1. Field
Embodiments of the present invention relate to fluid-filled lenses, in particular variable fluid-filled lenses.
2. Related Art
Basic fluid lenses have been known since about 1958, as described in U.S. Pat. No. 2,836,101, incorporated herein by reference in its entirety. More recent examples may be found in “Dynamically Reconfigurable Fluid Core Fluid Cladding Lens in a Microfluidic Channel,” Tang et al., Lab Chip, 2008, vol. 8, p. 395, and in WIPO publication WO2008/063442, each of which is incorporated herein by reference in its entirety. These applications of fluid lenses are directed towards photonics, digital telephone and camera technology, and microelectronics.
Fluid lenses have also been proposed for ophthalmic applications. (See, e.g., U.S. Pat. No. 7,085,065, incorporated herein by reference in its entirety.) In all cases, the advantages of fluid lenses—including a wide dynamic range, ability to provide adaptive correction, robustness, and low cost—have to be balanced against limitations in aperture size, tendency to leak, and consistency in performance. The '065 patent, for example, has disclosed several improvements and embodiments directed towards effective containment of the fluid in the fluid lens to be used in ophthalmic applications. Power adjustment in fluid lenses has been effected by injecting additional fluid into a lens cavity, by electrowetting, by application of ultrasonic impulse, and by utilizing swelling forces in a cross-linked polymer upon introduction of a swelling agent to the lens fluid, such as water.
In all cases, there are several key limitations in current fluid lens technology that need to be overcome to optimize the commercial appeal of this technology. For example, the thickness of fluid lenses is generally greater than conventional lenses of the same power and diameter. Additionally, it is not currently possible to provide a variation of spherical power as well as astigmatism across the lens optic using fluid lens technology. Nor is it currently possible to make fluid lenses in any desired shape other than a round shape because of complications introduced in non-uniform expansion of non-round fluid lenses.
In an embodiment of the present invention, a non-round fluid lens assembly includes a non-round rigid lens and a flexible membrane attached to the non-round rigid lens, such that a cavity is formed between the non-round rigid lens and the flexible membrane. A reservoir in fluid communication with the cavity allows a fluid to be transferred into and out of the cavity so as to change the optical power of the fluid lens assembly. In an embodiment, a front surface of the non-round rigid lens is aspheric. Additionally or alternatively, a thickness of the flexible membrane may be contoured so that it changes shape in a spheric manner when fluid is transferred between the cavity and the reservoir.
Additionally or alternatively, the flexible membrane may have an “inset” portion that is more flexible than other portions of the flexible membrane, such that transfer of the fluid between the cavity and the reservoir causes the shape of the inset portion to change in a spherical manner without substantially changing portions of the flexible membrane other than the inset portions. In an embodiment, the inset portion is elliptical in shape. The inset portion may be contoured so that it changes shape in a spheric manner when fluid is transferred between the cavity and the reservoir. Including such an inset portion in the flexible membrane allows a non-round lens (e.g., an oval-shaped, rectangular-shaped, or other-shaped lens that may be preferred by a wearer) to be worn while maintaining the advantages of a fluid-filled lens.
Further embodiments, features, and advantages of the present invention, as well as the structure and operation of the various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
a,b and 6a,b illustrate contoured flexible membranes, according to embodiments of the present invention.
a,b illustrate an exemplary elliptical inset in a fluid lens assembly, according to an embodiment of the present invention.
a,b illustrate deformation of a flexible membrane in a fluid lens, according to an embodiment of the present invention
The present invention will be described with reference to the accompanying drawings. The drawing in which an element first appears is typically indicated by the leftmost digit(s) in the corresponding reference number.
While specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purposes only. A person skilled in the pertinent art will recognize that other configurations and arrangements can be used without departing from the spirit and scope of the present invention. It will be apparent to a person skilled in the pertinent art that this invention can also be employed in a variety of other applications.
It is noted that references in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
The limitations of previously-available fluid-filled lens technology described in the Background section above may be removed by constructing an aspheric fluid lens. Previous fluid lenses have always been round in shape, since no method existed to construct an aspheric fluid lens.
