Artificial vertebral disk replacement implant with translating pivot point

Abstract
An artificial vertebral disk replacement implant is disclosed along with its method of operation and a method of implanting. The implant has first and second plates that each mate with a vertebral body. Each plate has one side for mating with a vertebral body. The first plate has a socket on one side, and the second plate has an elongated ball on one side. The ball of the first plate and the socket of the second plate form a ball-and-socket joint when the two plates are in contact with each other. The implant achieves a range of motion equivalent to a natural range of motion.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Provisional Application No. 60/422,021, filed on Oct. 29, 2002, entitled “TOOLS FOR IMPLANTING AN ARTIFICIAL VERTEBRAL DISK AND METHOD”, U.S. patent application Ser. No. 10/684,668 filed Oct. 14, 2003, entitled “TOOLS FOR IMPLANTING AN ARTIFICIAL VERTEBRAL DISK AND METHOD”, U.S. Provisional Application No. 60/422,011, filed Oct. 29, 2002, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH CROSS BAR SPACER AND METHOD”, U.S. patent application Ser. No. 10/685,134 filed Oct. 14, 2003, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH CROSS BAR SPACER AND METHOD”, U.S. Provisional Application No. 60/422,022, filed Oct. 29, 2002, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH SPACER AND METHOD,” and U.S. patent application Ser. No. 10/685,011 filed Oct. 14, 2003, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH SPACER AND METHOD,” which are incorporated herein by reference.


FIELD OF THE INVENTION

This invention relates to an artificial vertebral disk replacement, a method of operation, and a method of implanting.


BACKGROUND OF THE INVENTION

As the present society ages, it is anticipated that there will be an increase in degenerative and dysfunctional spinal disk conditions. Pain associated with such disk conditions can be relieved by medication and/or surgery.


Over the years, a variety of intervertebral implants have been developed in an effort to relieve the pain associated with such degenerative and dysfunctional disk conditions. For example, U.S. Pat. No. 4,349,921 to Kuntz discloses an intervertebral disk prosthesis. The Kuntz prosthesis is designed to restore the space between the disks.


U.S. Pat. No. 4,714,469 to Kenna discloses a spinal implant that fuses vertebrae to the implant. The implant has a rigid body that fits between the vertebrae with a protuberance extending from a vertebral contacting surface and into the vertebral body.


U.S. Pat. No. 5,258,031 to Salib et al. discloses another prosthetic disk with a ball that fits into a socket.


U.S. Pat. Nos. 5,425,773 and 5,562,738 are related patents to Boyd et al. that disclose a disk arthroplasty device for replacement of the spinal disk. A ball-and-socket are provided to enable rotation.


U.S. Pat. No. 5,534,029 to Shima discloses an articulated vertebral body spacer with a pair of upper and lower joint pieces inserted between the vertebrae. An intermediate layer is provided to allow for movement between the upper joint piece and the lower joint piece.


U.S. Pat. No. 5,782,832 to Larsen et al. discloses a two-piece ball-and-socket spinal implant with upper and lower plates for insertion within the intervertebral space.


U.S. Pat. No. 6,156,067 to Bryan et al. discloses a prosthesis having two plates with a nucleus therebetween.


None of these solutions provide an implant that restores a wide range of natural movement.


Accordingly, what is needed is an implant for alleviating such conditions and that restores natural movement.


SUMMARY OF THE INVENTION

The present invention includes embodiments that are directed to an implant for alleviating discomfort associated with the spinal column. One embodiment of the implant includes a first plate with an elongated socket and a second plate that mates with the first plate and has an elongated ball. The implant is designed to replace the disk between two vertebrae.


Other aspects, objects, features, and elements of the other embodiments of the invention are described or are evident from the accompanying specification, claims and figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a posterior view of an embodiment of the assembled implant of the invention. FIG. 1B is a cross-section of the device shown in FIG. 1A. FIG. 1C is a posterior view of two bottom plates of the implant of the embodiment of the invention. FIGS. 1D and 1E are posterior views of the embodiment of the implant of the invention shown in FIG. 1A illustrating the operation of the device in bending to the left and bending to the right, respectively.



FIG. 2A is a side view of the implant of FIG. 1A showing the implant in flexion. FIG. 2B is a side view of the implant showing the implant in extension. FIG. 2C is a partial cross-sectional view of a side view of the implant of an embodiment of the invention. FIG. 2D is a partial cross-sectional view of an alternative embodiment of the implant of the invention having a protuberance adjacent the socket.



FIG. 3A is a top view of a portion of an embodiment of the assembled implant of the invention. FIG. 3B is a top view of an embodiment of the implant of the invention showing a rotation to the right. FIG. 3C is a top view of an embodiment of the implant of the invention showing a rotation to the left.



FIG. 4A is a perspective view of a ball portion of the embodiment of the implant of the invention. FIG. 4B is a perspective view of a socket portion of the embodiment of the implant of the invention.



FIG. 5A is a posterior view of the embodiment of the implant of the invention after being implanted between two vertebral bodies. FIG. 5B is a side view of the embodiment of the implant of the invention after being implanted between two vertebral bodies.



FIG. 6 is a rear view of an alternate embodiment of the invention having two plates.



FIG. 7A is a top view of an embodiment of a cutting tool of the invention used to prepare the vertebral bodies for the implant. FIG. 7B is a side view of the embodiment of the cutting tool of the invention from the distal end. FIG. 7C is a distal end view of an embodiment of the cutting tool of the invention. FIG. 7D is a top view of the cutting portion of an alternative embodiment of the cutting tool of the invention showing blade protectors. FIG. 7E is a side view of the cutting portion of an alternative embodiment of the cutting tool of the invention showing the blade protectors.



FIG. 8A is a side view of an embodiment of the implant insertion tool of the invention. FIG. 8B is a top view of the embodiment of the implant insertion tool of the invention. FIG. 8C is a distal end view of the embodiment of the implant insertion tool of the invention. FIG. 8D is a top view of an embodiment of the implant insertion tool holding an embodiment of the implant.



FIG. 9 is a block diagram illustrating the steps of a method for inserting the implant between vertebral bodies.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

The following description is presented to enable any person skilled in the art to make and use the invention. Various modifications to the embodiments described will be readily apparent to those skilled in the art, and the principles defined herein can be applied to other embodiments and applications without departing from the spirit and scope of the present invention as defined by the appended claims. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein. To the extent necessary to achieve a complete understanding of the invention disclosed, the specification and drawings of all patents, patent publications, and patent applications cited in this application are incorporated herein by reference.


