Aspirating implants and method of bony regeneration

Information

  • Patent Grant
  • 9801725
  • Patent Number
    9,801,725
  • Date Filed
    Monday, July 25, 2016
    8 years ago
  • Date Issued
    Tuesday, October 31, 2017
    7 years ago
Abstract
Devices and methods for in situ drawing, filtering and seeding cells from the marrow of surrounding bone into a fusion cage without any of the challenges mentioned above. Various implants and devices with aspiration ports that enable in-situ harvesting and mixing of stem cells. These devices may include spinal fusion cages, long bone spacers, lateral grafts and joint replacement devices. Each device utilizes at least one aspiration port for harvesting of stem cell-containing marrow via aspiration from adjacent bony elements.
Description
BACKGROUND OF THE INVENTION

Because bone regeneration is generally required to obtain successful outcomes for many common orthopedic procedures, osteoregenerative products such as allograft, bone substitutes, morphogenic proteins and osteoregenerative mixes are widely used by clinicians. In these procedures, both compression-resistant and non-compression resistant bone substitutes are frequently mixed with allograft as well as autologous materials including marrow and bone.


Current procedures for harvesting autologous stem cells from bone marrow have incorporated methods to enhance stem cell filtering, mixing or seeding to improve viability of implant matrixes. For example, U.S. Pat. No. 5,824,084 (Muschler) discloses a method of preparing a composite bone graft. Unfortunately, some disadvantages are associated with these procedures. For example, the time and exposure required during the mixing of bone, bone substitutes matrix's with autologous bone or aspirate can significantly delay the surgical procedures, increasing the risk of infection and blood loss.


Also, the bone marrow aspiration procedure often requires an added surgery for harvesting of BMA or bone from adjacent vertebrae, processes, ribs or the iliac crest. Spinal surgical fusion procedures require the endplates to burred and roughened to allow marrow to bleed into the interbody graft. This added time and effort increases operating room demand, anesthesia requirements, infectious disease exposure, and blood loss, all of which impact patient outcomes as well as procedure cost. Lastly, conventional prefilled graft materials are not designed to maximize stem cell retention.


Thus, there is a need for a procedure and devices for harvesting stem cells that reduces collateral damage, infection risk, operating room time, operating room effort for graft mixing and packing, and provides a graft that enhances stem cell attachment.


US Published Patent Application No. 2008154377 (Voellmicke) discloses an intervertebral fusion cage that is adapted to contain an inserter within its inner volume during insertion of the cage.


Curylo, Spine, 24(5), 1 March 1999, pp 434-438 discloses augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model.


Bo{hacek over (z)}idar {hacek over (S)}ebeèiæ, Croatian Medical Journal, March 1999 (Volume 40, Number 3) discloses percutaneous autologous bone marrow grafting on the site of tibial delayed union.


Becker, Spine, 31 (1), 2006, pp. 11-17, discloses osteopromotion by a β-tricalcium phosphate/bone marrow hybrid implant for use in spine surgery.


SUMMARY OF THE INVENTION

This invention provides devices and methods for the in-situ drawing, filtering and seeding of cells from the marrow of surrounding bone into an implanted fusion cage.


In particular, the present invention includes various implants with aspiration ports and other devices that enable in-situ harvesting and mixing of stem cells. These devices may include spinal fusion cages, long bone spacers, lateral grafts and joint replacement devices. Each implant utilizes at least one aspiration port for the in situ harvesting of stem cell-containing marrow via aspiration from adjacent decorticated bony elements.


In some embodiments, some of the following components that enable stem cell collection are employed:

    • fusion device aspiration ports,
    • fusion device covers or sheaths that improve the suction through the cage;
    • porous sheets that allow suction therethrough but retain cells,
    • graft matrixes designed for controlled stem cell filtering, collection and bony regeneration, and
    • insertion and aspiration instruments including a flexible aspiration funnel.


These components allow for effective retention of stem cells but without the time-consuming and invasive ex vivo harvesting, ex vivo mixing and ex vivo handling of conventionally—obtained graft.


Therefore, in accordance with the present invention, there is provided an intervertebral fusion assembly, comprising:

    • a) an intervertebral fusion cage, comprising:
      • i) an upper surface adapted for gripping an upper vertebral body and comprising an upper throughole therethrough,
      • ii) a lower surface adapted for gripping a lower vertebral body and comprising a lower throughole therethrough,
      • iii) a sidewall connecting the upper and lower surfaces and comprising an aspiration port therethrough, and
    • b) an aspirator,


      wherein the aspirator connects to the aspiration port to provide fluid connection between the fusion cage and the aspirator.





DESCRIPTION OF THE FIGURES


FIGS. 1A-1D disclose side and front views of intervertebral fusion cages of the present invention.



FIG. 2A discloses a side view of an assembly of the present invention, with the cage thereof implanted in a disc space.



FIG. 2B discloses use of the assembly.



FIG. 3A discloses an exploded assembly of the present invention.



FIG. 3B discloses a side view of another exploded assembly of the present invention, with the cage thereof implanted in a disc space.



FIG. 3C discloses a perspective view of an aspiration cage of the present invention.



FIG. 3D discloses a side view of an aspiration cage of the present invention wrapped in a graft containment bag (or sheath).



FIGS. 4A-4B disclose a tube-like load bearing device of the present invention implanted in a long bone.



FIGS. 5A-5F disclose a method of the present invention being carried out in a long bone defect.



FIG. 6 discloses a method of the present invention being carried out on an iliac crest.



FIGS. 7A-7F disclose steps for implanting a long bone plug of the present invention in a contained bony defect.



FIG. 8 discloses an aspirating graft jacket implanted between adjacent transverse processes.



FIG. 9 discloses an aspirating graft jacket having nanotubes.



FIGS. 10A-10D disclose cages of the present invention with various ports.



FIGS. 10E-10F disclose side and front views of a duckbill-type enclosed valve.



FIG. 11 discloses an aspirating cage of the present invention having an endplate seal.



FIG. 12 discloses an aspirating cage of the present invention in which the endplate seal has teeth extending therefrom.



FIG. 13 shows an aspirating cage of the present invention filled with a porous matrix.



FIGS. 14A-14C show an aspirating cage of the present invention having two ports.



FIG. 15 discloses the cage of the present invention attached to an insertion device.





DETAILED DESCRIPTION OF THE INVENTION

Several aspirating devices and methods are disclosed that improve stem cell filtering, enhance mixing, increase bony regeneration, and reduce the risk of infection. These devices and methods include both implants and instruments that facilitate the in-situ aspiration and mixing of native autograft. The use of such devices and methods subsequently result in bone regeneration without the added operative procedure, manual variability and infection risk associated with the conventional harvesting and external mixing of stem cells.


In some embodiments, the aspiration port may be selected from the group consisting of a simple hole, a threaded hole, a pierceable membrane such as a septum, a cannulated projection extending out of the implant, and a recess extending into the implant. In some embodiments, the implant includes more than one such aspiration port.


The port (or aspiration line) may incorporate a one-way valve to enable aspiration while preventing subsequent leakage. The port (or aspiration line) may also have a bi-directional valve that enables both a) the aspiration of aspirate into the implant (by drawing a vacuum through the port), and b) the injection of biologics (such as cells, BMPs, drugs, anesthetics, analgesics, or antibiotics) directly into the porous matrix of the implant to enhance bone growth (by injecting through the port).


The ports may further include modular attachment means for intra-operative insertion, aspiration and/or injection.


