ASSAY FOR SARS-CoV-2 INFECTION OF VULNERABLE HUMAN CELLS

Abstract
Provided herein are methods and compositions useful for identifying compounds that can inhibit SARS-CoV-2 infection or the effects thereof, especially in cardiomyocytes (CMs), which are highly infectible by SARS-CoV-2 corona viruses.
Description
INCORPORATION BY REFERENCE OF SEQUENCE LISTING PROVIDED AS A TEXT FILE

A Sequence Listing is provided herewith as a text file, “3730176US1.txt”, created on Feb. 14, 2024 and having a size of 446,507 bytes. The contents of the text file are incorporated by reference herein in their entirety.


BACKGROUND

The World Health Organization has declared Covid-19 a global pandemic. A highly infectious coronavirus, officially called SARS-CoV-2, causes the Covid-19 disease. Even with the most effective containment strategies, the spread of the Covid-19 respiratory disease has only been slowed. The available vaccines are likely best way to prevent people from getting sick, but some refuse to be vaccinated and some vaccinated people can still suffer from Covid-19 infection. Compositions and methods to facilitate recovery from Covid-19 infection are needed.


SUMMARY

Provided are methods and compositions useful for identifying compounds that can inhibit SARS-CoV-2 infection or the effects thereof. As illustrated herein, cardiomyocytes (CMs), are highly infectible by corona viruses, including SARS-CoV-2. Even low multiplicities of infection (MOI) of SARS-CoV-2 (e.g., about 1 virion particle per 1000 cells) can infect cardiomyocytes and support SARS-CoV-2 viral replication.


COVID-19 causes severe heart failure, but specific pathological consequences in cardiomyocytes have yet to be identified. Here the inventors describe the consequences of COVID-19 infection on cardiomyocytes, and upon the functioning of the heart. As demonstrated herein, human cardiomyocytes exposed to the virus exhibit significant myofibrillar disruption and a distinct patterns of sarcomeric fragmentation. Many cardiomyocytes exposed to coronavirus lack nuclear DNA by common detection methods, such as Hoechst or hematoxylin staining. In contrast, SARS-CoV-2 does not appear to infect induced pluripotent stem cells (iPSCs), endothelial cells, or cardiac fibroblasts. The adverse morphologic features of virally infected cardiomyocytes are distinct and potentially unique compared to other genetic or environmental stresses that are known to induce cardiomyopathy phenotypes.


Human iPSC-derived cardiac cells were used as described herein for infection with SARS-CoV-2 to reveal robust transcriptomic and morphological signatures in cardiomyocytes, which allowed identification of clear markers of viral damage in human autopsy specimens. Cardiomyocytes display a distinct pattern of sarcomere fragmentation, with specific cleavage of thick filaments, and COVID-19 autopsy samples displayed similar sarcomeric disruption. Numerous iPSC-cardiomyocytes lacked nuclear DNA. Surprisingly, enucleated cardiomyocytes were prevalent in the hearts of COVID-19 patients. These striking cytopathic features are useful for identifying new therapies for COVID-19-related heart failure.


Methods and assay mixtures are described herein that involve use of human cells, for example, cardiomyocytes or cells generated from human induced pluripotent stem cells (iPS) for identifying compounds useful for treatment of SARS-CoV-2. Screening of viral infection and cytopathic effects of such infection in cardiomyocytes can be performed in multi-well plate formats that are compatible with high-throughput screening platforms.


In some cases, cardiomyocytes derived from induced pluripotent stem cells of different genotypes are used in the assays, allowing identification of compounds for treatment of SARS-CoV-2 in patients with different genetically induced cardiac conditions.


The screening assay described herein provides multiple distinct visual indications of cytopathic effects induced by coronavirus that can be used to identify different cellular responses to coronavirus infection and to test whether compounds are useful therapeutics to attenuate adverse consequences of SARS-CoV-2 viral infection. The methods are highly sensitive and can provide information on multiple parameters useful for evaluating cytopathic effects of SARS-CoV-2 viral infection. Thus, in addition to serving as a frontline screening platform for prophylactic and therapeutic effects of the virus on cardiac cells, the methods also serve as a sensitive assay for distinct cytopathic effects that could adversely impact other human cells and tissues that are vulnerable to coronavirus infection and inflammatory responses.


The therapeutic target can, for example, be the titin protein at the M-line in relation to infection. Titin is involved in sarcomere assembly and function through its elastic adaptor and signaling domains. Titin's M-line region contains a unique kinase domain that may regulate sarcomere assembly via its substrate titin cap (T-cap). Studies indicate that the titin M-line region is required to form a continuous titin filament and to provide mechanical stability.





DESCRIPTION OF THE FIGURES


FIG. 1A-1H illustrate that SARS-CoV-2 induces cytopathic effects in iPS-derived cardiac cell types, and productively infects cardiomyocytes. FIG. 1A graphically illustrates quantification of SARS-CoV-2 viral RNA by RT-qPCR quantification of the viral nucleocapsid (N5) gene in cell cultures exposed to SARS-CoV-2. Error bars: SEM. **: p-val<0.01, one-way ANOVE with Tukey's multiple comparisons. FIG. 1B graphically illustrates the toxicity of SARS-CoV-2 to cardiac cell types, as quantified by nuclear retention. Y-axis depicts the % of nuclei counted (relative to mock). Nuclei were counted automatically at 10× magnification (10 images/condition). Vehicle treatment (mock; left bars), heat inactivated SARS-CoV-2 (MOI=0.1; middle bars), and SARS-CoV-2 (MOI=0.006; right bars) nucleic counts are shown. FIG. 1C shows a representative image of a SARS-CoV-2 infected cardiomyocyte, as observed by transmission electron microscopy (TEM) of osmium tetroxide/potassium ferricyanide stained cells. Cells were exposed to SARS-CoV-2 virus for 48 hours at an MOI of 0.006 before fixation. This view shows the nucleus to the right, in addition to remnant ER-Golgi, with a closed membrane of viral particles. This image is a less magnified view of the images shown in FIG. 1D-1E; the line in the lower right corresponds to 0.5 μm. FIG. 1D shows an expanded view of the inset shown in FIG. 1C, further illustrating that SARS-CoV-2 virions were present and showing that a double membrane cannot be discerned by transmission electron microscopy. The line in the lower right corresponds to 0.4 μm. FIG. 1E shows an expanded view of the center of FIG. 1D, further illustrating that SARS-CoV-2 virions were present and showing the 500-750 nm diameter membrane and the 50-60 nm diameter viral particles within. The line in the lower right corresponds to 100 nm. FIG. 1F graphically illustrates ACE2 transcript levels in CMs compared to undifferentiated iPS cells as quantified by RT-qPCR quantification. **: p-value<0.01. FIG. 1G graphically illustrates the SARS-CoV-2 viral N5-fold change in infected iPSC and CM cells. Infection of iPSCs yielded no detectable levels of viral N5. FIG. 1H graphically illustrates the SARS-CoV-2 fold change as detected by viral N5 fold changes relative to the N5 levels in IPSCs.



FIG. 2A-2C illustrate pharmacological modulation of SARS-CoV-2 infection and host innate immune responses in CMs. FIG. 2A graphically illustrates viral Nucleocapsid (N5) levels of CM samples exposed to SARS-CoV-2 for 48 h (MOI=0.006) after 2 h pretreatment with the indicated reagents to block viral entry. RT-qPCR was used to quantify N5 levels. The agents used included a vehicle control (DMSO), an ACE2 blocking antibody (‘ACE2ab’), a PIKfyve inhibitor Apilimod, an autolysosome acidification blocker bafilomycin, a cathepsin-L inhibitor Z-Phe-Tyr(tBu)-diazomethylketone (Z-FY-DK), a serine protease inhibitor aprotinin, a cathepsin-B inhibitor CA-074, and a TMPRSS2 inhibitor camostat mesylate. Dots represent separate replicates. *: p-val<0.05, **: p-val<0.01. N>=3 for all conditions. One-way ANOVA with Tukey's multiple comparisons. FIG. 2B graphically illustrates SARS-CoV-2 RNA (N5) levels in CMs pretreated with different viral infection blocking agents as detected by RT-qPCR quantification of N5 levels. CMs were pretreated with either vehicle control (DMSO), ACE2 blocking antibody (‘ACE2ab’) or a cathepsin-B and -L blocker (E64D) for 2 hours before infection with SARS-CoV-2 (MOI=0.006). The graph depicts fold changes relative to a vehicle control (DMSO). Duplicates were analyzed for significance by one-way ANOVA with Tukey's multiple comparisons. ***: p-value<0.001. FIG. 2C graphically illustrates levels of factors that prime the cell's innate immune response in CM samples exposed to SARS-CoV-2 for 48 h (MOI=0.006) after 2 h pretreatment with the indicated reagents to block viral entry. Dots represent separate replicates. *: p-val<0.05, **: p-val<0.01. N>=3 for all conditions. One-way ANOVA with Tukey's multiple comparisons.



FIG. 3A-3J illustrate the transcriptional effects of SARS-CoV-2 exposure to cardiac cells. FIG. 3A graphically illustrates the percentage of total viral reads that map to the SARS-CoV-2 viral genome in multiple cell types. iPSCs, ECs or CFs were exposed at an MOI of 0.006, and CMs were exposed to the virus at three different MOIs: 0.001 (‘Low’), 0.01 (‘Mid’) and 0.1 (‘High’). **: p-val<0.01; ***: p-val<0.001. FIG. 3B graphically illustrates principal component analysis of transcriptomic samples. Dot shapes and colors represent the different cell types and whether they were exposed to SARS-CoV-2 virus and, in the case of CMs, the different MOIs used. FIG. 3C shows a loading plot for genes marking cardiomyocyte state (forward-slashed hatching ///), SARSCoV-2 infection related factors (no shading), and immune response (reverse-slashing \\\). FIG. 3D is a bar graph comparing genes involved in sarcomeric structure and myosin contractility between the high infection and mock infection CM groups. FIG. 3E graphically illustrates single cell transcript levels of ACE2 in iPS-derived cardiac cells. Each dot represents normalized transcript levels in a single cell. FIG. 3F graphically illustrates single cell transcript levels of FURIN in iPS-derived cardiac cells. Each dot represents normalized transcript levels in a single cell. FIG. 3G graphically illustrates single cell transcript levels of cathepsin-L (CTSL) in iPS-derived cardiac cells. Each dot represents normalized transcript levels in a single cell. FIG. 3H graphically illustrates single cell transcript levels of cathepsin-B (CTSB) in iPS-derived cardiac cells. Each dot represents normalized transcript levels in a single cell. FIG. 3I graphically illustrates single cell transcript levels of PIKfyve in iPS-derived cardiac cells. Each dot represents normalized transcript levels in a single cell. FIG. 3J graphically illustrates single cell transcript levels of DPP4 in iPS-derived cardiac cells. Each dot represents normalized transcript levels in a single cell.