Turning now to FIG. 1A, a posterior view of an intervertebral implant 100 is depicted having a four-piece configuration. Although, as will be appreciated by those of skill in the art, other configurations, such as a two-piece configuration or a three-piece configuration, are possible without departing from the scope of the invention. As depicted, the intervertebral implant 100 has a pair 130 of first plates 110. Each first plate 110 has a first surface 112 and a second surface 114. The first surface 112 is configured to abut an end plate surface of a vertebral body. A keel 116 can be provided on the first surface 112 to anchor the first surface 112 into the vertebral body upon implantation. One or more additional protrusions 118 can also be provided that act as a detent or catch, thus providing a further mechanism to prevent the first plate 110 from moving relative to the vertebral body once implanted.


The intervertebral implant 100 also has a pair 132 of second plates 120. The second plates 120 have a first surface 122 and a second surface 124. The first surface 122 is configured to abut an end plate surface of a vertebral body. As with the first plate 110, a keel 126 can be provided on the first surface 122 to anchor the first surface 122 into the vertebral body upon implantation. One or more additional protrusions 128 can also be provided that act as a detent or catch, again providing a further mechanism to prevent the second plate 120 from moving relative to the vertebral body once implanted.



FIG. 1B depicts the pair 130 of upper plates 110 and the pair 132 of lower plates 120 in cross-section. Each upper plate 110 has a socket 136 that has a first elongated sidewall 150, a corresponding second elongated sidewall 152 (shown in FIG. 3B), an end wall 154, and an open end 156. The open ends 156 of each of the first plates 110 are oriented so that the open ends 156 face each other. The lower plates 120 each have a ball 134. As illustrated in FIG. 1B, the ball 134 is an elongated ball. Each of the plates 110, 120 has a first end 138, 141 and a second end 139, 143, respectively. The ends 139 of the first plate 110 face each other and the ends 143 of the second plate 120 also face each other. The ends 138, 141 are curved and convex, as shown in FIG. 3A, so that the implant 100 has a configuration that correlates to the curved shape of a vertebra.


As shown in FIG. 1C, the ball 134 has four sides: a first elongated sidewall 140, a second elongated sidewall 142, a third end wall 143, and a fourth end wall 146. The third end wall 144 is flush with the end 143 of the plate 120 of the implant. The third end wall 144 has a profile height 160 and the fourth end wall 146 has a profile height 162. Comparing the profile heights 160, 162 to each other at the same point on the second surface 124 of the second plate 120, the overall profile height of the third end wall 144 is greater than the fourth end wall 146 (i.e., 160>162). Thus, it is evident that the upper surface 135 of socket 136 slopes downwardly from the end wall 144 to the end wall 146. Together balls 134 comprise a ball structure that has a high surface where the third end walls 144 abut each other and slope to a lower surface adjacent to fourth end walls 146. Also, preferably, the upper surfaces 135 are barrel shaped and have a “U” shaped profile along a cross-section that is perpendicular to the page of FIG. 1C (parallel the sagittal plane on implantation). The sloping upper surface 135, as will be explained later, allows the pair 130 of upper plates 110 to easily slide, or rock, side-to-side on the ball structure and slide, or ride, forward and backward with enough looseness of fit to allow for some twisting in order to emulate the motion of the vertebral bone and intervertebral disk tissue. This arrangement, thus, has a sliding or translating pivot point. Further, as indicated in FIG. 1C the edges are eased or rounded to allow for further range of motion of the pair 130 of plates 110 relative to the pair 132 of plates 120. As will be appreciated by those of skill in the art, the overall height of the third end wall 144 and the fourth end wall 146 can be equivalent while still having an effective third end wall height 160 that is greater than the effective fourth end wall height 162 due to the overall slope of the second surface 124. Alternatively, the overall height of the third end wall 144 and the fourth end wall 146, can be different with the third end wall 144 having a height greater than the fourth end wall 146, thus eliminating the need for the second surface 124 to have a slope or further increasing the net difference between the height of the third end wall and the fourth end wall.


Further, although the ball 134 is depicted such that the third end wall 144 is flush with the second end 143, those of skill in the art will appreciate that the ball 134 could also be configured such that the third end wall 144 was recessed relative to the end 143 of the second plate. In such a configuration, the third end wall 144 and the end 143 would not be flush.



FIGS. 1D and 1E illustrate posterior views of the implant 100 showing the clearance for left and right lateral bending. Typically, left and right lateral bending ranges from 3–5°. As evident from these figures (and FIG. 1B), the length L1 of the ball 134 can be less than the length L2 of the socket 136. Further, as shown, the open ends 156 of the sockets facilitate movement of the balls 134 within the socket 136 to accommodate side-bending movement.



FIG. 2A is a side view of the intervertebral implant 100. The first plate 110 with this socket 136 and the second plate 120 with the ball portion 134 are depicted. As is apparent from the figure, the sloping of the second surface 114 of the first plate 110 facilitates rotation of the ball-and-socket joint in an anterior “A” 280 direction and a posterior “P” 282 direction. As depicted, the second surface 114 slopes from a high point at about where the socket is located to low points at the ends 111 and 113 of the plate 110. As shown in FIG. 2A, the implant 100 is positioned to achieve flexion 272 (i.e., forward bending) in a range up to about 15°, but more preferably 10°.


As shown in FIG. 2A the second plate 120 can also have channels 264, 265 or a groove adjacent the ball 134. The channels 264, 265 can be configured such that it surrounds a portion of the ball 134 or the entire ball 134. As will be explained below, the channel allows the sides of the ball 134 to be made more perpendicular so as to create a greater blocking wall thus preventing the socket of the upper plate 100 from moving too much anteriorly or posteriorly relative to the lower plate 120.


Either one or both of the keels on the first surface 116 and the second surface 126 can have one or more posteriorly pointing teeth 266 to enable it to more securely engage the vertebral body into which it is implanted. As can be seen in FIG. 2A, the protrusions 128, as well as the additional protrusions 118 (FIG. 1A) can also have posteriorly pointing teeth in order to lock the implant 100 in position in the vertebrae.



FIG. 2B is an alternate side view of the intervertebral implant 100 wherein the plates 110, 120 are shown and the ball-and-socket joint is positioned to achieve extension 274 (i.e., backward bending) in a preferable range of up to about 5°.