The port may be designed to have a control feature that controls process variables such as flow rate, pressure and/or delivery of the aspirate through the porous bone substitute matrixes.


The implants may be in the form of a bag, tube or cage. They may be pre-operatively or intra-operatively filled with bone-inducing porous matrixes.


In the case of spinal fusion cages, openings in the bone-contacting surfaces (or endplates) of the cage enable marrow aspiration therethrough following aggravation of the natural endplates to initiate vascular/marrow flow. Such a cage having teeth on its endplates can be manipulated in-situ to decorticate the bone and thereby enhance vascular flow and aspirate filtering. The spinal-fusion cage can have limited lateral/posterior holes to control vacuum pressure and maximize vascular flow. The endplates of the cage may include peripheral sealing as a means to enhance flow, fit, or conformation or provide for added vacuum capabilities with adjacent endplates. The cage can be fabricated with or placed within a bag (made of, for example, collagen or resorbable polymer) to contain vascularity and stem cells during and after aspiration.


Now referring to FIGS. 1a-d, there are provided front and side views of intervertebral fusion cages of the present invention. FIGS. 1a-b disclose a standard mesh-type cage 1 fitted with an aspiration port 3. The cage has been filled with a porous matrix 5 (in this case, a bony regeneration matrix) to assist in the retention of the stem cells in the cage. In some embodiments, the upper 7 and lower 9 surfaces of the cage have been beveled to increase endplate vascularity. FIGS. 1c-d disclose front and side views of the cages of FIGS. 1a-b, but with a sheath 13 wrapped around the cylindrical portion of the cage. These sheaths helped retain the suction produced by the aspiration.


Now referring to FIG. 2a, there is disclosed a side view of an assembly of the present invention, with the cage 15 thereof implanted in a disc space. In use, the plunger 17 of the aspiration syringe 19 is slowly withdrawn, thereby reducing the pressure in the air-tight cage. The low pressure in the cage causes bone marrow to move from the adjacent vertebral bodies into the cage (as shown by the plurality of arrows). The porous matrix provided in the cage retains the stems cells present in the marrow.


In some embodiments, the marrow collected in the syringe is re-injected through the cage in order to retain even more stem cells on the porous matrix.



FIG. 2b discloses use of the assembly.


Now referring to FIGS. 3a-d, there are provided various aspirator cages of the present invention. FIG. 3a discloses an exploded assembly of the present invention in which the port 21 of the cage 23 is aligned with the needle 25 of an aspirating syringe 27. In FIG. 3b, there is a side view of another exploded assembly of the present invention, with the cage 23 thereof implanted in a disc space. The distal end 29 of an aspiration line 31 is connected to the port 21 of the cage 23, while the proximal end 33 of the line is fitted with a valve 35. The purpose of the valve is to allow for disconnection without leakage. During aspiration, the valve will hold the negative pressure. During dispensing, the valve insures the dispensing pressure and prevents leakage. The valve can also control excess vacuum pressure for a predetermined time.


The valve is also adapted for connection to the distal end 37 of the needle of an aspirating syringe 27. FIG. 3c discloses a perspective view of an aspiration cage 39 of the present invention. This cage has a port 21 to which an aspiration line 31 is connected. The cage is also filled with porous matrix 41 for retaining the stem cells thereon. FIG. 3d discloses a side view of an aspiration cage 43 of the present invention wrapped in a graft containment bag 45 (or sheath).


The aspirating and filtering devices of the present invention can also be used to create long bone graft spacers with enhanced viability and reduced surgical risk. These tubular spacers may be fabricated from polymers, ceramics, or bone substitutes. They can be preoperatively or intra-operatively filled with porous bone substitute matrixes. Aspiration port(s) on the long bone spacer enable marrow aspiration and stem cell filtering to enhance viability of the device.


Therefore, and now referring to FIGS. 4a-b, there is provided a method of treating a long bone defect 51 having opposing cancellous surfaces 53, comprising the step of:

    • a) inserting a fusion cage 55 into the defect, the cage having an aspiration port 57 and opposing porous endplates 59,
    • b) orienting the cage so that each porous endplate of the cage abuts one of the cancellous surfaces,
    • c) fluidly connecting an aspirator 61 to the port, and
    • d) actuating the aspirator to lower pressure in the cage, thereby drawing bone marrow from the cancellous surfaces into the cage.


In one preferred embodiment, an implant of the present invention is used to improve the healing of a contained defect. In use, the defect is first is filled with bone substitutes or matrixes and covered with an osteoconductive porous sheet or matrix. In-situ bone marrow (containing stem cells) is then aspirated though the porous sheet and the stem cells are seeded onto the matrix and sheet. This procedure may be accomplished with or without an aspiration port via a flexible and conforming funnel aspirator. The funnel can be deployed minimally invasively to both deliver and implant the porous sheet onto the defect.


Now referring to FIG. 5a, the procedure begins with creating an approach to the bony defect BD. Now referring to FIG. 5b, the defect BD is debrided. Now referring to FIG. 5c, the debrided area is filled with a porous matrix 63 (for example, a bone substitute or an expandable gel). Now referring to FIG. 5d, a porous cover sheet 65 is applied over the porous matrix housed in the debrided area. The cover sheet is then attached with either fasteners or an adhesive (neither shown). Now referring to FIG. 5e, a flexible aspiration funnel 67 is then laid upon the porous cover sheet. Now referring to FIG. 5f, an aspirator 69 is fluidly connected to the funnel, and a vacuum is drawn through the cover sheet to aspirate marrow into the porous matrix. The vacuum pressure associated with the aspiration is monitored and cut off when a desired pressure is obtained, or when the cover sheet or matrix becomes occluded with marrow.


Therefore, in accordance with the present invention, there is provided a method of treating a contained bony defect, comprising the steps of:

    • a) debriding the bony defect,
    • b) filling the defect with a porous matrix,
    • c) placing a porous sheet over the porous matrix,
    • d) placing a flexible funnel on the porous sheet, the funnel being fluidly connected to an aspirator, and
    • e) actuating the aspirator to draw bone marrow from the defect into the porous matrix and cover sheet.


Now referring to FIG. 6, this flexible aspiration method described in FIGS. 5a-5f can also be utilized for other bony defects, including the iliac crest. Now referring to FIG. 6, there is provided a method of the present invention being carried out on an iliac crest, wherein the flexible funnel 67 and aspirator 69 draw bone marrow out of the pelvic region and into the porous matrix contained within the iliac crest so that the stem cells in the marrow are retained on the porous matrix.


Now referring to FIGS. 7a-f, contained defects can be filled with aspirating bone plugs 71 that include ports or covers to facilitate marrow aspiration and stem cell filtering. FIG. 7a discloses such a preferred device of the present invention.


Now referring to FIG. 7a, the procedure begins with creating an approach to the bony defect BD. Now referring to FIG. 7b, the defect BD is debrided. Now referring to FIG. 7c, the debrided area is filled with a fusion device 71 consisting essentially of inorganic bone or bone substitute. FIG. 7d shows a side view of the fusion device of FIG. 7c. This allograft device is cylindrical in structure and made from a portion of a human femoral, tibial or ulnar long bone. On one end of the device, there is an aspiration port 73 adapted for connection to an aspirator. On the peripheral surface 75 of the device, there are a plurality of securement features 77 (such as teeth). In some embodiments, the device is fabricated from bone substitute and made so that its pores facilitate growth in the longitudinal/axial direction. Now referring to FIG. 7e, an aspirator (such as a syringe 79) is fluidly connected to the port of the fusion device. Lastly, and now referring to FIG. 7f, aspiration is applied to draw marrow out of the adjacent bone and into the porous bone plug, wherein the stem cells are retained.


