The invention relates to artificial turf, in particular to artificial turf with infill and also infill for artificial turf.
Artificial turf or artificial grass is a surface that is made up of fibers which are used to replace grass. The structure of the artificial turf is designed such that the artificial turf has an appearance which resembles grass. Typically artificial turf is used as a surface for sports such as soccer, American football, rugby, tennis, golf, for playing fields, or exercise fields. Furthermore artificial turf is frequently used for landscaping applications.
However, there is a need for a method and systems for controlling the temperature at the surface of the artificial turfs. U.S. Pat. No. 9,468,905 B2 discloses a composition for an outside surface of artificial turfs in order to allow for an adsorption and/or desorption effect that optimizes the use of artificial turfs at high temperatures.
The invention provides for an artificial turf, an artificial turf infill material, a method of forming an artificial turf infill and the use of the artificial turf infill in the independent claims. Embodiments are given in the dependent claims.
In some embodiments, a method for forming an artificial turf infill material is provided. The method comprises: providing a zeolite ore; reducing the zeolite ore into smaller zeolite fractions; selecting from the zeolite fractions ore a microporous zeolite mineral, whereby the selection is performed using specific surface area of the mineral as a selection criterion for the selection of the mineral, thereby providing the artificial turf infill material. As a result a portion of the zeolite fractions is selected as the zeolite mineral that is used for the artificial turf infill. In other words, a method for forming an artificial turf infill material is provided. The method comprises: providing a zeolite ore; and selecting from the zeolite ore a microporous zeolite mineral using a selection criterion on specific surface area of the mineral, thereby providing the artificial turf infill material.
The zeolite ore may be a natural material having various porosities depending on the source of the zeolite ore. In accordance with an embodiment of the invention, the zeolite ore from which the zeolite fractions are obtained has a porosity between 15% and 20%, such that the resultant microporous zeolite mineral also has the same porosity in the range between 15% and 20%.
For example, the selection may be performed by sorting by size the grains of the mineral such that the grains having a size higher than a predetermined maximum grain size are rejected or filtered out and the grains having a size bellow the maximum grain size form the microporous zeolite mineral.
The artificial turf may be used for a number of applications such as sporting venues, landscape applications and green roofs on buildings. However, on playing fields, for example, the outside surfaces of the artificial turf are subject to the constraints of bad weather and temperature variations that lead to problems in maintaining these outside surfaces in the conditions optimal for use. In order to solve such a problem, the present method provides a purposive selection of the zeolite mineral. This may enable us to address specific purposes of the use of the artificial turf infill, wherein such purposes can be controlled via the specific surface area. One example purpose is to enable the use of artificial turfs within the framework of bad weather and high temperatures.
The determination of the specific surface area of the mineral is particularly relevant for monitoring industrial processing of the zeolite minerals. The specific surface area constitutes an important criterion that enables the determination of the quality of a zeolite mineral since the nature of the specific surface area enables a decisive characteristic for the overall usage of zeolite. In particular the usage of the selected microporous zeolite mineral as an artificial turf infill may have an impact on how realistically the artificial turf performs.
Artificial turf infill is a material that covers the bottom portion of the artificial turf fibers. The use of artificial turf infill of the present disclosure may further have a number of advantages. For example, artificial turf infill may help the artificial turf fibers stand up straight. Artificial turf infill may also absorb impact from walking or running and provide an experience similar to being on real turf. The artificial turf infill may also help to keep the artificial turf carpet flat and in place by weighing it down.
The selection of the microporous zeolite mineral may for example comprise crushing the zeolite ore for obtaining groups of zeolite materials. The specific surface area of each group of the groups may be determined or measured. Based on the measured specific surface area groups that fulfill the selection criterion may be selected to form the microporous zeolite mineral. The specific surface area may for example be measured by adsorption using the Brunauer, Emmett, and Teller (BET) technique. This may have the advantage of measuring the surface of fine structures and deep texture on the particles.
The selection criterion refers to rules (e.g., classification rules) on the basis of which it may be decided whether the specific surface area of zeolite material is to be selected for forming the microporous zeolite mineral of the present method.
