techniques and instruments have been devised to perform intervertebral fusion. There is common agreement that the strongest intervertebral fusion is the interbody (between the lumbar bodies) fusion, which may be augmented by a posterior or facet fusion. In cases of intervertebral fusion, either structural bone or an interbody fusion cage filled with morselized bone is placed centrally within the space where the spinal disc once resided. Multiple cages or bony grafts may be used within that space.


Such practices are characterized by certain disadvantages, most important of which is the actual morbidity of the procedure itself. Placement of rigid cages or structural grafts in the interbody space either requires an anterior surgical approach, which carries certain unavoidable risks to the viscous structures overlying the spine (intestines, major blood vessels, and the ureter), or they may be accomplished from a posterior surgical approach, thereby requiring significant traction on the overlying nerve roots. The interval between the exiting and traversing nerve roots is limited to a few millimeters and does not allow for safe passage of large intervertebral devices, as may be accomplished from the anterior approach. Alternatively, the anterior approach does not allow for inspection of the nerve roots, is not suitable alone for cases in which the posterior elements are not competent, and most importantly, the anterior approach is associated with very high morbidity and risk where there has been previous anterior surgery.


Another significant drawback to fusion surgery in general is that adjacent vertebral segments show accelerated deterioration after a successful fusion has been performed at any level. The spine is by definition stiffer after the fusion procedure, and the natural body mechanics place increased stress on levels proximal to the fused segment. Other drawbacks include the possibility of “flat back syndrome” in which there is a disruption in the natural curvature of the spine. The vertebrae in the lower lumbar region of the spine reside in an arch referred as having a sagittal alignment. The sagittal alignment is compromised when adjacent vertebral bodies that were once angled toward each other on their posterior side become fused in a different, less angled orientation relative to one another. Finally, there is always the risk that the fusion attempt may fail, leading to pseudoarthrosis, an often painful condition that may lead to device failure and further surgery.


Conventional interbody fusion cages generally comprise a tubular metal body having an external surface threading. They are inserted transverse to the axis of the spine, into preformed cylindrical holes at the junction of adjacent vertebral bodies. Two cages are generally inserted side by side with the external threading tapping into the lower surface of the vertebral bone above, and the upper surface of the vertebral bone below. The cages include holes through which the adjacent bones are to grow. Additional materials, for example autogenous bone graft materials, maybe inserted into the hollow interior of the cage to incite or accelerate the growth of the bone into the cage. End caps are often utilized to hold the bone graft material within the cage.


These cages of the prior art have enjoyed medical success in promoting fusion and grossly approximating proper disc height. As previously discussed, however, cages that would be placed from the safer posterior route would be limited in size by the interval between the nerve roots. It would therefore, be a considerable advance in the art to provide a fusion implant assembly which could be expanded from within the intervertebral space, thereby minimizing potential trauma to the nerve roots and yet still providing the ability to restore disc space height.


Ultimately though, it is important to note that the fusion of the adjacent bones is an incomplete solution to the underlying pathology as it does not cure the ailment, but rather simply masks the pathology under a stabilizing bridge of bone. This bone fusion limits the overall flexibility of the spinal column and artificially constrains the normal motion of the patient. This constraint can cause collateral injury to the patient's spine as additional stresses of motion, normally borne by the now-fused joint, are transferred onto the nearby facet joints and intervertebral discs. Thus, it would be an even greater advance in the art to provide an implant assembly that does not promote fusion, but instead closely mimics the biomechanical action of the natural disc cartilage, thereby permitting continued normal motion and stress distribution.


SUMMARY OF THE INVENTION

Accordingly, an artificial functional spinal unit (FSU) is provided comprising, generally, an expandable artificial intervertebral implant that can be placed via a posterior surgical approach and used in conjunction with one or more artificial facet joints to provide an anatomically correct range of motion. Expandable artificial intervertebral implants in both lordotic and non-lordotic designs are disclosed, as well as lordotic and non-lordotic expandable cages for both PLIF (posterior lumber interbody fusion) and TLIF (transforaminal lumbar interbody fusion) procedures. The expandable implants may have various shapes, such as round, square, rectangular, trapezoidal, banana-shaped, kidney-shaped, or other similar shapes. By virtue of their posteriorly implanted approach, the disclosed artificial FSU's allow for posterior decompression of the neural elements, reconstruction of all or part of the natural functional spinal unit, restoration and maintenance of lordosis, maintenance of motion, and restoration and maintenance of disc space height.


The posterior implantation of an interbody device provides critical benefits over other anterior implanted devices. Placement of posterior devices that maintain mobility in the spine have been limited due to the relatively small opening that can be afforded posteriorly between the exiting and transversing nerve roots. Additionally, placement of posterior interbody devices requires the removal of one or both facet joints, further destabilizing the spine. Thus conventional posteriorly placed interbody devices have been generally limited to interbody fusion devices.


Since a properly functioning natural FSU relies on intact posterior elements (facet joints) and since it is necessary to remove these elements to place a posterior interbody device, a two-step procedure is disclosed that allows for placement of an expandable intervertebral implant and replacement of one or both facets that are necessarily removed during the surgical procedure. The expansile nature of the disclosed devices allow for restoration of disc height once inside the vertebral interspace. The expandable devices are collapsed prior to placement and then expanded once properly inserted in the intervertebral space. During the process of expansion, the endplates of the natural intervertebral disc, which essentially remain intact after removal or partial removal of the remaining natural disc elements, are compressed against the device, which thereby facilitates bony end growth onto the surface of the artificial implant. Once the interbody device is in place and expanded, the posterior element is reconstructed with the disclosed pedicle screw and rod system, which can also be used to distract the disk space while inserting the artificial implant. Once the interbody device is in place and expanded, the posterior element is further compressed, again promoting bony end growth into the artificial implant. This posterior compression allows for anterior flexion but replaces the limiting element of the facet and interspinous ligament and thereby limits flexion to some degree, and in doing so maintains stability for the anteriorly located interbody device.


The posterior approach avoids the potential risks and morbidity of the anterior approach, which requires mobilization of the vascular structures, the ureter, and exposes the bowels to risk. Also, the anterior approach does not offer the surgeon an opportunity to view the posterior neural elements and thereby does not afford an opportunity for decompression of those elements. Once an anterior exposure had been utilized a revision procedure is quite risky and carries significant morbidity.


While the posterior surgical approach is preferred, there may be circumstances that prevent posterior placement. If an anterior approach must be performed, the disclosed devices may be inserted anteriorly without affecting functionality.


The artificial FSU generally comprises an expandable intervertebral implant and one or more artificial facet joints. The expandable intervertebral implant generally comprises a pair of spaced apart plate members, each with a vertebral body contact surface. The general shape of the plate members may be round, square, rectangular, trapezoidal, banana shaped, kidney shaped, or some other similar shape, depending on the desired vertebral implantation site. Because the artificial intervertebral implant is to be positioned between the facing surfaces of adjacent vertebral bodies, the plate members are arranged in a substantially parallel planar alignment (or slightly offset relative to one another in accordance with proper lordotic angulation) with the vertebral body contact surfaces facing away from one another. The plate members are to mate with the vertebral bodies so as to not rotate relative thereto, but rather to permit the spinal segments to axially compress and bend relative to one another in manners that mimic the natural motion of the spinal segment. This natural motion is permitted by the performance of an expandable joint insert, which is disposed between the plate members. The securing of the plate members to the vertebral bone is achieved through the use of a osteoconductive scaffolding machined into the exterior surface of each plate member. Alternatively, a mesh of osteoconductive surface may be secured to the exterior surface of the plate members by methods known in the art. The osteoconductive scaffolding provides a surface through which bone may ultimately grow. If an osteoconductive mesh is employed, it may be constructed of any biocompatible material, both metal and non-metal. Each plate member may also comprise a porous coating (which may be a sprayed deposition layer, or an adhesive applied beaded metal layer, or other suitable porous coatings known in the art, i.e. hydroxy appetite). The porous coating permits the long-term ingrowth of vertebral bone into the plate member, thus permanently securing the prosthesis within the intervertebral space.


In more detail, the expandable artificial implant of the present invention comprises four parts: an upper body, a lower body, an expandable joint insert that fits into the lower body, and an expansion device, which may be an expansion plate, screw, or other similar device. The upper body generally comprises a substantially concave inferior surface and a substantially planar superior surface. The substantially planar superior surface of the upper body may have some degree of convexity to promote the joining of the upper body to the intact endplates of the natural intervertebral disc upon compression. The lower body generally comprises a recessed channel, having a rectangular cross section, which extends along the superior surface of the lower body in the medial-lateral direction and substantially conforms to the shape of the upper and lower bodies. The lower body further comprises a substantially planar inferior surface that may have some degree of convexity to promote the joining of the lower body to the intact endplates of the natural intervertebral disc upon compression. The expandable joint insert resides within the channel on the superior surface of the lower body. The expandable joint insert has a generally flat inferior surface and a substantially convex superior surface that articulates with the substantially concave inferior surface of the upper body. Prior to expansion of the artificial implant, the generally flat inferior surface of the expandable joint insert rests on the bottom surface of the channel. The expandable joint insert is raised above the bottom of the channel by means of an expansion screw, an expansion plate, or other similar device, that is inserted through an expansion hole or slot. The expansion hole or slot is disposed through the wall of the lower body formed by the channel. The expansion hole or slot gives access to the lower surface of the channel and is positioned such that the expansion device can be inserted into the expansion hole or slot via a posterior surgical approach. As the expansion device is inserted through the expansion slot, into the channel, and under the expandable joint insert, the expandable joint insert is raised above the floor of the channel and lifts the upper body above the lower body to the desired disc height. The distance from the inferior surface of the lower body and the superior surface of the upper body should be equal to the ideal distraction height of the disk space. As the artificial implant is flexed and extended, the convex superior surface of the expandable joint insert articulates with the concave inferior surface of the upper body.