Therefore, in accordance with the present invention, there is provided a method of treating a contained bony defect, comprising the steps of:

    • a) debriding the bony defect,
    • b) filling the defect with a porous allograft plug,
    • c) fluidly connecting the plug to an aspirator, and
    • d) actuating the aspirator to draw bone marrow from the defect into the porous allograft plug.


In some embodiments, the bone substitutes can be in the form of prefabricated semi-porous bags that are placed within bony structures to enable aspiration of stem cell from adjacent bony structures. The “graft jacket” may be utilized for lateral graft in spinal procedures. This device is placed in a generally axial direction to provide intimate contact against opposing transverse processes, which can be intraoperatively burred to enhance vascularity.


Now referring to FIG. 8, there is provided an aspirating graft jacket of the present invention. The graft jacket 81 comprising:

    • a) an expandable bag 83 having upper and lower throughholes 85 and an aspiration port 87, and
    • b) a porous matrix (not shown) contained within the bag.


In use, the surgeon first aggravates the opposing faces of adjacent transverse processes in order to induce blood flow. Next, the surgeon places the aspirating graft jacket between the transverse processes, with the throughholes contacting the aggravated faces of the transverse processes. Next, the surgeon places an aspirator in fluid connection with the aspiration port of the graft jacket. Lastly, the surgeon applies a vacuum to the aspirator to draw marrow from the transverse processes and into the graft jacket.


Therefore, in accordance with the present invention, there is provided a method of fusing a spine between adjacent transverse processes, comprising the steps of:

    • a) decorticating opposing faces of the adjacent transverse processes,
    • b) placing a graft jacket having an aspiration port between the opposing faces so that upper and lower throughholes of the graft jacket contact the opposing faces,
    • c) fluidly connecting the port to an aspirator, and
    • d) actuating the aspirator to draw bone marrow from the transverse processes into the cage.


Now referring to FIG. 9, in some embodiments, the graft jacket of the present invention may contain nanotubes 99 extending longitudinally between the opposing open endfaces of the cage having ports 100. The axial nature of the nanotubes augments the load-bearing abilities of the graft jacket and further aids the capillary wicking of vascular flow to further enhance directional bone formation. Nanotubes can be produced from either carbon, metallics (titanium), polymers (such as PEEK, CFRP, or PET), or ceramics. Nanotubes can be produced from bone substitutes including CaP, HA, or TCP.


Now referring to FIGS. 10a-f, there are provided other embodiments of an intervertebral cage having a port. The port may be in the form of an opening 101 (as in FIG. 10a), a septum 103 (as in FIG. 10b), an enclosed valve 105 (as in FIG. 10d), or an in-line valve 107 (as in FIG. 10c). When an enclosed valve is selected, it is preferably in the form of a duckbill-type valve, as shown in FIGS. 10e and 10f. The port may be advantageously used for a) in-situ aspiration of autologous material (such as adjacent blood, marrow and stem cells); b) dispensing of bioreactive materials (such as graft, INJECTOS, bone marrow aspirate, and growth factors such as BMPs); and c) re-dispensing of materials post operatively (such as in the event of a failed fusion).


Now referring to FIG. 11, there is provided another embodiment of the present invention describing a cage 109 with a port 110 and a compressible endplate seal 11. The compressible endplate seal typically lines an opening in the top or bottom of the cage and is made of elastomers (such as urethane, TPE, thermoplastic polymers and silicones), hydrogels, flexible resorbable polymers, or collagen. The compressible endplate seal provides a number of advantageous functions, including enhancing endplate contact, enhancing vacuum of adjacent marrow, containing aspirate, and containing dispensate.


Therefore, in accordance with the present invention, there is provided an intervertebral fusion cage, comprising:

    • a) an upper surface adapted for gripping an upper vertebral body and comprising an upper throughole therethrough,
    • b) a lower surface adapted for gripping a lower vertebral body and comprising a lower throughole therethrough,
    • c) a sidewall connecting the upper and lower surfaces and comprising an aspiration port therethrough, and


      at least one compressible endplate seal disposed about either the upper or lower throughhole.


Now referring to FIG. 12, there is provided another embodiment of the present invention, describing a cage with a port, an endplate seal and a plurality of teeth 113 extending from the seal. The teeth may be used for gripping the opposing endplates and to initiate bleeding bone and marrow flow.


In some embodiments, the teeth that extend from the cage of the present invention are cannulated. These cannulated teeth can be deployed into the endplates once the cage is placed into the interbody space. In some embodiments, the inserter has a feature that triggers the spikes to deploy after insertion. Thus once the syringe is attached it would draw in marrow from the endplates through the holes in these cannulated teeth.


Now referring to FIG. 13, there is provided another embodiment of the present invention describing a cage with a port, an endplate seal with teeth, and a prefilled graft 115 within the cage. The graft acts as a filter to desirably increase stem cell selection/retention. In some embodiments, the graft has a pore size of between about 10 and about 20 μm and is treated with one or more of the following.

    • a. Type 1 or 2 collagen,
    • b. fibrinogen, fibronectin, and/or thrombin, or
    • c. gelatin.


      In some embodiments, a sheath (not shown) may be disposed around the cage of FIG. 13. The sheath may be used to advantageously enhance vacuum of adjacent marrow, contain aspirate, and contain dispensate.


Now referring to FIG. 14, there is provided another embodiment of the present invention describing a cage having two ports 121, 123. The pair of ports can be used to provide for dual aspiration. One of the ports can be a dedicated dispensing port for dispensing materials such as bone marrow aspirate, PRP, growth factors such as BMP. The dual ports can be used with a baffle 125 to set up circulation in the cage (with one port allowing inflow and the other allowing only outflow, as in FIG. 14c). In one such circulation embodiment, the circulation provides for enhanced filtering. In another embodiment, recirculation is provided.


Now referring to FIG. 15, in some embodiments, the cage 130 may be inserted into the disc space with an inserter 132 substantially similar to that disclosed in U.S. Pat. Nos. 6,478,800 and 6,755,841 (the specifications of which are hereby incorporated by reference in their entireties), but with a syringe 131 and needle 133 replacing the medial shaft that connects with the implant.


In some embodiments, sufficient bone marrow is drawn into the cage to substantially fill the cage with bone marrow. However, it is known that stem cells selectively adhere to the surfaces of many porous media. Therefore, in other embodiments, an excess of bone marrow is drawn from the vertebral bodies and through the cage in order to concentrate the stem cells in the porous media of the cage.


The porous media is made from a biocompatible, implantable graft material. Preferably, the material has a charged surface. Examples of biocompatible, implantable graft materials having a charged surface include synthetic ceramics comprising calcium phosphate, some polymers, demineralized bone matrix, or mineralized bone matrix.


More preferably, cell adhesion molecules are bound to the surface of the porous media. The term “cell adhesion molecules” includes but is not limited to laminins, fibronectin, vitronectin, vascular cell adhesion molecules (V-CAM), intercellular adhesion molecules (I-CAM) and collagen.


In some embodiments, the cell adhesion molecule preferentially binds stem cells. In other embodiments, the cell adhesion molecule has a low affinity for partially or fully differentiated blood cells.


In some embodiments, the cage of the present invention includes a drug delivery reservoir. These reservoirs serve the same function as drug delivery microspheres but provide a more structured approach.


