The present disclosure is directed to an automatic aseptic sampling module and manifold and methods of using the same.
Obtaining samples from containers or other systems that support biologically and/or chemically active environments can require complex and careful sampling procedures to avoid contamination of the containers or the environment itself. For example, most bioreactors require frequent sampling (e.g., one or more times a day) to monitor and control the conditions and levels of nutrients needed for cell growth. To reduce the risk of contamination within such systems, conventional sampling techniques generally require operators to perform multiple, labor-intensive steps.
In addition, samples from one aseptic source are typically directed to several analytical devices to measure various properties of the contents of the source, such as pH, dissolved oxygen, osmolality, nutrient concentrations, ammonia/ammonium, lactate/lactic acid, pCO2, electrolytes (such as K+, Ca++, and/or Na+), amino acids, NAD/NADH, impurities, purity, phenotypes, metabolic states, cell cycle, or other properties.
In some embodiments, the aseptic sampling module and manifold disclosed herein provides consistent or substantially consistent sampling procedures for obtaining samples of a desired quality, while reducing the risk of contamination of the aseptic fluids and directing them to appropriate analytical devices. In some embodiments, samples from multiple sources may be directed to multiple analytical devices for analysis.
In one embodiment, a sample-directing manifold comprises (a) a plurality of sample inlets, wherein each sample inlet is in fluid communication with a respective sample outlet valve and a respective waste outlet valve; (b) a sample outlet path in fluid communication with each respective sample outlet valve; and (c) a waste outlet path in fluid communication with each said respective waste outlet valve.
In one embodiment, the sample-directing manifold is arranged such that each respective waste outlet valve and each respective sample outlet valve may be configured independently so that only one of the plurality of sample inlets may be in fluid communication with the sample outlet path.
In one embodiment, the sample-directing manifold further comprises a flushing fluid inlet in fluid communication with the sample outlet path.
In one embodiment, the sample-directing manifold is made from a body, the body having internal channels defining the plurality of sample inlets, the sample outlet path, and the waste outlet path. In another embodiment the body comprises channels for each of the respective sample outlet valves and each of the respective waste outlet valves.
In one embodiment, a sampling system for collecting a fluid sample from an enclosed container comprises the sample-directing manifold. In one embodiment, the sampling system further comprises an aseptic sampling valve. In one embodiment the aseptic sampling valve comprises a variable volume reservoir.
In one embodiment, the sampling system comprises a control module in communication with the sample-directing manifold and the aseptic sampling valve.
In another embodiment, a sample manifold comprises (a) a plurality of sample inlets, each sample inlet having a sample outlet valve and a waste outlet valve, (b) a sample outlet path, (c) a waste outlet path, (d) a gas inlet valve, (e) a fluid inlet valve, and (f) an outlet path isolation valve. Wherein the sample manifold can be configured so that each sample inlet can be connected to the sample outlet path through the sample outlet valve while the outlet path isolation valve is closed, while the other sample inlets are connected to the waste outlet path through the waste outlet valves, and wherein the fluid inlet can be configured to remove the sample from the sample outlet path when the outlet path isolation valve is open so as to direct the fluid to waste, and the gas inlet can be used to remove the fluid from the outlet path when the isolation valve is open, so as to prepare the outlet path for receiving another sample.
In another embodiment, a sampling system for collecting a fluid sample from an enclosed container comprises at least two modules, a control module, and a sampling module. The control module comprises (1) a source of compressed gas, (2) one or more valves for directing compressed gas to the sampling module, and (3) an optional vacuum pump. The sampling module comprises: (4) a sanitizing fluid inlet valve; (5) a gas inlet valve; (6) a sample collection valve; (7) an outlet valve; (8) a variable volume reservoir; and (9) a fluid flow path interconnecting (4)-(8).
In another embodiment, A method of collecting a fluid sample from an aseptic container, comprises: opening a sanitant inlet valve and directing sanitant through a sample outlet path, discharging said sanitant through an outlet path isolation valve; closing the sanitant inlet valve, opening a gas inlet valve to remove sanitant from the sample outlet path; opening sample inlet and a sample outlet valve to direct the sample to an analytical device.
Various embodiments of sampling module are disclosed herein. The following description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Various changes to the described embodiment may be made in the function and arrangement of the elements described herein without departing from the scope of the invention.
As used in this application and in the claims, the singular forms “a,” “an,” and the include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the term “coupled” or in communication with generally means electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language. In some embodiments the elements include pneumatic coupling using a gas or other fluid.