FIG. 2C is a cross-section of the side view of the intervertebral implant 100 showing the mating of the ball 134 to the socket 136. FIG. 2D illustrates an alternate embodiment of the first plate 110 wherein the socket 136 has ridges 268, 269 forming a protuberance that extends into the channel 264, 265 respectively on the second plate 120. As will be appreciated by those of skill in the art, the protuberances 268, 269 can extend partially into the channel, such as the configuration shown, or can have a channel conforming shape such that when the ball-and-socket joint are moved to achieve flexion 272 or extension 274 the protuberance or ridge 268, 269 extends into the channels 264, 265. This embodiment allows the surfaces 114 and 115 of the first plate 110 and the second plate 115 to be flat and non-sloping as shown while still allowing for the implant to emulate forward and backward bending and allow for the blocking of the motion of the socket relative to the ball.


Turning now to FIG. 3A, a top view of one-half of the intervertebral implant 100 is shown. Each of the top first plate 110 and the bottom second plate 120 have a bore 376 for receiving a pin of an implant tool. The keel 116 on the first plate 110 is positioned so that it is does not align in the same plane with the keel 126 on the second plate 120. As will be explained in further detail later, the non-alignment allows for the implant including the keels to be properly positioned between the vertebrae in such a way to accommodate the position of the nerves as the nerves extend out from the between adjacent vertebrae. Additionally, the length of ball 134 from the third end wall 144 to the fourth end wall 146 is shorter than the length of the socket 136 from the end wall 154 to the open end 156 as discussed before.



FIGS. 3B and 3C show the relative rotation of the upper first plate 110 to the lower second plate 120 to achieve rotation about a central axis 378. This rotation results in about a 3°–6° rotation about the axis (i.e., 3° of torso twisting in each direction).



FIG. 4A shows a perspective view of a second plate 120 of the intervertebral implant 100. The second surface 124 of the second plate 120 with the ball 134 and channels or grooves 264, 265 extending thereabout. As illustrated in FIG. 4A, the channels 264, 265 are formed on two sides of the ball 134. However, as will be appreciated by those of skill in the art, the channels 264, 265 can alternatively surround the ball 134.



FIG. 4B shows a perspective view of the first plate 110. The first plate 110 has a second surface 114, as described above, and, extending therefrom is the socket 136 therein. The socket 136 of FIG. 4B is configured to mate with the ball 134 of FIG. 4A, as described above.



FIG. 5A illustrates a posterior view of the implant shown in FIG. 1A implanted between vertebral bodies in a spine. FIG. 5A illustrates the spinal column 500 and the cauda equina 504 (a collection of lumbar and sacral nerve roots that fill the caudal end of the spinal cord) with individual nerves 506 exiting the cord between lumbar vertebrae. The implant 100 is positioned between two vertebral bodies 520, 521 such that the keels 116, 126 do not interfere with the cauda equina 504 and the exiting nerve 506. As can be seen in FIG. 5A, the keel 116 of the upper first plates 110 are close together and inboard of the keel 126 of the lower second plate 120. This allows the lower keels 126 to be clear of the nerves 506 as the nerves exit from between the adjacent vertebrae.



FIG. 5B illustrates a side view of the implant 100, such as that shown in FIG. 1A, implanted between vertebral bodies 520, 521. The implant 100 is implanted so that the ball-and-socket joint enables about a 5° extension (backward bending) and about a 10° flexion (forward bending). In this view, the ball and socket arrangement crosses the centerline 50 of the implant 100 and extends in a posterior 282 direction. In this embodiment, the ball-and-socket arrangement can be more centered on the centerline 50 or extend from a position when the implant 100 crosses the centerline 50 and extends in an anterior 280 direction. Further, in another preferred embodiment, the ball can be approximately bisected by the centerline.



FIG. 6 illustrates a rear view of an alternate embodiment of the implant shown in FIG. 1A. The implant 600 of FIG. 6 is in the form of a two-piece implant 600 having a first plate 610 and a second plate 620. The first plate 610 has a first surface 612 that contacts the vertebral body and has one or more keels 616 and detents 618 for anchoring the first plate 610 into the vertebral body. The implant 600 also has a second plate 620 that has a first surface 622 that contacts the vertebral body and has one or more keels 626 and detents 628 for anchoring the second plate 620 into the vertebral body. The second surface 614 of the first plate 610 has a socket 632 formed therein while the second surface 624 of the second plate 620 has a ball 630. This implant 600 moves in much the same way as implant 100 described above.


As will be appreciated by those of skill in the art, implant 100 is predominantly designed for a posterior implantation method. However, implant 100 can also be implanted from an anterior direction. Implant 600 is designed for predominantly an anterior implantation approach.


Further, a combination of the two embodiments shown in FIG. 1A and FIG. 6 can be used to create a three-piece implant as will also be appreciated by those of skill in the art. For example, the first plate 610 of FIG. 6 with its socket 632 can be combined with two-second plates 120 of FIG. 1A to form an implant. Similarly, the second plate 620 of FIG. 6 and its ball 630 can be combined with two first plates 110 from FIG. 1A to achieve an implant. Neither of these configurations depart from the scope of the invention. It is also to be understood that the implant 100, 600 can be comprised of any suitable biocompatible material, such as titanium.


Turning now to FIGS. 7 and 8 and the tools for preparing the vertebral bodies and implanting the implant 100 as described. FIG. 7A depicts a top view of a cutting tool 700 used to prepare the vertebral bodies for the implant 100 and FIG. 7B depicts a side view of tool 700. The cutting tool 700 has a handle 710 at its proximal end for controlling the tool during operation. As will be appreciated by those of skill in the art, the handle 710 can be removable or affixed to the cutting end.


The distal end 702 of the tool 700 is forked to form two prongs or tines 705, 706. The end of each tine 705, 706 has a beveled edge 716 at its distal most end. Each tine 705, 706 also has an inner blade 712 located on an inner upper side and an outer blade 714 located on an outer lower side (shown in FIG. 7C). Preferably the inner blades 712 are coplanar with the surface of the inner side of the tine and the outer blades 714 are coplanar with the outer side of the tine. The inner blades 712 are oriented to cut a space in a first intervertebral body for the first surface keel 116 of the implant and the outer blades 714 are oriented to cut a space in the facing intervertebral body for the second surface keel 126. The orientation of the blades is such that each of the cuts made for the keels of the implant are offset and avoid the nerves in the cauda equina or exiting the cauda equina.