After the insertion and expansion of the expandable intervertebral implant, the posterior facet joints may be reconstructed by employing the disclosed artificial facet joints. One embodiment of the artificial facet joint generally comprises a lower and upper multi-axial pedicle screw joined by a rod bridging the vertebral bodies above and below the artificial implant. The rod comprises a washer-type head at its lower (caudad) end. The rod fits into the heads of the pedicle screws and a top loaded set screw is placed in the pedicle screw heads. The disclosed pedicle screw system may employ different types of pedicle screws so that the top loaded set screw may or may not lock down on the rod depending on surgeon preference. If a non-locking pedicle screw is used the caudad end remains fully multi-axial. The upper (cephalad) end of the rod is held within the head of the upper pedicle screw with a set screw which locks down on the rod and eliminates any rod movement at the cephalad end, which by nature has limited multi-axial function. In an alternative embodiment of an artificial facet joint, the rod may comprise washer-type heads on both ends (caudad and cephalad) so that both pedicle screws can be of the non-locking variety. In the event of a two level surgical procedure, three pedicle screws would be employed with a single rod, which would have washer-type heads at both ends. The middle pedicle screw would be a locking-type and the upper most and lower most pedicle screws would be of the non-locking variety.


In addition, another embodiment of the artificial facet joint is disclosed that generally comprises two locked pedicle screws joined by a rod having a ball and socket joint centrally located on the rod between the two pedicle screws. The locking of the pedicle screws prevents the screw head from swiveling, but allows rotation and translation of the rod.


While conventional locking type pedicle screws may be employed, a novel locking type pedicle screw is also disclosed. Locking type pedicle screws comprise a set screw located in the pedicle screw head, which applies force to the retaining rod as it is tightened. One the set screw is tightened, rotational and translational movement of the rod within the head of the pedicle screw is prohibited. In addition, the multi-axial movement of the pedicle screw head is also prohibited making the entire assembly a fixed structure. By employing the rod holding device described in detail below, the set screw can be tightened and the multi-axial movement of the pedicle screw head can be prohibited without limiting the translational and rotational movement of the retaining rod. The rod holding device generally comprises a solid insert fitting within the pedicle screw head with a hole in which the retaining rod is slidingly positioned. As the set screw is tightened, force is applied to the rod holding device and transferred to the bottom of the pedicle screw head without applying force to the retaining rod. This allows fixation of the pedicle screw head without limiting movement of the retaining rod.


In another preferred embodiment, the artificial facet joint generally comprises an upper and lower pedicle screw having post-type heads. Rather than the previously described rod, a retaining plate is employed. Elongated holes are defined through the retaining plate, which are positioned upon the post-type heads of the pedicle screws. The post-type heads are allowed to move within the elongated holes, providing limited range of motion. Employing cushioning pads made of rubber or similar biocompatible material may dampen the movement of the plate. The post-type heads may also comprise threaded or lockable caps to prevent dislocation of the plate from the post-type heads.


In instances where a fusion procedure is unavoidable, a PLIF and TLIF cages are disclosed that utilize the expansion principal of the functional artificial intervertebral implant. One embodiment of the PLIF and TLIF cages generally comprises three parts: An external body, an internal body, and an expansion device. The external and internal bodies will have substantially the same shape and will be shaped accordingly to the procedures for which they will be used, more specifically, a rectangular cage is preferred for a PLIF procedure and round or banana shaped cage is preferred for the TLIF procedure. Both the external and internal bodies comprise a mesh structure in which an osteoconductive substance can be placed (i.e. morsilized autograph or an osteobiologic substitute). The external body of the cage contains an internal void space that houses the internal body. The external body further comprises an expansion window on its superior surface through which the internal body is raised upon expansion of the cage. The internal body comprises a planar plate member that is slightly larger than the expansion window in the superior surface of the external body such that when the cage is expanded the planar plate member secures itself against the interior side of the expansion window, thereby interlocking the external and internal bodies and eliminating mobility between the two bodies. Similar to the functional expandable implant, an expansion device is placed through an expansion slot. The expansion device lifts the internal body relative to the external body, interlocking the planar plate member of the internal body against the interior of the expansion window, and pushing the mesh structure of the internal body through the expansion window and above the superior surface of the external body. Varying the height of the expansion device and the dimensions of the external and internal bodies allows for various distraction heights to regain disc space. As with the functional intervertebral implant, the PLIF and TLIF cages may take the form of either an expandable lordotic cage or a non-lordotic cage.


In another embodiment of the PLIF and TLIF cage, a joint insert is employed that is similar to that used in the functional implant. This embodiment generally comprises four parts: an upper body, a lower body, an expandable joint insert that fits into the lower body, and an expansion screw or other similar device. The upper body generally comprises a substantially planar superior surface and one or more angled projections extending downward from the upper body's inferior surface. The substantially planar superior surface of the upper body may have some degree of convexity to promote the joining of the upper body to the intact endplates of the natural intervertebral disc upon compression. The lower body generally comprises a recessed channel, preferably having a rectangular cross-section, which extends along the superior surface of the lower body in the medial-lateral direction. The lower body further comprises a substantially planar inferior surface that may have some degree of convexity to promote the joining of the lower body to the intact endplates of the natural intervertebral disc upon compression. The expandablejoint insert resides within the channel on the superior surface of the lower body. The expandable joint insert has a generally flat inferior surface and one or more angled projections extending upward from the superior surface of the joint insert that are in communication with the angled projections extending downward from the inferior surface of the upper body. Expansion is accomplished by utilizing as expansion screw or other similar device through an expansion hole disposed through the lower body. Insertion of the expansion screw forces the one or more angled projections of the expansion joint insert to articulate against the one or more angled projections of the upper body causing the upper body to lift above the lower body. The maximum expansion height may be limited by employing one or more retaining pegs. The retaining pegs also prohibit dislocation and rotation of the upper body relative to the lower body.


The shapes and sizes of all of the devices disclosed herein are dependent upon the surgical approach employed to insert the device and the position in the spine in which it is placed. Generally, they will range from about 6 to about 11 millimeters in height for cervical devices and about 10 to about 18 millimeters in height for lumbar devices. However some deviation from these ranges may occur from patient to patient. Round devices will preferably range from about 14 to about 26 millimeters in diameter. Square devices will preferably range from about 14×14 to about 26×26 millimeters. Rectangular and trapezoidal devices will preferably range from about 12 millimeters along its shortest side and to about 30 millimeters along its longest side.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top view of a round, expandable intervertebral implant of the present invention.



FIG. 2 is a side cross-sectional view of the round, expandable intervertebral implant shown in FIG. 1.



FIG. 3
a is a top view of a banana-shaped, expandable intervertebral implant of the present invention.



FIG. 3
b is a side cross-sectional view of the banana-shaped, expandable intervertebral implant shown in FIG. 3a.



FIG. 4
a is a cross-sectional illustration of an expandable intervertebral implant in compression.



FIG. 4
b is a cross-sectional illustration of an expandable intervertebral implant in flexion.



FIG. 5
a is a top view of a banana-shaped, expandable intervertebral implant, illustrating the insertion of expansion screws to expand the joint.



FIG. 5
b is a top view of a banana-shaped, expandable intervertebral implant, illustrating the insertion of a non-threaded expansion device to expand the joint.



FIG. 5
c is a top view of a banana-shaped, expandable intervertebral implant with a posteriorly positioned expansion window.



FIG. 6
a is a top view of a banana-shaped, expandable intervertebral implant, illustrating the insertion of an expansion plate to expand the joint.



FIG. 6
b is a side cross-sectional view of a banana-shaped, expandable intervertebral implant, illustrating the insertion of an expansion plate to expand the joint.



FIG. 7
a is a cross-sectional view of an expandable intervertebral implant, prior to expansion.



FIG. 7
b is a cross-sectional view of an expandable intervertebral implant, following expansion.



FIG. 7
c is a cross-sectional view of an expandable intervertebral implant employing butress screws to secure the device.



FIG. 7
d is a cross-sectional view of an expandable intervertebral implant employing an expansion plate with a securing keel to secure the device.



FIG. 7
e is a side perspective of an expandable intervertebral implant employing a securing keel.



FIG. 8 is a side perspective view illustrating placement of an expandable intervertebral implant within an intervertebral space.



FIG. 9
a is a side view of an artificial facet joint of the present invention, featuring a rod with two washer-type heads.



FIG. 9
b is a side view of an artificial facet joint of the present invention, featuring a rod with a single washer-type head.