The terms “upstream” and “downstream” are not absolute terms; instead, those terms refer to the direction of flow of fluids within a channel or pathway. Thus, with regard to a structure through which a fluid flows, a first area is “upstream” of a second area if the fluid flows from the first area to the second area. Likewise, the second area can be considered “downstream” of the first area.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, percentages, measurements, distances, ratios, and so forth, as used in the specification or claims are to be understood as being modified by the term “about.” Accordingly, unless otherwise indicated, implicitly or explicitly, the numerical parameters set forth are approximations that may depend on the desired properties sought and/or limits of detection under standard test conditions/methods. When directly and explicitly distinguishing embodiments from discussed prior art, the embodiment numbers are not approximates unless the word “about” is recited.
Although the operations of exemplary embodiments of the disclosed method may be described in a particular, sequential order for convenient presentation, it should be understood that unless otherwise indicated, disclosed embodiments can encompass an order of operations other than the particular, sequential order disclosed. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Further, descriptions and disclosures provided in association with one particular embodiment are not limited to that embodiment, and may be applied to any embodiment disclosed.
Turning to the drawings wherein like elements are described by similar reference numbers,
The waste outlet valves 317 are of a similar design as shown in
In one embodiment, the sanitant is any fluid that can sanitize, disinfect, or sterilize the sampling module. The sanitant can be a liquid, a gas, or a combination thereof. Sanitants include steam, ethylene oxide, glutaraldehyde, formaldehyde, formalin, chlorine gas, hypochlorite, bromine, hypobromite, iodine, hypoiodite, bromine chloride, chlorine dioxide, ozone, hydrogen peroxide, monochloramine, dichloramine, trichloramine, quaternary ammonium salts, ethanol, 70% ethanol/water, isopropanol, 70% isopropanol/water, peroxyacetic acid, and peracetic acid. This list of possible sanitants should not be construed to indicate that all alternatives are equivalent to one another. In one embodiment, the sanitant is steam. In another embodiment, the sanitant is ethylene oxide. In another embodiment, the sanitant is glutaraldehyde. In another embodiment, the sanitant is ethanol. In another embodiment, the sanitant is a mixture of ethanol and water, such as 70% ethanol/water.
In one embodiment, the gas may be air, nitrogen, or any gas appropriate to purge the sanitant and sample from the sampling module. In one embodiment, the gas is filtered through an appropriate filter to remove contaminants that may affect the aseptic nature of the samples. In one embodiment, the gas is nitrogen. In one embodiment the gas is air.
Referring to
In one embodiment, sealing member 423 can be formed of a material that has a lower yield strength than the material of the seat 431, into which sealing member 423 extends. In some embodiments, sealing member 423 can be made of metals, thermoplastic polymers, such as polyether-ether ketone (PEEK), polyether imide (PEI), polyphenylsulfone (PPSU), polysulfone (PSU), or combinations of these. In one embodiment, sealing member 423 is made from creep resistant metals, such as stainless steel, titanium, nickel, brass, and anodized aluminum; or high temperature thermoplastic polymers such as PEEK, or PPSU (also known as Radel®). The seat 431 can be made from a more flexible material, such as silicone rubber, polytetrafluoroethylene (PTFE, also known as Teflon®), perfluroalkoxy (PFA), ethylene tetrafluoroethylene (ETFE), high density polyethylene (HDPE), high density polypropylene (HDPP), perfluroalkoxy (PFA, also known as Viton®), and combinations thereof. In one embodiment, the valve stem 421 and the sealing member 423 are selected from metals, PEEK, PPSU, PEI, and mixtures thereof. Suitable metals include stainless steel, titanium, nickel, brass, and anodized aluminum. In one embodiment the seat is selected from PFA, PTFE, HDPE, HDPP, PFA and mixtures thereof. This list is not intended to indicate that each alternative is necessarily equivalent to the others.
In another embodiment, the sealing member 423 is selected from PEEK, PPSU, and PEI, and the seat 431 material is selected from PTFE, Teflon®, ETFE, HDPE, HDPP, PFA, due to their relatively chemically inert behavior.
In one embodiment, the sealing member and seat are arranged to form a variable sealing area when the sealing member and seat are in contact, causing the seat 431 material to deform until the stress on the materials at the seal is within the elastic modulus of the seat material, allowing a good seal even with relatively wide tolerances on the angles of the seat 431 and sealing member 423.
In another embodiment, sealing member 423 is formed of a higher yield strength material, such as a polymeric material, such as PTFE, PFA, ETFE, HDPE, HDPP, etc., while the seat 431 is formed of a more lower yield strength material, such as thermoplastic polymers (PEEK, PEI, PPSU, PSU, etc.), metals, or combinations or these materials. In this embodiment, sealing member 423 can extrude into the seat 431 to form a tight seal. In addition, in one embodiment, sealing member 423 and seat 431 can be cone shaped and may be inversely shaped such that the cone seat 431 comprises a hollow cone into which the cone shaped member 423 may fit. The sealing member 423 can have a steeper cone shape than the hollow cone seat 431, thereby allowing sealing member 423 to extrude into the seat 431 to form a positive seal.