FIG. 4A-4F illustrate cytopathological features induced by SARS-CoV-2 infection in CMs. FIG. 4A shows representative immunofluorescence images of myofibrillar fragmentation in CMs at different timepoints after exposure to SARS-CoV-2. White arrows indicate fragments consisting of two bands of cTnT positive staining. Scale bars: 50 μm. FIG. 4B graphically illustrates numbers of cells presenting myofibrillar fragmentation at 24 h and 48 h post-exposure to SARS-CoV-2 (defined as at least one event of a cTnT doublet unaligned and dissociated from other myofibrils). The number of cells was normalized to total number of nuclei in the images counted. Each dot represents a separate infection sample. Each replicate is the additive count of nine randomly acquired fields of view. ***: p-val<0.001. FIG. 4C shows representative images of immunostained cells infected with SARS-CoV-2, illustrating that cells staining positively for viral dsRNA are adjacent to other cells with different degrees of myofibrillar fragmentation. White squares indicate zoomed in areas, with labels corresponding to insets. White arrows point at examples of cTnT doublets (myofibrillar fragments). FIG. 4D shows representative images of stained CMs displaying myofibrillar fragmentation. White arrows indicate cTnT-ACTN2-cTnT staining positive fragments. Scale bars: 50 μm, inset view: 15 μm. FIG. 4E shows TEM images of sarcomeres in mock (‘healthy’) and SARS-CoV-2 infected (MOI=0.006) CM cultured cells (top). Darker gray arrows denote the sarcomeric z-disks; lighter gray arrows indicates M-line locations. Healthy sarcomeres display clear I and A-bands, but fragmented SARS-CoV-2 exposed sarcomeres only possess thin filaments. The image at the upper right is an expanded image of sarcomeric z-disks (arrows). The two images at the bottom are representative TEM image of a healthy nucleus (left), and a nucleus of a cell infected with SARS-CoV-2 (right). FIG. 4F shows an image of a cultured CM that was immunofluorescently stained after incubation with live SARS-CoV-2. The view to the right is an expanded view of the inset shown at the left, indicating that cells that have lost nuclear material.



FIG. 5A-5G illustrate pathological features of autopsy myocardial tissue from SARS-CoV-2 infected patients. FIG. 5A shows images of healthy neonatal left ventricle tissue stained with Hematoxylin and Eosin (H&E) to facilitate identification of the nucleus and other cellular structures. FIG. 5B shows images of H&E stained myocardial tissue from a COVID-19 patient with diagnosed myocarditis. Black boxes indicate the regions shown directly below that are at higher magnification. Arrows indicate cardiomyocytes showing a loss of nuclear material. FIG. 5C graphically illustrates the numbers of nuclei per field of view of intact myocardium and disrupted myocardium from SARS-CoV-2 patients. Statistical significance was determined by fitting to a Poisson generalized linear model, p-val<0.02. FIG. 5D shows representative H&E staining images of myocardial tissue from COVID-19 patients without diagnosed myocarditis. Darker gray arrows denote putative nuclear locations with loss of nuclear material. Lighter grey arrows indicate sarcomeric condensation. Black arrows indicate breakage at the intercalated disks between cardiomyocytes. FIG. 5E shows representative images from the myocardial tissue of a COVID-19 myocarditis patient immunohistochemical stained for troponin (cTnt, green in the original), collagen IV (grey in the original), and DAPI (blue in the original). Autofluorescence was also used to facilitate visualization of the images. Cardiomyocytes show diffuse and disorganized troponin staining with occasional cells in the blood vessel staining positively for troponin. White boxes indicate the regions shown directly below that are at higher magnification. White arrows indicate cardiac troponin T material in the cytoplasm of a mononuclear cell within a blood vessel. FIG. 5F shows images of a region of the heart from a COVID-19 patient denoting the transition from healthy to sick myocardium. White boxes indicate the regions shown to the right that are at higher magnification. The disrupted myocardium region is characterized by extensive breaks in α-actinin 2 (ACTN2) staining. FIG. 5G shows immunohistochemically stained images illustrating that viral nucleocapsid protein (magenta in the original; e.g., lower right-center) and α-actinin 2 (green in the original; striated tissue throughout) yielded no recognizable signal aside from occasional, unidentified puncta.





DETAILED DESCRIPTION

As illustrated herein, cardiomyocytes (CMs) can easily be infected by corona viruses, including SARS-CoV-2. Methods are described herein for identifying compounds that can inhibit or prevent such infection.


Such methods can include (a) contacting cardiomyocytes with one or more test agents either before, during or after the cardiomyocytes have been contacted (infected) with corona viruses, for example SARS-CoV-2; and (b) observing whether the cardiomyocytes are enucleated, observing whether the cardiomyocytes have cleaved cardiac myofibrils, observing whether the cardiomyocytes have cleavages in their titin proteins. The assays can also include measuring the number or reproduction rate of the corona viruses compared to a control. The measurements can be performed at one or more time points after the cardiomyocytes are contacted with the one or more test agents. The control can be untreated cardiomyocytes, meaning cardiomyocytes that were not contacted with a test agent. In some cases, the control can be cardiomyocytes contacted with a compound or biological known to inhibit or prevent corona virus infection.


The cardiomyocytes can be obtained from a variety of sources, for example, from existing cardiomyocyte cell lines, from healthy subjects, and/or from patients with cardiac conditions or cardiac diseases. In some cases, the cardiomyocytes can be obtained from induced pluripotent stem cells (iPSCs), which can be generated from cells obtained from healthy subjects or from patients with cardiac conditions or cardiac diseases. For example, cardiomyocytes can be obtained from induced pluripotent stem cells (iPSCs) generated from cells with genetic mutations, including genetic mutations that adversely affect heart function, that adversely affect immune function, or a combination thereof. The cardiomyocytes can, in another example, be obtained from induced pluripotent stem cells (iPSCs) that have mutations in one or more of their immune-related genes, for example, in their innate immune genes. Such mutations can make an individual more vulnerable to COVID-19 infection.


Test Agents

A variety of test agents (e.g., compounds and/or biological agents) can be tested to identify useful agent that reduce SARS-CoV-2 virally induced myofibrillar disruption, sarcomeric fragmentation, nuclear staining, enucleation, cardiac troponin solute levels, or a combination thereof in cardiomyocytes compared to a control assay of cardiomyocytes in the presence of SARS-CoV-2 virus without the test compound(s)/biological agents. For example, the test agents can be one or more small molecules, antibodies, nucleic acids, carbohydrates, proteins, peptides, or a combination thereof. Any such test agents can be tested and/or evaluated in the assays.


Cells for Test Assays

A population of cardiomyocytes for testing can be derived from essentially any source and can be heterogeneous or homogeneous. In certain embodiments, the cells to be tested as described herein are adult cells, including adult cardiomyocytes from essentially any accessible source. In other embodiments, the cells used are cardiomyocytes generated from induced pluripotent stem cells (iPSCs). The cells used to generate the iPSCs can be adult cells, adult stem cells, progenitor cells, or somatic cells obtained from healthy subjects or from patients with cardiac conditions or cardiac diseases. In still other embodiments, the cells used to generate iPSCs include any type of cell from a newborn, including, but not limited to newborn cord blood, newborn stem cells, progenitor cells, and tissue-derived cells (e.g., somatic cells). Accordingly, a starting population of cells that is used to generate iPSCs, can be essentially any live somatic cell type.


The cardiomyocytes can be autologous or allogeneic cells (relative to a subject to be treated or who may receive the cells).


In some cases, cardiomyocytes from healthy subjects are used in the test assays. In other cases, cardiomyocytes from subjects with cardiac conditions are used in the test assays. Cardiomyocyte cell lines can be used in the test assays. Alternatively, the cardiomyocytes can be isolated from a healthy subject, a subject with a cardiac condition, or the cardiomyocytes can be generated from induced pluripotent stem cells (iPSCs) from either healthy subjects or subjects with a cardiac condition. For example, cardiomyocytes can be obtained from induced pluripotent stem cells (iPSCs) generated from cells with genetic mutations, including genetic mutations that adversely affect heart function, that adversely affect immune function, or a combination thereof. The cardiomyocytes can, in another example, be obtained from induced pluripotent stem cells (iPSCs) that have mutations in one or more of their immune-related genes, for example, in their innate immune genes. Such mutations can make an individual more vulnerable to COVID-19 infection.


Cardiomyocytes can be generated from induced pluripotent stem cells (iPSCs) by any convenient method. For example, the cardiomyocytes can be generated from iPSCs using the methods described in WO 2015/038704, which is incorporated herein by reference in its entirety.


Cardiomyocytes from subjects with a variety of cardiac diseases and conditions can be used in the assays described herein. For example, the cardiomyocytes can be from any subject with any cardiac pathology or cardiac dysfunction.