FIG. 7C is a view of the distal end of the cutting tool 700 showing the beveled edges 716 of the tines 705, 706 and the inner blades 712 and outer blades 714. The distance 722 between the inner blades 712 is less than the distance 724 between the outer blades and the height h of the tines approximates the distance between two vertebral bodies or the height of the disk space. The blades 712, 714 extend above and below the tines or the height of the tines. As can be seen in FIG. 7C, the beveled sides of the distal end 716 extend and form at least one of the beveled sides of the blades 712, 714.



FIG. 7D depicts an enlarged top view of the tines 705, 706 of the distal end of cutting tool 700 with the beveled distal edges 716. FIG. 7E is an enlarged side view of the distal end of cutting tool 700. FIGS. 7D and 7E show the retractable blade protector 720 for the blade 712 positioned in a retracted position. As the cutting tool is inserted between vertebral bodies, the retractable blade protector 720 moves in a posterior direction 715 (i.e., toward the handle 710) to expose the inner blade 712 and the outer blade 714 and to enable the blades to cut into the vertebral bodies. These protectors 720 can be spring biased as desired in order to cover the blade 712, 714 as the tool 700 is inserted past the nerves. The protectors 720 are urged in a posterior direction as the blades 712, 714 are urged into the vertebral bodies in order to cut channels for the keels. Springs 721 provide the desired bias to keep the protectors 720 in a forward position covering the blades 712, 718.


As will be appreciated by those of skill in the art, the tool shown in FIG. 7 can be modified such that instead of cutting keel-receiving channels in the upper and lower vertebral bodies at the same time, two tools are provided so that only one vertebral body is cut for keel-receiving channels at a time. For example, a first tool having two tines as described above could be provided having a pair of inner blades located on an upper surface of the tines. A second tool could be provided having tines as described with a pair of outer blades located on the lower surface of the tines. Optionally, the second tool can have a guide corresponding to the location of the first blade on the first tool to ensure that the second cut is optimally aligned with the first cut. In use, a pair of channels can be cut into the upper vertebral body using the first tool. Thereafter a second pair of channels can be cut into the lower vertebral body. Alternate arrangements are also possible, for example, where the first tool has a pair of outer blades and the second tool has a pair of inner blades, or where the first tool has upper and lower blades on a first tine (e.g., right tine) and the second tool has upper and lower blades on a second tine (e.g., left tine).



FIG. 8A depicts the implanting tool used to insert the implant 100 of FIG. 1A between vertebral bodies. FIG. 8A is a side view of the implantation tool 800 that has a handle 810 and an implant holder 820. The implant holder 820 has an implant conforming surface 824 and two pins 822 for holding a first plate 110 and a second plate 120 of a first half of the implant 100. The conforming surface 824 is curved to follow the convex outer edges 138, 139 of the plate 100, 120, respectively (shown in FIG. 3A). The implant 100 nests within a conforming surface 824 and is held by pins 822. FIG. 8C shows the distal view of the end of the tool with two pins 822, 823 for securing the first and second plate of the implant. The tool can be rotated by the user 180° to implant the other half of the implant.


Where an implant such as that shown in FIG. 6 is implanted, the implant conforming surface 824 of the implant tool would have a mirror image conforming surface provided to capture the implant 600. An additional series of pins, for a total of four, can be provided for holding a first plate 610 and a second plate 620 of the implant 600, if required. The implant 600 would nest within the conforming surface of the “U” shaped cavity.


A variety of kits can be assembled that include an implant 100 (or 600) sized for a particular patient. The kit could also include several cutting tools 700 and several implanting tools 800 or a single handle that cooperates with cutting ends 702 and implantation ends 820.



FIG. 9 is a block diagram showing the steps for implanting an implant. In order to implant the implant of FIG. 1A, the spine is exposed posteriorly 910. The intervertebral disk to be replaced is either partially or completely removed 920. The cutting tool 700 is inserted between the vertebral bodies to create channels in the bodies to receive the keels of the implant. Nerves can be retracted and then the implant holder 810 is used to insert the implant between the vertebral bodies 930, lining the keels up with the channels created by the cutting tool 700. Next, the nerves are retracted in the other direction and the other plates 100, 120 are attached to a tool and are implanted. The implant first and second plates 110, 120 are now inserted between the vertebrae, and the keel are placed in the channels prepared by the cutting tool 700. Once the implant is inserted, the wound is closed 940.


In order to implant the implant of FIG. 6, the spine is exposed anteriorly 910. The intervertebral disk to be replaced is either partially or completely removed 920. The cutting tool 700 is inserted between the vertebral bodies to create channels in the bodies to receive the keels of the implant. The implant is then inserted into an implant holder and the implant tool is used to insert the implant between the vertebral bodies 930, lining the keels up with the channels created by the cutting tool 700. Once the implant is inserted, the wound is closed 940.


The foregoing description of embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention and the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.