It is believed that a consistent and controlled flow rate of marrow through the cage will create the environment best suited for cell attachment. Preferably, the cage is designed (and the flow rate is selected) so that the flow of marrow therethrough fills the porous matrix in a reasonable time period, but does not flow so fast that shear stresses cause the stem cells to lyse.


The load-bearing fusion device of the present invention may be constructed of metals (such as Ti, Ti64, CoCr, and stainless steel), polymers (such as PEEK, polyethylene, polypropylene, and PET), resorbable polymers (such as PLA, PDA, PEO, PEG, PVA, and capralactides), and allograft, bone substitutes (such as TCP, HA, and CaP)


The fusion device housing of the present invention can be made of any structural biocompatible material including resorbable (PLA, PLGA, etc.), non-resorbable polymers (CFRP, PEEK, UHMWPE, PDS), metallics (SS, Ti-6Al-4V, CoCr, etc.), as well as materials that are designed to encourage bony regeneration (allograft, bone substitute-loaded polymers, growth factor-loaded polymers, ceramics, etc.). The materials for the fusion device housing are biocompatible and generally similar to those disclosed in the prior art. Examples of such materials are metal, PEEK and ceramic.


In preferred embodiments, the fusion device housing is manufactured from a material that possesses the desirable strength and stiffness characteristics for use as a fusion cage component. These components of the present invention may be made from any non-resorbable material appropriate for human surgical implantation, including but not limited to, surgically appropriate metals, and non-metallic materials, such as carbon fiber composites, polymers and ceramics.


In some embodiments, the cage material is selected from the group consisting of PEEK, ceramic and metallic. The cage material is preferably selected from the group consisting of metal and composite (such as PEEK/carbon fiber).


If a metal is chosen as the material of construction for a component, then the metal is preferably selected from the group consisting of titanium, titanium alloys (such as Ti-6Al-4V), chrome alloys (such as CrCo or Cr—Co—Mo) and stainless steel.


If a polymer is chosen as a material of construction for a component, then the polymer is preferably selected from the group consisting of polyesters, (particularly aromatic esters such as polyalkylene terephthalates, polyamides; polyalkenes; poly(vinyl fluoride); PTFE; polyarylethyl ketone PAEK; polyphenylene and mixtures thereof.


If a ceramic is chosen as the material of construction for a component, then the ceramic is preferably selected from the group consisting of alumina, zirconia and mixtures thereof. It is preferred to select an alumina-zirconia ceramic, such as BIOLOX Delta™, available from CeramTec of Plochingen, Germany.


In some embodiments, the cage member comprises PEEK. In others, it is a ceramic.


In some embodiments, the fusion device housing consists essentially of a metallic material, preferably a titanium alloy or a chrome-cobalt alloy.


In some embodiments, the fusion device housing components are made of a stainless steel alloy, preferably BioDurR CCM PlusR Alloy available from Carpenter Specialty Alloys, Carpenter Technology Corporation of Wyomissing, Pa. In some embodiments, the fusion device housing components are coated with a sintered beadcoating, preferably Porocoat™, available from DePuy Orthopaedics of Warsaw, Ind.


In some embodiments, the fusion device housing is made from a composite comprising carbon fiber. Composites comprising carbon fiber are advantageous in that they typically have a strength and stiffness that is superior to neat polymer materials such as a polyarylethyl ketone PAEK. In some embodiments, the fusion device housing is made from a polymer composite such as a PEKK-carbon fiber composite.


Preferably, the composite comprising carbon fiber further comprises a polymer. Preferably, the polymer is a polyarylethyl ketone (PAEK). More preferably, the PAEK is selected from the group consisting of polyetherether ketone (PEEK), polyether ketone ketone (PEKK) and polyether ketone (PEK). In preferred embodiments, the PAEK is PEEK.


In some embodiments, the carbon fiber comprises between 1 vol % and 60 vol % (more preferably, between 10 vol % and 50 vol %) of the composite. In some embodiments, the polymer and carbon fibers are homogeneously mixed. In others, the material is a laminate. In some embodiments, the carbon fiber is present in a chopped state. Preferably, the chopped carbon fibers have a median length of between 1 mm and 12 mm, more preferably between 4.5 mm and 7.5 mm. In some embodiments, the carbon fiber is present as continuous strands.


In especially preferred embodiments, the composite comprises:


a) 40-99% (more preferably, 60-80 vol %) polyarylethyl ketone (PAEK), and


b) 1-60% (more preferably, 20-40 vol %) carbon fiber,


wherein the polyarylethyl ketone (PAEK) is selected from the group consisting of polyetherether ketone (PEEK), polyether ketone ketone (PEKK) and polyether ketone (PEK).


In some embodiments, the composite consists essentially of PAEK and carbon fiber. More preferably, the composite comprises 60-80 wt % PAEK and 20-40 wt % carbon fiber. Still more preferably the composite comprises 65-75 wt % PAEK and 25-35 wt % carbon fiber.


In general, the housing is typically filled with at least one bone forming agent (BFA). The bone-forming agent may be:


a) a growth factor (such as an osteoinductive or angiogenic factor),


b) osteoconductive (such as a porous matrix of granules),


c) osteogenic (such as viable osteoprogenitor cells), or


d) plasmid DNA.


In some embodiments, the housing contains a liquid carrier, and the bone forming agent is soluble in the carrier.


In some embodiments, the bone forming agent is a growth factor. As used herein, the term “growth factor” encompasses any cellular product that modulates the growth or differentiation of other cells, particularly connective tissue progenitor cells. The growth factors that may be used in accordance with the present invention include, but are not limited to, members of the fibroblast growth factor family, including acidic and basic fibroblast growth factor (FGF-1 and FGF-2) and FGF-4; members of the platelet-derived growth factor (PDGF) family, including PDGF-AB, PDGF-BB and PDGF-AA; EGFs; VEGF; members of the insulin-like growth factor (IGF) family, including IGF-I and -II; the TGF-β superfamily, including TGF-β1, 2 and 3; osteoid-inducing factor (OIF), angiogenin(s); endothelins; hepatocyte growth factor and keratinocyte growth factor; members of the bone morphogenetic proteins (BMPs) BMP-1, BMP-3, BMP-2, OP-1, BMP-2A, BMP-2B, BMP-7 and BMP-14, including HBGF-1 and HBGF-2; growth differentiation factors (GDFs), members of the hedgehog family of proteins, including indian, sonic and desert hedgehog; ADMP-1; bone-forming members of the interleukin (IL) family; rhGDF-5; and members of the colony-stimulating factor (CSF) family, including CSF-1, G-CSF, and GM-CSF; and isoforms thereof.


In some embodiments, platelet concentrate is provided as the bone forming agent. In one embodiment, the growth factors released by the platelets are present in an amount at least two-fold (e.g., four-fold) greater than the amount found in the blood from which the platelets were taken. In some embodiments, the platelet concentrate is autologous. In some embodiments, the platelet concentrate is platelet rich plasma (PRP). PRP is advantageous because it contains growth factors that can restimulate the growth of the bone, and because its fibrin matrix provides a suitable scaffold for new tissue growth.


In some embodiments, the bone forming agent comprises an effective amount of a bone morphogenic protein (BMP). BMPs beneficially increasing bone formation by promoting the differentiation of mesenchymal stem cells (MSCs) into osteoblasts and their proliferation.


In some embodiments, between about 1 ng and about 10 mg of BMP are administered into the target disc space. In some embodiments, between about 1 microgram (μg) and about 1 mg of BMP are administered into the target disc space.


In many preferred embodiments, the bone forming agent is a porous matrix, and is preferably injectable.


