The present invention relates to a method and a device for improving—at least in part—the external ballistics of primarily the type of artillery shells that are fin-stabilised in their trajectory towards the target and thus have a slipping plastic driving band which, during firing from a designated barrel, constitutes the shell's direct contact with the inside of the barrel.
The slipping plastic driving band means that this type of shell exits the barrel with a very low rate of spin or no spin at all, which obviously facilitates the fin stabilisation of the shell which shall be effected immediately it exits the muzzle by means of deployment of a plurality of fins previously retracted and integrated in the shell. The plastic driving band is usually so worn out from its severe treatment during the shell's passage through the barrel that the remnants of the driving band break away from their seat around the shell as the shell exits the muzzle of the gun in which it is fired. As soon as the shell has left the muzzle the well-defined groove in which the slipping plastic driving band was originally seated thus becomes revealed in the otherwise smooth external surface close to the rear face of the shell.
No one has previously paid any attention to the empty driving band groove, but now when every means available is being employed in attempts to increase the range of tube-firing artillery it has been ascertained that the empty, sharply-defined driving band groove causes turbulence in the surrounding atmosphere that cannot be ignored as it has a retarding, disturbing effect on the shell during its trajectory to the target.
The objective of the present invention is to resolve this problem by offering a method and a device which, without interfering with the functioning of the slipping driving band, fills the driving band groove as soon as the remnants of the driving band have detached from the said groove, thus enabling elimination of the otherwise disturbing turbulence around the driving band groove in an effective way.
The fundamental principle for the method as claimed in the present invention is an arrangement between the bottom of the driving band groove and the slipping driving band incorporating a ring-shaped, spring-loaded device that is initially compressed and which, as long as the driving band is in position, is held pressed against the bottom of the driving band groove by the driving band but which device, as soon as the driving band or remnants of the driving band have detached from the driving band groove, deploys and re-assumes a predetermined original shape that completely fills the driving band groove to be level with the outer surface of the shell.
This fundamental principle provides space for a device comprising an open first part made of a springback material and arranged in the driving band groove, and which first part is the same width as the said groove and has a length equivalent to the circumference of the shell at a position level with the driving band groove and when in deployed state forms a circular ring with an open gap between its two ends and comprises a plurality of identical filler elements made similarly of springback material mounted in the said first part and directed in deployed state at the bottom of the driving band groove, which filler elements are so designed that they can be pressed in against the inside of the said first part at the same time as the first part can be retracted against the bottom of the driving band groove with the ends of the said first part overlapping while allowing space outside the said first part in the driving band groove for the actual driving band.
According to a preferred variant of the present invention the filler elements are designed such that in deployed state they extend from each attachment point in the said first part in a slight arc in towards the bottom of the driving band groove, which they reach in a mainly tangential direction. This variant provides good centring of the first device so that in deployed state it gives a precise filling out of the driving band groove.
If all the filler elements are also given such a length and are attached to the inside of the said first device with such a distance between the attachment points that there is adequate space to accommodate them between each other when the said device is retracted around the bottom of the driving band groove one achieves a filler device which, when in retracted state, has a thickness that in principle is only equivalent to double the thickness of the material of which the first ring-shaped device and filler elements are fabricated, and for this purpose it is appropriate to use a titanium-based sheet metal with good shape memory.
Finally, it can also be noted that the combined latent spring force, when the first part of the device is retracted around the bottom of the driving band groove and its filler elements are retracted against the said first part, does not need to be greater than that the said first part is held in place by the driving band arranged on top as long as the latter has not come into use.
The present invention is defined in the subsequent Patent Claims, and is now described in only slightly more detail with reference to some relevant figures.
In these figures
The shell 1 depicted in
Number | Date | Country | Kind |
---|---|---|---|
0101366 | Apr 2001 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTSE02/00715 | 4/11/2002 | WO | 00 | 3/15/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0208641 | 10/31/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2348675 | Dodge | May 1944 | A |
2856856 | Michael | Oct 1958 | A |
3431815 | Kaufmann, Jr. | Mar 1969 | A |
4109582 | Haep et al. | Aug 1978 | A |
4552071 | Horais et al. | Nov 1985 | A |
4884508 | Kruse et al. | Dec 1989 | A |
H000794 | Telmo et al. | Jul 1990 | H |
5164540 | Chiarelli et al. | Nov 1992 | A |
5862011 | Sega et al. | Jan 1999 | A |
6237497 | Altenau et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
0905473 | Mar 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20040149157 A1 | Aug 2004 | US |