Claims
  • 1. An intervertebral implant comprising: a first plate adapted to mate to a first vertebral body, the first plate including an elongated socket;a second plate adapted to mate to a second vertebral body, the second plate including an elongated ball, with the elongated ball having a top surface and first and second elongated sidewalls that are substantially perpendicular to the second plate, and third and fourth end walls; andthe top surface slopes from the third end wall to the fourth end wall wherein the third end wall has a height greater than a height of the fourth end wall.
  • 2. The implant of claim 1 including at least one of the first and second plates including a keel extending there from and adapted to engage a vertebral body.
  • 3. The implant of claim 1 including a first keel extending from the first plate and adapted to engage a first vertebral body, and a second keel extending from the second plate and adapted to engage a second vertebral body.
  • 4. The implant of claim 1 including a first keel extending from the first plate and substantially perpendicular to the elongated socket and adapted to engage a first vertebral body, and a second keel extending from the second plate and substantially perpendicular to the elongated ball and adapted to engage a second vertebral body.
  • 5. The implant of claim 1 wherein the elongated socket has first and second sidewalk that are substantially perpendicular to the first plate.
  • 6. The implant of claim 1 wherein the third end wall and the fourth end wall are substantially perpendicular to the second plate.
  • 7. The implant of claim 1 including at least one of the first and second plates including a keel extending therefrom and adapted to engage a vertebral body.
  • 8. An intervertebral implant comprising: a first plate adapted to mate to a first vertebral body, the first plate including an elongated socket;a second plate adapted to mate to a second vertebral body, the second plate including an elongated ball, with the elongated ball having a top surface and first and second elongated sidewalls that are substantially perpendicular to the second plate, and third and fourth end walls; andthe top surface slopes downward from the third end wall to the fourth end wall wherein the socket has first and second elongated sidewalls, an end wall, and an open end.
  • 9. An intervertebral implant comprising: a first plate adapted to mate to a first vertebral body, the first plate including an elongated socket;a second plate adapted to mate to a second vertebral body, the second plate including an elongated ball, with the elongated ball having a top surface and first and second elongated sidewalls, and third and fourth end walls; andthe top surface slopes from the third end wall to the fourth end wall, wherein the third end wall has a height that is greater than a height of the fourth end wall.
  • 10. The implant of claim 9 including a first keel extending from the first plate and adapted to engage a fist vertebral body, and a second keel extending from the second plate and adapted to engage a second vertebral body.
  • 11. The implant of claim 9 including a first keel extending from the first plate and substantially perpendicular to the elongated socket and adapted to engage a first vertebral body, and a second keel extending from the second plate and substantially perpendicular to the elongated ball and adapted to engage a second vertebral body.
  • 12. The implant of claim 9 wherein the socket has first and second elongated sidewalls that are substantially perpendicular to the first plate.
  • 13. The implant of claim 9 wherein the third end wall and the fourth end wall are substantially perpendicular to the second plate.
  • 14. An intervertebral implant comprising: a first plate adapted to mate to a first vertebral body, the first plate including an elongated socket;a second plate adapted to mate to a second vertebral body, the second plate including an elongated ball, with the elongated ball having a top surface and first and second elongated sidewalls, and third and fourth end walls; andthe top surface slopes downward from the third end wall to the fourth end wall, the socket has first and second elongated sidewalls, an end wall, and an open end.
  • 15. An intervertebral implant comprising: a pair of first plates adapted to mate to a first vertebral body, and each of the first plates including an elongated socket;a pair of second plates adapted to mate to a second vertebral body, each of the second plates including an elongated ball, with the elongated ball of each the second plates having a top surface and first and second elongated sidewalls that are substantially perpendicular to the respective second plates, and each the elongated ball having third and fourth end walls; andthe top surface of each the elongated ball slopes from the third end wall to the fourth end wall wherein each third end wall has a height that is greater than a height of each fourth end wall.
  • 16. The implant of claim 15 including at least one of the pair of first plates and the pair of second plates including a keel extending from each plate and which keel is adapted to engage a vertebral body.
  • 17. The implant of claim 15 including a first keel extending firm each plate of the pair of first plates and adapted to engage a first vertebral body, and a second keel extending from each plate of the pair of second plates and adapted to engage a second vertebral body.
  • 18. The implant of claim 15 including a first keel extending from each plate of the pair of first plates and substantially perpendicular to the elongated socket and adapted to engage a first vertebral body, and a second keel extending from each plate of the pair of second plates and substantially perpendicular to the elongated ball and adapted to engage a second vertebral body.
  • 19. The implant of claim 15 wherein the first and second sidewalls of the elongated socket are substantially perpendicular to the first plate.
  • 20. The implant of claim 15 wherein the third end wall and the fourth end wall are substantially perpendicular to the second plate.
  • 21. The implant of claim 15 wherein the third end walls of each of the elongated balls are adjacent each other.
  • 22. An intervertebral implant comprising: a pair of first plates adapted to mate to a first vertebral body, and each of the first plates including an elongated socket;a pair of second plates adapted to mate to a second vertebral body, each of the second plates including an elongated ball, wit the elongated ball of each the second plates having a top surface and first and second elongated sidewalls that are substantially perpendicular to the respective second plates, and each the elongated ball having third and fourth end walls; andthe top surface of each the elongated ball slopes downward from the third endwall to the fourth end wall, each elongated socket has first and second elongated sidewalls, an end wall, and an open end.
  • 23. The implant of claim 22 wherein the third end walls of each of the elongated balls are adjacent each other.
  • 24. An intervertebral implant comprising: a pair of first plates adapted to mate to a first vertebral body, and each of the first plates including an elongated socket;a pair of second plates adapted to mate to a second vertebral body, the each of the second plates including an elongated ball, with the elongated ball of each the second plates having a top surface and first and second elongated sidewalls, and each the elongated ball having third and fourth end walls, each third end wall has a height that is greater than a height of each fourth end wall; andthe top surface of each the elongated ball slopes from the third end wall to the fourth end wall.
  • 25. The implant of claim 24 including at least one of the pair of first plates and the pair of second plates including a keel extending from each plate and which keel is adapted to engage a vertebral body.
  • 26. The implant of claim 24 including a first keel extending from each plate of the pair of first plates and adapted to engage a first vertebral body, and a second keel extending from each plate of the pair of second plates and adapted to engage a second vertebral body.
  • 27. The implant of claim 24 including a first keel extending from each plate of the pair of first plates and substantially perpendicular to the elongated socket and adapted to engage a first vertebral body, and a second keel extending from each plate of the pair of second plates and substantially perpendicular to the elongated ball and adapted to engage a second vertebral body.
  • 28. The implant of claim 24 wherein the first and second sidewalls of the elongated socket are substantially perpendicular to the first plate.
  • 29. The implant of claim 24 wherein the third end wall and the fourth end wall are substantially perpendicular to the second plate.
  • 30. The implant of claim 24 wherein the third end walls of each of the elongated balls are adjacent each other.
  • 31. An intervertebral implant comprising: a pair of first plates adapted to mate to a first vertebral body, and each of the first plates including an elongated socket;a pair of second plates adapted to mate to a second vertebral body, the each of the second plates including an elongated ball, with the elongated ball of each the second plates having atop surface and first and second elongated sidewalls, and each the elongated ball having third and fourth end walls; andthe top surface of each the elongated ball slopes downward from the third end wall to the fourth end wall,wherein each elongated socket has first and second elongated sidewalls, an end wall, and an open end.
  • 32. The implant of claim 31 wherein the third end walls of each of the elongated balls are adjacent each other.
  • 33. An intervertebral implant comprising: a first plate having an elongated socket formed thereon; anda second plate having a ball formed thereon, wherein the ball has first and second sidewalls that are substantially perpendicular to a surface of the second plate,wherein the first plate has a protuberance adjacent the socket, andwherein the protuberance is adjacent the socket on three sides.
  • 34. An intervertebral implant comprising: a first plate having a socket formed thereon; anda second plate having a ball formed thereon,wherein the ball has a top that slopes downward from a first side to a second side and sidewalls perpendicular to a surface of the second plate,wherein the first plate has a keel, and wherein the keel has teeth.
  • 35. An intervertebral implant comprising: a first plate having a socket formed thereon; anda second plate having a ball formed thereon,wherein the ball has a top that slopes downward from a first side to a second side and sidewalls perpendicular to a surface of the second plate,wherein the second plate has a keel, andwherein the keel has teeth.
CLAIM OF PRIORITY

This application claims priority to U.S. Provisional Application No. 60/422,039, filed on Oct. 29, 2002, entitled “ARTIFICIAL VERTEBRAL DISK REPLACEMENT IMPLANT WITH TRANSLATING PIVOT POINT AND METHOD,” and which is incorporated herein by reference.