FIG. 9
c is a cross-sectional view of a pedicle screw featuring a locking screw head.



FIG. 9
d is a cross-sectional view of a pedicle screw featuring a head-locking insert.



FIG. 10
a is a side view of an artificial facet joint of the present invention, featuring a rod having a ball joint.



FIG. 10
b is a side view of an artificial facet joint featuring a retaining plate.



FIG. 10
c is a top view of an artificial facet joint featuring a retaining plate.



FIGS. 10
d-10f illustrate a pedicle screw having a post-type head.



FIG. 11 is a posterior view of the spine after reconstruction and implantation of an artificial functional spinal unit including an expandable intervertebral implant and an artificial facet joint.



FIG. 12
a is a top view of an expandable PLIF cage in accordance with the present invention.



FIG. 12
b is a side cross-sectional view of an expandable PLIF cage in accordance with the present invention prior to expansion.



FIG. 12
c is a side cross-sectional view of an expandable PLIF cage in accordance with the present invention following expansion.



FIG. 12
d is a side cross-sectional view of an expandable TLIF cage in accordance with the present invention prior to expansion.



FIG. 12
e is a side cross-sectional view of an expandable TLIF cage in accordance with the present invention following expansion.



FIG. 12
f is a top view of another expandable cage in accordance with the present invention.



FIG. 12
g is a side cross-sectional view of the expandable cage of FIG. 12f.



FIG. 12
h is a cross-sectional view of the expandable cage of FIG. 12f featuring a captive peg.



FIG. 12
i is a cross-sectional view of an expandable cage featuring a two-dimensional expansion joint.



FIG. 13
a is a posterior view of a banana-shaped lordotic expandable intervertebral implant.



FIG. 13
b is a top view of a banana-shaped lordotic expandable intervertebral implant.



FIG. 14
a is a lateral view of a banana-shaped lordotic expandable intervertebral implant prior to expansion.



FIG. 14
b is a lateral view of a banana-shaped lordotic expandable intervertebral implant following expansion.



FIG. 15
a is a side cross-sectional view of an expandable lordotic cage prior to expansion.



FIG. 15
b is a side cross-sectional view of an expandable lordotic cage following expansion.



FIG. 16
a is a lateral view of a banana-shaped lordotic expandable intervertebral implant featuring an inclined expansion plate.



FIG. 16
b is a side cross-sectional view of an expandable lordotic cage featuring an inclined expansion plate.





PREFERRED EMBODIMENTS OF THE INVENTION

In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.



FIGS. 1 and 2 show a round, expandable artificial intervertebral implant designated generally at 10. The device is implemented through a posterior surgical approach by making an incision in the anulus connecting adjacent vertebral bodies after removing one or more facet joints. The natural spinal disc is removed from the incision after which the expandable artificial intervertebral implant is placed through the incision into position between the vertebral bodies. The implant is preferably made of a biocompatible metal having a non-porous quality and a smooth finish, however, it may also be constructed of ceramic or any other suitable inert material.


The expandable artificial intervertebral implant 10 generally comprises an upper body 12 and a lower body 14 in a substantially parallel planar configuration. The superior surface 2 of the upper body 12 and the inferior surface 4 of the lower body 14 comprise a machined osteoconductive scaffolding 13 through which the bone may ultimately grow. Osteoconductive scaffolding 13 may also include spines or barbs that project into and secure against the bony endplates of the adjacent bony vertebral bodies upon expansion of the joint and minimize the possibility of sublaxation and/or dislocation. The upper body 12 has a substantially concave inferior surface 16. The lower body 14 has a channel 15 in superior surface 17. Channel 15 preferably has a rectangular cross-section that extends along the lower body 14 in the medial-lateral direction and substantially conforms to the shape of the upper 12 and lower 14 bodies. An expandable joint insert 19 resides within the channel 15 on the lower body. The expandable joint insert 19 has a generally flat inferior surface 20 and a substantially convex superior surface 21 that articulates with the substantially concave inferior surface 16 of the upper body 12. The expandable joint insert 19 is lifted from the bottom of channel 15 by means of an expansion screw 22, or other device, that is inserted between the generally flat inferior surface 20 of the expandable joint insert 19 and the bottom of the channel 15 extending along the lower body 14 through an expansion slot 18. A void space is created between the expandable joint insert 19 and the floor of the channel 15 in cross sections not including the expansion device. A securing means, such as the cables 25, may be employed to ensure the upper body 12 and the lower body 14 remain intact during flexion and extension of the FSU. Alternative means for securing the upper body 12 and lower body 14 may also be employed, such as retaining pegs, torsion springs, or similar devices.



FIGS. 3
a and 3b show a banana-shaped expandable artificial intervertebral implant 50. As with the round implant 10 shown in FIG. 1, the banana-shaped implant also comprises an upper body 52 and a lower body 54 in a substantially planar configuration, each having an external osteoconductive scaffolding 53. Note that the channel 55 and the expandable joint insert 59, which is disposed within the channel 55, may substantially conform to the shape of the upper 52 and lower 54 bodies. Alternatively, expandable joint insert 59 may have a different shape, such as oval or round, as compared to the shape of the upper 52 and lower 54 bodies. Whereas the round expandable implant may comprise a single expansion device, the banana-shaped implant may contain one or more expansion devices 61 that are inserted into expansion slots 60. Otherwise, the cross-section of the banana-shaped implant is substantially similar to FIG. 2.


Turning to FIGS. 4a and 4b, an expandable artificial intervertebral implant is shown in flexion and extension, respectively. The concave inferior surface of 16 of upper body 12 articulates with the convex superior surface 21 of expandable joint insert 19. As stated above, securing means 25 may be employed to prevent dislocation of the implant.



FIGS. 5
a and 5b illustrate the insertion of expansion devices into a banana-shaped implant. The artificial intervertebral implant 50 in Figure 5a employs expansion screws 70 to expand joint insert 19. One or more expansion screws 70 may be inserted through one or more threaded expansion slots 71. Alternatively, as shown in FIG. 5b, artificial implant 55 may employ a non-threaded expansion device 72 inserted through a non-threaded expansion slot 73 to accomplish the expansion of joint insert 19. The non-threaded expansion slot 73 preferably has an arcuate shape to facilitate insertion after the artificial disc prosthesis has been properly placed within the intervertebral space. The non-threaded expansion device 72 has substantially the same shape as expansion slot 73. A threaded end cap 74 may be employed to retain the expansion device 72 inside the expansion slot 73.



FIG. 5
c illustrates an alternative means for posteriorly securing an expansion device. Expansion plate 75 is inserted posteriorly into expansion window 76 and slidingly engages the joint insert in the medial-lateral direction. After expansion, stop block 77, which substantially fills expansion window 76 is secured in place with screw 78 or similar device.



FIGS. 6
a and 6b illustrate an alternative embodiment of a non-threaded expansion device. As shown in FIG. 6a, a banana-shaped artificial intervertebral implant 80 having a wide expansion slot 81 on either the medial or lateral side of the implant 80. Expansion plate 82 may be impacted into place through expansion slot 81 after artificial implant 80 has been properly placed within the intervertebral space. Similar to the previously described embodiments, the artificial implant comprises an upper body 83 and a lower body 84 in a substantially planar configuration, each having an osteoconductive scaffolding 85 machined on their superior and inferior surfaces, respectively. Note that the channel 86, as well as expansion plate 82, substantially conforms to the shape of the upper 83 and lower 84 bodies. Joint insert 87 may generally conform to the shape of the upper 83 and lower 84 bodies, however, the its preferred shape for the banana-shaped implant 80 is more oval, or even more preferably round, to provide improved biomechanical motion of the implant. The bottom floor of channel 86 may also employ a locking lip 88 to ensure that the expansion plate 82 is properly installed and to minimize the potential for dislocating expansion plate 82.



FIGS. 7
a and 7b illustrate the expansion of joint insert 19 in more detail. As shown in FIG. 7a and prior to expansion of joint insert 19, upper body 12 rests upon lower body 14 and the generally flat inferior surface 20 of joint insert 19 rests upon the bottom of channel 15, which extends along the lower body 14. Disposed along the generally flat inferior surface 20 of expandable joint insert 19 and adjacent to expansion slot 18, is a lifting notch 17 that engages with the expansion screw 70. Lifting notch 17 facilitates the lifting of expandable joint insert 19 and allows expansion screw 70 to come into contact with the generally flat inferior surface 20 of joint insert 19. Once inserted, as shown in FIG. 7b, the generally flat inferior surface 20 of expandable joint insert 19 rests upon expansion screw 70 and the upper body 12 is lifted above lower body 14 to the desired intervertebral disc height 71.


After expansion of the joint insert 19, the implant may be secured in place by employing butress or similar types of screws. FIG. 7c illustrates one embodiment utilizing a butress screw 95. The lower body 14 has a lip 96 projecting from its inferior surface with one or more holes 97 defined therethrough. One or more screws 95 may be inserted through the lip 96 and secured into the vertebral body.


Alternatively, when an expansion plate 98 is employed, as shown in FIG. 7d, the expansion plate 98 may comprise a downwardly projecting keel 99 with one or more holes 92 defined therethrough. After the expansion plate 98 is impacted into place, one or more screws 93 may be inserted through the keel 99 and secured into the vertebral body. The expansion plate 98 and lower body 14 may also comprise an interconnecting ridge 94 to secure the expansion plate 98 with lower body 14. Butress screws or the secured keel may be employed with any of the disclosed devices.