The terms “cardiac pathology” or “cardiac dysfunction” are used interchangeably and refer to any impairment in the heart's pumping function. This includes, for example, impairments in contractility, impairments in ability to relax (sometimes referred to as diastolic dysfunction), abnormal or improper functioning of the heart's valves, diseases of the heart muscle (sometimes referred to as cardiomyopathies), diseases such as angina pectoris, myocardial ischemia and/or infarction characterized by inadequate blood supply to the heart muscle, infiltrative diseases such as amyloidosis and hemochromatosis, global or regional hypertrophy (such as may occur in some kinds of cardiomyopathy or systemic hypertension), and abnormal communications between chambers of the heart.


As used herein, the term “cardiomyopathy” refers to any disease or dysfunction of the myocardium (heart muscle) in which the heart is abnormally enlarged, thickened and/or stiffened. As a result, the heart muscle's ability to pump blood is usually weakened. The etiology of the disease or disorder may be, for example, inflammatory, metabolic, toxic, infiltrative, fibroplastic, hematological, genetic, or unknown in origin. There are two general types of cardiomyopathies: ischemic (resulting from a lack of oxygen) and non-ischemic.


Ischemic cardiomyopathy is a chronic disorder caused by coronary artery disease (a disease in which there is atherosclerotic narrowing or occlusion of the coronary arteries on the surface of the heart). Coronary artery disease often leads to episodes of cardiac ischemia, in which the heart muscle is not supplied with enough oxygen-rich blood.


Non-ischemic cardiomyopathy is generally classified into three groups based primarily on clinical and pathological characteristics: dilated cardiomyopathy, hypertrophic cardiomyopathy and restrictive and infiltrative cardiomyopathy.


In another embodiment, the cardiac pathology is a genetic disease such as Duchenne muscular dystrophy and Emery Dreiffuss dilated cardiomyopathy.


For example, the cardiac pathology can be selected from the group consisting of congestive heart failure, myocardial infarction, cardiac ischemia, myocarditis and arrhythmia.


Titin

Cardiac muscle is striated, like skeletal muscle, with actin and myosin arranged in sarcomeres to enable contractile function. The actin and myosin filaments have a specific and constant length of about a few micrometers. The filaments are organized into repeated subunits along the length of the myofibril. These subunits are called sarcomeres. Muscle cells are largely filled with myofibrils running parallel to each other along the long axis of the cell. The sarcomeric subunits of one myofibril are in nearly perfect alignment with those of the myofibrils next to it. This alignment provides optical properties so that cells to appear striped or striated.


Titin constitutes the third myofilament of cardiac muscle, with a single giant polypeptide spanning from Z-disk to the M-band region of the sarcomere. Titin has two general regions, an N-terminal I-band and a C-terminal A-band. An approximate 1.0 MDa region in the I-band is extensible and consists of tandemly arranged immunoglobulin (Ig)-like domains that make up proximal (near Z-disk) and distal (near A-I junction) segments, interspersed by the PEVK sequence (rich in proline, glutamate, valine, and lysine residues) and an N2B element.


The C-terminal titin region of about 2 MDa includes the A-band and is inextensible. This C-terminal region is composed of regular arrays of Ig and fibronectin type 3 (Fn3) modules forming so-called super-repeats. The A-band is thought to act as a protein-ruler and possesses kinase activity. An N-terminal Z-disc region and a C-terminal M-band region bind to the Z-line and M-line of the sarcomere, respectively, so that a single titin molecule spans half the length of a sarcomere. Titin also contains binding sites for muscle associated proteins and serves as an adhesion template for assembly of contractile machinery in muscle cells. The M-band is encoded by TTN exons 359-364.


Considerable variability exists in the I-band, the M-line, and the Z-disc regions of titin. Variability in the I-band region contributes to the differences in elasticity of different titin isoforms and, therefore, to the differences in elasticity of different muscle types. Mutations in this gene are associated with familial hypertrophic cardiomyopathy. Autoantibodies to titin are produced in patients with the autoimmune disease scleroderma.


The titin protein is encoded by the TTN gene, which is located on human chromosome 2, at NC_000002.12 (178525989..178807423, complement; see website at ncbi.nlm.nih.gov/gene?LinkName=protein_gene&from_uid=291045223). Alternative splicing of the TTN gene results in multiple transcript variants.


One example of a human titin protein sequence has UniProt accession number A0A0A0MRA3-1; this titin protein sequence is shown below as SEQ ID NO:1.