US Referenced Citations (414)
Number Name Date Kind
2456806 Wolffe Dec 1948 A
2677369 Knowles May 1954 A
3648691 Lumb Mar 1972 A
3867728 Stubstad et al. Feb 1975 A
3875595 Froning Apr 1975 A
4309777 Patil Jan 1982 A
4349921 Kuntz Sep 1982 A
4369769 Edwards Jan 1983 A
4401112 Rezaian Aug 1983 A
4479491 Martin Oct 1984 A
4501269 Bagby Feb 1985 A
4553273 Wu Nov 1985 A
4554914 Kapp et al. Nov 1985 A
4599084 Nashef Jul 1986 A
4599086 Doty Jul 1986 A
4636217 Ogilvie Jan 1987 A
4657550 Daher Apr 1987 A
4685447 Iversen et al. Aug 1987 A
4696290 Steffee Sep 1987 A
4714469 Kenna Dec 1987 A
4743256 Brantigan May 1988 A
4759766 Buttner-Janz et al. Jul 1988 A
4759769 Hedman et al. Jul 1988 A
4772287 Ray et al. Sep 1988 A
4790303 Steffee Dec 1988 A
4834757 Brantigan May 1989 A
4863477 Monson Sep 1989 A
4874389 Downey Oct 1989 A
4878915 Brantigan Nov 1989 A
4904260 Ray et al. Feb 1990 A
4904261 Dove et al. Feb 1990 A
4911718 Lee et al. Mar 1990 A
4932969 Frey et al. Jun 1990 A
4932975 Main et al. Jun 1990 A
4936848 Bagby Jun 1990 A
4946378 Hirayama et al. Aug 1990 A
4961740 Ray et al. Oct 1990 A
4969888 Scholten et al. Nov 1990 A
4997432 Keller Mar 1991 A
5002576 Furhmann et al. Mar 1991 A
5011484 Breard Apr 1991 A
5015247 Michelson May 1991 A
5026373 Ray et al. Jun 1991 A
5035716 Downey Jul 1991 A
5047055 Bao et al. Sep 1991 A
5055104 Ray Oct 1991 A
5059193 Kuslich Oct 1991 A
5059194 Michelson Oct 1991 A
5071437 Steffee Dec 1991 A
5108438 Stone Apr 1992 A
5108442 Smith Apr 1992 A
5122130 Keller Jun 1992 A
5123926 Pisharodi Jun 1992 A
5167662 Hayes et al. Dec 1992 A
5171280 Baumgartner Dec 1992 A
5171281 Parsons et al. Dec 1992 A
5180381 Aust et al. Jan 1993 A
5192326 Bao et al. Mar 1993 A
5192327 Brantigan Mar 1993 A
5246458 Graham Sep 1993 A
5258031 Salib et al. Nov 1993 A
5258043 Stone Nov 1993 A
5263953 Bagby Nov 1993 A
5290312 Kojimoto et al. Mar 1994 A
5306307 Senter Apr 1994 A
5306308 Gross et al. Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5313962 Obenchain May 1994 A
5314477 Marnay May 1994 A
5314478 Oka et al. May 1994 A
5320644 Baumgartner Jun 1994 A
5336223 Rogers Aug 1994 A
5350397 Palermo et al. Sep 1994 A
5352225 Yuan et al. Oct 1994 A
5354302 Ko Oct 1994 A
5360430 Lin Nov 1994 A
5366508 Brekke Nov 1994 A
5370693 Kelman et al. Dec 1994 A
5370697 Baumgartner Dec 1994 A
5375823 Navas Dec 1994 A
5383884 Summers Jan 1995 A
5390683 Pisharodi Feb 1995 A
5395317 Kambin Mar 1995 A
5395372 Holt et al. Mar 1995 A
5397364 Kozak et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5415704 Davidson May 1995 A
5423816 Lin Jun 1995 A
5423817 Lin Jun 1995 A
5425772 Brantigan Jun 1995 A
5425773 Boyd et al. Jun 1995 A
5425777 Sarkisian et al. Jun 1995 A
5431658 Moskovich Jul 1995 A
5439464 Shapiro Aug 1995 A
5443514 Steffee Aug 1995 A
5443515 Cohen et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5454812 Lin Oct 1995 A
5456722 McLeod et al. Oct 1995 A
5458638 Kuslich et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5458642 Beer et al. Oct 1995 A
5458643 Oka et al. Oct 1995 A
5480401 Navas Jan 1996 A
5480442 Bertagnoli Jan 1996 A
5484437 Michelson Jan 1996 A
5489307 Kuslich et al. Feb 1996 A
5489308 Kuslich et al. Feb 1996 A
5496318 Howland Mar 1996 A
5505732 Michelson Apr 1996 A
5507816 Bullivant Apr 1996 A
5514180 Heggeness et al. May 1996 A
5522899 Michelson Jun 1996 A
5527312 Ray Jun 1996 A
5531793 Kelman et al. Jul 1996 A
5534023 Henley Jul 1996 A
5534028 Bao et al. Jul 1996 A
5534029 Shima Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5534031 Matsuzaki et al. Jul 1996 A
5540689 Sanders et al. Jul 1996 A
5545229 Parsons et al. Aug 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5556431 Buttner-Janz Sep 1996 A
5562736 Ray et al. Oct 1996 A
5562738 Boyd et al. Oct 1996 A
5571109 Bertagnoli Nov 1996 A
5571189 Kuslich Nov 1996 A
5571190 Ulrich et al. Nov 1996 A
5571192 Schönhöffer Nov 1996 A
5591235 Kuslich Jan 1997 A
5593409 Michelson Jan 1997 A
5599279 Slotman et al. Feb 1997 A
5601556 Pisharodi Feb 1997 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5609636 Kohrs et al. Mar 1997 A
5620458 Green et al. Apr 1997 A
5645592 Nicolais et al. Jul 1997 A
5645596 Kim et al. Jul 1997 A
5645597 Krapiva Jul 1997 A
5645598 Brosnahan, III Jul 1997 A
5653761 Pisharodi Aug 1997 A
5653762 Pisharodi Aug 1997 A
5658335 Allen Aug 1997 A
5658336 Pisharodi Aug 1997 A
5658337 Kohrs et al. Aug 1997 A
5669909 Zdeblick et al. Sep 1997 A
5674294 Bainville et al. Oct 1997 A
5674295 Ray et al. Oct 1997 A
5674296 Bryan et al. Oct 1997 A