FIG. 7
e illustrates a similar keel arrangement as described above that may be employed with any type of expansion device. One end of the keel 99 is secured onto the lower body 14 of any of the devices disclosed herein. The keel 99 can be rotated after placement of the device in the intervertebral space. After the keel 99 is rotated, it is secured to the vertebral body above or below by one or more screws 95.



FIG. 8 shows an expandable artificial intervertebral implant 10 inserted into the spinal column. Note that the expandable artificial implant 10 is posteriorly inserted and expanded through void space 90, which is created by removal of a facet joint.


The disclosed techniques of expanding an artificial implant by inserting an expansion plate or similar device may also be employed to expand a PLIF or TLIF cage. As shown in FIGS. 12a, 12b and 12c, a PLIF cage 300 is disclosed comprising a substantially rectangular external cage element 301 housing an internal expandable element 302. The PLIF cage element 301 has an osteoconductive mesh structure 303, in which an osteoconductive substance can be placed, on its inferior surface 304 and an expansion window 305 located on its superior surface 306. The internal expandable element 302 comprises a generally planar plate member 307 having an inferior 308 and superior surface 309. A second osteoconductive mesh structure 310 is secured upon the superior surface 309 of the planar plate member 307 of the internal expandable element 302. The inferior surface 308 of the planar plate member 307 has a lifting notch 311 to facilitate the expansion of the device upon installation of the expansion plate 312. The expansion plate 312 is inserted into the posteriorly located expansion slot 313 of the PLIF external cage element 301 and engages the lifting notch 311 of the planar plate member 307 of the internal expandable element 302. Locking lip 314 located within expansion slot 313 minimizes the potential of expansion plate 312 dislocation.



FIGS. 12
d and 12e show a TLIF cage similar to the PLIF cage described above. The primary difference between the TLIF cage and the PLIF cage is that the TLIF cage comprises a t-shaped cross-sectional osteoconductive mesh structure 310 secured upon the superior surface 309 of the planar plate member 307 of the internal expandable element 302 such that the osteoconductive mesh structure 310 overhangs the superior surface 306 of the external cage element 301. Thus providing more surface area between the osteoconductive mesh structure 310 and the bony endplates within the intervertebral space.


Expandable cages may also be expanded in two dimensions as illustrated in FIG. 12i. Cage element 301 may further comprise an expansion window 320 through its inferior surface and a second internal expandable element 321. As expansion plate 312 is impacted into the device, both internal expandable elements 302, 321 are pushed through their respective expansion windows 305, 320.



FIGS. 12
f and 12g illustrate another preferred embodiment of an expandable cage 900 utilizing the expansion principles disclosed herein. The embodiment generally comprises four parts: an upper body 901, a lower body 902, an expansion joint insert 903, and an expansion screw 904 or similar device. The placement of the device in the spine will determined the preferred shape of the upper and lower bodies 901, 902. The lower body 902 has a recessed channel 905 on it superior surface 906 that houses the joint insert 903 similar to the previously described functional implants. However, the joint insert 903 for this embodiment does not lift above the recessed channel 905 in the lower body 902.


The joint insert 903 preferably has a substantially flat inferior surface 906 and one or more angled projections 907 extending upward from its superior surface 908. These angled projections articulate with similar angled projections 909 extending downward from the inferior surface 910 of the upper body 901. As the expansion screw 911 is inserted into the expansion hole 912 in the lower body 902, it forces the joint insert 903 to rotate within the recessed channel 905. As the joint insert 903 rotates, the upper body 901 lifts above the lower body 902 as the angled projections 909 of the upper body 901 slide up the angled projections 907 of the joint insert 903. A captive peg 913 maybe employed to limit the maximum expansion height and to control rotation of the joint insert 903 within the recessed channel 905.


One preferred embodiment of an artificial facet joint 100 in accordance with the present invention is shown in FIG. 9a. Artificial facet joint 100 comprises an upper pedicle screw 101 and a lower pedicle screw 102. Rod 103 is retained within the head 104 of upper pedicle screw 101 and the head 105 of lower pedicle screw 102. Rod 103 has washer-type ends 106 that allows for posterior compression, but not extension.


Another preferred embodiment of an artificial facet joint 110 is shown in FIG. 9b. Rod 113 comprises a single washer-type end 116 on its lower end 117. The head 115 of upper pedicle screw 112 has a threaded locking screw 118, as shown in FIG. 9c, that holds rod 113 in place and prohibits the head 115 of pedicle screw 112 from swiveling, but allows rod 113 to rotate and translate through the head 115 of pedicle screw 102.



FIG. 9
d illustrates a head-locking insert that can be used in conjunction with a pedicle screw having a locking type head. The head-locking insert 119 has a similar shape to the head 115 of the pedicle screw. The insert 119 is preferably of solid construction having a hole 120 defined through the insert 119 that substantially aligns with the hole defined through the head 115 of the pedicle screw. As the set screw 118 is engaged into the head 115 of the set screw, force is applied onto the top of the insert 119 and transferred to the bottom of the head 115. The force locks the head 115 of the pedicle screw, as with conventional locking pedicle screws; however, the force is not transferred to rod 113. With no force transferred to the rod 113, it is allowed to freely rotate and translate through the head 115 of the pedicle screw. Alternatively, a shorter insert 119 may be employed that does not prohibit the multi-axial motion of the pedicle screw head. The shorter insert 119 will not transfer the force to the bottom of the head, will retain the rod within the head.


Another preferred embodiment of an artificial facet joint 200 is shown in FIG.10a. Artificial facet joint 200 generally comprises an upper pedicle screw 201 and a lower pedicle screw 202 and rod 203 retained within the heads of pedicle screws 201,202. Both pedicle screws 201,202 are secured with locking screws 218 that prevent the heads 204,205 of pedicle screws 201,202 from swiveling, but allow rotation and translation of rod 203. Rod 203 comprises two rod members 206, 207 connected via a ball joint 208. Ball joint 208 allows for a generally upward rotation, away from the bony surfaces of the vertebrae to which they are secured, but prohibit a generally downward rotation, which would bring the ball joint in contact with the vertebrae to which they are secured.


Another preferred embodiment of an artificial facet joint is shown in FIGS. 10b and 10c. In this preferred embodiment, the artificial facet joint 250 generally comprises an upper 251 and lower pedicle screw 252 having post-type heads 253,254. Rather than the previously described rod, a retaining plate 255 is employed. Elongated holes 256 are defined through the retaining plate 255, which are positioned upon the post-type heads 253,254 of the pedicle screws 251,252. The post-type heads 251,252 are allowed to move within the elongated holes 256, providing limited range of motion. Employing cushioning pads 257 made of rubber or similar biocompatible material may dampen the movement of the plate. The post-type heads 251,252 may also comprise threaded or lockable caps 258 to prevent dislocation of the plate 255 from the post-type heads 251,252.



FIG. 10
d illustrates a pedicle screw having a post-type head 253 used in conjunction with a pedicle screw having a locking or non-locking type head 260. Retaining plate 255 is formed with a rod 261 on one end, which is slidingly positioned through pedicle screw 260.


As shown in FIG. 10e and 10f, the post-type heads 272 of the pedicle screws used in conjunction with the retaining plate 255 may also exhibit multi-axial motion. The post-type head 272 is attached to the pedicle screw 270 with a ball joint 271. FIG. 10f shows a spacer 274 disposed below retaining plate 255 that allows for rotation of ball joint 271.



FIG. 11 shows the artificial facet joint 200 of FIG. 10 in place on the spinal column. Note that artificial intervertebral implant 10 has been posteriorly placed within the intervertebral space through the void created by the surgical removal of the natural facet joint. In addition, ball joint 208 generally rotates in the posterior (upward) direction during posterior compression to prevent impact upon the bony surfaces of the spine.



FIGS. 13
a, 13b, 14a and 14b illustrate a lordotic, banana-shaped expandable artificial intervertebral implant 400. The lumbar spine is lordotic, thus the anterior disc height is naturally larger than the posterior disc height. Therefore, an expandable artificial intervertebral implant for the lumbar spine must be capable of expanding into a lordotic position. FIG. 13a shows the lordotic expandable artificial intervertebral implant 400 from a posterior view. Lordotic expandable artificial intervertebral implant 400 generally comprises an upper body 412 and a lower hinged body 414 in a substantially planar configuration prior to expansion. The superior surface 402 of the upper body 412 and the inferior surface 404 of the lower hinged body 414 comprise an osteoconductive scaffolding 413 through which the bone may ultimately grow. The upper body 412 has a substantially concave inferior surface 416.