        10         20         30         40         50



MTTQAPTFTQ PLQSVVVLEG STATFEAHIS GFPVPEVSWF RDGQVISTST





        60         70         80         90        100


LPGVQISFSD GRAKLTIPAV TKANSGRYSL KATNGSGQAT STAELLVKAE





       110        120        130        140        150


TAPPNFVQRL QSMTVRQGSQ VRLQVRVTGI PTPVVKFYRD GAEIQSSLDF





       160        170        180        190        200


QISQEGDLYS LLIAEAYPED SGTYSVNATN SVGRATSTAE LLVQGEEEVP





       210        220        230        240        250


AKKTKTIVST AQISESRQTR IEKKIEAHED ARSIATVEMV IDGAAGQQLP





       260        270        280        290        300


HKTPPRIPPK PKSRSPTPPS IAAKAQLARQ QSPSPIRHSP SPVRHVRAPT





       310        320        330        340        350


PSPVRSVSPA ARISTSPIRS VRSPLLMRKT QASTVATGPE VPPPWKQEGY





       360        370        380        390        400


VASSSEAEMR ETTLTTSTQI RTEERWEGRY GVQEQVTISG AAGAAASVSA





       410        420        430        440        450


SASYAAEAVA TGAKEVKQDA DKSAAVATVV AAVDMARVRE PVISAVEQTA





       460        470        480        490        500


QRTTTTAVHI QPAQEQVRKE AEKTAVTKVV VAADKAKEQE LKSRTKEVIT





       510        520        530        540        550


TKQEQMHVTH EQIRKETEKT FVPKVVISAA KAKEQETRIS EEITKKQKQV





       560        570        580        590        600


TQEAIMKETR KTVVPKVIVA TPKVKEQDLV SRGREGITTK REQVQITQEK





       610        620        630        640        650


MRKEAEKTAL STIAVATAKA KEQETILRTR ETMATRQEQI QVTHGKVDVG





       660        670        680        690        700


KKAEAVATVV AAVDQARVRE PREPGHLEES YAQQTTLEYG YKERISAAKV





       710        720        730        740        750


AEPPQRPASE PHVVPKAVKP RVIQAPSETH IKTTDQKGMH ISSQIKKTTD





       760        770        780        790        800


LTTERLVHVD KRPRTASPHF TVSKISVPKT EHGYEASIAG SAIATLQKEL





       810        820        830        840        850


SATSSAQKIT KSVKAPTVKP SETRVRAEPT PLPQFPFADT PDTYKSEAGV





       860        870        880        890        900


EVKKEVGVSI TGTTVREERF EVLHGREAKV TETARVPAPV EIPVTPPTLV





       910        920        930        940        950


SGLKNVTVIE GESVTLECHI SGYPSPTVTW YREDYQIESS IDFQITFQSG





       960        970        980        990       1000


IARLMIREAF AEDSGRFTCS AVNEAGTVST SCYLAVQVSE EFEKETTAVT





      1010       1020       1030       1040       1050


EKFTTEEKRF VESRDVVMTD TSLTEEQAGP GEPAAPYFIT KPVVQKLVEG





      1060       1070       1080       1090       1100


GSVVFGCQVG GNPKPHVYWK KSGVPLTTGY RYKVSYNKQT GECKLVISMT





      1110       1120       1130       1140       1150


FADDAGEYTI VVRNKHGETS ASASLLEEAD YELLMKSQQE MLYQTQVTAF





      1160       1170       1180       1190       1200


VQEPKVGETA PGFVYSEYEK EYEKEQALIR KKMAKDTVVV RTYVEDQEFH





      1210       1220       1230       1240       1250


ISSFEERLIK EIEYRIIKTT LEELLEEDGE EKMAVDISES EAVESGEDSR





      1260       1270       1280       1290       1300


IKNYRILEGM GVTFHCKMSG YPLPKIAWYK DGKRIKHGER YQMDFLQDGR





      1310       1320       1330       1340       1350


ASLRIPVVLP EDEGIYTAFA SNIKGNAICS GKLYVEPAAP LGAPTYIPTL





      1360       1370       1380       1390       1400


EPVSRIRSLS PRSVSRSPIR MSPARMSPAR MSPARMSPAR MSPGRRLEET





      1410       1420       1430       1440       1450


DESQLERLYK PVFVLKPVSF KCLEGQTARF DLKVVGRPMP ETFWFHDGQQ





      1460       1470       1480       1490       1500


IVNDYTHKVV IKEDGTQSLI IVPATPSDSG EWTVVAQNRA GRSSISVILT





      1510       1520       1530       1540       1550


VEAVEHQVKP MFVEKLKNVN IKEGSRLEMK VRATGNPNPD IVWLKNSDII





      1560       1570       1580       1590       1600


VPHKYPKIRI EGTKGEAALK IDSTVSQDSA WYTATAINKA GRDTTRCKVN





      1610       1620       1630       1640       1650


VEVEFAEPEP ERKLIIPRGT YRAKEIAAPE LEPLHLRYGQ EQWEEGDLYD





      1660       1670       1680       1690       1700


KEKQQKPFFK KKLTSLRLKR FGPAHFECRL TPIGDPTMVV EWLHDGKPLE





      1710       1720       1730       1740       1750


AANRLRMINE FGYCSLDYGV AYSRDSGIIT CRATNKYGTD HTSATLIVKD





      1760       1770       1780       1790       1800


EKSLVEESQL PEGRKGLQRI EELERMAHEG ALTGVTTDQK EKQKPDIVLY





      1810       1820       1830       1840       1850


PEPVRVLEGE TARFRCRVTG YPQPKVNWYL NGQLIRKSKR FRVRYDGIHY





      1860       1870       1880       1890       1900


LDIVDCKSYD TGEVKVTAEN PEGVIEHKVK LEIQQREDFR SVLRRAPEPR





      1910       1920       1930       1940       1950


PEFHVHEPGK LQFEVQKVDR PVDTTETKEV VKLKRAERIT HEKVPEESEE





      1960       1970       1980       1990       2000


LRSKFKRRTE EGYYEAITAV ELKSRKKDES YEELLRKTKD ELLHWTKELT





      2010       2020       2030       2040       2050


EEEKKALAEE GKITIPTFKP DKIELSPSME APKIFERIQS QTVGQGSDAH





      2060       2070       2080       2090       2100


FRVRVVGKPD PECEWYKNGV KIERSDRIYW YWPEDNVCEL VIRDVTAEDS





      2110       2120       2130       2140       2150


ASIMVKAINI AGETSSHAFL LVQAKQLITF TQELQDVVAK EKDTMATFEC





      2160       2170       2180       2190       2200


ETSEPFVKVK WYKDGMEVHE GDKYRMHSDR KVHFLSILTI DTSDAEDYSC





      2210       2220       2230       2240       2250


VLVEDENVKT TAKLIVEGAV VEFVKELQDI EVPESYSGEL ECIVSPENIE





      2260       2270       2280       2290       2300


GKWYHNDVEL KSNGKYTITS RRGRQNLTVK DVTKEDQGEY SFVIDGKKTT





      2310       2320       2330       2340       2350


CKLKMKPRPI AILQGLSDQK VCEGDIVQLE VKVSLESVEG VWMKDGQEVQ





      2360       2370       2380       2390       2400


PSDRVHIVID KQSHMLLIED MTKEDAGNYS FTIPALGLST SGRVSVYSVD





      2410       2420       2430       2440       2450


VITPLKDVNV IEGTKAVLEC KVSVPDVTSV KWYLNDEQIK PDDRVQAIVK





      2460       2470       2480       2490       2500


GTKQRLVINR THASDEGPYK LIVGRVETNC NLSVEKIKII RGLRDLTCTE





      2510       2520       2530       2540       2550


TQNVVFEVEL SHSGIDVLWN FKDKEIKPSS KYKIEAHGKI YKLTVLNMMK





      2560       2570       2580       2590       2600


DDEGKYTFYA GENMTSGKLT VAGGAISKPL TDQTVAESQE AVFECEVANP





      2610       2620       2630       2640       2650


DSKGEWLRDG KHLPLTNNIR SESDGHKRRL IIAATKLDDI GEYTYKVATS





      2660       2670       2680       2690       2700


KTSAKLKVEA VKIKKTLKNL TVTETQDAVF TVELTHPNVK GVQWIKNGVV





      2710       2720       2730       2740       2750


LESNEKYAIS VKGTIYSLRI KNCAIVDESV YGFRLGRLGA SARLHVETVK





      2760       2770       2780       2790       2800


IIKKPKDVTA LENATVAFEV SVSHDTVPVK WFHKSVEIKP SDKHRLVSER





      2810       2820       2830       2840       2850


KVHKLMLQNI SPSDAGEYTA VVGQLECKAK LFVETLHITK TMKNIEVPET





      2860       2870       2880       2890       2900


KTASFECEVS HFNVPSMWLK NGVEIEMSEK FKIVVQGKLH QLIIMNTSTE





      2910       2920       2930       2940       2950


DSAEYTFVCG NDQVSATLTV TPIMITSMLK DINAEEKDTI TFEVTVNYEG





      2960       2970       2980       2990       3000


ISYKWLKNGV EIKSTDKCQM RTKKLTHSLN IRNVHFGDAA DYTFVAGKAT





      3010       3020       3030       3040       3050


STATLYVEAR HIEFRKHIKD IKVLEKKRAM FECEVSEPDI TVQWMKDDQE





      3060       3070       3080       3090       3100


LQITDRIKIQ KEKYVHRLLI PSTRMSDAGK YTVVAGGNVS TAKLFVEGRD





      3110       3120       3130       3140       3150


VRIRSIKKEV QVIEKQRAVV EFEVNEDDVD AHWYKDGIEI NFQVQERHKY





      3160       3170       3180       3190       3200


VVERRIHRMF ISETRQSDAG EYTFVAGRNR SSVTLYVNAP EPPQVLQELQ





      3210       3220       3230       3240       3250


PVTVQSGKPA RFCAVISGRP QPKISWYKEE QLLSTGFKCK FLHDGQEYTL





      3260       3270       3280       3290       3300


LLIEAFPEDA AVYTCEAKND YGVATTSASL SVEVPEVVSP DQEMPVYPPA





      3310       3320       3330       3340       3350


IITPLQDTVT SEGQPARFQC RVSGTDLKVS WYSKDKKIKP SRFFRMTQFE





      3360       3370       3380       3390       3400


DTYQLEIAEA YPEDEGTYTF VASNAVGQVS STANLSLEVQ ALDRQSSGKD





      3410       3420       3430       3440       3450


VRESTKSQAV ADSSFTKEES KISQKEIKSF QGSSYEYEVQ VFESVSQSSI





      3460       3470       3480       3490       3500


HTAASVQDTQ LCHTASLSQI AESTELSKEC AKESTGEAPK IFLHLQDVTV