The porous matrix of the present invention may contain porous or semi-porous collagen, extracellular matrices, metals (such as Ti, Ti64, CoCr, and stainless steel), polymers (such as PEEK, polyethylene, polypropylene, and PET) resorbable polymers (such as PLA, PDA, PEO, PEG, PVA, and capralactides), bone substitutes (such as TCP, HA, and CaP), autograft, allograft, xenograft, and/or blends thereof. Matrices may be orientated to enable flow from bony attachment locations to the aspiration port. Matrices may be layered with varying densities, pore structures, materials to enable increase stem filter at desired locations via density, pore size, affinity, as well as fluid flow control (laminar, turbilant, and/or tortuous path).


In some embodiments, the porous matrix is a mineral. In one embodiment, this mineral comprises calcium and phosphorus. In some embodiments, the mineral is selected from the group consisting of calcium phosphate, tricalcium phosphate and hydroxyapatite. In one embodiment, the average porosity of the matrix is between about 20 and about 500 μm, for example, between about 50 and about 250 μm. In yet other embodiments of the present invention, in situ porosity is produced in the injected matrix to produce a porous scaffold in the interbody space. Once the in situ porosity is produced in the space, the surgeon can inject other therapeutic compounds into the porosity, thereby treating the surrounding tissues and enhancing the remodeling process of the target tissue.


In some embodiments, the mineral is administered in a granule form. It is believed that the administration of granular minerals promotes the formation of the bone growth around the minerals such that osteointegration occurs.


In some embodiments, the mineral is administered in a settable-paste form. In this condition, the paste sets up in vivo, and thereby immediately imparts post-treatment mechanical support to the interbody space.


In another embodiment, the treatment is delivered via injectable absorbable or non-absorbable cement to the target space. The treatment is formulated using bioabsorbable macro-sphere technologies, such that it will allow the release of the bone forming agent. The cement will provide the initial stability required to treat pain in target tissues. These tissues include, but are not limited to, hips, knee, vertebral body and iliac crest. In some embodiments, the cement is selected from the group consisting of calcium phosphate, tricalcium phosphate and hydroxyapatite. In other embodiments, the cement is any hard biocompatible cement, including PMMA, processed autogenous and allograft bone. Hydroxylapatite is a preferred cement because of its strength and biological profile. Tricalcium phosphate may also be used alone or in combination with hydroxylapatite, particularly if some degree of resorption is desired in the cement.


In some embodiments, the porous matrix comprises a resorbable polymeric material.


In some embodiments, the bone forming agent comprises an injectable precursor fluid that produces the in situ formation of a mineralized collagen composite. In some embodiments, the injectable precursor fluid comprises:

    • a) a first formulation comprising an acid-soluble type I collagen solution (preferably between about 1 mg/ml and about 7 mg/ml collagen) and
    • b) a second formulation comprising liposomes containing calcium and phosphate.


Combining the acid-soluble collagen solution with the calcium- and phosphate-loaded liposomes results in a liposome/collagen precursor fluid, which, when heated from room temperature to 37° C., forms a mineralized collagen gel.


In some embodiments, the liposomes are loaded with dipalmitoylphosphatidylcholine (90 mol %) and dimyristoyl phosphatidylcholine (10 mol %). These liposomes are stable at room temperature but form calcium phosphate mineral when heated above 35° C., a consequence of the release of entrapped salts at the lipid chain melting transition. One such technology is disclosed in Pederson, Biomaterials 24: 4881-4890 (2003), the specification of which is incorporated herein by reference in its entirety.


Alternatively, the in situ mineralization of collagen could be achieved by an increase in temperature achieved by other types of reactions including, but not limited to, chemical, enzymatic, magnetic, electric, photo- or nuclear. Suitable sources thereof include light, chemical reaction, enzymatically controlled reaction and an electric wire embedded in the material. To further elucidate the electric wire approach, a wire can first be embedded in the space, heated to create the calcium deposition, and then withdrawn. In some embodiments, this wire may be a shape memory such as nitinol that can form the shape. Alternatively, an electrically-conducting polymer can be selected as the temperature raising element. This polymer is heated to form the collagen, and is then subject to disintegration and resorption in situ, thereby providing space adjacent the mineralized collagen for the bone to form.


In some embodiments, the osteoconductive material comprises calcium and phosphorus. In some embodiments, the osteoconductive material comprises hydroxyapatite. In some embodiments, the osteoconductive material comprises collagen. In some embodiments, the osteoconductive material is in a particulate form.


Specific matrices may be incorporated into the device to provide load bearing qualities, enable directional bone formation, and/or control density of regenerated bone (cortical vs cancellous) or enable cell formation for soft tissue attachment. Nanotubes or nanocrystals can be orientated in a generally axial direction to provide for load bearing abilities as well as capillary wicking of vascular flow to further enhance directional bone formation. Biocompatible nanotubes can currently be produced from either carbon or titanium or bone substitutes including Ca, HA, and TCP.


In one embodiment, the bone forming agent is a plurality of viable ex vivo osteoprogenitor cells. Such viable cells, introduced into the interbody space, have the capability of at least partially supplementing the in situ drawn stem cells in the generation of new bone for the interbody space.


In some embodiments, these cells are obtained from another human individual (allograft), while in other embodiments, the cells are obtained from the same individual (autograft). In some embodiments, the cells are taken from bone tissue, while in others, the cells are taken from a non-bone tissue (and may, for example, be mesenchymal stem cells, chondrocytes or fibroblasts). In others, autograft osteocytes (such as from the knee, hip, shoulder, finger or ear) may be used.


In one embodiment, when viable ex vivo cells are selected as an additional therapeutic agent or substance, the viable cells comprise mesenchymal stem cells (MSCs). MSCs provide a special advantage for administration into the interbody space because it is believed that they can more readily survive the relatively harsh environment present in the space; that they have a desirable level of plasticity; and that they have the ability to proliferate and differentiate into the desired cells.


In some embodiments, the mesenchymal stem cells are obtained from bone marrow, such as autologous bone marrow. In others, the mesenchymal stem cells are obtained from adipose tissue, preferably autologous adipose tissue.


In some embodiments, the mesenchymal stem cells injected into the interbody space are provided in an unconcentrated form, e.g., from fresh bone marrow. In others, they are provided in a concentrated form. When provided in concentrated form, they can be uncultured. Uncultured, concentrated MSCs can be readily obtained by centrifugation, filtration, or immuno-absorption. When filtration is selected, the methods disclosed in U.S. Pat. No. 6,049,026 (“Muschler”), the specification of which is incorporated herein by reference in its entirety, can be used. In some embodiments, the matrix used to filter and concentrate the MSCs is also administered into the interbody space.


In some embodiments, bone cells (which may be from either an allogeneic or an autologous source) or mesenchymal stem cells, may be genetically modified to produce an osteoinductive bone anabolic agent which could be chosen from the list of growth factors named herein. The production of these osteopromotive agents may lead to bone growth.


Recent work has shown that plasmid DNA will not elicit an inflammatory response as does the use of viral vectors. Genes encoding bone (anabolic) agents such as BMP may be efficacious if injected into the uncoupled resorbing bone. In addition, overexpression of any of the growth factors provided herein or other agents which would limit local osteoclast activity would have positive effects on bone growth. In one embodiment, the plasmid contains the genetic code for human TGF-β or erythropoietin (EPO).


Accordingly, in some embodiments, the additional therapeutic agent is selected from the group consisting of viable cells and plasmid DNA.