Throughout this disclosure, the term “fluid lens assembly” will be used to describe the assembly of rigid front lens 108, flexible membrane 110, and the intervening fluid transfer system including channel 112 and reservoir 114. The term “fluid lens” will be used to denote the fluid layer and the two surfaces 102 and 104 containing the fluid and forming the surfaces of the fluid lens.
In non-round fluid lenses, the pressure of the fluid causes different deflections of the flexible membrane along its short and long axes, and thus produces a non-spherical deflection of the membrane. Non-round fluid lenses of embodiments of the present invention therefore correct for the astigmatism created by this deflection. In one embodiment, the front surface of the rigid front lens corrects for the astigmatism caused by the fluid. Additionally or alternatively, a thickness of the flexible membrane may be contoured so as to effect a spherical deflection of the membrane in response to fluid pressures. In an embodiment, the flexible membrane includes an inset portion that is more flexible than other portions of the flexible membrane, such that transfer of the fluid between the cavity and the reservoir causes the shape of the inset portion to change in a spherical manner without substantially changing portions of the flexible membrane other than the inset portions.
Aspherization of the Front Lens
A fluid lens, such as fluid lens 100, may be rendered aspheric by providing an aspheric front (rigid) lens. Since front lens 108 is in contact with the fluid at its back surface 102, the impact of adding aspheric correction to back surface 102 of front lens 108 will be attenuated by the refractive index of the fluid relative to the refractive index of the front lens material. Indeed, the change in the thickness of front lens 108 needed to provide an aspheric correction through back surface 102 may be expressed as:
in which d is the local change in thickness of the front lens required to provide a particular change in optical power at that point, d1 is the change in thickness that would be necessary if the fluid had been air, n1 is the refractive index of the front lens material and n2 is the refractive index of the fluid. For example, if front lens 108 is made of Polycarbonate of bisphenol A and the fluid is silicone oil, then n1 is 1.59 and n2 is 1.54, resulting in d equal to 11.8 d1. In other words, a relatively large variation in lens thickness will be required to provide an aspheric correction, if that correction is added to back surface 102 of front lens 108.
Lens thickness may be reduced by adding an aspheric correction to a front surface 118 of front lens 108, front surface 118 being in contact with air. The aspheric correction to front surface 118 may be in the form of rotationally symmetrical aspheric correction, rendering the surface of rigid lens 108 ellipsoidal or hyperboloidal. In this case, the surface may be described by Eq. 2, in which the surface is ellipsoidal if p is positive, and hyperboloidal if p is negative:
Rotationally symmetric aspheric corrections applied to front surface 118 of rigid lens 108 provide at least two benefits. Aspheric corrections may be designed to minimize spherical aberration present in the fluid lens that may be especially noticeable for high spherical powers. Additionally, the plus power of the fluid lens may be reduced at high gaze angles, consistent with visual needs of the wearer.
Toric Correction of the Front Lens
Additionally or alternatively, other aspheric corrections may be applied to front surface 118 of rigid lens 108. For example, surface 118 may be rendered toroidal. The astigmatism thereby added to front surface 118 of rigid lens 108 has at least two benefits. The astigmatism may be used to neutralize the natural astigmatism of the eye, possessed by about 80% of the population requiring vision correction. The astigmatism may also be used to neutralize the astigmatism generated on surface 104 of flexible membrane 110 when the shape of the fluid lens deviates from a circle.