      3510       3520       3530       3540       3550


KCGDTAQFLC VLKDDSFIDV TWTHEGAKIE ESERLKQSQN GNIQFLTICN





      3560       3570       3580       3590       3600


VQLVDQGLYS CIVHNDCGER TTSAVLSVEG APESILHERI EQEIEMEMKE





      3610       3620       3630       3640       3650


FSSSFLSAEE EGLHSAELQL SKINETLELL SESPVYPTKF DSEKEGTGPI





      3660       3670       3680       3690       3700


FIKEVSNADI SMGDVATLSV TVIGIPKPKI QWFFNGVLLT PSADYKFVFD





      3710       3720       3730       3740       3750


GDDHSLIILF TKLEDEGEYT CMASNDYGKT ICSAYLKINS KGEGHKDTET





      3760       3770       3780       3790       3800


ESAVAKSLEK LGGPCPPHFL KELKPIRCAQ GLPAIFEYTV VGEPAPTVTW





      3810       3820       3830       3840       3850


FKENKQLCTS VYYTIIHNPN GSGTFIVNDP QREDSGLYIC KAENMLGEST





      3860       3870       3880       3890       3900


CAAELLVLLE DTDMTDTPCK AKSTPEAPED FPQTPLKGPA VEALDSEQEI





      3910       3920       3930       3940       3950


ATFVKDTILK AALITEENQQ LSYEHIAKAN ELSSQLPLGA QELQSILEQD





      3960       3970       3980       3990       4000


KLTPESTREF LCINGSIHFQ PLKEPSPNLQ LQIVQSQKTF SKEGILMPEE





      4010       4020       4030       4040       4050


PETQAVLSDT EKIFPSAMSI EQINSLTVEP LKTLLAEPEG NYPQSSIEPP





      4060       4070       4080       4090       4100


MHSYLTSVAE EVLSPKEKTV SDTNREQRVT LQKQEAQSAL ILSQSLAEGH





      4110       4120       4130       4140       4150


VESLQSPDVM ISQVNYEPLV PSEHSCTEGG KILIESANPL ENAGQDSAVR





      4160       4170       4180       4190       4200


IEEGKSLRFP LALEEKQVLL KEEHSDNVVM PPDQIIESKR EPVAIKKVQE





      4210       4220       4230       4240       4250


VQGRDLLSKE SLLSGIPEEQ RLNLKIQICR ALQAAVASEQ PGLFSEWLRN





      4260       4270       4280       4290       4300


IEKVEVEAVN ITQEPRHIMC MYLVTSAKSV TEEVTIIIED VDPQMANLKM





      4310       4320       4330       4340       4350


ELRDALCAII YEEIDILTAE GPRIQQGAKT SLQEEMDSFS GSQKVEPITE





      4360       4370       4380       4390       4400


PEVESKYLIS TEEVSYFNVQ SRVKYLDATP VTKGVASAVV SDEKQDESLK





      4410       4420       4430       4440       4450


PSEEKEESSS ESGTEEVATV KIQEAEGGLI KEDGPMIHTP LVDTVSEEGD





      4460       4470       4480       4490       4500


IVHLTTSITN AKEVNWYFEN KLVPSDEKFK CLQDQNTYTL VIDKVNTEDH





      4510       4520       4530       4540       4550


QGEYVCEALN DSGKTATSAK LTVVKRAAPV IKRKIEPLEV ALGHLAKFTC





      4560       4570       4580       4590       4600


EIQSAPNVRF QWFKAGREIY ESDKCSIRSS KYISSLEILR TQVVDCGEYT





      4610       4620       4630       4640       4650


CKASNEYGSV SCTATLTVTV PGGEKKVRKL LPERKPEPKE EVVLKSVLRK





      4660       4670       4680       4690       4700


RPEEEEPKVE PKKLEKVKKP AVPEPPPPKP VEEVEVPTVT KRERKIPEPT





      4710       4720       4730       4740       4750


KVPEIKPAIP LPAPEPKPKP EAEVKTIKPP PVEPEPTPIA APVTVPVVGK





      4760       4770       4780       4790       4800


KAEAKAPKEE AAKPKGPIKG VPKKTPSPIE AERRKLRPGS GGEKPPDEAP





      4810       4820       4830       4840       4850


FTYQLKAVPL KFVKEIKDII LTESEFVGSS AIFECLVSPS TAITTWMKDG





      4860       4870       4880       4890       4900


SNIRESPKHR FIADGKDRKL HIIDVQLSDA GEYTCVLRLG NKEKTSTAKL





      4910       4920       4930       4940       4950


VVEELPVRFV KTLEEEVTVV KGQPLYLSCE LNKERDVVWR KDGKIVVEKP





      4960       4970       4980       4990       5000


GRIVPGVIGL MRALTINDAD DTDAGTYTVT VENANNLECS SCVKVVEVIR





      5010       5020       5030       5040       5050


DWLVKPIRDQ HVKPKGTAIF ACDIAKDTPN IKWFKGYDEI PAEPNDKTEI





      5060       5070       5080       5090       5100


LRDGNHLYLK IKNAMPEDIA EYAVEIEGKR YPAKLTLGER EVELLKPIED





      5110       5120       5130       5140       5150


VTIYEKESAS FDAEISEADI PGQWKLKGEL LRPSPTCEIK AEGGKRFLTL





      5160       5170       5180       5190       5200


HKVKLDQAGE VLYQALNAIT TAILTVKEIE LDFAVPLKDV TVPERRQARF





      5210       5220       5230       5240       5250


ECVLTREANV IWSKGPDIIK SSDKFDIIAD GKKHILVIND SQFDDEGVYT





      5260       5270       5280       5290       5300


AEVEGKKTSA RLFVTGIRLK FMSPLEDQTV KEGETATFVC ELSHEKMHVV





      5310       5320       5330       5340       5350


WFKNDAKLHT SRTVLISSEG KTHKLEMKEV TLDDISQIKA QVKELSSTAQ





      5360       5370       5380       5390       5400


LKVLEADPYF TVKLHDKTAV EKDEITLKCE VSKDVPVKWF KDGEEIVPSP





      5410       5420       5430       5440       5450


KYSIKADGLR RILKIKKADL KDKGEYVCDC GTDKTKANVT VEARLIKVEK





      5460       5470       5480       5490       5500


PLYGVEVFVG ETAHFEIELS EPDVHGQWKL KGQPLTASPD CEIIEDGKKH





      5510       5520       5530       5540       5550


ILILHNCQLG MTGEVSFQAA NAKSAANLKV KELPLIFITP LSDVKVFEKD





      5560       5570       5580       5590       5600


EAKFECEVSR EPKTFRWLKG TQEITGDDRF ELIKDGTKHS MVIKSAAFED





      5610       5620       5630       5640       5650


EAKYMFEAED KHTSGKLIIE GIRLKFLTPL KDVTAKEKES AVFTVELSHD





      5660       5670       5680       5690       5700


NIRVKWFKND QRLHTTRSVS MQDEGKTHSI TFKDLSIDDT SQIRVEAMGM





      5710       5720       5730       5740       5750


SSEAKLTVLE GDPYFTGKLQ DYTGVEKDEV ILQCEISKAD APVKWFKDGK





      5760       5770       5780       5790       5800


EIKPSKNAVI KADGKKRMLI LKKALKSDIG QYTCDCGTDK TSGKLDIEDR





      5810       5820       5830       5840       5850


EIKLVRPLHS VEVMETETAR FETEISEDDI HANWKLKGEA LLQTPDCEIK





      5860       5870       5880       5890       5900


EEGKIHSLVL HNCRLDQTGG VDFQAANVKS SAHLRVKPRV IGLLRPLKDV





      5910       5920       5930       5940       5950


TVTAGETATF DCELSYEDIP VEWYLKGKKL EPSDKVVPRS EGKVHTLTLR





      5960       5970       5980       5990       6000


DVKLEDAGEV QLTAKDFKTH ANLFVKEPPV EFTKPLEDQT VEEGATAVLE





      6010       6020       6030       6040       6050


CEVSRENAKV KWFKNGTEIL KSKKYEIVAD GRVRKLVIHD CTPEDIKTYT





      6060       6070       6080       6090       6100


CDAKDFKTSC NLNVVPPHVE FLRPLTDLQV REKEMARFEC ELSRENAKVK





      6110       6120       6130       6140       6150


WFKDGAEIKK GKKYDIISKG AVRILVINKC LLDDEAEYSC EVRTARTSGM





      6160       6170       6180       6190       6200


LTVLEEEAVF TKNLANIEVS ETDTIKLVCE VSKPGAEVIW YKGDEEIIET





      6210       6220       6230       6240       6250


GRYEILTEGR KRILVIQNAH LEDAGNYNCR LPSSRTDGKV KVHELAAEFI





      6260       6270       6280       6290       6300


SKPQNLEILE GEKAEFVCSI SKESFPVQWK RDDKTLESGD KYDVIADGKK





      6310       6320       6330       6340       6350


RVLVVKDATL QDMGTYVVMV GAARAAAHLT VIEKLRIVVP LKDTRVKEQQ





      6360       6370       6380       6390       6400


EVVENCEVNT EGAKAKWFRN EEAIFDSSKY IILQKDLVYT LRIRDAHLDD





      6410       6420       6430       6440       6450


QANYNVSLTN HRGENVKSAA NLIVEEEDLR IVEPLKDIET MEKKSVTFWC





      6460       6470       6480       6490       6500


KVNRLNVTLK WTKNGEEVPF DNRVSYRVDK YKHMLTIKDC GFPDEGEYIV





      6510       6520       6530       6540       6550


TAGQDKSVAE LLIIEAPTEF VEHLEDQTVT EFDDAVFSCQ LSREKANVKW





      6560       6570       6580       6590       6600


YRNGREIKEG KKYKFEKDGS IHRLIIKDCR LDDECEYACG VEDRKSRARL





      6610       6620       6630       6640       6650


FVEEIPVEII RPPQDILEAP GADVVFLAEL NKDKVEVQWL RNNMVVVQGD





      6660       6670       6680       6690       6700


KHQMMSEGKI HRLQICDIKP RDQGEYRFIA KDKEARAKLE LAAAPKIKTA





      6710       6720       6730       6740       6750


DQDLVVDVGK PLTMVVPYDA YPKAEAEWFK ENEPLSTKTI DTTAEQTSFR





      6760       6770       6780       6790       6800


ILEAKKGDKG RYKIVLQNKH GKAEGFINLK VIDVPGPVRN LEVTETEDGE





      6810       6820       6830       6840       6850


VSLAWEEPLT DGGSKIIGYV VERRDIKRKT WVLATDRAES CEFTVTGLQK





      6860       6870       6880       6890       6900


GGVEYLFRVS ARNRVGTGEP VETDNPVEAR SKYDVPGPPL NVTITDVNRF





      6910       6920       6930       6940       6950


GVSLTWEPPE YDGGAEITNY VIELRDKTSI RWDTAMTVRA EDLSATVTDV





      6960       6970       6980       6990       7000


VEGQEYSFRV RAQNRIGVGK PSAATPFVKV ADPIERPSPP VNLTSSDQTQ





      7010       7020       7030       7040       7050