The lower hinged body 414 comprises a lower portion 420 and an upper portion 430. Lower portion 420 and upper portion 430 are posteriorly hinged via hinge 440. Hinge 440 effectively fixes the posterior disk height 460 (shown in FIG. 14b). Upper portion 430 of hinged body 414 has a generally flat inferior surface 431 and a substantially convex superior surface 432. The lower portion 420 has a substantially planar configuration prior to expansion. Located at the anterior end 421 of lower portion 420 is a rotational lifting mechanism 422. Once placed in the intervertebral space, the rotational lifting leg is rotationally engaged, thus lifting the anterior end 421 of the expandable artificial intervertebral implant 400 to achieve the desired anterior disc height 470 and proper lordosis. Securing notch 425 is located on the anterior end 421 of the upper portion 430 of hinged body 414. Securing notch 425 engages with rotational lifting mechanism 422 once the expandable artificial intervertebral implant 400 has been expanded. The height of rotational lifting mechanism 422 is determined by the desired proper lordosis when the intervertebral implant 400 is under neutral load.


Upper body 412 has a substantially concave inferior surface 416 that articulates with the substantially convex superior surface 432 of upper portion 430 of lower hinged body 414. When viewed in the medial or lateral direction, as shown in FIGS. 14a and 14b, upper body 412 has a downwardly projecting lobe 450 for the attachment of safety bar 452. Safety bar 452 secures upper body 412 to upper portion 430 of lower hinged body 414 and minimizes the possibility of dislocation.



FIG. 13
b is a top view of lordotic expandable artificial intervertebral implant 400 illustrating the placement of posterior hinge 440, rotational lifting mechanism 422, and safety bar 452 affixed through upper body 412 and upper portion 430 of lower hinged body 414.


The rotational lifting mechanism described above may also be employed to achieve proper lordosis with an expandable PLIF and TLIF cage, as shown in FIGS. 15a and 15b. Cage 500 is shown prior to expansion in FIG. 15a and expanded in FIG. 15b. Cage 500 comprises an upper body 502 and a lower body 504. Hinge 506 posteriorly connects upper body 502 to lower body 504 and effectively fixes posterior disc height 510 upon expansion of cage 500. The superior surface 512 of upper body 502 and the inferior surface 514 of lower body 504 may include an osteoconductive scaffolding or mesh 520 as previously described. Expansion of cage 500 is accomplished via rotational lifting mechanism 530, which engages with securing notch 525, located on the anterior end 528 of the inferior surface 513 of upper body 502, and minimizes the potential for dislocation. The height of rotational lifting mechanism 530, which effectively fixes anterior disc height 540, is determined by the desired proper lordosis.


Another preferred embodiment of an expandable lordotic artificial intervertebral implant is illustrated in FIGS. 16a and 16b. Lordotic expandable intervertebral implant 600 and lordotic cage 700 both utilize an inclined expansion plate 650 to achieve proper lordosis. Both devices are similar to those described above with the exception of the expansion device and reference is made to FIGS. 14a and 14b for lordotic expandable intervertebral implant 600 and FIGS. 15a and 15b for lordotic cage 700 for elements of the intervertebral implants already identified. Expansion plate 650 is generally wedged-shaped and comprises a lifting notch 620 on its posterior end 622 to facilitate expansion. As shown in FIG. 16a, expansion plate 650 is installed between the upper portion 430 and lower portion 420 of lower hinged body 414. Located on the superior surface 630 at the anterior end 624 is securing ridge 635. Securing ridge 635 engages with securing notch 625 similar to the rotational lifting mechanism described above. Located on the anterior superior surface of lower portion 420 of lower hinged body 414 is a locking lip 637, which minimizes the potential of dislocating inclined expansion plate 650. FIG. 16b illustrate the use of expansion plate 650 in conjunction with lordotic cage 700.


Although the present invention has been described in terms of specific embodiments, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all alterations and modifications that fall within the true spirit and scope of the invention.

Claims
  • 1. An intervertebral implant for a human spine, comprising: a cage element comprising a superior surface and an inferior surface, wherein the inferior surface of the cage element is configured to support a first vertebra of the human spine to inhibit movement of the first vertebra towards a second vertebra, and wherein the superior surface of the cage element comprises a first opening;an insert comprising a support surface for the second vertebra, wherein the support surface, during use, supports at least a portion of the second vertebra above and away from the superior surface of the cage element and inhibits movement of the second vertebra towards the first vertebra, and wherein the insert, during use, is inserted at least partially into the cage element; andan expansion member that, during use, is inserted in the cage element through an opening in a side of the cage element to expand the intervertebral implant by elevating the insert to move a portion of the insert through the first opening in the superior surface of the cage element so that at least a portion of the support surface of the insert is raised above and away from the superior surface of the cage to support at least a portion of the second vertebra above and away from the superior surface of the cage element.
  • 2. The intervertebral implant of claim 1, wherein the intervertebral implant is configured such that the direction of movement of the expansion member is substantially perpendicular to the direction of movement of the insert.
  • 3. The intervertebral implant of claim 1, wherein the expansion member is configured to be advanced between an interior surface of the cage element and the inferior surface of the insert.
  • 4. The intervertebral implant of claim 1, wherein the support surface of the insert comprises osteoconductive mesh structure.
  • 5. The intervertebral implant of claim 1, wherein an interior surface of the cage element comprises a raised portion configured to inhibit backout of the expansion member after expansion of the intervertebral implant.
  • 6. The intervertebral implant of claim 1, wherein the expansion member comprises an angled portion configured to engage an angled portion of the insert to facilitate insertion of the expansion member in the cage element.
  • 7. The intervertebral implant of claim 1, wherein the support surface of the insert comprises at least a majority of a surface of the intervertebral implant that is configured to support the second vertebra.
  • 8. The intervertebral implant of claim 1, wherein the support surface comprises a substantially planar surface that supports at least a portion of the second vertebra above and away from the superior surface of the cage element and inhibits movement of the second vertebra towards the first vertebra during use.
  • 9. The intervertebral implant of claim 1, wherein the support surface of the insert comprises a substantially planar surface of sufficient cross-sectional area to support the second vertebra above and away from the superior surface of the cage element during use.
  • 10. The intervertebral implant of claim 1, wherein, during use, the support surface of the insert supports the second vertebra above and away from the superior surface of the cage element such that the second vertebra does not contact the superior surface of the cage element.
  • 11. The intervertebral implant of claim 1, wherein the expansion member is at least partially removed from the cage element after being inserted in the cage element through an opening in a side of the cage element to expand the intervertebral implant.
  • 12. An intervertebral implant for a human spine, comprising: a cage element comprising a superior surface and an inferior surface, wherein the inferior surface of the cage element is configured to support a first vertebra of the human spine to inhibit movement of the first vertebra towards a second vertebra, and wherein the superior surface of the cage element comprises an opening;an insert comprising an inferior surface and a support surface for the second vertebra, wherein the support surface, during use, supports the at least a portion of the second vertebra above and away from the superior surface of the cage element and inhibits movement of the second vertebra towards the first vertebra, wherein the insert, during use, is inserted at least partially into the cage element such that at least a portion of the inferior surface of the insert is below the superior surface of the cage element and at least a portion of the support surface of the insert is above the superior surface of the cage element to support at least a portion of the second vertebra above and away from the superior surface of the cage element; andan expansion member that, during use, is inserted in the cage element through an opening in a side of the cage element to elevate at least a portion of the insert through the opening in the superior surface of the cage element so that the support surface of the insert is raised above and away from the superior surface of the cage to support at least a portion of the second vertebra above and away from the superior surface of the cage element.
  • 13. The intervertebral implant of claim 12, wherein the intervertebral implant is configured such that the direction of movement of the expansion member is substantially perpendicular to the direction of movement of the insert.