According to one embodiment, the selection criterion comprises: the specific surface area is smaller than a predetermined maximum specific surface area. Without putting an upper limit on the specific surface area, the infill material may comprise an inhomogeneous combination of the zeolite mineral. This embodiment may further be advantageous as it may be simple to implement, in particular where mineral production involves repeated processes.
According to one embodiment, the method further comprises determining the maximum specific surface area of the mineral as the surface specific area that enables the water in the mineral to release, under an ambient temperature, at a predefined minimum rate. This embodiment may enable a progressive release of the water by the microporous mineral and thus may avoid rapid evaporation of the water after watering the surface. This may allow a lower temperature to be maintained at the level of the field surface compared to the ambient temperature. For example, the controlled release of water causes progressive cooling under evaporation. Thus the amount of watering usually necessary to refresh a field surface may be reduced.
The present selected grain structure of the mineral enables the formation of bound water surrounding mineral surfaces and maintained by weak force of van der Waals force. This renders the release or desorption of the water easier, in particular under ambient temperature (e.g., the solar energy is enough to desorb the water). While the bound water is releasing the water inside the grain may be transferred under ambient temperature to the grain's surface which is then transformed to water vapor. This may enable a progressive release of water over a predefined time period and may enable the cooling of the surface of the artificial turf.
According to one embodiment, the selecting comprises: determining a zeolite grain size corresponding to the maximum surface specific area; providing a grinding unit; reducing the zeolite ore into smaller zeolite fractions; setting parameters of the grinding unit in accordance with the determined grain size; and repeatedly grinding and screening the zeolite fractions in the grinding unit for selecting the microporous zeolite mineral. The grain size may refer to the diameter (e.g., maximum diameter) of individual grains.
The repeated grinding and screening may comprise repeating the grinding and the screening. In one example, the step of screening may comprise multiple screening. The multiple screenings may be of the same or different type screenings. For example, a screening of the multiple screening may comprise an inclined screening and another screening of the multiple screening may comprise a horizontal screening. Performing multiple screenings may enable an optimal dedusting of the resulting microporous mineral.
According to one embodiment, the zeolite fractions have a maximum size between 12 mm and 19 mm.
According to one embodiment, the reducing of the zeolite ore comprises crushing the zeolite ore in a primary crusher, wherein the grinding unit comprises a secondary crusher and a screening unit, and wherein the parameters comprise at least one of: the number of decks of the screening unit, the number of times the screening is to be repeated in the screening step; the exciting force causing the vibration of the screening unit; inclined and/or horizontal screening; and reduction ratio of the primary and secondary crushers. A high number of parameters enable an optimal control of the grinding unit for providing an efficient production and selection of the microporous zeolite mineral.
According to one embodiment, the method further comprises drying the smaller zeolite fractions in a dryer before the grinding. Dust generated during mineral production activities provides a pathway for the accumulation of contaminants in the surrounding environment. This embodiment may have the advantage of reducing the amount of dust in the resulting microporous zeolite mineral.
According to one embodiment, the method further comprises shaping the microporous zeolite mineral in a predefined shape, wherein the maximum specific surface area is determined based on the solar reflectivity of the zeolite material having the predefined shape. The solar reflectivity depends on the shape of the reflecting object. By controlling the shape of the microporous zeolite mineral, the rate of the water release may be more efficiently and uniformly controlled. This is because the range of the temperature under which the artificial turf is, may be controlled by the solar reflectivity.
For example, the minimum rate may be determined for an ambient temperature between min1 and max1 regardless of the shape of the microporous zeolite mineral.
If the artificial turf is to be implemented in a region having an ambient temperature between min2 and max2, the shape of the microporous zeolite mineral may be chosen such that the temperature at the surface of the turf is between min1 and max1.
According to one embodiment, the artificial turf infill is the microporous zeolite mineral. The microporous zeolite mineral is the only infill material. This may provide safe and environmental friendly artificial turfs.
According to one embodiment, the porosity of the zeolite ore is between 15% to 20%, wherein the maximum specific surface area is between 20 m2/g and 35 m2/g. In a preferred embodiment, the maximum specific surface area is between 15 m2/g and 30 m2/g, and in another preferred embodiment the maximum specific surface area is between 15 m2/g and 25 m2/g. In a very preferred embodiment the maximum specific surface area is between 19 m2/g and 21 m2/g. For example, the selected specific surface area may be 20 m2/g the microporous zeolite mineral having a porosity of 20%.