A matrix may be made from hydrogels or may incorporate a hydrogel as component of the final structure. A hydrogel may be used to expand and enhance filling, improve handling characteristics or increase vacuum pressure. The increased vacuum pressure may be used to determine adequate hydration/stem cell filtration.


In all cases, excess bone marrow aspirate can be collected and mixed with added graft extenders including collagen like the HEALOS™, INJECTOS™ and HEALOS FX™, each of which is available from DePuy Spine Inc, Raynham, Mass., USA.


Although the present invention has been described with reference to its preferred embodiments, those skillful in the art will recognize changes that may be made in form and structure which do not depart from the spirit of the invention.

Claims
  • 1. An intervertebral fusion system, comprising: a) a fusion cage comprising: i) an upper surface adapted for gripping an upper vertebral endplate and comprising a first throughhole therethrough,ii) a lower surface adapted for gripping a lower vertebral endplate,iii) a vertical axis extending between the upper and lower surfaces,iv) a first sidewall,v) a second sidewall, the second sidewall being opposite the first sidewall,vi) a proximal endwall, comprising: a first port, anda second throughhole that is threaded,wherein the first port and the second throughhole are formed along a horizontal axis of the proximal endwall that extends perpendicular to the vertical axis, the first port and the second throughhole being the only openings in said proximal endwall, andvii) a longitudinally disposed element situated between the first sidewall and the second sidewall,b) bone graft disposed between the first throughhole and the upper vertebral endplate, andc) a tube having a first end fluidly connected to the first port and containing bone graft.
  • 2. The system of claim 1, further comprising: d) an instrument having a first end disposed in the second throughhole.
  • 3. The system of claim 1, wherein the tube has a second end fluidly connected to an actuator.
  • 4. The system of claim 1, wherein the upper and lower surfaces include teeth formed thereon.
  • 5. The system of claim 4, further comprising an inserter instrument configured to deploy the teeth into the upper and lower vertebral endplates.
  • 6. The system of claim 1, wherein the cage includes a distal endwall extending between the upper and lower surfaces, the distal endwall being convexly curved.
  • 7. The system of claim 1, wherein the fusion cage is formed from titanium or a titanium alloy.
  • 8. The system of claim 1, wherein the first port is a dedicated dispensing port for dispensing bone graft.
  • 9. The system of claim 1, wherein the first port is threaded.
  • 10. The system of claim 1, wherein the second throughhole comprises an aspiration port.
  • 11. An intervertebral fusion system, comprising: a) a fusion cage comprising: i) an upper surface with teeth adapted for gripping an upper vertebral endplate and comprising a first throughhole therethrough,ii) a lower surface with teeth adapted for gripping a lower vertebral endplate and comprising a second throughhole therethrough,iii) a curved distal endwall,iv) a first sidewall,v) a second sidewall, the second sidewall being opposite of the first sidewall,vi) a proximal endwall opposite the distal endwall, the proximal endwall comprising first and second openings, at least one of the first and second openings being threaded; wherein the upper and lower surfaces define a height dimension and wherein the first and second openings are arranged side-by-side in a width dimension perpendicular to the height dimension, the first and second openings being the only openings in said proximal endwall, andvii) a longitudinally disposed element situated between the first sidewall and the second sidewall;b) a delivery device fluidly connected to at least one of the first and second openings of the fusion cage and configured to deliver bone graft to an interior of the fusion cage; andc) an inserter device configured to deploy the teeth into the upper and lower vertebral endplates.
  • 12. The system of claim 11, wherein the fusion cage is formed from titanium or a titanium alloy.
  • 13. The system of claim 11, wherein at least one of the first and second openings is a dedicated dispensing port for dispensing bone graft.
  • 14. The system of claim 11, wherein at least one of the first and second openings is an aspiration port.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/877,901 filed on Oct. 7, 2015, which is a continuation of U.S. patent application Ser. No. 12/634,647 filed on Dec. 9, 2009 (now U.S. Pat. No. 9,168,138), each of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (235)
Number Name Date Kind
2115250 Bruson Apr 1938 A
2170111 Bruson Aug 1939 A
2229024 Bruson Jan 1941 A
2706701 Beller et al. Apr 1955 A
2710277 Shelanski et al. Jun 1955 A
2826532 Hosmer Mar 1958 A
2900305 Siggia Aug 1959 A
2977315 Scheib et al. Mar 1961 A
3228828 Romano Jan 1966 A
3717655 Godefroi et al. Feb 1973 A
4352883 Lim Oct 1982 A
4440921 Allcock et al. Apr 1984 A
4495174 Allcock et al. Jan 1985 A
4645503 Lin et al. Feb 1987 A
4651717 Jakubczak Mar 1987 A
4743256 Brantigan May 1988 A
4772287 Ray et al. Sep 1988 A
4863476 Shepperd Sep 1989 A
4880622 Allcock et al. Nov 1989 A
4932969 Frey et al. Jun 1990 A
5059193 Kuslich Oct 1991 A
5123926 Pisharodi Jun 1992 A
5133755 Brekke Jul 1992 A
5192327 Brantigan Mar 1993 A
5374267 Siegal Dec 1994 A
5390683 Pisharodi Feb 1995 A
5397364 Kozak et al. Mar 1995 A
5410016 Hubbell et al. Apr 1995 A
5443514 Steffee Aug 1995 A
5522895 Mikos Jun 1996 A
5522899 Michelson Jun 1996 A
5549679 Kuslich Aug 1996 A
5562736 Ray et al. Oct 1996 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5679723 Cooper et al. Oct 1997 A
5702449 McKay Dec 1997 A
5782832 Larsen et al. Jul 1998 A
5800549 Bao et al. Sep 1998 A
5807327 Green et al. Sep 1998 A
5824084 Muschler Oct 1998 A
5833657 Reinhardt et al. Nov 1998 A
5837752 Shastri et al. Nov 1998 A
5860973 Michelson Jan 1999 A
5865848 Baker Feb 1999 A
5888220 Felt et al. Mar 1999 A
5888227 Cottle Mar 1999 A
5972385 Liu et al. Oct 1999 A
5985307 Hanson et al. Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6045579 Hochshuler et al. Apr 2000 A
6049026 Muschler Apr 2000 A
6071982 Wise et al. Jun 2000 A
6102950 Vaccaro Aug 2000 A
6113624 Bezwada et al. Sep 2000 A