Persons having natural astigmatism in their eyes typically wear astigmatic correcting eyeglasses to achieve best corrected vision. For this correction to be applicable, the direction of the astigmatic axis of the lens has to be orthogonal to the astigmatic axis of the eye of the wearer of the eyeglasses. If this astigmatic correction is provided by adding a toric curve to front surface 118 of rigid lens 108, then it is desired to make front toric rigid lenses 108 with the toric axis at all possible angles relative to the 0-180° line of rigid lens 108. This would constitute 180 different configurations, or skus. This is because the fluid lens assembly is not rotationally symmetrical, since it includes channel 112 attached to fluid lens 100. Additionally, it is desirable to substantially match the magnitude of the astigmatic correction added to front surface 118 of rigid lens 108 to the magnitude of the astigmatic correction required by the wearer. While the total range of magnitudes of natural astigmatism is very large (approximately 0 to approximately 15 diopters, or more), it is about 6 diopters (D) for 99% of the population requiring vision correction. Since the match between the natural astigmatism of the eye and the correcting astigmatism of the lens is required to be to the nearest 0.25 D, about 25 different configurations of the front surface are required to cover the range mentioned above. Also, the attachment of channel 114 to rigid lens 108 leads to a differentiation between left and right lenses, multiplying the total number of skus by a further factor of two. Therefore, 9,000 different configurations on front surface 118 of rigid lens 108 may be needed to provide correction to 99% of the population requiring vision correction.
In an embodiment of the present invention, it is possible to substantially reduce the number of skus on the front lens by designing a rotationally symmetrical lens blank that may be molded or machined in high volume. The desired lens shape may then be cut out to correspond to the desired shape of the fluid lens, and the membrane bonded to the outer edge of this shape that has been cut out. A hole may be drilled into the side of the rigid lens that has been cut out to provide a connection to the fluid path inside the channel. A small connector or a sleeve may connect the end of the channel to the hole.
Application of a toric correction to front surface 118 of rigid lens 108 of the fluid lens assembly also enables construction of fluid lenses that are non-round (e.g., oval or rectangular) in shape. Non-round fluid lenses have not been commercialized because a non-round fluid lens develops astigmatic error as the fluid lens is inflated to reach a higher plus power. This is because injection of fluid into a fluid lens causes an increase in hydrostatic pressure that is equal in all directions. This force causes the flexible membrane (such as membrane 110) of the fluid lens assembly to stretch or bulge outwards. Moreover, the force renders the surface of the membrane more convex and gives the fluid lens a higher plus power. In the case of a non-round fluid lens, the length of the meridians of the membrane are not equal in all directions. The curvature of the membrane is therefore different in different meridians, being steepest in the shortest meridian and least steep along the longest meridian. This leads to a toric shape. In an embodiment, it is possible to neutralize this inflation-induced astigmatism in the fluid lens by adding an astigmatic correction to the front surface of the rigid lens. In this approach, when the fluid lens is not inflated (i.e., when it is at its lowest plus power), the lens assembly has astigmatism corresponding to the astigmatism added to the front surface of the rigid lens. That is, when the fluid lens is not inflated, the astigmatism added to the front surface of the rigid lens is uncompensated by any inflation-induced astigmatism. Addition of astigmatism to front surface 118 of rigid lens 108 enables a trade-off between astigmatism at the lowest plus power and astigmatism at higher plus powers. This trade-off may be computed and optimized for the total designed range of powers of the fluid lens. Such a trade-off may also be acceptable to the wearer, provided that the astigmatism does not exceed the threshold of tolerance of astigmatism of the human eye at any point in the range or powers of the fluid lens.
In one exemplary embodiment, a fluid lens is designed according to the parameters shown in Table 1. The front surface of the fluid lens does not have any astigmatic correction in this embodiment.
In the fluid lens embodiment described in Table 1, the rigid lens is made of Polycarbonate of Bisphenol A, the membrane is biaxially oriented polyethylene terephthalate (trade name MYLAR), and the fluid is a silicone oil of refractive index 1.54. In this case, the degree of departure from the round shape is expressed as the eccentricity, and the shape becomes progressively more non-round as it departs father from 1.0. The data in Table 1 shows that the slight departure from a round shape has caused the development of a relatively low amount of astigmatism (0.12 D) at the highest point of the range, i.e., 3.25 D.
It is clear that for noticeably (that is, commercially useful) non-round geometries of the fluid lens, e.g., kv<0.85, the relatively small inflation required to reach the lowest point of the power range (1.25 D) leads to a small magnitude of astigmatism. This astigmatism is mostly below the level of perception of the human eye (typically 0.10-0.12 D). However, the induced astigmatism at the higher end of the power range reaches 0.85 D at kv=0.85, well above the range of tolerance of astigmatism by the human eye when engaged in near vision tasks, which is typically about 0.50 D at direct gaze (i.e., gaze angle of 0° and no more than 0.75 D over any part of the lens beyond gaze angle of 15°).
