The present invention pertains to systems for aseptically packaging products in flexible containers or bags, and more particularly to aseptically filling flexible bags or containers fitted with standard fitments with various products, including food products, and in particular low acid content, flowable food products.
Currently, food products, and in particular low acid content flowable food products, are packaged in flexible bags in two primary ways. In a first way, flexible bags with standard fitments are positioned in a fill chamber to receive the food product routed to the fill chamber. The fill chamber is maintained in an overpressure condition to meet government regulatory requirements. The overpressure is designed to keep contaminants from entering the fill chamber. The overpressure is achieved through the use of sterile gas with chemicals designed to maintain the sterility of the fill chamber. However, when a standard fitment is opened and the interior of the bag exposed to the fill chamber, the pressure of the fill chamber may dramatically decrease due to the volume of the empty bag. To meet regulatory requirements, proof of positive pressure within the fill chamber is needed, and this is typically sought to be met by controlling and monitoring the flow of the sterile gas into the chamber.
In a second current method of aseptic packaging, customized or special fitments are utilized. As one example, the fitment may be closed off by a center membrane which keeps the overpressure gas in the fill chamber from entering the bag when the cap of the fitment is first removed. The fill tube is designed with a cutting nozzle that must cut through the membrane at the time of filling the bag. This is said to keep the interior of the bag from being exposed to the gas and/or chemicals used to maintain the overpressure condition in the fill chamber.
The present disclosure seeks to provide a system for aseptically filling flexible containers or bags employing standard fitments while maintaining a positive pressure in the fill chamber without the need for sterile gas and chemicals, but rather through the use of only steam.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
An aseptic filler apparatus operates in a fill cycle to fill flexible bags with food products. A flexible bag is fitted with a fitment composed of a collar that is in food flow communication with the bag, as well as a removable cap engageable with the collar. The filler apparatus includes an enclosed filler chamber and a filler head disposed in the filler chamber to direct food products into the bag through the fitment. The apparatus also includes a fitment chamber in communication with the filler chamber, with the fitment chamber being substantially smaller in volume than the volume of the filler chamber. The apparatus in addition includes a holder assembly to hold the fitment within the fitment chamber, and includes a fitment plug assembly that is moveable between an actuated position to bear against the fitment collar to block food flow communication between the fitment collar and the bag during desired portions of the fill cycle, and a retracted position wherein the fitment plug is spaced away from the fitment collar to not hinder food flow communication between the fitment collar and the interior of the bag.
In a further aspect of the present disclosure, the fitment plug assembly is positioned externally of the fitment bag. Further, when the fitment plug assembly is in actuated position, a portion of the bag is interposed between the fitment collar and the fitment plug. In this manner, a positive seal is achieved between the fitment plug and the adjacent end of the fitment collar.
In a further aspect of the present disclosure, the fitment plug assembly includes a fitment plug shaped to close off the fitment collar when the fitment plug assembly is in actuated position, and an actuator assembly for moving the fitment plug between the actuated position and the retracted position of the fitment plug assembly. More specifically, the actuator assembly includes a pivot arm for supporting the fitment plug and an actuator for moving the pivot arm between the actuated position of the fitment plug assembly and the retracted position of the fitment plug assembly.
The disclosed filler apparatus also includes a fitment cap removal and replacement apparatus. Such apparatus is engageable with the fitment cap to remove the fitment cap from the fitment collar, and thereby provide access to the fitment collar during the filling of the bag by the filler head. The apparatus thereafter replaces the fitment cap into engagement with the fitment collar.
As a further aspect of the present disclosure, steam from a steam source is directed to the fitment chamber for sterilizing the fitment. Also, a steam removal system is provided for directing the steam from the fitment chamber.