SSVQLKWEPP LKDGGSPILG YIIERCEEGK DNWIRCNMKL VPELTYKVTG





      7060       7070       7080       7090       7100


LEKGNKYLYR VSAENKAGVS DPSEILGPLT ADDAFVEPTM DLSAFKDGLE





      7110       7120       7130       7140       7150


VIVPNPITIL VPSTGYPRPT ATWCFGDKVL ETGDRVKMKT LSAYAELVIS





      7160       7170       7180       7190       7200


PSERSDKGIY TLKLENRVKT ISGEIDVNVI ARPSAPKELK FGDITKDSVH





      7210       7220       7230       7240       7250


LTWEPPDDDG GSPLTGYVVE KREVSRKTWT KVMDFVTDLE FTVPDLVQGK





      7260       7270       7280       7290       7300


EYLFKVCARN KCGPGEPAYV DEPVNMSTPA TVPDPPENVK WRDRTANSIF





      7310       7320       7330       7340       7350


LTWDPPKNDG GSRIKGYIVE RCPRGSDKWV ACGEPVAETK MEVTGLEEGK





      7360       7370       7380       7390       7400


WYAYRVKALN RQGASKPSRP TEEIQAVDTQ EAPEIFLDVK LLAGLTVKAG





      7410       7420       7430       7440       7450


TKIELPATVT GKPEPKITWT KADMILKQDK RITIENVPKK STVTIVDSKR





      7460       7470       7480       7490       7500


SDTGTYIIEA VNVCGRATAV VEVNVLDKPG PPAAFDITDV TNESCLLTWN





      7510       7520       7530       7540       7550


PPRDDGGSKI TNYVVERRAT DSEVWHKLSS TVKDTNFKAT KLIPNKEYIF





      7560       7570       7580       7590       7600


RVAAENMYGV GEPVQASPIT AKYQFDPPGP PTRLEPSDIT KDAVTLTWCE





      7610       7620       7630       7640       7650


PDDDGGSPIT GYWVERLDPD TDKWVRCNKM PVKDTTYRVK GLTNKKKYRF





      7660       7670       7680       7690       7700


RVLAENLAGP GKPSKSTEPI LIKDPIDPPW PPGKPTVKDV GKTSVRLNWT





      7710       7720       7730       7740       7750


KPEHDGGAKI ESYVIEMLKT GTDEWVRVAE GVPTTQHLLP GLMEGQEYSF





      7760       7770       7780       7790       7800


RVRAVNKAGE SEPSEPSDPV LCREKLYPPS PPRWLEVINI TKNTADLKWT





      7810       7820       7830       7840       7850


VPEKDGGSPI TNYIVEKRDV RRKGWQTVDT TVKDTKCTVT PLTEGSLYVF





      7860       7870       7880       7890       7900


RVAAENAIGQ SDYTEIEDSV LAKDTFTTPG PPYALAVVDV TKRHVDLKWE





      7910       7920       7930       7940       7950


PPKNDGGRPI QRYVIEKKER LGTRWVKAGK TAGPDCNFRV TDVIEGTEVQ





      7960       7970       7980       7990       8000


FQVRAENEAG VGHPSEPTEI LSIEDPTSPP SPPLDLHVTD AGRKHIAIAW





      8010       8020       8030       8040       8050


KPPEKNGGSP IIGYHVEMCP VGTEKWMRVN SRPIKDLKFK VEEGVVPDKE





      8060       8070       8080       8090       8100


YVLRVRAVNA IGVSEPSEIS ENVVAKDPDC KPTIDLETHD IIVIEGEKLS





      8110       8120       8130       8140       8150


IPVPFRAVPV PTVSWHKDGK EVKASDRLTM KNDHISAHLE VPKSVRADAG





      8160       8170       8180       8190       8200


IYTITLENKL GSATASINVK VIGLPGPCKD IKASDITKSS CKLTWEPPEF





      8210       8220       8230       8240       8250


DGGTPILHYV LERREAGRRT YIPVMSGENK LSWTVKDLIP NGEYFFRVKA





      8260       8270       8280       8290       8300


VNKVGGGEYI ELKNPVIAQD PKQPPDPPVD VEVHNPTAEA MTITWKPPLY





      8310       8320       8330       8340       8350


DGGSKIMGYI IEKIAKGEER WKRCNEHLVP ILTYTAKGLE EGKEYQFRVR





      8360       8370       8380       8390       8400


AENAAGISEP SRATPPTKAV DPIDAPKVIL RTSLEVKRGD EIALDASISG





      8410       8420       8430       8440       8450


SPYPTITWIK DENVIVPEEI KKRAAPLVRR RKGEVQEEEP FVLPLTQRLS





      8460       8470       8480       8490       8500


IDNSKKGESQ LRVRDSLRPD HGLYMIKVEN DHGIAKAPCT VSVLDTPGPP





      8510       8520       8530       8540       8550


INFVFEDIRK TSVLCKWEPP LDDGGSEIIN YTLEKKDKTK PDSEWIVVTS





      8560       8570       8580       8590       8600


TLRHCKYSVT KLIEGKEYLF RVRAENRFGP GPPCVSKPLV AKDPFGPPDA





      8610       8620       8630       8640       8650


PDKPIVEDVT SNSMLVKWNE PKDNGSPILG YWLEKREVNS THWSRVNKSL





      8660       8670       8680       8690       8700


LNALKANVDG LLEGLTYVFR VCAENAAGPG KFSPPSDPKT AHDPISPPGP





      8710       8720       8730       8740       8750


PIPRVTDTSS TTIELEWEPP AFNGGGEIVG YFVDKQLVGT NEWSRCTEKM





      8760       8770       8780       8790       8800


IKVRQYTVKE IREGADYKLR VSAVNAAGEG PPGETQPVTV AEPQEPPAVE





      8810       8820       8830       8840       8850


LDVSVKGGIQ IMAGKTLRIP AVVTGRPVPT KVWTKEEGEL DKDRVVIDNV





      8860       8870       8880       8890       8900


GTKSELIIKD ALRKDHGRYV ITATNSCGSK FAAARVEVFD VPGPVLDLKP





      8910       8920       8930       8940       8950


VVTNRKMCLL NWSDPEDDGG SEITGFIIER KDAKMHTWRQ PIETERSKCD





      8960       8970       8980       8990       9000


ITGLLEGQEY KFRVIAKNKF GCGPPVEIGP ILAVDPLGPP TSPERLTYTE





      9010       9020       9030       9040       9050


RTKSTITLDW KEPRSNGGSP IQGYIIEKRR HDKPDFERVN KRLCPTTSFL





      9060       9070       9080       9090       9100


VENLDEHQMY EFRVKAVNEI GESEPSLPLN VVIQDDEVPP TIKLRLSVRG





      9110       9120       9130       9140       9150


DTIKVKAGEP VHIPADVTGL PMPKIEWSKN ETVIEKPTDA LQITKEEVSR





      9160       9170       9180       9190       9200


SEAKTELSIP KAVREDKGTY TVTASNRLGS VFRNVHVEVY DRPSPPRNLA





      9210       9220       9230       9240       9250


VTDIKAESCY LTWDAPLDNG GSEITHYVID KRDASRKKAE WEEVTNTAVE





      9260       9270       9280       9290       9300


KRYGIWKLIP NGQYEFRVRA VNKYGISDEC KSDKVVIQDP YRLPGPPGKP





      9310       9320       9330       9340       9350


KVLARTKGSM LVSWTPPLDN GGSPITGYWL EKREEGSPYW SRVSRAPITK





      9360       9370       9380       9390       9400


VGLKGVEFNV PRLLEGVKYQ FRAMAINAAG IGPPSEPSDP EVAGDPIFPP





      9410       9420       9430       9440       9450


GPPSCPEVKD KTKSSISLGW KPPAKDGGSP IKGYIVEMQE EGTTDWKRVN





      9460       9470       9480       9490       9500


EPDKLITTCE CVVPNLKELR KYRFRVKAVN EAGESEPSDT TGEIPATDIQ





      9510       9520       9530       9540       9550


EEPEVFIDIG AQDCLVCKAG SQIRIPAVIK GRPTPKSSWE FDGKAKKAMK





      9560       9570       9580       9590       9600


DGVHDIPEDA QLETAENSSV IIIPECKRSH TGKYSITAKN KAGQKTANCR





      9610       9620       9630       9640       9650


VKVMDVPGPP KDLKVSDITR GSCRLSWKMP DDDGGDRIKG YVIEKRTIDG





      9660       9670       9680       9690       9700


KAWTKVNPDC GSTTFVVPDL LSEQQYFFRV RAENRFGIGP PVETIQRTTA





      9710       9720       9730       9740       9750


RDPIYPPDPP IKLKIGLITK NTVHLSWKPP KNDGGSPVTH YIVECLAWDP





      9760       9770       9780       9790       9800


TGTKKEAWRQ CNKRDVEELQ FTVEDLVEGG EYEFRVKAVN AAGVSKPSAT





      9810       9820       9830       9840       9850


VGPVTVKDQT CPPSIDLKEF MEVEEGTNVN IVAKIKGVPF PTLTWFKAPP





      9860       9870       9880       9890       9900


KKPDNKEPVL YDTHVNKLVV DDTCTLVIPQ SRRSDTGLYT ITAVNNLGTA





      9910       9920       9930       9940       9950


SKEMRLNVLG RPGPPVGPIK FESVSADQMT LSWFPPKDDG GSKITNYVIE





      9960       9970       9980       9990      10000


KREANRKTWV HVSSEPKECT YTIPKLLEGH EYVFRIMAQN KYGIGEPLDS





     10010      10020      10030      10040      10050


EPETARNLFS VPGAPDKPTV SSVTRNSMTV NWEEPEYDGG SPVTGYWLEM





     10060      10070      10080      10090      10100


KDTTSKRWKR VNRDPIKAMT LGVSYKVTGL IEGSDYQFRV YAINAAGVGP





     10110      10120      10130      10140      10150


ASLPSDPATA RDPIAPPGPP FPKVTDWTKS SADLEWSPPL KDGGSKVTGY





     10160      10170      10180      10190      10200


IVEYKEEGKE EWEKGKDKEV RGTKLVVTGL KEGAFYKFRV RAVNIAGIGE





     10210      10220      10230      10240      10250


PGEVTDVIEM KDRLVSPDLQ LDASVRDRIV VHAGGVIRII AYVSGKPPPT





     10260      10270      10280      10290      10300


VTWNMNERTL PQEATIETTA ISSSMVIKNC QRSHQGVYSL LAKNEAGERK





     10310      10320      10330      10340      10350


KTIIVDVLDV PGPVGTPFLA HNLTNESCKL TWFSPEDDGG SPITNYVIEK





     10360      10370      10380      10390      10400


RESDRRAWTP VTYTVTRQNA TVQGLIQGKA YFFRIAAENS IGMGPFVETS





     10410      10420      10430      10440      10450


EALVIREPIT VPERPEDLEV KEVTKNTVTL TWNPPKYDGG SEIINYVLES





     10460      10470      10480      10490      10500


RLIGTEKFHK VTNDNLLSRK YTVKGLKEGD TYEYRVSAVN IVGQGKPSFC





     10510      10520      10530      10540      10550