  • 14. The intervertebral implant of claim 12, wherein the expansion member is configured to be advanced between an interior surface of the cage element and the inferior surface of the insert.
  • 15. The intervertebral implant of claim 12, wherein the support surface of the insert comprises osteoconductive mesh structure.
  • 16. The intervertebral implant of claim 12, wherein an interior surface of the cage element comprises a raised portion configured to inhibit backout of the expansion member after insertion of the expansion member.
  • 17. The intervertebral implant of claim 12, wherein the expansion member comprises an angled portion configured to engage an angled portion of the insert to facilitate insertion of the expansion member in the cage element.
  • 18. The intervertebral implant of claim 12, wherein the support surface of the insert comprises at least a majority of a surface of the intervertebral implant that is configured to support the second vertebra.
  • 19. The intervertebral implant of claim 12, wherein the support surface comprises a substantially planar surface that supports at least a portion of the second vertebra above and away from the superior surface of the cage element and inhibits movement of the second vertebra towards the first vertebra during use.
  • 20. The intervertebral implant of claim 12, wherein the support surface of the insert comprises a substantially planar surface of sufficient cross-sectional area to support the second vertebra above and away from the superior surface of the cage element during use.
  • 21. The intervertebral implant of claim 12, wherein, during use, the support surface of the insert supports the second vertebra above and away from the superior surface of the cage element such that the second vertebra does not contact the superior surface of the cage element.
  • 22. The intervertebral implant of claim 12, wherein the expansion member is at least partially removed from the cage element after being inserted in the cage element through the opening in a side of the cage element to elevate at least a portion of the insert.
  • 23. An intervertebral implant for a human spine, comprising: a cage element with a superior surface and an inferior surface, wherein the inferior surface of the cage element comprises a first opening and the superior surface of the cage element comprises a second opening;a first insert, wherein, during use, at least a portion of the first insert is inserted at least partially into the first opening, and wherein the first insert comprises a support surface that, during use, supports at least a portion of a first vertebra below and away from the inferior surface of the cage element and inhibits movement of the first vertebra towards a second vertebra;a second insert, wherein, during use, at least a portion of the second insert is inserted at least partially into the second opening, and wherein the second insert comprises a support surface that, during use, supports at least a portion of a second vertebra above and away from the superior surface of the cage element and inhibits movement of the second vertebra towards the first vertebra; andan expansion member that, during use, is inserted in a third opening in the cage element to lower the support surface of the first insert below and away from the inferior surface of the cage element to support at least a portion of the first vertebra below and away from the inferior surface of the cage element and inhibit movement of the first vertebra towards a second vertebra,wherein the expansion member when inserted in the third opening raises the support surface of the second insert above and away from the superior surface of the cage element to support at least a portion of the second vertebra above and away from the superior surface of the cage element and inhibit movement of the second vertebra towards the first vertebra.
  • 24. The intervertebral implant of claim 23, wherein the intervertebral implant is configured such that the direction of movement of the expansion member is substantially perpendicular to the direction of movement of the first insert and the second insert.
  • 25. The intervertebral implant of claim 23, wherein the expansion member is configured to be advanced between a superior surface of the first insert and an inferior surface of the second insert.
  • 26. The intervertebral implant of claim 23, wherein the support surface of the first insert comprises osteoconductive mesh structure.
  • 27. The intervertebral implant of claim 23, wherein the support surface of the second insert comprises osteoconductive mesh structure.
  • 28. The intervertebral implant of claim 23, wherein an interior surface of the cage element comprises a raised portion configured to inhibit backout of the expansion member after insertion of the expansion member.
  • 29. The intervertebral implant of claim 23, wherein expanding the intervertebral implant comprises increasing a height of the intervertebral implant.
  • 30. The intervertebral implant of claim 23, wherein the expansion member comprises at least one angled portion configured to engage an angled portion of the first or second insert to facilitate insertion of the expansion member in the cage element.
  • 31. The intervertebral implant of claim 23, wherein the support surface of the first insert comprises at least a majority of a surface of the intervertebral implant that is configured to support the first vertebra.
  • 32. The intervertebral implant of claim 23, wherein the support surface of the second insert comprises at least a majority of a surface of the intervertebral implant that is configured to support the second vertebra.
  • 33. The intervertebral implant of claim 23, wherein the support surface of the first insert comprises a substantially planar surface that supports at least a portion of the first vertebra above and away from the inferior surface of the cage element and inhibits movement of the second vertebra towards the first vertebra during use, and wherein the support surface of the second insert comprises a substantially planar surface that supports at least a portion of the second vertebra above and away from the superior surface of the cage element and inhibits movement of the second vertebra towards the first vertebra during use.
  • 34. The intervertebral implant of claim 23, wherein the support surface of the first insert comprises a substantially planar surface of sufficient cross-sectional area to support the second vertebra below and away from the inferior surface of the cage element during use, and wherein the support surface of the second insert comprises a substantially planar surface of sufficient cross-sectional area to support the second vertebra above and away from the superior surface of the cage element during use.
  • 35. The intervertebral implant of claim 23, wherein, during use, the support surface of the first insert supports at least a portion of a first vertebra below and away from the inferior surface of the cage element such that the first vertebra does not contact the inferior surface of the cage element, and the support surface of the second insert supports at least a portion of a second vertebra above and away from the superior surface of the cage element such that the second vertebra does not contact the superior surface of the cage element.
  • 36. The intervertebral implant of claim 23, wherein the expansion member is at least partially removed from the cage element after being inserted in the third opening in the cage element to lower the support surface of the first insert below and away from the inferior surface of the cage element to support at least a portion of the first vertebra below and away from the inferior surface of the cage element and inhibit movement of the first vertebra towards a second vertebra.
  • 37. An intervertebral implant for a human spine, comprising: a first member comprising a first inferior surface and a first superior surface, where the first superior surface comprises a substantially planar surface configured to contact and support a first vertebra of a human spine;a second member comprising a second inferior surface and a second superior surface, where the second inferior surface comprises a substantially planar surface configured to contact and support a second vertebra of a human spine;a cage comprising a first opening in a superior surface of the cage and a second opening in an inferior surface of the cage, wherein, during use, the first member is inserted at least partially into the first opening and the second member is inserted at least partially in the second opening; andan expansion element that, during use, is inserted between the first inferior surface of the first member and the second superior surface of the second member, wherein insertion of the expansion member expands the first and second members relative to one another to increase a separation distance between the first superior surface of the first member and the second inferior surface of the second member, wherein the first superior surface is expanded above the superior surface of the cage and the second inferior surface is expanded below the inferior surface of the cage, such that the distance between the first superior surface and the second inferior surface is greater than the distance between the superior surface and the inferior surface of the cage, and wherein the first superior surface supports at least a portion of the first vertebra above the superior surface of the cage and the second inferior surface supports at least a portion of the second vertebra below the inferior surface of the cage.
  • 38. The intervertebral implant of claim 37, wherein the expansion element is at least partially removed from the cage element after being inserted between the first inferior surface of the first member and the second superior surface of the second member.
Parent Case Info