According to one embodiment, the microporous zeolite mineral has a selected grain size between 0.15 mm and 19 mm and a maximum specific surface area between 15 m2/g and 30 m2/g.
According to one embodiment, the ambient temperature is between 40° F. and 60° F. or below 100° F. “Ambient temperature” refers to a temperature of the air that surrounds the artificial turf under circumstances without any special heating and cooling. For example, the minimum rate may be determined using the usage time of the artificial turf. For a playing field, the minimum rate may be determined based on the game duration time e.g. such that the water progressively releases during the entire game.
According to one embodiment, the method further comprises: determining the maximum specific surface area such that in the presence of humidity, the mineral absorbs the humidity.
The humidity absorption refers to the moisture buffering capacity of the microporous zeolite mineral. This embodiment may prevent, for example, in the cold season the appearance of frost which renders the surfaces hard and slippery and thus dangerous to use.
According to one embodiment, the microporous zeolite mineral has a grain size between 0.5 mm and 1.2 mm or between 0.9 mm and 1.2 mm. The selected size may have the further advantage of protecting the users of the artificial turf by reducing the risk of skin injury when the users are in contact with the infill material. This may also prevent a slippery surface of the artificial turf.
According to one embodiment, 0.6% of the mineral is not retainable on a 100 mesh screen. This may provide another means (e.g., in combination with the drying) for further controlling the amount of dust in the resulting microporous zeolite mineral. Preferably, a mesh screen size (or a two or more different mesh screen sizes, used in sequence) is selected for retaining a substantially homogeneous distribution of grain sizes between approximately 0.5 mm to 3 mm, or approximately 0.5 mm to 4 mm, or approximately 0.5 mm to 5 mm.
According to one embodiment, the microporous zeolite mineral has a hardness between 3 and 4 on the Mohs scale. This may provide a soft and resilient playing surface. This may reduce the risk of injuries (e.g., skin abrasion). Another advantage may be that the present infill material by reducing the wear effect of synthetic turf fibers caused by the friction between the zeolite mineral and the fibers. Although the microporous zeolite mineral having a hardness between 3 and 4 on the Mohs scale also results in improved longevity of the infill material, other embodiments include infill material (e.g., microporous zeolite mineral) having greater or lesser hardness.
For example, the amount of arsenic in the microporous zeolite mineral is below 4 mg per kg of the mineral. This may provide a healthy material.
In some embodiments, a method for controlling the temperature on an artificial turf is provided. The method comprises providing a microporous zeolite mineral having a selected specific surface area of the mineral; and using the microporous zeolite mineral as an infill material of the artificial turf.
According to one embodiment, the microporous zeolite mineral has a color with a predefined brightness, wherein the specific surface area of the mineral being selected based on the predefined brightness. The color may for example be white and the brightness may be equal to 85. This provides an additional parameter for an optimal control of the temperature at the surface of the artificial turf. The determination of the specific surface area may be modulated or combined with the brightness by balancing between the two parameters values in order to obtain the minimum rate.
In some embodiments, an artificial turf is provided. The artificial turf comprises an artificial turf carpet with a pile and artificial turf infill, wherein the artificial turf carpet comprises a backing; wherein the artificial turf carpet further comprises artificial grass fibers, wherein the artificial grass fibers are tufted into the backing, wherein the artificial grass fibers form the pile, wherein the artificial grass fibers are secured to the backing, wherein the artificial turf infill comprises a microporous zeolite mineral having a selected specific surface area of the mineral.
According to one embodiment, the artificial turf further comprises a sprinkler system. The use of a sprinkler system with the artificial turf, although optional, may be beneficial because it may be used to automatically wet the artificial turf infill. For example this may be a convenient means of watering the artificial turf during a time period that is defined based on the minimum release rate of the water from the microporous zeolite mineral. For example, the selected microporous mineral may have a specific surface area which enables the water to progressively release during the half time period of a football game. In this case, the sprinkler system may be configured to water the artificial turf during the half-time break of the game.