Modification of the Flexible Membrane
A fluid lens, such as fluid lens 100, may be rendered aspheric by allowing the membrane, such as membrane 110, to inflate to adopt an aspheric (as opposed to spherical) shape. In an embodiment, an aspheric fluid lens uses a membrane of contoured thickness to form the fluid lens. A membrane of uniform thickness used to form a fluid lens assembly circular in shape inflates uniformly, thereby acquiring a spherical shape. The local deflection of the membrane is mainly controlled by the local rigidity of the membrane, and can be altered by stiffening the membrane or altering its thickness across the surface. A membrane of contoured thickness may therefore be used to form an aspheric fluid lens.
For example, if a rotationally-symmetric aspheric shape is required, the membrane should inflate into either an ellipsoidal or a hyperbolic shape. Such an inflation profile can be achieved by altering the thickness of the membrane in a radially symmetric manner. Any surface shape can be provided by an appropriate contour of thickness across the surface of the membrane, as could be determined by one of skill in the art.
Elastic membrane deformation is given by a superposition of elongation and bending. Stiffness in general is proportional to the modulus of elasticity. For the elongation part of deformation, it is also proportional to membrane thickness; the bending part is proportional to the thickness cubed. One method of adjusting stiffness involves adjusting thickness of the membrane along specific orientations. Thickness of the membrane may be altered by various methods, e.g., by a stretching process that is orientationally specific. Another method is to deposit a layer of a coating of variable thickness, such as through a plasma deposition process. As illustrated in
The design of a flexible membrane with location dependent stiffness may require computation of: the mechanical response of the membrane in an oval fluid lens, the surface geometry acquired by the membrane as a result of such deformation or stretching, and the optical power of a fluid lens that includes a membrane with the resulting shape, all as a function of the volume of fluid injected into the lens. Furthermore, a number of iterative computations may be performed in order to approximate as closely as possible the actual shape of the flexible membrane and the state of defocus of the retinal image produced by such an optic. In one example, these complex computations were performed using an exemplary software system. The exemplary software system combined several different software suites, each with a different function, in a way such that each piece of software inputs its results into the next system.
As an example only, the following suite was used in the computations described in exemplary embodiments herein. The deformation of the fluid membrane was modeled on COMSOL Multiphysics software, developed by COMSOL, Inc. of Burlington, Mass. The output of the COMSOL model was exported into MATLAB software, produced by The MathWorks, Inc. of Natick, Mass., in order to obtain a best fit polynomial for this surface. A second order polynomial (quadratic) was used in order to calculate the best combination of sphere and cylinder fit for this surface. This polynomial was then imported into ZEMAX optical modeling software, produced by ZEMAX Development Corporation of Bellevue, Wash. The deformation of the fluid membrane was calculated as a function of its x,y coordinates on COMSOL for an elliptical fluid lens in which the eccentricity was 0.8. The long diameter was 35 mm, while the short diameter was 28 mm. The model was run for a quadrant, taking advantage of the four-fold symmetry.
During the initial assessment of this computation scheme, it was observed that a coarser mesh size provided adequate accuracy and fidelity to the surface generated by the finer mesh size. Also, it was found that the cross terms could be neglected in the second order polynomial best fit computed on MATLAB, so that the surface could be adequately represented as a simpler biconic with quadratic terms in x and y, as shown in Eqs. 3 and 4. Eq. 3 is the Best Fit equation used by MATLAB to fit the deformation data exported from COMSOL.
Eq. 4 is Eq. 3 after ignoring x,y cross terms that provided a satisfactory fit to the deformation data. This equation was used to export surface deformation data into ZEMAX.