TKPITCKDEL APPTLHLDER DKLTIRVGEA FALTGRYSGK PKPKVSWFKD





     10560      10570      10580      10590      10600


EADVLEDDRT HIKTTPATLA LEKIKAKRSD SGKYCVVVEN STGSRKGFCQ





     10610      10620      10630      10640      10650


VNVVDRPGPP VGPVSFDEVT KDYMVISWKP PLDDGGSKIT NYIIEKKEVG





     10660      10670      10680      10690      10700


KDVWMPVTSA SAKTTCKVSK LLEGKDYIFR IHAENLYGIS DPLVSDSMKA





     10710      10720      10730      10740      10750


KDRFRVPDAP DQPIVTEVTK DSALVTWNKP HDGGKPITNY ILEKRETMSK





     10760      10770      10780      10790      10800


RWARVTKDPI HPYTKFRVPD LLEGCQYEFR VSAENEIGIG DPSPPSKPVF





     10810      10820      10830      10840      10850


AKDPIAKPSP PVNPEAIDTT CNSVDLTWQP PRHDGGSKIL GYIVEYQKVG





     10860      10870      10880      10890      10900


DEEWRRANHT PESCPETKYK VTGLRDGQTY KFRVLAVNAA GESDPAHVPE





     10910      10920      10930      10940      10950


PVLVKDRLEP PELILDANMA REQHIKVGDT LRLSAIIKGV PFPKVTWKKE





     10960      10970      10980      10990      11000


DRDAPTKARI DVTPVGSKLE IRNAAHEDGG IYSLTVENPA GSKTVSVKVL





     11010      11020      11030      11040      11050


VLDKPGPPRD LEVSEIRKDS CYLTWKEPLD DGGSVITNYV VERRDVASAQ





     11060      11070      11080      11090      11100


WSPLSATSKK KSHFAKHLNE GNQYLFRVAA ENQYGRGPFV ETPKPIKALD





     11110      11120      11130      11140      11150


PLHPPGPPKD LHHVDVDKTE VSLVWNKPDR DGGSPITGYL VEYQEEGTQD





     11160      11170      11180      11190      11200


WIKFKTVTNL ECVVTGLQQG KTYRFRVKAE NIVGLGLPDT TIPIECQEKL





     11210      11220      11230      11240      11250


VPPSVELDVK LIEGLVVKAG TTVRFPAIIR GVPVPTAKWT TDGSEIKTDE





     11260      11270      11280      11290      11300


HYTVETDNES SVLTIKNCLR RDTGEYQITV SNAAGSKTVA VHLTVLDVPG





     11310      11320      11330      11340      11350


PPTGPINILD VTPEHMTISW QPPKDDGGSP VINYIVEKQD TRKDTWGVVS





     11360      11370      11380      11390      11400


SGSSKTKLKI PHLQKGCEYV FRVRAENKIG VGPPLDSTPT VAKHKFSPPS





     11410      11420      11430      11440      11450


PPGKPVVTDI TENAATVSWT LPKSDGGSPI TGYYMERREV TGKWVRVNKT





     11460      11470      11480      11490      11500


PIADLKFRVT GLYEGNTYEF RVFAENLAGL SKPSPSSDPI KACRPIKPPG





     11510      11520      11530      11540      11550


PPINPKLKDK SRETADLVWT KPLSDGGSPI LGYVVECQKP GTAQWNRINK





     11560      11570      11580      11590      11600


DELIRQCAFR VPGLIEGNEY RFRIKAANIV GEGEPRELAE SVIAKDILHP





     11610      11620      11630      11640      11650


PEVELDVTCR DVITVRVGQT IRILARVKGR PEPDITWTKE GKVLVREKRV





     11660      11670      11680      11690      11700


DLIQDLPRVE LQIKEAVRAD HGKYIISAKN SSGHAQGSAI VNVLDRPGPC





     11710      11720      11730      11740      11750


QNLKVTNVTK ENCTISWENP LDNGGSEITN FIVEYRKPNQ KGWSIVASDV





     11760      11770      11780      11790      11800


TKRLIKANLL ANNEYYFRVC AENKVGVGPT IETKTPILAI NPIDRPGEPE





     11810      11820      11830      11840      11850


NLHIADKGKT FVYLKWRRPD YDGGSPNLSY HVERRLKGSD DWERVHKGSI





     11860      11870      11880      11890      11900


KETHYMVDRC VENQIYEFRV QTKNEGGESD WVKTEEVVVK EDLQKPVLDL





     11910      11920      11930      11940      11950


KLSGVLTVKA GDTIRLEAGV RGKPFPEVAW TKDKDATDLT RSPRVKIDTR





     11960      11970      11980      11990      12000


ADSSKFSLTK AKRSDGGKYV VTATNTAGSF VAYATVNVLD KPGPVRNLKI





     12010      12020      12030      12040      12050


VDVSSDRCTV CWDPPEDDGG CEIQNYILEK CETKRMVWST YSATVLTPGT





     12060      12070      12080      12090      12100


TVTRLIEGNE YIFRVRAENK IGTGPPTESK PVIAKTKYDK PGRPDPPEVT





     12110      12120      12130      12140      12150


KVSKEEMTVV WNPPEYDGGK SITGYFLEKK EKHSTRWVPV NKSAIPERRM





     12160      12170      12180      12190      12200


KVQNLLPDHE YQFRVKAENE IGIGEPSLPS RPVVAKDPIE PPGPPTNFRV





     12210      12220      12230      12240      12250


VDTTKHSITL GWGKPVYDGG APIIGYVVEM RPKIADASPD EGWKRCNAAA





     12260      12270      12280      12290      12300


QLVRKEFTVT SLDENQEYEF RVCAQNQVGI GRPAELKEAI KPKEILEPPE





     12310      12320      12330      12340      12350


IDLDASMRKL VIVRAGCPIR LFAIVRGRPA PKVTWRKVGI DNVVRKGQVD





     12360      12370      12380      12390      12400


LVDTMAFLVI PNSTRDDSGK YSLTLVNPAG EKAVFVNVRV LDTPGPVSDL





     12410      12420      12430      12440      12450


KVSDVTKTSC HVSWAPPEND GGSQVTHYIV EKREADRKTW STVTPEVKKT





     12460      12470      12480      12490      12500


SFHVTNLVPG NEYYFRVTAV NEYGPGVPTD VPKPVLASDP LSEPDPPRKL





     12510      12520      12530      12540      12550


EVTEMTKNSA TLAWLPPLRD GGAKIDGYIT SYREEEQPAD RWTEYSVVKD





     12560      12570      12580      12590      12600


LSLVVTGLKE GKKYKFRVAA RNAVGVSLPR EAEGVYEAKE QLLPPKILMP





     12610      12620      12630      12640      12650


EQITIKAGKK LRIEAHVYGK PHPTCKWKKG EDEVVTSSHL AVHKADSSSI





     12660      12670      12680      12690      12700


LIIKDVTRKD SGYYSLTAEN SSGTDTQKIK VVVMDAPGPP QPPFDISDID





     12710      12720      12730      12740      12750


ADACSLSWHI PLEDGGSNIT NYIVEKCDVS RGDWVTALAS VTKTSCRVGK





     12760      12770      12780      12790      12800


LIPGQEYIFR VRAENREGIS EPLTSPKMVA QFPFGVPSEP KNARVTKVNK





     12810      12820      12830      12840      12850


DCIFVAWDRP DSDGGSPIIG YLIERKERNS LLWVKANDTL VRSTEYPCAG





     12860      12870      12880      12890      12900


LVEGLEYSFR IYALNKAGSS PPSKPTEYVT ARMPVDPPGK PEVIDVTKST





     12910      12920      12930      12940      12950


VSLIWARPKH DGGSKIIGYF VEACKLPGDK WVRCNTAPHQ IPQEEYTATG





     12960      12970      12980      12990      13000


LEEKAQYQFR AIARTAVNIS PPSEPSDPVT ILAENVPPRI DLSVAMKSLL





     13010      13020      13030      13040      13050


TVKAGTNVCL DATVFGKPMP TVSWKKDGTL LKPAEGIKMA MQRNLCTLEL





     13060      13070      13080      13090      13100


FSVNRKDSGD YTITAENSSG SKSATIKLKV LDKPGPPASV KINKMYSDRA





     13110      13120      13130      13140      13150


MLSWEPPLED GGSEITNYIV DKRETSRPNW AQVSATVPIT SCSVEKLIEG





     13160      13170      13180      13190      13200


HEYQFRICAE NKYGVGDPVF TEPAIAKNPY DPPGRCDPPV ISNITKDHMT





     13210      13220      13230      13240      13250


VSWKPPADDG GSPITGYLLE KRETQAVNWT KVNRKPIIER TLKATGLQEG





     13260      13270      13280      13290      13300


TEYEFRVTAI NKAGPGKPSD ASKAAYARDP QYPPGPPAFP KVYDTTRSSV





     13310      13320      13330      13340      13350


SLSWGKPAYD GGSPIIGYLV EVKRADSDNW VRCNLPQNLQ KTRFEVTGLM





     13360      13370      13380      13390      13400


EDTQYQFRVY AVNKIGYSDP SDVPDKHYPK DILIPPEGEL DADLRKTLIL





     13410      13420      13430      13440      13450


RAGVTMRLYV PVKGRPPPKI TWSKPNVNLR DRIGLDIKST DFDTFLRCEN





     13460      13470      13480      13490      13500


VNKYDAGKYI LTLENSCGKK EYTIVVKVLD TPGPPVNVTV KEISKDSAYV





     13510      13520      13530      13540      13550


TWEPPIIDGG SPIINYVVQK RDAERKSWST VTTECSKTSF RVANLEEGKS





     13560      13570      13580      13590      13600


YFFRVFAENE YGIGDPGETR DAVKASQTPG PVVDLKVRSV SKSSCSIGWK





     13610      13620      13630      13640      13650


KPHSDGGSRI IGYVVDFLTE ENKWQRVMKS LSLQYSAKDL TEGKEYTFRV





     13660      13670      13680      13690      13700


SAENENGEGT PSEITVVARD DVVAPDLDLK GLPDLCYLAK ENSNFRLKIP





     13710      13720      13730      13740      13750


IKGKPAPSVS WKKGEDPLAT DTRVSVESSA VNTTLIVYDC QKSDAGKYTI





     13760      13770      13780      13790      13800


TLKNVAGTKE GTISIKVVGK PGIPTGPIKF DEVTAEAMTL KWAPPKDDGG





     13810      13820      13830      13840      13850


SEITNYILEK RDSVNNKWVT CASAVQKTTF RVTRLHEGME YTFRVSAENK





     13860      13870      13880      13890      13900


YGVGEGLKSE PIVARHPFDV PDAPPPPNIV DVRHDSVSLT WTDPKKTGGS





     13910      13920      13930      13940      13950


PITGYHLEFK ERNSLLWKRA NKTPIRMRDF KVTGLTEGLE YEFRVMAINL





     13960      13970      13980      13990      14000


AGVGKPSLPS EPVVALDPID PPGKPEVINI TRNSVTLIWT EPKYDGGHKL





     14010      14020      14030      14040      14050