In some embodiments, an artificial turf infill material is provided. The artificial turf infill material comprises a microporous zeolite mineral having a selected gain size smaller than 1.5 mm and a porosity between 15% and 20%. In other embodiments, an artificial turf infill material comprises a microporous zeolite mineral having a selected grain size smaller than 5.0 mm and a porosity between 15% and 30%, or alternatively smaller than 4.0 mm and a porosity between 15% and 30%, or alternatively smaller than 3.0 mm and a porosity between 15% and 30%.
According to one embodiment, the microporous zeolite mineral has a grain size distribution as follows: 70% to 90% of the grains have a size in the range [0.4 mm, 1.5 mm] and 10% to 30% of the grains have a size smaller than 0.4 mm. In another example, the microporous zeolite mineral has a grain size distribution as follows: 70% to 90% (e.g., 88%) of the grains of the microporous zeolite mineral have a size in the range [0.42 mm, 1.41 mm] (14-40 mesh) and 10% to 30% (e.g., 12%) of the grains of microporous zeolite mineral have a size smaller than 0.42 mm. In yet another embodiments, the microporous zeolite mineral has a grain size distribution as follows: 70% to 90% of the grains have a size in the range [0.4 mm to 5.0 mm] and 10% to 30% of the grains have a size smaller than 0.4 mm, or alternatively 70% to 90% of the grains have a size in the range [0.4 mm to 4.0 mm] and 10% to 30% of the grains have a size smaller than 0.4 mm, or alternatively 70% to 90% of the grains have a size in the range [0.4 mm to 3.0 mm] and 10% to 30% of the grains have a size smaller than 0.4 mm. In yet another embodiment, the microporous zeolite mineral has a grain size distribution as follows: 90% to 100% of the grains have a size in the range [0.4 mm to 5.0 mm]. In further embodiments, 90% to 100% of the grains have a size in the range [1 mm to 3.0 mm], or alternatively approximately 100% of the grains have a size in the range [1 mm to 3.0 mm]. The selected sizes may enable us to obtain the selected specific surface area.
According to one embodiment, 0.6% of the mineral at most is not retainable on a 100 mesh screen.
According to one embodiment, the microporous zeolite mineral has a hardness between 3 and 4 on the Mohs scale.
The infill material of any of the preceding claims 22-25, wherein the moisture level in the mineral is smaller than 6%. When the moisture level in the mineral is smaller than 6%, the infill (also referred to as an unloaded infill) does not include a high proportion of water, advantageously resulting in: reduced shipping costs due to decreased shipping weight; ease of handling and distribution; and/or use of less expensive shipping/packing material (e.g., shipping/packing material that may be sensitive to water damage may be used since unloaded infill is essentially free of water).
Furthermore, the infill according to above-discussed embodiments is highly porous and hence lightweight, thereby also contributing to a reduction of transport costs. When the infill product is in use (e.g., as an artificial turf infill, after application/installation at the use site), it is loaded (i.e., soaked) with water as a result of active irrigation and/or by interacting with its natural environment/surroundings (e.g., moisture captured by the zeolite as rain, dew, frost, humidity, etc.). The highly porous nature of the zeolite according to some embodiments means that it may have a surface area (i.e., zeolite surface area being in contact with air) of approximately 15 to 30 m2/gram zeolite. This high porosity may have one or more of the following benefits: (1) low transport costs in dry state, as mentioned above; (2) strong insulating properties, so that the lower, moist regions of the zeolite infill layer are shielded from heat at the surface; and (3) high water absorption (e.g., overnight from the surrounding air) and storage capacity due to a large number of pores/cavities. Features (2) and (3) advantageously contribute to an improved and prolonged cooling effect caused by water slowly evaporating from the soaked zeolite particles.
It is understood that one or more of the aforementioned embodiments of the invention may be combined as long as the combined embodiments are not mutually exclusive.
In the following embodiments of the invention are explained in greater detail, by way of example only, making reference to the drawings in which:
Like numbered elements in these figures are either equivalent elements or perform the same function. Elements which have been discussed previously will not necessarily be discussed in later figures if the function is equivalent.
In step 101, a zeolite ore may be provided. The zeolite ore is a naturally occurring solid material. The zeolite ore has a porosity between of 15% and 20%. The term “porosity” refers to the volume fraction of void space in a porous article. The zeolite phase of the zeolite ore may comprise one or more of the group consisting of clinoptilolite, mordenite, or other naturally occurring zeolite minerals.