The present disclosure also provides a method for filling a flexible bag with flowable food products at a filler station, wherein the filler station includes a filler head connectable to a source of flowable food product. The bag to be filled is flexible and is fitted with a fitment composed of a collar in food flow communication with the interior of the bag, and a cap for closing the collar. The method includes:
Placing a fitment in food flow communication with the fitment chamber located at a filler station;
Closing food flow communication between the fitment collar and the flexible bag;
Removing the fitment cap during closure of the food flow communication between the fitment collar and the bag;
Positioning the filler head in food flow communication with the fitment collar;
Reinstating the food flow communication between the fitment collar and the bag;
Directing the flowable food product to the fitment bag through the filler head and the fitment collar;
Closing food flow communication between the fitment collar and the bag;
Removing the filler head from food flow communication with the fitment collar;
Replacing the fitment cap on the fitment collar; and
Opening the food flow communication between the fitment collar and the bag.
In a further aspect of the present disclosure, the aseptic filling method includes applying a barrier against the fitment collar when closing off food flow communication between the fitment collar and the flexible bag.
In accordance with a further aspect of the present invention, the barrier is located exterior of the bag. In this regard, the barrier includes a fitment plug which can be placed against the fitment collar at the intersection of the fitment collar and the bag. The fitment plug is moveable between an engaged position when the fitment plug is disposed against the fitment collar, and a retracted position wherein the fitment plug is positioned away from the fitment collar.
In accordance with a further aspect of the present disclosure, steam is applied to the fitment chamber to sterilize the fitment prior to placing the filler head in food flow communication with the fitment collar.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The detailed description set forth below in connection with the appended drawings, where like numerals reference like elements, is intended as a description of various embodiments of the disclosed subject matter and is not intended to represent the only embodiments. Each embodiment described in this disclosure is provided merely as an example or illustration and should not be construed as preferred or advantageous over other embodiments. The illustrative examples provided herein are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Similarly, any steps described herein may be interchangeable with other steps, or combinations of steps, in order to achieve the same or substantially similar result.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of exemplary embodiments of the present disclosure. It will be apparent to one skilled in the art, however, that many embodiments of the present disclosure may be practiced without some or all of the specific details. In some instances, well-known process steps have not been described in detail in order not to unnecessarily obscure various aspects of the present disclosure. Further, it will be appreciated that embodiments of the present disclosure may employ any combination of features described herein.
In the present application and claims, references to food products and flowable food products are meant to include all manner of food products, including liquid, flowable and solid food products and mixtures thereof, such as soups, sauces, purees, fruits, vegetables, nuts, etc., as well as beverages, juices, and other drinks.
Initially referring to
Standard or common fitments are in use with flexible bags. The filler spouts are designed to accommodate such standard fitments. The present filler apparatus can be adapted to be used with nonstandard or unique fitments also.
The filler station or apparatus 30 in basic form includes a frame structure 50 that defines a filler chamber 60, maintained in an overpressure condition by a subtle gas, and preferably by steam. A filler head assembly 100 is extendible downwardly and retractable upwardly within the filler chamber. When extended downwardly, the filler head assembly 100 directs liquid food product to the flexible bag 400. During the fill process, the fill/fitment collar 408 is held stationary within a fitment chamber 200, located beneath the filler chamber 60 by a fitment holder assembly 350. The apparatus 30 also includes a fitment top or cap removal and replacement apparatus 450 to remove the fitment cap 404 from the fitment so that the bag can be filled, and then to replace the cap after the bag has been filled. Filler apparatus 30 in addition includes a plug assembly 300 for closing off the bottom of the filler chamber from the fitment chamber when the filler head is not being used to fill the bag 400.
The filler apparatus 30 further includes an actuatable fitment plug assembly 500 that may be placed against the bottom of the fitment collar to prevent steam or other gasses or liquids from the filler chamber to enter the bag 400 when undesirable to do so, and also to maintain an overpressure condition in the filler chamber when the cap 404 is removed from the collar 408. Otherwise, when the cap 404 is removed from the fitment collar 408, the filler chamber would be placed in communication with the entire volume of the empty bag, thereby reducing the pressure in the filler chamber to an unacceptable level, which can result in contamination entering the fill chamber. If the pressure is maintained within the fill chamber, then contamination will be prevented from entering the fill chamber.