6113638 Williams et al. Sep 2000 A
6117174 Nolan Sep 2000 A
6126689 Brett Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6147135 Yuan et al. Nov 2000 A
6165486 Marra et al. Dec 2000 A
6171610 Vacanti et al. Jan 2001 B1
6176882 Biedermann et al. Jan 2001 B1
6187043 Ledergerber Feb 2001 B1
6187048 Milner et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6214368 Lee et al. Apr 2001 B1
6217579 Koros Apr 2001 B1
6224631 Kohrs May 2001 B1
6224894 Jamiolkowski et al. May 2001 B1
6248131 Felt et al. Jun 2001 B1
6264695 Stoy Jul 2001 B1
6277149 Boyle et al. Aug 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6306177 Felt et al. Oct 2001 B1
6331312 Lee et al. Dec 2001 B1
6332894 Stalcup et al. Dec 2001 B1
6352555 Dzau et al. Mar 2002 B1
6368325 McKinley et al. Apr 2002 B1
6368351 Glenn et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6387130 Stone et al. May 2002 B1
6413278 Marchosky Jul 2002 B1
6419705 Erickson Jul 2002 B1
6436140 Liu et al. Aug 2002 B1
6443989 Jackson Sep 2002 B1
6454807 Jackson Sep 2002 B1
6478800 Fraser et al. Nov 2002 B1
6491724 Ferree Dec 2002 B1
6494883 Ferree Dec 2002 B1
6558424 Thalgott May 2003 B2
6562072 Fuss et al. May 2003 B1
6562074 Gerbec et al. May 2003 B2
6582431 Ray Jun 2003 B1
6592625 Cauthen Jul 2003 B2
6595998 Johnson et al. Jul 2003 B2
6610094 Husson Aug 2003 B2
6632235 Weikel et al. Oct 2003 B2
6652592 Grooms et al. Nov 2003 B1
6660038 Boyer, II et al. Dec 2003 B2
6685742 Jackson Feb 2004 B1
6733535 Michelson May 2004 B2
6755841 Fraser et al. Jun 2004 B2
6805697 Helm et al. Oct 2004 B1
6835208 Marchosky Dec 2004 B2
6969405 Suddaby Nov 2005 B2
6979352 Reynolds Dec 2005 B2
6979353 Bresina Dec 2005 B2
7326248 Michelson Feb 2008 B2
7500991 Bartish, Jr. et al. Mar 2009 B2
7503920 Siegal Mar 2009 B2
7618458 Biedermann et al. Nov 2009 B2
7655010 Serhan et al. Feb 2010 B2
7666266 Izawa et al. Feb 2010 B2
7670374 Schaller Mar 2010 B2
7703727 Selness Apr 2010 B2
7785368 Schaller Aug 2010 B2
7799081 McKinley Sep 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7850733 Baynham et al. Dec 2010 B2
7918874 Siegal Apr 2011 B2
7935051 Miles et al. May 2011 B2
7942903 Moskowitz et al. May 2011 B2
7947078 Siegal May 2011 B2
8007535 Hudgins et al. Aug 2011 B2
8057544 Schaller Nov 2011 B2
8206423 Siegal Jun 2012 B2
8236029 Siegal Aug 2012 B2
8241328 Siegal Aug 2012 B2
8246622 Siegal et al. Aug 2012 B2
8328812 Siegal et al. Dec 2012 B2
8343193 Johnson et al. Jan 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8403990 Dryer et al. Mar 2013 B2
8454617 Schaller et al. Jun 2013 B2
8465524 Siegal Jun 2013 B2
8486109 Siegal Jul 2013 B2
8491591 Fuerderer Jul 2013 B2
8579981 Lim et al. Nov 2013 B2
8597330 Siegal Dec 2013 B2
8672977 Siegal et al. Mar 2014 B2
8777993 Siegal et al. Jul 2014 B2
8845638 Siegal et al. Sep 2014 B2
8845734 Weiman Sep 2014 B2
8900235 Siegal Dec 2014 B2
8906098 Siegal Dec 2014 B2
8926704 Glerum et al. Jan 2015 B2
8986388 Siegal et al. Mar 2015 B2
9017408 Siegal et al. Apr 2015 B2
9017413 Siegal et al. Apr 2015 B2
9044334 Siegal et al. Jun 2015 B2
9168138 O'Neil et al. Oct 2015 B2
9254138 Siegal et al. Feb 2016 B2
9283092 Siegal et al. Mar 2016 B2
9333091 DiMauro May 2016 B2
9408712 Siegal et al. Aug 2016 B2
9439776 DiMauro et al. Sep 2016 B2
9439777 DiMauro Sep 2016 B2
20010008980 Gresser et al. Jul 2001 A1
20010039452 Zucherman et al. Nov 2001 A1
20010039453 Gresser et al. Nov 2001 A1
20020029084 Paul et al. Mar 2002 A1
20020045904 Fuss et al. Apr 2002 A1
20020055781 Sazy May 2002 A1
20020058947 Hochschuler et al. May 2002 A1
20020072801 Michelson Jun 2002 A1
20020077701 Kuslich Jun 2002 A1
20020107573 Steinberg Aug 2002 A1
20020173796 Cragg Nov 2002 A1
20020193883 Wironen Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030028251 Mathews Feb 2003 A1
20030073998 Pagliuca et al. Apr 2003 A1
20030135275 Garcia Jul 2003 A1
20030139812 Garcia et al. Jul 2003 A1
20030199979 McGuckin Oct 2003 A1
20040002761 Rogers et al. Jan 2004 A1
20040049270 Gewirtz Mar 2004 A1
20040087947 Lim et al. May 2004 A1
20040116997 Taylor et al. Jun 2004 A1
20040117022 Marnay et al. Jun 2004 A1
20040127990 Bartish, Jr. et al. Jul 2004 A1
20040220669 Studer Nov 2004 A1
20040225360 Malone Nov 2004 A1
20040230309 DiMauro et al. Nov 2004 A1
20050065609 Wardlaw Mar 2005 A1
20050119752 Williams et al. Jun 2005 A1
20050124969 Fitzgerald et al. Jun 2005 A1
20050125062 Biedermann et al. Jun 2005 A1
20050154460 Yundt Jul 2005 A1
20050261682 Ferree Nov 2005 A1
20060036241 Siegal Feb 2006 A1
20060095135 Kovacevic May 2006 A1
20060122701 Kiester Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20070100452 Prosser May 2007 A1
20070142916 Olson et al. Jun 2007 A1
20070179459 Geisler et al. Aug 2007 A1
20080077243 Lee et al. Mar 2008 A1
20080154377 Voellmicke Jun 2008 A1
20080161927 Savage et al. Jul 2008 A1
20080172128 Perez-Cruet Jul 2008 A1
20080188945 Boyce et al. Aug 2008 A1
20100174243 McKay Jul 2010 A1
20100268343 Dewey et al. Oct 2010 A1
20110098818 Brodke et al. Apr 2011 A1
20110137418 O'Neil et al. Jun 2011 A1
20120310352 DiMauro et al. Dec 2012 A1
20130190875 Shulock et al. Jul 2013 A1
20140046446 Robinson Feb 2014 A1
20150094812 Cain Apr 2015 A1
20150112437 Davis et al. Apr 2015 A1
20150164655 DiMauro Jun 2015 A1
20150173914 DiMauro et al. Jun 2015 A1
20150196401 DiMauro et al. Jul 2015 A1
20150202052 DiMauro Jul 2015 A1
20150216673 DiMauro Aug 2015 A1
20160000577 DiMauro Jan 2016 A1
20160022437 Kelly et al. Jan 2016 A1
20160038304 Aquino Shluzas et al. Feb 2016 A1
20160051376 Serhan et al. Feb 2016 A1
20160058573 DiMauro et al. Mar 2016 A1
20160081804 O'Neil et al. Mar 2016 A1
20160199196 Serhan et al. Jul 2016 A1
20160310296 DiMauro et al. Oct 2016 A1
20160317313 DiMauro Nov 2016 A1
20160317714 DiMauro et al. Nov 2016 A1
20160331541 DiMauro et al. Nov 2016 A1
20160331548 DiMauro et al. Nov 2016 A1
20160338854 Serhan et al. Nov 2016 A1
20160367380 DiMauro Dec 2016 A1
20160374821 DiMauro et al. Dec 2016 A1
Foreign Referenced Citations (9)
Number Date Country
197 10 392 Jul 1999 DE
9317669 Sep 1993 WO
9726847 Jul 1997 WO
9902214 Jan 1999 WO
0012033 Mar 2000 WO
0074605 Dec 2000 WO
0217825 Mar 2002 WO
03002021 Jan 2003 WO
03005937 Jan 2003 WO
Non-Patent Literature Citations (44)
Entry
[No Author Listed] Cervios and Cervios chromos Radiolucent cage system for anterior cervical interbody fusion, Technique Guide, 32 pages, Synthes, 2007.