The zeolite ore may be provided for example as follows. A zeolite deposit is stripped of overburden and stockpiled for use in subsequent mine reclamation. The resulting exposed ore body is drilled to depths between 12 and 14 feet. The drill holes are loaded with an explosive charge that degenerates upon use, leaving no residue in the zeolite ore. From the mine pit, the zeolite ore is hauled by dump truck to the crude ore stockpile at a processing mill.
In step 103, a microporous zeolite mineral may be selected from the zeolite ore. The selection may be performed using a selection criterion involving the specific surface area of the mineral. The selection criterion may refer to one or more rules on the specific surface area. The selected microporous zeolite mineral has for example a porosity between 15% and 20%.
For example, the selection of step 103 comprises a selective recovering or obtaining of the microporous zeolite mineral having a predefined specific surface area from the zeolite ore. The specific surface area constitutes an important criterion that is involved in the determination of the quality of a zeolite mineral since the nature of the specific surface area enables a decisive characteristic for the overall usage of zeolite in numerous technical components and products. For example, a specific surface area which is too high may render the release of water under ambient temperature very slow or inexistent.
In one example, the selection criterion requires that the specific surface area is smaller than a predetermined maximum specific surface area. The maximum specific surface area of the mineral may for example be determined as the surface specific area that enables the water in the mineral to release, under an ambient temperature, at a predefined minimum rate. For example, for a specific surface area equal or higher than 40 m2/g the water may only release under temperatures which are higher than the maximum ambient temperatures. Those high temperatures require the use of an oven. The present method may be advantageous as the maximum surface specific area that is selected enables the water to release under ambient temperatures e.g., between 40 and 60 F. The selected specific surface area may for example be 20 m2/g for a porosity of 15% to 20%.
In another example, the maximum specific surface area is chosen such that at most 0.6% of the mineral is not retainable on a 100 mesh screen e.g., 99.4% of the mineral has a grain size higher than 0.15 mm. This may have the advantage of reducing the amount of dust in addition to enabling a progressive release of the water for an optimal cooling of the artificial turf. Reducing the amount of dust may be beneficial for improving the safety of the product as regards the protection of the respiratory system of users of the artificial turf.
The selected microporous zeolite mineral may be used as the artificial infill material. In on example, the artificial infill material may consist of the selected microporous zeolite mineral. In another example, the artificial infill material may comprise the selected microporous zeolite mineral in addition to other infill materials.
In step 201, a zeolite grain size that corresponds to the maximum surface specific area may be determined. The grain size of the microporous zeolite mineral is determined such that the resulting specific surface area of the mineral is smaller than the maximum specific surface area.
Naturally, the specific surface area of the microporous zeolite mineral varies with its structure. For example, the finer the mineral is, the larger the specific surface area is (i.e., the smaller the grain size is, the larger the specific surface area is).
For example, the specific surface area of the microporous zeolite mineral may not exceed a minimum specific surface area. The minimum specific surface area may be the smallest possible specific surface area. In this case, the determined grain size may be the lower limit of a range of sizes, wherein the upper limit of the range may be determined using the minimum specific surface area. The microporous zeolite mineral may for example have a grain size between 0.5 mm and 1.2 mm or between 0.9 mm and 1.2 mm, for a maximum surface specific surface area of 21 m2/g (e.g., the selected specific surface area may be 20 m2/g).
In step 203, the zeolite ore may be reduced into smaller zeolite fractions.
In step 205, parameters of the grinding unit may be set in accordance with the determined grain size of step 201. For example, the reduction ratio of the grinding unit may be set such that the grinding unit may provide or output the zeolite fractions grains having as a maximum size the determined grain size.
In one example, before performing the grinding step 207, the zeolite fractions resulting from step 203 may be dried in a dryer. This may have the advantage of reducing the amount of dust in the resulting microporous zeolite mineral.
In step 207, the zeolite fractions may be ground in the grinding unit. The term “grinding” encompasses processes like cutting, chopping, crushing, milling, pulverizing, and the like.
After grinding the zeolite fractions, the resulting zeolite material may be screened in step 208, resulting in groups of zeolite grains, wherein each group has a respective minimum grain size. The screening may for example be performed using series of sieves having sieve sizes ranging from about a minus 14 mesh (1.41 mm) to about a plus 40 mesh (0.42 mm). The screening may be a vibratory-type screening.