This application is a continuation-in-part of U.S. patent application Ser. No. 10/634,950, filed Aug. 5, 2003 now U.S. Pat. No. 7,204,853.

US Referenced Citations (458)
Number Name Date Kind
3848601 Ma et al. Nov 1974 A
3867728 Stubstad et al. Feb 1975 A
4309777 Patil Jan 1982 A
4349921 Kuntz Sep 1982 A
4611581 Steffee Sep 1986 A
4657550 Daher Apr 1987 A
4696290 Steffee Sep 1987 A
4743260 Burton May 1988 A
4759766 Buettner-Janz et al. Jul 1988 A
4759769 Hedman et al. Jul 1988 A
4772287 Ray et al. Sep 1988 A
4854311 Steffee Aug 1989 A
4863476 Shepperd Sep 1989 A
4863477 Monson Sep 1989 A
4907577 Wu Mar 1990 A
4911718 Lee et al. Mar 1990 A
4932975 Main et al. Jun 1990 A
4946378 Hirayama et al. Aug 1990 A
4946458 Harms et al. Aug 1990 A
5042982 Harms et al. Aug 1991 A
5047055 Bao et al. Sep 1991 A
5059194 Michelson Oct 1991 A
5071437 Steffee Dec 1991 A
5092867 Harms et al. Mar 1992 A
5108438 Stone Apr 1992 A
5123926 Pisharodi Jun 1992 A
5171278 Pisharodi Dec 1992 A
5171281 Parsons et al. Dec 1992 A
5180393 Commarmond Jan 1993 A
5192326 Bao et al. Mar 1993 A
5196013 Harms et al. Mar 1993 A
5207678 Harms et al. May 1993 A
5246458 Graham Sep 1993 A
5258031 Salib et al. Nov 1993 A
5261909 Sutterlin et al. Nov 1993 A
5306307 Senter et al. Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5314477 Marnay May 1994 A
5320644 Baumgartner Jun 1994 A
5336223 Rogers Aug 1994 A
5370697 Baumgartner Dec 1994 A
5375823 Navas Dec 1994 A
5397364 Kozak et al. Mar 1995 A
5401269 Buettner-Janz et al. Mar 1995 A
5403315 Ashman Apr 1995 A
5415661 Holmes May 1995 A
5423816 Lin Jun 1995 A
5425773 Boyd et al. Jun 1995 A
5443467 Biedermann et al. Aug 1995 A
5458642 Beer et al. Oct 1995 A
5458643 Oka et al. Oct 1995 A
5496321 Puno et al. Mar 1996 A
5498263 DiNello et al. Mar 1996 A
5514132 Csernatony et al. May 1996 A
5514180 Heggeness et al. May 1996 A
5522899 Michelson Jun 1996 A
5534028 Bao et al. Jul 1996 A
5534029 Shima Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5545165 Biedermann et al. Aug 1996 A
5556431 Buettner-Janz Sep 1996 A
5562663 Wisnewski et al. Oct 1996 A
5562737 Graf Oct 1996 A
5562738 Boyd et al. Oct 1996 A
5571109 Bertagnoli Nov 1996 A
5645599 Samani Jul 1997 A
5653763 Errico et al. Aug 1997 A
5665122 Kambin Sep 1997 A
5672176 Biedermann et al. Sep 1997 A
5674294 Bainville et al. Oct 1997 A
5674296 Bryan et al. Oct 1997 A
5676701 Yuan et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5683391 Boyd Nov 1997 A
5683464 Wagner et al. Nov 1997 A
5683465 Shinn et al. Nov 1997 A
5702450 Bisserie Dec 1997 A
5725527 Biedermann et al. Mar 1998 A
5733284 Martin Mar 1998 A
5741253 Michelson Apr 1998 A
5755797 Baumgartner May 1998 A
5776199 Michelson Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5797909 Michelson Aug 1998 A
5800549 Bao et al. Sep 1998 A
5800550 Sertich Sep 1998 A
5810819 Errico et al. Sep 1998 A
5824093 Ray et al. Oct 1998 A
5824094 Serhan et al. Oct 1998 A
5827328 Buttermann Oct 1998 A
5861041 Tienboon Jan 1999 A
5863293 Richelsoph Jan 1999 A
5865846 Bryan et al. Feb 1999 A
5865848 Baker Feb 1999 A
5888220 Felt et al. Mar 1999 A
5888226 Rogozinski Mar 1999 A
5893889 Harrington Apr 1999 A
5895427 Kuslich et al. Apr 1999 A
5895428 Berry Apr 1999 A
5899941 Nishijima et al. May 1999 A
5928243 Guyer Jul 1999 A
5935133 Wagner et al. Aug 1999 A
5938663 Petreto Aug 1999 A
5951555 Rehak et al. Sep 1999 A
5961518 Errico et al. Oct 1999 A
5961554 Janson et al. Oct 1999 A
5964769 Wagner et al. Oct 1999 A
5976186 Bao et al. Nov 1999 A
5984967 Zdeblick et al. Nov 1999 A
5989250 Wagner et al. Nov 1999 A
5989290 Biedermann et al. Nov 1999 A
5997539 Errico et al. Dec 1999 A
6001130 Bryan et al. Dec 1999 A
6017344 Errico et al. Jan 2000 A
6019792 Cauthen Feb 2000 A
6022376 Assell et al. Feb 2000 A
6030389 Wagner et al. Feb 2000 A
6039763 Shelokov Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6053921 Wagner et al. Apr 2000 A
6063089 Errico et al. May 2000 A
RE36758 Fitz Jun 2000 E
6080193 Hochschuler et al. Jun 2000 A
6093205 McLeod et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6102950 Vaccaro Aug 2000 A
6106526 Harms et al. Aug 2000 A
6110210 Norton et al. Aug 2000 A
6113637 Gill et al. Sep 2000 A
6123707 Wagner et al. Sep 2000 A
6126689 Brett Oct 2000 A
6132430 Wagner et al. Oct 2000 A
6132464 Martin Oct 2000 A
6132465 Ray et al. Oct 2000 A
6136031 Middleton Oct 2000 A
6139579 Steffee et al. Oct 2000 A
6146421 Gordon et al. Nov 2000 A
6146422 Lawson Nov 2000 A
6156067 Bryan et al. Dec 2000 A
6162252 Kuras et al. Dec 2000 A
6165218 Husson et al. Dec 2000 A
6176882 Biedermann et al. Jan 2001 B1
6179874 Cauthen Jan 2001 B1
6187048 Milner et al. Feb 2001 B1
6200348 Biedermann et al. Mar 2001 B1
6206924 Timm Mar 2001 B1
6214049 Gayer et al. Apr 2001 B1
6214050 Huene Apr 2001 B1
6217579 Koros Apr 2001 B1
6228118 Gordon May 2001 B1
6231609 Mehdizadeh May 2001 B1
6241730 Alby Jun 2001 B1
6264656 Michelson Jul 2001 B1
6290724 Marino Sep 2001 B1
6296664 Middleton Oct 2001 B1
6315797 Middleton Nov 2001 B1
6331179 Freid et al. Dec 2001 B1
6348071 Steffee et al. Feb 2002 B1
RE37665 Ralph et al. Apr 2002 E
6368350 Erickson et al. Apr 2002 B1
6368351 Glenn et al. Apr 2002 B1
6371990 Ferree Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6375683 Crozet et al. Apr 2002 B1
6391090 Wagner et al. May 2002 B1
6395032 Gauchet May 2002 B1
6395034 Suddaby May 2002 B1
6402784 Wardlaw Jun 2002 B1
6402785 Zdeblick et al. Jun 2002 B1
6409766 Brett Jun 2002 B1
6413259 Lyons et al. Jul 2002 B1
6416515 Wagner et al. Jul 2002 B1
6419703 Fallin et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6436140 Liu et al. Aug 2002 B1
6440168 Cauthen Aug 2002 B1
6442814 Landry et al. Sep 2002 B1
6443990 Aebi et al. Sep 2002 B1
6447512 Landry et al. Sep 2002 B1
6447544 Michelson Sep 2002 B1
6451021 Ralph et al. Sep 2002 B1
6454769 Wagner et al. Sep 2002 B2
6454806 Cohen et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6478822 Leroux et al. Nov 2002 B1
6478823 Michelson Nov 2002 B1
6482207 Errico Nov 2002 B1
6482234 Weber et al. Nov 2002 B1
6488710 Besselink Dec 2002 B2
6500205 Michelson Dec 2002 B1
6520996 Manasas et al. Feb 2003 B1
6524312 Landry et al. Feb 2003 B2
6533817 Norton et al. Mar 2003 B1
6533818 Weber et al. Mar 2003 B1
6540748 Lombardo Apr 2003 B2
6558423 Michelson May 2003 B1
6562040 Wagner et al. May 2003 B1
6562074 Gerbec et al. May 2003 B2
6565566 Wagner et al. May 2003 B1
6565605 Goble et al. May 2003 B2
6569442 Gan et al. May 2003 B2
6572653 Simonson Jun 2003 B1
6576016 Hochschuler et al. Jun 2003 B1
6579318 Varga et al. Jun 2003 B2
6579319 Goble et al. Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6595992 Wagner et al. Jul 2003 B1
6595998 Johnson et al. Jul 2003 B2
6610091 Reiley Aug 2003 B1
6610094 Husson Aug 2003 B2
6613050 Wagner et al. Sep 2003 B1
6616671 Landry et al. Sep 2003 B2
6626904 Jammet et al. Sep 2003 B1
6626905 Schmeil et al. Sep 2003 B1
6635062 Ray et al. Oct 2003 B2
6641614 Wagner et al. Nov 2003 B1
6648893 Dudasik Nov 2003 B2
6648915 Sazy Nov 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6666870 Dixon Dec 2003 B2
6666891 Boehm et al. Dec 2003 B2
6679915 Cauthen Jan 2004 B1
6682533 Dinsdale et al. Jan 2004 B1
6685742 Jackson Feb 2004 B1
6692495 Zacouto Feb 2004 B1
6706070 Wagner et al. Mar 2004 B1
6712819 Zucherman et al. Mar 2004 B2
6716247 Michelson Apr 2004 B2
6719796 Cohen et al. Apr 2004 B2
6733531 Trieu May 2004 B1
6736850 Davis May 2004 B2
6743257 Castro Jun 2004 B2
6758861 Ralph et al. Jul 2004 B2
6802844 Ferree Oct 2004 B2
6811567 Reiley Nov 2004 B2
6821298 Jackson Nov 2004 B1
6852129 Gerbec et al. Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
D505205 Freid May 2005 S
6893464 Kiester May 2005 B2
6902580 Fallin et al. Jun 2005 B2
6928284 Palat et al. Aug 2005 B2
6936070 Muhanna Aug 2005 B1
6953477 Berry Oct 2005 B2
6962606 Michelson Nov 2005 B2
6964664 Freid et al. Nov 2005 B2
6966929 Mitchell Nov 2005 B2
6966930 Arnin et al. Nov 2005 B2