5676701 Yuan et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5683463 Godefroy et al. Nov 1997 A
5683464 Wagner et al. Nov 1997 A
5683465 Shinn et al. Nov 1997 A
5693100 Pisharodi Dec 1997 A
5697889 Slotman et al. Dec 1997 A
5697977 Pisharodi Dec 1997 A
5700292 Margulies Dec 1997 A
5702449 McKay Dec 1997 A
5702450 Bisserie Dec 1997 A
5702454 Baumgartner Dec 1997 A
5702455 Saggar Dec 1997 A
5716415 Steffee Feb 1998 A
5716416 Lin Feb 1998 A
5741253 Michelson Apr 1998 A
5755732 Green et al. May 1998 A
5755796 Ibo et al. May 1998 A
5755798 Papavero et al. May 1998 A
5766252 Henry et al. Jun 1998 A
5772661 Michelson Jun 1998 A
5776196 Matsuzaki et al. Jul 1998 A
5776199 Michelson Jul 1998 A
5782830 Farris Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5782919 Zdeblick et al. Jul 1998 A
5797909 Michelson Aug 1998 A
5800438 Tuke et al. Sep 1998 A
5800550 Sertich Sep 1998 A
5824093 Ray et al. Oct 1998 A
5824094 Serhan et al. Oct 1998 A
5827328 Buttermann Oct 1998 A
5836948 Zucherman et al. Nov 1998 A
5860973 Michelson Jan 1999 A
5860977 Zucherman et al. Jan 1999 A
5865845 Thalgott Feb 1999 A
5865846 Bryan et al. Feb 1999 A
5876404 Zucherman et al. Mar 1999 A
5885292 Moskovitz et al. Mar 1999 A
5885299 Winslow et al. Mar 1999 A
5888222 Coates et al. Mar 1999 A
5888224 Beckers et al. Mar 1999 A
5888226 Rogozinski Mar 1999 A
5891147 Moskovitz et al. Apr 1999 A
5893889 Harrington Apr 1999 A
5893890 Pisharodi Apr 1999 A
5895426 Scarborough et al. Apr 1999 A
5895427 Kuslich et al. Apr 1999 A
5895428 Berry Apr 1999 A
5899941 Nishijima et al. May 1999 A
5906616 Pavlov et al. May 1999 A
5919235 Husson et al. Jul 1999 A
5928284 Mehdizadeh Jul 1999 A
5944754 Vacanti Aug 1999 A
5945115 Dunn et al. Aug 1999 A
5961554 Jamson et al. Oct 1999 A
5964807 Gan et al. Oct 1999 A
5976186 Bao et al. Nov 1999 A
5980572 Kim et al. Nov 1999 A
5984967 Zdeblick et al. Nov 1999 A
5989291 Ralph et al. Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6004573 Rathi et al. Dec 1999 A
6005162 Constantz Dec 1999 A
6019792 Cauthen Feb 2000 A
6019793 Perren et al. Feb 2000 A
6022376 Assell et al. Feb 2000 A
6039761 Li et al. Mar 2000 A
6039763 Shelokov Mar 2000 A
6042582 Ray Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6045580 Scarborough et al. Apr 2000 A
6048342 Zucherman Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6068630 Zucherman May 2000 A
6074390 Zucherman et al. Jun 2000 A
6080155 Michelson Jun 2000 A
6080158 Lin Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6086613 Camino et al. Jul 2000 A
6090112 Zucherman et al. Jul 2000 A
6093205 McLeod et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6096080 Nicholson et al. Aug 2000 A
6099531 Bonutti Aug 2000 A
6102950 Vaccaro Aug 2000 A
6110210 Norton et al. Aug 2000 A
6111164 Rainey et al. Aug 2000 A
6113637 Gill et al. Sep 2000 A
6113638 Williams et al. Sep 2000 A
6113639 Ray et al. Sep 2000 A
6120502 Michelson Sep 2000 A
6120503 Michelson Sep 2000 A
6123705 Michelson Sep 2000 A
6126689 Brett Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6132430 Wagner Oct 2000 A
6132465 Ray et al. Oct 2000 A
6136001 Michelson Oct 2000 A
6136031 Middleton Oct 2000 A
6139579 Steffee et al. Oct 2000 A
6146421 Gordon et al. Nov 2000 A
6146422 Lawson Nov 2000 A
6149650 Michelson Nov 2000 A
6149652 Zucherman et al. Nov 2000 A
6149686 Kuslich et al. Nov 2000 A
6152926 Zucherman et al. Nov 2000 A
6156038 Zucherman et al. Dec 2000 A
6156067 Bryan et al. Dec 2000 A
6159215 Urbahns et al. Dec 2000 A
6162252 Kuras et al. Dec 2000 A
6165218 Husson et al. Dec 2000 A
6176882 Biedermann et al. Jan 2001 B1
6179874 Cauthen Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6190414 Young et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
6210412 Michelson Apr 2001 B1
6224595 Michelson May 2001 B1
6224631 Kohrs May 2001 B1
6228118 Gordon May 2001 B1
6231609 Mehdizadeh May 2001 B1
6234705 Troxell May 2001 B1
6235030 Zucherman et al. May 2001 B1
6238397 Zucherman et al. May 2001 B1
6241769 Nicholson et al. Jun 2001 B1
6241770 Michelson Jun 2001 B1
6241771 Gresser et al. Jun 2001 B1
6245072 Zdeblick et al. Jun 2001 B1
6245108 Biscup Jun 2001 B1
6261296 Aebi et al. Jul 2001 B1
6264655 Pisharodi Jul 2001 B1
6264656 Michelson Jul 2001 B1
6264695 Stoy Jul 2001 B1
6270498 Michelson Aug 2001 B1
6277149 Boyle et al. Aug 2001 B1
6280444 Zucherman et al. Aug 2001 B1
6280475 Bao et al. Aug 2001 B1
6287343 Kuslich et al. Sep 2001 B1
6290724 Marino Sep 2001 B1
6296664 Middleton Oct 2001 B1
6296665 Strnad et al. Oct 2001 B1
6302914 Michelson Oct 2001 B1