In one example, up to six or more different fractions can be separated in one screening process. This may for example be done using multiple sieve decks positioned on top of each other in a classification range such as a range of 0.1 mm to 1.5 mm or alternatively in a classification range such as a range of 0.1 mm to 3.0 mm, or alternatively in a classification range such as a range of 0.1 mm to 4.0 mm, or alternatively in a classification range such as a range of 0.1 mm to 5.0 mm.
The maximum grain size of each group of the groups may be compared with the determined grain size of step 201. In case (inquiry 209) the minimum grain size of a group of the groups is higher than the determined grain size, step 208 or steps 207-208 may be repeated. Otherwise, the group may be selected and stored in step 211 as part of the selected microporous zeolite mineral.
For example, the method may end if the selected microporous zeolite mineral reaches a predefined amount or if the input ore is completed.
Before processing the zeolite ore in the crushing unit 301, the zeolite ore may for example be obtained as follows. A zeolite deposit is stripped of overburden and stockpiled for use in subsequent mine reclamation. The resulting exposed ore body is drilled to depths between 12 and 14 feet. The drill holes are loaded with an explosive charge that degenerates upon use, leaving no residue in the zeolite ore. From the mine pit, the zeolite ore is hauled by dump truck to the crude ore stockpile at a processing mill.
The zeolite ore is fed in step 31 through a grizzly 303 with 16″×16″ opening, the output ore of the grizzly 303 travels in step 32 via a first conveyer into a jaw crusher 305 where the output ore of the grizzly 303 is reduced to a 4 inch size resulting in 4 inch ore. The 4 inch ore travels in step 33 via a second conveyor to a double deck Nordberg screen 307 with a ⅝ inch screen on the top deck. The resulting output of the double deck Nordberg screen 307 is a minus ⅝ inch material and plus ⅝ inch material.
The minus ⅝ inch material travels in step 34 to a third conveyor toward the grinding unit 302 via a dryer 311. The plus ⅝ inch material travels back in step 35 via a fourth conveyor to a cone crusher 309 which reduces the plus ⅝ inch material to at least ½ inch material. The ½ inch material then returns in step 37 to the Nordberg screen 307 via the second conveyor.
From the third conveyor, the zeolite material output of the Nordberg screen 307 travels in step 34 to a propane fueled rotary kiln dryer 311 where it is heated at 250° C., reducing moisture to 5%, and fed in step 38 to the grinding unit 302.
The zeolite material is conveyed in step 38 from the dryer 311 via a fifth conveyor to an impact crusher 313 and five-decked Midwestern screens 315. From the screens 315 the zeolite is sized and conveyed in step 39 to a sixth conveyor for packaging e.g. in super sacks 320 ready to ship or the zeolite is returned in step 40 via a seventh conveyor to the impact crusher 313 and which is returned to the Midwestern Screens 315. At the Midwestern screens 315, the products are sized according to customer specifications and either sent to finished product handling.
In the finished product handling process: a. the material is either sent to bulk storage silos for direct truck loading or b. The material is sent to packaging silos where it is packaged in customer specified bags and palletized, wrapped, and stored in warehouse for truck pick up.
The following table gives example properties of the selected microporous zeolite mineral of the present method.
The values of the parameters, particle size or grain size, color, hardness, arsenic total and level of humidity, listed in the table are central values. However, each parameter of these parameters may have a value in the range defined by the central value, ±10%, ±5% or ±3% of the central value. These values may for example enable us to obtain a specific surface area of 20 m2/g.
Number | Date | Country | Kind |
---|---|---|---|
17174275.2 | Jun 2017 | EP | regional |
This application is a Continuation-In-Part application of U.S. application Ser. No. 17/735,411, filed on May 3, 2022, which is a Divisional application of U.S. application Ser. No. 16/618,479, filed on Dec. 2, 2019, which is a national phase under 35 U.S.C. § 371 of PCT International Application No. PCT/EP2018/064116 which has an International filing date of May 29, 2018, which claims priority to European Application No. 17174275.2, filed Jun. 2, 2017, the entire contents of each of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16618479 | Dec 2019 | US |
Child | 17735411 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17735411 | May 2022 | US |
Child | 18182673 | US |