Now referring more specifically to the different aspects of the filler apparatus 30, the frame structure 50 of the filler apparatus is composed in part of a plurality of upright posts 52 spanning between a top plate structure 54 and a bottom plate structure 56. The frame structure 50 may be carried by a support structure, not shown. The bottom plate structure 56 forms the top of the filler chamber 60. The filler chamber 60 is also formed by vertical side walls 62 and a floor plate structure 64 that engages the lower edges of the side walls 62. The filler chamber 60 is pressurized with a gas, preferably steam, thereby to prevent contaminants from entering the fill chamber and mixing with the flowable food product or from entering the container being filled. Thus, it is important to maintain the positive pressure within the fill chamber during the entire fill cycle.
Filler head assembly 100 is shown in
A central opening is formed in the floor plate structure 64 of the filler chamber 60. When desired, this opening is plugged or closed off by the plug assembly 300, which is shown in place in
The plug assembly 300 includes a plug structure 302 composed of a plug body 304 that snugly engages within the central opening formed in the floor plate structure 64. A seal 306 is seated within a groove extending around the floor plate structure opening to seal against the plug body 304. The plug structure 302 includes a top 310 having a diameter somewhat larger than the diameter of the plug body 304. In
A fitment chamber 200 is positioned below the filler chamber 60. Enlarged views of the fitment chamber 200 are shown in
Referring to
An elastomeric seal 362 is located above jaw 360 to seal against the flange 412 that forms the upper side of the fitment groove in which the jaw 360 engages. The elastomeric seal 362 is backed by a backing ring 364 that overlies the jaws 360. The seal 362 is semi-circular in shape so as to cooperatively form a complete circular shape when the slide plates 352 are engaged around fitment 402.
The positions of the slide plates 352 are controlled by linear actuators 370 which may be powered by a gas, such as air, or a fluid, such as hydraulic fluid, in a well known manner. The actuators 370 are mounted to mounting brackets 372, which in turn are secured to the underside of floor plate structure 64, see
Once the fitment closure 402 is in place in the fitment chamber and being held by the fitment holder assembly 350, prior to filling the bag 400 the fitment cap 404 is removed. However, as discussed more fully below, before the fitment cap is removed, the fitment 402 is sterilized by steam introduced into the fitment chamber 200 through a steam inlet line 206. During such sterilization of the fitment, the filler chamber plug assembly 300 is engaged in the fitment chamber opening formed in the floor plate structure 64, as shown in
The fitment cap removal/replacement apparatus 450 includes a pair of clamp arms 452 that project from a pivot head 454, located at the lower end of a pivot cylinder 456. The ends of the pivot arms 452 at the pivot head 454 are secured to the lower ends of pivot rods 458 that extend downwardly through the pivot cylinder 456, that extends downwardly from a frame structure 457, see
As most clearly shown in
A fitment plug assembly 500 is provided to close off the bottom of the fitment collar from the interior of the bag 400 at various portions of the filling cycle for the bag 400; for instance, when the fitment is being sterilized, when the fitment cap is being removed and before the fill process starts, and during the process of replacing the fitment cap after the bag has been filled.
The construction of the fitment plug assembly 500 is most clearly shown in
As shown in
The linear actuator 518 when extended pivots the plug 502 into position against the bottom of the fitment collar 408. In this manner, the plug remains exterior of the bag 400 and thus is not a source of possible contamination with the bag. Moreover, the portion of the bag interposed between the bottom of the collar 408 and the plug 502 can serve as a gasket or seal to positively close off the bottom of the collar 408.