6974478 Reiley et al. Dec 2005 B2
6981989 Fleischmann et al. Jan 2006 B1
6991632 Ritland Jan 2006 B2
6994727 Khandkar et al. Feb 2006 B2
6997929 Manzi et al. Feb 2006 B2
7011685 Arnin et al. Mar 2006 B2
7018415 McKay Mar 2006 B1
7029475 Panjabi Apr 2006 B2
7083622 Simonson Aug 2006 B2
7083649 Zucherman et al. Aug 2006 B2
7090698 Goble et al. Aug 2006 B2
7101398 Dooris et al. Sep 2006 B2
7118579 Michelson Oct 2006 B2
7118580 Beyersdorff et al. Oct 2006 B1
7128760 Michelson Oct 2006 B2
7147664 Louis et al. Dec 2006 B2
7153310 Ralph et al. Dec 2006 B2
7204853 Gordon et al. Apr 2007 B2
7273496 Mitchell Sep 2007 B2
7291150 Graf Nov 2007 B2
7291159 Graf Nov 2007 B2
7311713 Johnson et al. Dec 2007 B2
7316714 Gordon et al. Jan 2008 B2
7320707 Zucherman Jan 2008 B2
7338525 Ferree Mar 2008 B2
7364589 Eisermann Apr 2008 B2
7473276 Aebi et al. Jan 2009 B2
7476238 Panjabi Jan 2009 B2
7517359 Drewry et al. Apr 2009 B2
7547309 Bertagnoli et al. Jun 2009 B2
7550009 Arnin et al. Jun 2009 B2
7615068 Timm et al. Nov 2009 B2
7635379 Callahan et al. Dec 2009 B2
7699875 Timm et al. Apr 2010 B2
7708778 Gordon et al. May 2010 B2
7713287 Timm et al. May 2010 B2
7713288 Timm et al. May 2010 B2
7753958 Gordon et al. Jul 2010 B2
7785351 Gordon et al. Aug 2010 B2
7794480 Gordon et al. Sep 2010 B2
7799082 Gordon et al. Sep 2010 B2
20010020476 Gan et al. Sep 2001 A1
20010032020 Besselink Oct 2001 A1
20020040243 Attali et al. Apr 2002 A1
20020065557 Goble et al. May 2002 A1
20020068977 Jackson Jun 2002 A1
20020072801 Michelson Jun 2002 A1
20020082701 Zdeblick et al. Jun 2002 A1
20020091390 Michelson Jul 2002 A1
20020095154 Atkinson et al. Jul 2002 A1
20020123806 Reiley Sep 2002 A1
20020128659 Michelson Sep 2002 A1
20020128714 Manasas et al. Sep 2002 A1
20020130112 Manasas et al. Sep 2002 A1
20020143401 Michelson Oct 2002 A1
20030028250 Reiley et al. Feb 2003 A1
20030040802 Errico Feb 2003 A1
20030055427 Graf Mar 2003 A1
20030069643 Ralph et al. Apr 2003 A1
20030074063 Gerbec et al. Apr 2003 A1
20030074066 Errico et al. Apr 2003 A1
20030074067 Errico et al. Apr 2003 A1
20030074068 Errico et al. Apr 2003 A1
20030074069 Errico et al. Apr 2003 A1
20030074070 Errico et al. Apr 2003 A1
20030074071 Errico et al. Apr 2003 A1
20030074072 Errico et al. Apr 2003 A1
20030074073 Errico et al. Apr 2003 A1
20030074074 Errico et al. Apr 2003 A1
20030135275 Garcia et al. Jul 2003 A1
20030135277 Bryan et al. Jul 2003 A1
20030139812 Garcia et al. Jul 2003 A1
20030149483 Michelson Aug 2003 A1
20030176923 Keller et al. Sep 2003 A1
20030191470 Ritland Oct 2003 A1
20030204259 Goble et al. Oct 2003 A1
20030204260 Ferree Oct 2003 A1
20030220643 Ferree Nov 2003 A1
20030225409 Freid et al. Dec 2003 A1
20030233145 Landry et al. Dec 2003 A1
20040006391 Reiley Jan 2004 A1
20040019353 Freid et al. Jan 2004 A1
20040030387 Landry et al. Feb 2004 A1
20040030389 Ferree Feb 2004 A1
20040039448 Pisharodi Feb 2004 A1
20040044411 Suddaby Mar 2004 A1
20040049190 Biedermann et al. Mar 2004 A1
20040049271 Biedermann et al. Mar 2004 A1
20040049272 Reiley Mar 2004 A1
20040049273 Reiley Mar 2004 A1
20040049274 Reiley Mar 2004 A1
20040049275 Reiley Mar 2004 A1
20040049276 Reiley Mar 2004 A1
20040049277 Reiley Mar 2004 A1
20040049278 Reiley Mar 2004 A1
20040049280 Cauthen Mar 2004 A1
20040049281 Reiley Mar 2004 A1
20040087947 Lim et al. May 2004 A1
20040093083 Branch et al. May 2004 A1
20040102774 Trieu May 2004 A1
20040106997 Lieberson Jun 2004 A1
20040117020 Frey et al. Jun 2004 A1
20040127989 Dooris et al. Jul 2004 A1
20040133278 Marino et al. Jul 2004 A1
20040133281 Khandkar et al. Jul 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040138749 Zucherman Jul 2004 A1
20040143265 Landry et al. Jul 2004 A1
20040143332 Krueger et al. Jul 2004 A1
20040147928 Landry et al. Jul 2004 A1
20040153065 Lim Aug 2004 A1
20040167626 Geremakis et al. Aug 2004 A1
20040172134 Berry Sep 2004 A1
20040181223 Ritland Sep 2004 A1
20040181284 Simonson Sep 2004 A1
20040220567 Eisermann et al. Nov 2004 A1
20040236327 Paul et al. Nov 2004 A1
20040236329 Panjabi Nov 2004 A1
20040243240 Beaurain et al. Dec 2004 A1
20040254643 Jackson Dec 2004 A1
20040254644 Taylor Dec 2004 A1
20040267364 Carli et al. Dec 2004 A1
20040267369 Lyons et al. Dec 2004 A1
20050010295 Michelson Jan 2005 A1
20050015146 Louis et al. Jan 2005 A1
20050015149 Michelson Jan 2005 A1
20050021144 Malberg et al. Jan 2005 A1
20050027361 Reiley Feb 2005 A1
20050033431 Gordon et al. Feb 2005 A1
20050033437 Bao et al. Feb 2005 A1
20050033439 Gordon et al. Feb 2005 A1
20050060034 Berry Mar 2005 A1
20050107881 Neville et al. May 2005 A1
20050124991 Jahng Jun 2005 A1
20050125061 Zucherman et al. Jun 2005 A1
20050131406 Reiley Jun 2005 A1
20050143818 Yuan et al. Jun 2005 A1
20050149020 Jahng Jul 2005 A1
20050149023 Ritland Jul 2005 A1
20050154461 Humphreys et al. Jul 2005 A1
20050154465 Hodges et al. Jul 2005 A1
20050154466 Humphreys et al. Jul 2005 A1
20050159818 Blain Jul 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050171608 Peterman et al. Aug 2005 A1
20050171610 Humphreys et al. Aug 2005 A1
20050177156 Timm et al. Aug 2005 A1
20050177157 Jahng Aug 2005 A1
20050177164 Walters et al. Aug 2005 A1
20050177166 Timm et al. Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050182409 Callahan et al. Aug 2005 A1
20050203517 Jahng et al. Sep 2005 A1
20050209697 Paponneau et al. Sep 2005 A1
20050209698 Gordon et al. Sep 2005 A1
20050222569 Panjabi Oct 2005 A1
20050228500 Kim et al. Oct 2005 A1
20050245930 Timm et al. Nov 2005 A1
20050256578 Blatt et al. Nov 2005 A1
20050273167 Triplett et al. Dec 2005 A1
20050273171 Gordon et al. Dec 2005 A1
20050273173 Gordon et al. Dec 2005 A1
20050273174 Gordon et al. Dec 2005 A1
20050273175 Gordon et al. Dec 2005 A1
20050278026 Gordon et al. Dec 2005 A1
20050283244 Gordon et al. Dec 2005 A1
20050283245 Gordon et al. Dec 2005 A1
20050283247 Gordon et al. Dec 2005 A1
20050283248 Gordon et al. Dec 2005 A1
20050288670 Panjabi et al. Dec 2005 A1
20060009768 Ritland Jan 2006 A1
20060009850 Frigg et al. Jan 2006 A1
20060015100 Panjabi et al. Jan 2006 A1
20060036240 Colleran Feb 2006 A1
20060036245 Stern Feb 2006 A1
20060084986 Grinberg et al. Apr 2006 A1
20060089717 Krishna et al. Apr 2006 A1
20060095132 Kirschman May 2006 A1
20060129244 Ensign Jun 2006 A1
20060142759 Arnin et al. Jun 2006 A1
20060149228 Schlapfer et al. Jul 2006 A1
20060149229 Kwak et al. Jul 2006 A1
20060149278 Abdou Jul 2006 A1
20060149383 Arnin et al. Jul 2006 A1
20060167547 Suddaby Jul 2006 A1
20060189983 Fallin et al. Aug 2006 A1
20060195114 Bertagnoli Aug 2006 A1
20060195191 Sweeney et al. Aug 2006 A1
20060195192 Gordon et al. Aug 2006 A1
20060229729 Gordon Oct 2006 A1
20060241642 Arnin et al. Oct 2006 A1
20060241770 Rhoda et al. Oct 2006 A1
20060260483 Hartmann et al. Nov 2006 A1
20060264937 White Nov 2006 A1
20060265068 Schwab Nov 2006 A1
20060265074 Krishna Nov 2006 A1
20070010886 Banick Jan 2007 A1
20070073406 Gordon et al. Mar 2007 A1
20070213821 Kwak et al. Sep 2007 A1
20070225814 Atkinson Sep 2007 A1
20070239279 Francis Oct 2007 A1
20080027547 Yu et al. Jan 2008 A1
20080033562 Krishna Feb 2008 A1
20080177310 Reiley Jul 2008 A1
20080312692 Brennan et al. Dec 2008 A1
20090143862 Trieu Jun 2009 A1
20090177196 Zlock et al. Jul 2009 A1
20100174317 Timm et al. Jul 2010 A1
20100222819 Timm et al. Sep 2010 A1
Foreign Referenced Citations (20)
Number Date Country
2716616 Sep 1995 FR
2718946 Oct 1995 FR
2735351 Dec 1996 FR
2745706 Sep 1997 FR
2799949 Apr 2001 FR
2085145 Jul 1997 RU
9848739 Nov 1998 WO
0004851 Feb 2000 WO
0074606 Dec 2000 WO
0101893 Jan 2001 WO
0156513 Aug 2001 WO
0245625 Jun 2002 WO
2004019762 Mar 2004 WO
2004019828 Mar 2004 WO
2004019829 Mar 2004 WO
2004019830 Mar 2004 WO
2004024011 Mar 2004 WO
2004026188 Apr 2004 WO
2004054479 Jul 2004 WO
2006066198 Jun 2006 WO
Related Publications (1)
Number Date Country
20050033432 A1 Feb 2005 US
Continuation in Parts (1)
Number Date Country
Parent 10634950 Aug 2003 US
Child 10777411 US