This computational and modeling approach was used to evaluate different design concepts for a non-round fluid lens that could be adjusted in power over a diopter range of 2.0 D. The lower power was assumed to be 1.25 D and the higher power was taken as 3.25 D. A further assumption was that a maximum of 0.18 D of astigmatism may be allowed at the lower power, while a maximum of 0.50 D of astigmatism was allowable at the higher power.
In an embodiment, non-uniform thickness of the flexible membrane is provided in order to modulate and alter its deformation in response to fluid injection and consequent increase in spherical power. A flexible membrane of variable thickness may be obtained in several ways, as described above. In an embodiment, a tape or pad is used to alter the thickness over certain portions of the membrane surface. Such tapes or pads may be cut out of the same polymer film as that used to fabricate the flexible membrane, and then be bonded to the flexible membrane. For example, the tapes or pads may be bonded to the inner surface of the flexible membrane, in contact with the fluid (e.g., oil) in order to minimize the visibility of the tapes or pads. The bonding of these tapes or pads to the membrane may be accomplished using an adhesive. In an embodiment, the adhesive has a refractive index approximately equal to the refractive index of the fluid. Alternatively, the tapes or pads may be bonded to the flexible membrane by laser welding or ultrasonic welding, or other means as would be known to those of skill in the art. One or more such tapes or pads may be used for this purpose. In an embodiment, tapes and pads are not used to add thickness to the flexible membrane; rather, differences in thickness are integral to a single flexible membrane sheet. Techniques for creating a flexible membrane of varying thickness include, for example and without limitation, molding, compression molding, thermal forming, and laser ablation.
a,b and 6a,b illustrate exemplary designs of tapes and pads modeled to deduce the optimum shape and contours so as to modulate the stiffness of the membrane.
Table 2 shows the results of analysis of the exemplary designs shown in
Next, the effect of increasing reinforcement was examined as a function of eccentricity. Table 3 shows the rate of build-up of astigmatism as the thickness of the reinforcing means was increased in an exemplary model. In this exemplary analysis, the eccentricity was assumed to be 0.864, with the long diameter being 35.0 mm. The lowest and the highest spherical powers were assumed to be 1.25 D and 3.25 D, respectively, with the range of adjustment being 2.0 D. It was also assumed that the front surface of the rigid optic was provided with toric correction along the appropriate axis, so that the net astigmatism at the lowest power is held at 0.18 D. Astigmatism at the highest spherical power was computed on ZEMAX, along with the spot size of the image. The base membrane was assumed to be of unit thickness, so that a reinforcing piece of 1× thickness doubles the thickness of the membrane where it was applied. It is expected that the spot size of the image would be correlated with the point spread function of the retinal image, a critical measure of the crispness and clarity of the retinal image, and a measure of the image quality perceived by the wearer. In the example shown in Table 3, there was an improvement in image quality as the thickness of the reinforcement was increased in the fluid lens.
It was found in this example that the 3× reinforcement enabled the use of a non-round optic up to eccentricities of 0.80 while staying within the limits of astigmatism specified for the lowest and the highest spherical powers (sph) (e.g., 0.18 D at 1.25 sph and 0.50 D at 3.25 D sph). This level of eccentricity is adequate for most lens designs, since it provides a long axis diameter of 40 mm for a short axis diameter of 32 mm. Further departures from the round shape (e.g., an eccentricity of 0.7) can be achieved by enhancing the reinforcement further, for example by using a pad or a tape that is 4×-6× in thickness.
It should be noted that the analysis and results presented above addressed an exemplary paraxial situation assuming a pupil size of 4.0 mm. In other words, it was applicable to the center of the optic over a moderate field angle, less than 10 degrees. This analysis may be repeated at different gaze angles for the whole optic. Such a computation would further optimize the shape of the membrane, since it would be possible to prescribe reinforcing schemes that provide the best correction for the whole optic, rather than providing the best correction at the optical center. In performing this global optimization, it may be recognized that the optical segments far from the center are not as important in determining overall visual satisfaction as the center of the optic, since most viewing tasks require direct gaze with controlled eye movements that supplement head movements for the most comfortable near-vision experience.