When in such position, the plug assembly 500 is exterior of the bag 400, and thus, part of the bag is disposed between the upper surface of the plug 502 and the bottom of the fitment collar 408. When the actuator 518 is in contracted condition, the plug 502 is rotated away approximately 90 degrees from the fitment chamber 200 and the associated fitment 402, for example, as shown in
Also, after the bag has been filled and the filler head is being retracted and the fitment cap replaced, the fitment plug is again positioned against the lower end of the fitment collar to isolate or close off the fitment bag from the filler chamber. Since a filled bag, such as bag 400, is not filled to such an extent that there does not remain an empty or unfilled volume at the top of the bag, the engaged fitment plug 502 does not place a significant strain on the bag, even when filled. The positioning of the fitment plug against the lower end of the fitment collar not only helps maintain the positive (over) pressure within the filler chamber, but also prevents undesirable fluids from entering the filler bag. Once the fitment cap has been replaced over the fitment collar, the fitment plug assembly can be retracted so that thereafter, the fitment can be released by the fitment holder assembly 350 and the bag removed from the filler apparatus, as shown in
The following will briefly describe a fill cycle utilizing the apparatus of the present disclosure. Table A sets forth the positions of filler head assembly 100, filler chamber plug assembly 300, fitment collar holder assembly 350, fitment cap remover/retractor apparatus 450, and fitment plug assembly 500 during the fill cycle.
Beginning at
Next, as shown in
After the sterilization of the fitment 402 has been completed, the fitment cap 404 is removed using the fitment cap removal/replacement assembly 450.
Next in the fill cycle,
Once the bag 400 has been filled, the filler head assembly 100 is retracted upwardly to disengage the nipple 106 from the fitment collar, see
Lastly, once the fitment cap 404 has been replaced, the fitment 402 can be released from the fitment holder assembly 350. Prior to such release, the fitment plug assembly 500 is retracted so as not to hinder the removal of the fitment from the fitment holder assembly 350. The filled bag 400 is removed from the filler apparatus 30, as illustrated in
The operation of the described fill cycle is controlled and sequenced by a control system that is capable of actuating the various systems and components of the fill system described above. The control system includes software that can be operated and manipulated to adjust the fill system 30 and fill cycle to accommodate the particular food or other product being delivered to the filler bag 400, as well as the size and other aspects of the filler bag. Although not shown, a user interface may be provided that can be used to operate, manipulate and/or adjust the fill system 30 and fill cycle of the present disclosure.
While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. In this regard, although the fill system and process of the present disclosure are specifically advantageous for use with low acid food packaging, the system and process can be used with aseptically filling flexible containers with all manner of flowable food products. The fill system of the present disclosure can also be used with the aseptic filling of flexible containers with flowable products in addition to food products, for example, cosmetic products or medications.
Number | Name | Date | Kind |
---|---|---|---|
3310078 | Barrett | Mar 1967 | A |
4120134 | Scholle | Oct 1978 | A |
4445550 | Davis | May 1984 | A |
4446674 | Inada | May 1984 | A |
4494363 | Rica | Jan 1985 | A |
4498508 | Scholle | Feb 1985 | A |
4519184 | Brunswick | May 1985 | A |
4832096 | Kohlbach | May 1989 | A |
4916885 | Loliger | Apr 1990 | A |
4999978 | Kohlbach | Mar 1991 | A |
5099895 | Loeliger | Mar 1992 | A |
5106595 | Ellenberg | Apr 1992 | A |
5129212 | Duffey | Jul 1992 | A |
5447699 | Papciak | Sep 1995 | A |
5479955 | Roodvoets | Jan 1996 | A |
5860461 | Helmut | Jan 1999 | A |
6070622 | Rutter | Jun 2000 | A |
6330780 | Shipway | Dec 2001 | B1 |
6357488 | Brossard | Mar 2002 | B1 |
7690171 | Merusi | Apr 2010 | B2 |
7708959 | Savage | May 2010 | B2 |
Number | Date | Country |
---|---|---|
0 088 735 | Sep 1983 | EP |
0 115 963 | Aug 1984 | EP |
1 067 052 | Jan 2001 | EP |
2 028 108 | Feb 2009 | EP |
Entry |
---|
International Search Report and Written Opinion datedd Aug. 14, 2014, issued in corresponding International Application No. PCT/US2014/038835, filed May 20, 2014, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20140345233 A1 | Nov 2014 | US |