6309421 Pisharodi Oct 2001 B1
6311562 Hanada Nov 2001 B1
6315795 Scarborough et al. Nov 2001 B1
6315797 Middleton Nov 2001 B1
6325827 Lin Dec 2001 B1
6332882 Zucherman et al. Dec 2001 B1
6332883 Zucherman et al. Dec 2001 B1
6332894 Stalcup et al. Dec 2001 B1
6342074 Simpson Jan 2002 B1
6348071 Steffee et al. Feb 2002 B1
6350283 Michelson Feb 2002 B1
6364880 Michelson Apr 2002 B1
6368350 Erickson et al. Apr 2002 B1
6368351 Glenn et al. Apr 2002 B1
6371984 Van Dyke et al. Apr 2002 B1
6371988 Pafford et al. Apr 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6379355 Zucherman et al. Apr 2002 B1
6379385 Kalas et al. Apr 2002 B1
6383221 Scarborough et al. May 2002 B1
6391030 Wagner et al. May 2002 B1
6391058 Kuslich et al. May 2002 B1
6395030 Songer et al. May 2002 B1
6395031 Foley et al. May 2002 B1
6395032 Gauchet May 2002 B1
6395034 Suddaby May 2002 B1
6402785 Zdeblick et al. Jun 2002 B1
6409766 Brett Jun 2002 B1
6413278 Marchosky Jul 2002 B1
6416551 Keller Jul 2002 B1
6419676 Zucherman et al. Jul 2002 B1
6419677 Zucherman et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6419706 Graf Jul 2002 B1
6423063 Bonutti Jul 2002 B1
6423095 Van Hoech et al. Jul 2002 B1
6425920 Hamada Jul 2002 B1
6432106 Fraser Aug 2002 B1
6436098 Michelson Aug 2002 B1
6436119 Erb et al. Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6436142 Paes et al. Aug 2002 B1
6440168 Cauthen Aug 2002 B1
6443990 Aebi et al. Sep 2002 B1
6447512 Landry et al. Sep 2002 B1
6447544 Michelson Sep 2002 B1
6447547 Michelson Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6454804 Ferree Sep 2002 B1
6454807 Jackson Sep 2002 B1
6458131 Ray Oct 2002 B1
6458159 Thalgott Oct 2002 B1
6461359 Tribus et al. Oct 2002 B1
6468310 Ralph et al. Oct 2002 B1
6471724 Zdeblick et al. Oct 2002 B1
6475219 Shelokov Nov 2002 B1
6478796 Zucherman et al. Nov 2002 B1
6478822 Leroux et al. Nov 2002 B1
6478823 Michelson Nov 2002 B1
6482233 Aebi et al. Nov 2002 B1
6482235 Lambrecht et al. Nov 2002 B1
6485517 Michelson Nov 2002 B1
6488710 Besselink Dec 2002 B1
6500178 Zucherman et al. Dec 2002 B1
6500205 Michelson Dec 2002 B1
6503279 Webb et al. Jan 2003 B1
6514256 Zucherman et al. Feb 2003 B1
6517580 Ramadan et al. Feb 2003 B1
6520993 James et al. Feb 2003 B1
6520996 Manasas et al. Feb 2003 B1
6524312 Landry et al. Feb 2003 B1
6527773 Lin et al. Mar 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6527806 Ralph et al. Mar 2003 B1
6530933 Yeung et al. Mar 2003 B1
6530955 Boyle et al. Mar 2003 B1
6540785 Gill et al. Apr 2003 B1
6547823 Scarborough et al. Apr 2003 B1
6548002 Gresser et al. Apr 2003 B1
6554863 Paul et al. Apr 2003 B1
6558386 Cragg May 2003 B1
6558387 Errico et al. May 2003 B1
6558390 Cragg May 2003 B1
6558423 Michelson May 2003 B1
6558424 Thalgott May 2003 B1
6562073 Foley May 2003 B1
6562074 Gerbec et al. May 2003 B1
6565570 Sterett et al. May 2003 B1
6569201 Moumene et al. May 2003 B1
6572653 Simonson Jun 2003 B1
6572654 Santilli Jun 2003 B1
6575982 Bonutti Jun 2003 B1
6576016 Hochshuler et al. Jun 2003 B1
6576017 Foley et al. Jun 2003 B1
6579318 Varga et al. Jun 2003 B1
6579320 Gauchet et al. Jun 2003 B1
6579321 Gordon et al. Jun 2003 B1
6582432 Michelson Jun 2003 B1
6582437 Dorchak et al. Jun 2003 B1
6582468 Gauchet Jun 2003 B1
6610089 Liu et al. Aug 2003 B1
6682562 Viart et al. Jan 2004 B1
6706070 Wagner et al. Mar 2004 B1
6740118 Eisermann et al. May 2004 B1
6746484 Liu et al. Jun 2004 B1
6755841 Fraser et al. Jun 2004 B1
6770095 Grinberg et al. Aug 2004 B1
6893466 Trieu May 2005 B1
20010012938 Zucherman et al. Aug 2001 A1
20020128715 Bryan et al. Sep 2002 A1
20030208273 Eisermann et al. Nov 2003 A1
20040073313 Link et al. Apr 2004 A1
20040117022 Mamay et al. Jun 2004 A1
20040138750 Mitchell Jul 2004 A1
20040143332 Krueger et al. Jul 2004 A1
Foreign Referenced Citations (26)
Number Date Country
2015507 Jan 1991 CA
3113142 Jan 1982 DE
4012622 Jul 1991 DE
0307241 Mar 1989 EP
0322334 Jun 1989 EP
2722980 Jul 1994 FR
2705227 Nov 1994 FR
2707864 Jan 1995 FR
2717066 Sep 1995 FR
2717068 Sep 1995 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2730156 Aug 1996 FR
2780269 Dec 1999 FR
2805985 Sep 2001 FR
2806614 Sep 2001 FR
780652 Aug 1957 GB
WO 9000037 Jan 1990 WO
WO 9531158 Nov 1995 WO
WO 9926562 Jun 1999 WO
WO 9959669 Nov 1999 WO
WO 0004851 Feb 2000 WO
WO 0013619 Mar 2000 WO
WO 0013620 Mar 2000 WO
WO 0023015 Apr 2000 WO
0101893 Jan 2001 WO
Related Publications (1)
Number Date Country
20040138749 A1 Jul 2004 US
Provisional Applications (1)
Number Date Country
60422039 Oct 2002 US