Other shaped optics, such as rectangular- or square-shaped optics, may also be adapted to this approach. The shape of the deformed membrane may be described, for example, as a collection of points such as a point cloud, or a collection of splines used to fit the points. In this case, the wavefront of rays transmitted through the liquid lens (including the deformed membrane) is computed, and an adaptive correction may be applied to the wavefront to maximize the retinal image quality. The retinal image quality may be measured by one of the several commonly-used metrics of image quality, such as the Strehl ratio or the equivalent defocus.
Fluid Lens Inset
In an inset-type design embodiment, the non-round shape of the fluid lens includes a round or elliptical section centered at the location of the pupil of the wearer. In such an embodiment, upon putting on the glasses, the center of the pupil lines up with the center of the inset. With a circular inset, the active region may be small depending on the shape of the lens frame, because the vertical diameter of the circular shape must fit within the vertical diameter of the frame. If the active region of the flexible membrane is too small, it may be unsuitable for a wearer as the eye movement of a wearer may need a larger viewing range side-to-side than up-to-down. For example, an average wearer needs an active area width of about 30-35 mm for comfortable side-to-side eye movement. An elliptical inset portion allows for such an active area width, even when the vertical dimension of the inset is small compared to the active area width.
For such a design to be cosmetically acceptable, the border of the active optical region may be smoothly blended, so that image jump or perceivable image distortions are avoided. It is found that the main causes of the visual discomfort associated with this border are: (1) prism discontinuity; (2) magnification discontinuity; and (3) high localized astigmatism, caused by power discontinuity. These are also the main factors that contribute to the visibility of this border, potentially leading to a cosmetically unacceptable outcome. These problems may be minimized by providing a transition zone. In an embodiment, the transition zone is approximately 1-5 mm in width. In a further embodiment, the transition zone is approximately 2-3 mm in width. The width of the transition zone may be determined by the gradient in power within this zone, since visual performance of this zone may be acceptable, for example, only for a power gradient of 0.50 D/mm or less, leading to a maximum value of astigmatism of 0.50 D at this zone. In such an example, a power range of 1.50 D requires a transition zone of 3.0 mm in width.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Further, the purpose of the foregoing Abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The Abstract is not intended to be limiting as to the scope of the present invention in any way.
Number | Name | Date | Kind |
---|---|---|---|
2576581 | Edwards | Nov 1951 | A |
2836101 | De Swart | May 1958 | A |
2976766 | Bianchi | Mar 1961 | A |
3598479 | Wright | Aug 1971 | A |
3614215 | Mackta | Oct 1971 | A |
4181408 | Senders | Jan 1980 | A |
4477158 | Pollock et al. | Oct 1984 | A |
4890903 | Treisman et al. | Jan 1990 | A |
4913536 | Barnea | Apr 1990 | A |
5080476 | Monin | Jan 1992 | A |
5138494 | Kurtin | Aug 1992 | A |
5182585 | Stoner | Jan 1993 | A |
5229885 | Quaglia | Jul 1993 | A |