[No Author Listed] chronOS Perfusion Concept Technique Guide, Synthes, May 2010, pp. 1-32.
[No Author Listed] FDA Approves Cambridge Scientific, Inc.'s Orthopedic WISORB (TM) Malleolar Screw [online], Jul. 30, 2002, 5 pages. Retrieved from the Internet <URL: http://www.cambridgescientificinc.com/interbody.htm>, [retrieved on Oct. 14, 2003].
[No Author Listed] Longer BAK/L Sterile Interbody Fusion Devices. Date believed to be 1997. Product Data Sheet. Zimmer. Retrieved Jul. 23, 2012 from <http://catalog.zimmer.com/content/zpc/products/600/600/620/S20/S045.html>. 2 pages.
[No Author Listed] Osteoset® DBM Pellets (Important Medical Information) [online], Nov. 2002, 5 pages. Retrieved from the Internet <URL: http://www.wmt.com/Literature>, [retrieved on Oct. 14, 2003].
[No Author Listed] Percutaneous Autolgous Bone-marrow Grafting for Open Tibial Shaft Fracture (IMOCA) Aug. 6, 2007, ClinicalTrials.gov., 5 pages, last updated Aug. 29, 2011.
[No Author Listed] Plivios and Plivios chronOS Technique Guide, Synthes, Feb. 2011, pp. 1-36.
[No Author Listed] Sonic Accelerated Fracture Healing System/Exogen 3000. Premarket Approval, U.S. Food & Drug Administration. Date believed to be May 10, 2000, 4 pages. Retrieved Jul. 23, 2012 from <http://www.accessdatalda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?id=14736#>.
Barakat et al., 1996.
Becker, S., et al., Osteopromotion by a beta-tricalcium phosphate/bone marrow hybrid implant for use in spine surgery. Spine (Phila Pa 1976). Jan. 1, 2006;31(1):11-7.
Bhargava, “Percutaneous autologous bone marrow injection in the treatment of delayed or nonunion”, Indian J Orthop, Jan.-Mar. 2007, vol. 41(1 ), pp. 67-71.
Bruder et al., Identification and characterization of a cell surface differentiation antigen on human osteoprogenitor cells. 42nd Annual Meeting of the Orthopaedic Research Society. p. 574, Feb. 19-22, 1996, Atlanta, Georgia.
Bruder et al., Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone. Sep. 1997;21 (3):225-235.
Burkoth et al., A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials. Dec. 2000;21(23):2395-2404.
Curylo, L.J., et al., Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model. Spine (Phila Pa 1976). Mar. 1, 1999;24(5):434-8; discussion 438-9.
Domb, 1996.
Flemming et al., Monoclonal anitbody against adult marrow-derived mesenchymal stem cells recognizes developing vasculature in embryonic human skin. Developmental Dynamics. 1998;212:119-132.
Gennaro, A.R., ed., Remington: The Science and Practice of Pharmacy. Williams & Wilkins, 19th edition, Jun. 1995.
Haas, Norbert P., New Products from AO Development [online], May 2002, 21 pages. Retrieved from the Internet <URL:http://www.ao.asif.ch/developmentipdf—tk—news—02.pdf>, [retrieved on Oct. 14, 2003].
Hao et al., Investigation of nanocomposites based on semi-interpenetrating network of [L-poly (epsilon-caprolactone)]/. [net-poly (epsilon-caprolactone)] and hydroxyapatite nanocrystals. Biomaterials. Apr. 2003;24(9):1531-9.
Haynesworth et al., Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992;13(1):69-80.
Hitchon et al., Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J Neurosurg. Oct. 2001;95(2 Suppl):215-20.
Invitation to Pay Additional Fees dated Aug. 10, 2004 for Application No. PCT/US2004/004284 (8 Pages)
International Search Report and Written Opinion dated Oct. 29, 2004 for Application No. PCT/US2004/004284 (17 Pages).
International Preliminary Report on Patentability dated Feb. 15, 2005 for Application No. PCT/US2004/004284 (8 Pages).
Kandziora, Frank, et al., “Biomechanical Analysis of Biodegradable Interbody Fusion Cages Augmented with Poly (propylene Glycol-co-Fumaric Acid),” SPINE, 27(15): 1644-1651 (2002).
Kricheldorf and Kreiser-Saunders, 1996.
Kroschwitz et al., eds., Hydrogels. Concise Encyclopedia of Polymer Science and Engineering. Wiley and Sons, pp. 458-459, 1990.
Lange, A.L., Lange's Handbook of Chemistry. McGraw-Hill Inc., 13th edition, Mar. 1985.
Lendlein et al., AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci U S A. Jan. 30, 2001;98(3):842-7. Epub Jan. 23, 2001.
Malberg, M.I., MD; Pimenta, L., MD; Millan, M.M., MD, 9th International Meeting on Advanced Spine Techniques, May 23-25, 2002, Montreux, Switzerland. Paper #54, Paper #60, and E-Poster #54, 5 pages.
Massia and Hubbell, 1991.
McAfee et al., Minimally invasive anterior retroperitoneal approach to the lumbar spine: Emphasis on the lateral BAK. SPINE. 1998;23(13):1476-84.
Mendez et al., Self-curing acrylic for+A43:A66mulations containing PMMA/PCL composites: properties and antibiotic release behavior. J Biomed Mater Res. Jul. 2002;61(1):66-74.
Neiman, “Treatment of Tibial Nonunion and Delayed Union by Percutaneous Injection of Concentrated Autologous Stem Cells: An Alternative to Open Surgical Repair—A Case Report”, 2 pages, 2007.
New Zealand Office Action dated Jul. 9, 2007 for Application No. 541626 (3 Pages).
Pederson, A.W., et al., Thermal assembly of a biomimetic mineral/collagen composite. Biomaterials. Nov. 2003;24 (6):4881-90.
Regan et al., Endoscopic thoracic fusion cage. Atlas of Endoscopic Spine Surgery. Quality Medical Publishing, Inc. 1995;350-354.
Sebecić, B., et al., Percutaneous autologous bone marrow grafting on the site of tibial delayed union. Croat Med J. Sep. 1999;40(3):429-32.
Slivka et al., In vitro compression testing of fiber-reinforced, bioabsorbable, porous implants. Synthetic Bioabsorbable Polymers for Implants. STP1396, pp. 124-135, ATSM International, Jul. 2000.
Stewart et al., Co-expression of the stro-1 anitgen and alkaline phosphatase in cultures of human bone and marrow cells. ASBMR 18th Annual Meeting. Bath Institute for Rheumatic Diseases, Bath, Avon, UK. Abstract No. P208, p. S142, 1996.
Timmer et al., In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials. Feb. 2003;24(4):571-7.
United States Disctrict Court, Central District of California, Case No. 1:10-CV-00849-LPS, Nuvasive, Inc., vs., Globus Medical, Inc., Videotaped Deposition of: Luiz Pimenta, M.D., May 9, 2012, 20 pages.
Walsh et al., Preparation of porous composite implant materials by in situ polymerization of porous apatite containing epsilon-caprolactone or methyl methacrylate. Biomaterials. Jun. 2001;22(11):1205-12.
Related Publications (1)
Number Date Country
20170049572 A1 Feb 2017 US
Continuations (2)
Number Date Country
Parent 14877901 Oct 2015 US
Child 15218210 US
Parent 12634647 Dec 2009 US
Child 14877901 US