When one or both of the sealing member 423 and seat 431 are formed of polymers, the heat up and cool down times associated with those parts can be faster than the times associated with other materials, such as steel or other metals.
In some embodiments, the sealing member and valve stem can be formed of the same polymeric material, which can further improve operation by reducing complexities of manufacturing and permitting the sealing member and valve stem component to be more compact.
In one embodiment, the sample-directing manifold comprises 2 module inlets and associated sample outlet valves and waste outlet valves. In another embodiment, the sample-directing manifold comprises 3 module inlets and associated sample outlet valves and waste outlet valves. In yet another embodiment, the sample-directing manifold comprises 4 module inlets and associated sample outlet valves and waste outlet valves. In still another embodiment, at least two sample-directing manifolds are combined to one or more analytical devices or other destinations.
In one embodiment, the analytical device may be a pH meter, a dissolved oxygen probe, an osmometer, high-performance liquid chromatograph (HPLC), a conductivity meter, a gas chromatograph, a mass spectrometer, ion chromatography, dielectric spectroscopy, microscopy, quantitative visualization tools, focused beam reflectance measurements (FBRM), particle vision and measurement (PVM) devices, a turbidity meter, reduction-oxidation probes, a flow cytometer, Raman/NIR spectroscopy, automated hemocytometer, electro-rotation, electrophoresis, dielectrophoresis, fluorescent activated cell sorting (FACS), or other analytical instruments designed to measure the properties of the aseptic fluid.
In one embodiment the sample-directing manifold comprises, consists of, or essentially consists of, a plurality of sample inlets, wherein each sample inlet is in fluid communication with a respective sample outlet valve and a respective waste outlet valve, a sample outlet path in fluid communication with each said respective sample outlet valve, and a waste outlet path in fluid communication with each said respective waste outlet valve. In certain embodiments the respective waste outlet valve and each of the respective sample outlet valves may be configured independently so that only one of said plurality of sample inlets may be in fluid communication with said sample outlet path. In other embodiments, the sample-directing manifold as disclosed immediately above further comprise a flushing fluid inlet in fluid communication with said sample outlet path. In yet other embodiments the sample-directing manifold the above embodiments are made from a body having internal channels defining said plurality of sample inlets, said sample outlet path, and said waste outlet path. In yet other embodiments, the above embodiments may comprise the body having channels for each of said respective sample outlet valves and each of said respective waste outlet valves.
In another embodiment the sampling system for collecting a fluid sample from an enclosed container comprises the sample-directing manifold of any one of the previous disclosed embodiments. In other embodiments the sampling system disclosed immediately above further comprises an aseptic sampling valve. In yet other embodiments the aseptic sampling valve in the preceding embodiments comprises a variable volume reservoir.
The sampling systems described above also may further comprise an control module in communication with said sample-directing manifold and said aseptic sampling valve.
In one embodiment the sample manifold comprises a plurality of sample inlets, each sample inlet having a sample outlet valve and a waste outlet valve, a sample outlet path, a waste outlet path, a gas inlet valve, a fluid inlet valve, and an outlet path isolation valve, wherein said sample manifold can be configured so that each sample inlet can be connected to said sample outlet path through said sample outlet valve while said outlet path isolation valve is closed, while the other sample inlets are connected to said waste outlet path through said waste outlet valves, and wherein said fluid inlet can be configured to remove said sample from said sample outlet path when said outlet path isolation valve is open so as to direct said fluid to waste, and said gas inlet can be used to remove said fluid from said outlet path when said isolation valve is open, so as to prepare said outlet path for receiving another sample.
In another embodiment the sampling system for collecting a fluid sample from an enclosed container comprises at least two modules, a control module, and a sampling module, wherein said control module comprises a source of compressed gas, one or more valves for directing compressed gas to the sampling module, and an optional vacuum pump; and the sampling module comprises a sanitizing fluid inlet valve, a gas inlet valve, a sample collection valve, an outlet valve, a variable volume reservoir, and a fluid flow path interconnecting the sanitizing fluid inlet valve, the gas inlet valve, the sample collection valve and the variable volume reservoir.
Also disclosed are certain embodiments of a method of collecting a fluid sample from an aseptic container, comprising opening a sanitizing fluid inlet valve and directing sanitizing fluid through a sample outlet path, discharging said sanitizing fluid through an outlet path isolation valve, closing the sanitizing fluid inlet valve, opening a gas inlet valve to remove sanitant from the sample outlet path, and opening a sample inlet and a sample outlet valve to direct the sample to an analytical device.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/038614 | 5/19/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61933806 | Jan 2014 | US | |
61832101 | Jun 2013 | US |