5371629 | Kurtin et al. | Dec 1994 | A |
5440357 | Quaglia | Aug 1995 | A |
5515203 | Nye | May 1996 | A |
5563528 | Diba et al. | Oct 1996 | A |
5574598 | Koumura et al. | Nov 1996 | A |
5636368 | Harrison et al. | Jun 1997 | A |
5668620 | Kurtin et al. | Sep 1997 | A |
5684637 | Floyd | Nov 1997 | A |
5719397 | Hallett et al. | Feb 1998 | A |
5731909 | Schachar | Mar 1998 | A |
5739959 | Quaglia | Apr 1998 | A |
5774273 | Bornhorst | Jun 1998 | A |
5790882 | Silver et al. | Aug 1998 | A |
5900921 | Min | May 1999 | A |
5952846 | Silver | Sep 1999 | A |
5956183 | Epstein et al. | Sep 1999 | A |
5963048 | Harrison et al. | Oct 1999 | A |
5973852 | Task | Oct 1999 | A |
5999328 | Kurtin et al. | Dec 1999 | A |
6040947 | Kurtin et al. | Mar 2000 | A |
6053610 | Kurtin et al. | Apr 2000 | A |
6069742 | Silver | May 2000 | A |
6091892 | Xue et al. | Jul 2000 | A |
6188525 | Silver | Feb 2001 | B1 |
6246528 | Schachar | Jun 2001 | B1 |
6493151 | Schachar | Dec 2002 | B2 |
6552860 | Alden | Apr 2003 | B1 |
6618208 | Silver | Sep 2003 | B1 |
6626532 | Nishioka et al. | Sep 2003 | B1 |
6715876 | Floyd | Apr 2004 | B2 |
6836374 | Esch et al. | Dec 2004 | B2 |
6930838 | Schachar | Aug 2005 | B2 |
6992843 | Juhala | Jan 2006 | B2 |
7068439 | Esch et al. | Jun 2006 | B2 |
7085065 | Silver | Aug 2006 | B2 |
7142369 | Wu et al. | Nov 2006 | B2 |
7256943 | Kobrin et al. | Aug 2007 | B1 |
7261736 | Azar | Aug 2007 | B1 |
7324287 | Gollier | Jan 2008 | B1 |
7325922 | Spivey | Feb 2008 | B2 |
7338159 | Spivey | Mar 2008 | B2 |
7342733 | Takei | Mar 2008 | B2 |
7369321 | Ren et al. | May 2008 | B1 |
7382544 | Cernasov | Jun 2008 | B2 |
7423811 | Silver | Sep 2008 | B2 |
7440193 | Gunasekaran et al. | Oct 2008 | B2 |
7453646 | Lo | Nov 2008 | B2 |
7475985 | Blum et al. | Jan 2009 | B2 |
7580195 | Choi et al. | Aug 2009 | B2 |
7580197 | Omura et al. | Aug 2009 | B2 |
7594726 | Silver | Sep 2009 | B2 |
7604349 | Blum et al. | Oct 2009 | B2 |
20040001180 | Epstein | Jan 2004 | A1 |
20040240076 | Silver | Dec 2004 | A1 |
20050140922 | Bekerman et al. | Jun 2005 | A1 |
20060066808 | Blum et al. | Mar 2006 | A1 |
20060077562 | Silver | Apr 2006 | A1 |
20060164731 | Wu et al. | Jul 2006 | A1 |
20060245071 | George et al. | Nov 2006 | A1 |
20060250699 | Silver | Nov 2006 | A1 |
20070030573 | Batchko et al. | Feb 2007 | A1 |
20070211207 | Lo et al. | Sep 2007 | A1 |
20080002150 | Blum et al. | Jan 2008 | A1 |
20080007689 | Silver | Jan 2008 | A1 |
20080008600 | Silver | Jan 2008 | A1 |
20080019015 | Fernandez et al. | Jan 2008 | A1 |
20080084532 | Kurtin | Apr 2008 | A1 |
20080112059 | Choi et al. | May 2008 | A1 |
20080218873 | Batchko et al. | Sep 2008 | A1 |
20080231963 | Batchko et al. | Sep 2008 | A1 |
20080285143 | Batchko et al. | Nov 2008 | A1 |
20080316587 | Tijburg et al. | Dec 2008 | A1 |
20090021843 | Obrebski et al. | Jan 2009 | A1 |
20090052049 | Batchko et al. | Feb 2009 | A1 |
20090086331 | Gunasekaran et al. | Apr 2009 | A1 |
20090116118 | Frazier et al. | May 2009 | A1 |
20090128922 | Justis et al. | May 2009 | A1 |
20090195882 | Bolle et al. | Aug 2009 | A1 |
20090213471 | Silver et al. | Aug 2009 | A1 |
20090251792 | Suzuki et al. | Oct 2009 | A1 |
20100045930 | Silver et al. | Feb 2010 | A1 |
20100053543 | Silver et al. | Mar 2010 | A1 |
20100208194 | Gupta et al. | Aug 2010 | A1 |
20100208195 | Gupta et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2008063442 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110085131 A1 | Apr 2011 | US |