TGYIVEKRDL PSKSWMKANH VNVPECAFTV TDLVEGGKYE FRIRAKNTAG





     14060      14070      14080      14090      14100


AISAPSESTE TIICKDEYEA PTIVLDPTIK DGLTIKAGDT IVLNAISILG





     14110      14120      14130      14140      14150


KPLPKSSWSK AGKDIRPSDI TQITSTPTSS MLTIKYATRK DAGEYTITAT





     14160      14170      14180      14190      14200


NPFGTKVEHV KVTVLDVPGP PGPVEISNVS AEKATLTWTP PLEDGGSPIK





     14210      14220      14230      14240      14250


SYILEKRETS RLLWTVVSED IQSCRHVATK LIQGNEYIFR VSAVNHYGKG





     14260      14270      14280      14290      14300


EPVQSEPVKM VDRFGPPGPP EKPEVSNVTK NTATVSWKRP VDDGGSEITG





     14310      14320      14330      14340      14350


YHVERREKKS LRWVRAIKTP VSDLRCKVTG LQEGSTYEFR VSAENRAGIG





     14360      14370      14380      14390      14400


PPSEASDSVL MKDAAYPPGP PSNPHVTDTT KKSASLAWGK PHYDGGLEIT





     14410      14420      14430      14440      14450


GYVVEHQKVG DEAWIKDTTG TALRITQFVV PDLQTKEKYN FRISAINDAG





     14460      14470      14480      14490      14500


VGEPAVIPDV EIVEREMAPD FELDAELRRT LVVRAGLSIR IFVPIKGRPA





     14510      14520      14530      14540      14550


PEVTWTKDNI NLKNRANIEN TESFTLLIIP ECNRYDTGKF VMTIENPAGK





     14560      14570      14580      14590      14600


KSGFVNVRVL DTPGPVLNLR PTDITKDSVT LHWDLPLIDG GSRITNYIVE





     14610      14620      14630      14640      14650


KREATRKSYS TATTKCHKCT YKVTGLSEGC EYFFRVMAEN EYGIGEPTET





     14660      14670      14680      14690      14700


TEPVKASEAP SPPDSLNIMD ITKSTVSLAW PKPKHDGGSK ITGYVIEAQR





     14710      14720      14730      14740      14750


KGSDQWTHIT TVKGLECVVR NLTEGEEYTF QVMAVNSAGR SAPRESRPVI





     14760      14770      14780      14790      14800


VKEQTMLPEL DLRGIYQKLV IAKAGDNIKV EIPVLGRPKP TVTWKKGDQI





     14810      14820      14830      14840      14850


LKQTQRVNFE TTATSTILNI NECVRSDSGP YPLTARNIVG EVGDVITIQV





     14860      14870      14880      14890      14900


HDIPGPPTGP IKFDEVSSDF VTFSWDPPEN DGGVPISNYV VEMRQTDSTT





     14910      14920      14930      14940      14950


WVELATTVIR TTYKATRLTT GLEYQFRVKA QNRYGVGPGI TSACIVANYP





     14960      14970      14980      14990      15000


FKVPGPPGTP QVTAVTKDSM TISWHEPLSD GGSPILGYHV ERKERNGILW





     15010      15020      15030      15040      15050


QTVSKALVPG NIFKSSGLTD GIAYEFRVIA ENMAGKSKPS KPSEPMLALD





     15060      15070      15080      15090      15100


PIDPPGKPVP LNITRHTVTL KWAKPEYTGG FKITSYIVEK RDLPNGRWLK





     15110      15120      15130      15140      15150


ANFSNILENE FTVSGLTEDA AYEFRVIAKN AAGAISPPSE PSDAITCRDD





     15160      15170      15180      15190      15200


VEAPKIKVDV KFKDTVILKA GEAFRLEADV SGRPPPTMEW SKDGKELEGT





     15210      15220      15230      15240      15250


AKLEIKIADF STNLVNKDST RRDSGAYTLT ATNPGGFAKH IFNVKVLDRP





     15260      15270      15280      15290      15300


GPPEGPLAVT EVTSEKCVLS WFPPLDDGGA KIDHYIVQKR ETSRLAWTNV





     15310      15320      15330      15340      15350


ASEVQVTKLK VTKLLKGNEY IFRVMAVNKY GVGEPLESEP VLAVNPYGPP





     15360      15370      15380      15390      15400


DPPKNPEVTT ITKDSMVVCW GHPDSDGGSE IINYIVERRD KAGQRWIKCN





     15410      15420      15430      15440      15450


KKTLTDLRYK VSGLTEGHEY EFRIMAENAA GISAPSPTSP FYKACDTVFK





     15460      15470      15480      15490      15500


PGPPGNPRVL DTSRSSISIA WNKPIYDGGS EITGYMVEIA LPEEDEWQIV





     15510      15520      15530      15540      15550


TPPAGLKATS YTITGLTENQ EYKIRIYAMN SEGLGEPALV PGTPKAEDRM





     15560      15570      15580      15590      15600


LPPEIELDAD LRKVVTIRAC CTLRLFVPIK GRPAPEVKWA RDHGESLDKA





     15610      15620      15630      15640      15650


SIESTSSYTL LIVGNVNRFD SGKYILTVEN SSGSKSAFVN VRVLDTPGPP





     15660      15670      15680      15690      15700


QDLKVKEVTK TSVTLTWDPP LLDGGSKIKN YIVEKRESTR KAYSTVATNC





     15710      15720      15730      15740      15750


HKTSWKVDQL QEGCSYYFRV LAENEYGIGL PAETAESVKA SERPLPPGKI





     15760      15770      15780      15790      15800


TLMDVTRNSV SLSWEKPEHD GGSRILGYIV EMQTKGSDKW ATCATVKVTE





     15810      15820      15830      15840      15850


ATITGLIQGE EYSFRVSAQN EKGISDPRQL SVPVIAKDLV IPPAFKLLEN





     15860      15870      15880      15890      15900


TFTVLAGEDL KVDVPFIGRP TPAVTWHKDN VPLKQTTRVN AESTENNSLL





     15910      15920      15930      15940      15950


TIKDACREDV GHYVVKLINS AGEAIETLNV IVLDKPGPPT GPVKMDEVTA





     15960      15970      15980      15990      16000


DSITLSWGPP KYDGGSSINN YIVEKRDTST TTWQIVSATV ARTTIKACRL





     16010      16020      16030      16040      16050


KTGCEYQFRI AAENRYGKST YLNSEPTVAQ YPFKVPGPPG TPVVTLSSRD





     16060      16070      16080      16090      16100


SMEVQWNEPI SDGGSRVIGY HLERKERNSI LWVKLNKTPI PQTKFKTTGL





     16110      16120      16130      16140      16150


EEGVEYEFRV SAENIVGIGK PSKVSECYVA RDPCDPPGRP EAIIVTRNSV





     16160      16170      16180      16190      16200


TLQWKKPTYD GGSKITGYIV EKKELPEGRW MKASFTNIID THFEVTGLVE





     16210      16220      16230      16240      16250


DHRYEFRVIA RNAAGVFSEP SESTGAITAR DEVDPPRISM DPKYKDTIVV





     16260      16270      16280      16290      16300


HAGESFKVDA DIYGKPIPTI QWIKGDQELS NTARLEIKST DFATSLSVKD





     16310      16320      16330      16340      16350


AVRVDSGNYI LKAKNVAGER SVTVNVKVLD RPGPPEGPVV ISGVTAEKCT





     16360      16370      16380      16390      16400


LAWKPPLQDG GSDIINYIVE RRETSRLVWT VVDANVQTLS CKVTKLLEGN





     16410      16420      16430      16440      16450


EYTFRIMAVN KYGVGEPLES EPVVAKNPFV VPDAPKAPEV TTVTKDSMIV





     16460      16470      16480      16490      16500


VWERPASDGG SEILGYVLEK RDKEGIRWTR CHKRLIGELR LRVTGLIENH





     16510      16520      16530      16540      16550


DYEFRVSAEN AAGLSEPSPP SAYQKACDPI YKPGPPNNPK VIDITRSSVF





     16560      16570      16580      16590      16600


LSWSKPIYDG GCEIQGYIVE KCDVSVGEWT MCTPPTGINK TNIEVEKLLE





     16610      16620      16630      16640      16650


KHEYNFRICA INKAGVGEHA DVPGPIIVEE KLEAPDIDLD LELRKIINIR





     16660      16670      16680      16690      16700


AGGSLRLFVP IKGRPTPEVK WGKVDGEIRD AAIIDVTSSF TSLVLDNVNR





     16710      16720      16730      16740      16750


YDSGKYTLTL ENSSGTKSAF VTVRVLDTPS PPVNLKVTEI TKDSVSITWE





     16760      16770      16780      16790      16800


PPLLDGGSKI KNYIVEKREA TRKSYAAVVT NCHKNSWKID QLQEGCSYYF





     16810      16820      16830      16840      16850


RVTAENEYGI GLPAQTADPI KVAEVPQPPG KITVDDVTRN SVSLSWTKPE





     16860      16870      16880      16890      16900


HDGGSKIIQY IVEMQAKHSE KWSECARVKS LQAVITNLTQ GEEYLFRVVA





     16910      16920      16930      16940      16950


VNEKGRSDPR SLAVPIVAKD LVIEPDVKPA FSSYSVQVGQ DLKIEVPISG





     16960      16970      16980      16990      17000


RPKPTITWTK DGLPLKQTTR INVTDSLDLT TLSIKETHKD DGGQYGITVA





     17010      17020      17030      17040      17050


NVVGQKTASI EIVTLDKPDP PKGPVKFDDV SAESITLSWN PPLYTGGCQI





     17060      17070      17080      17090      17100


TNYIVQKRDT TTTVWDVVSA TVARTTLKVT KLKTGTEYQF RIFAENRYGQ





     17110      17120      17130      17140      17150


SFALESDPIV AQYPYKEPGP PGTPFATAIS KDSMVIQWHE PVNNGGSPVI





     17160      17170      17180      17190      17200


GYHLERKERN SILWTKVNKT IIHDTQFKAQ NLEEGIEYEF RVYAENIVGV





     17210      17220      17230      17240      17250


GKASKNSECY VARDPCDPPG TPEPIMVKRN EITLQWTKPV YDGGSMITGY





     17260      17270      17280      17290      17300


IVEKRDLPDG RWMKASFTNV IETQFTVSGL TEDQRYEFRV IAKNAAGAIS





     17310      17320      17330      17340      17350


KPSDSTGPIT AKDEVELPRI SMDPKFRDTI VVNAGETFRL EADVHGKPLP





     17360      17370      17380      17390      17400


TIEWLRGDKE IEESARCEIK NTDFKALLIV KDAIRIDGGQ YILRASNVAG





     17410      17420      17430      17440      17450


SKSFPVNVKV LDRPGPPEGP VQVTGVTSEK CSLTWSPPLQ DGGSDISHYV





     17460      17470      17480      17490      17500


VEKRETSRLA WTVVASEVVT NSLKVTKLLE GNEYVFRIMA VNKYGVGEPL





     17510      17520      17530      17540      17550


ESAPVLMKNP FVLPGPPKSL EVTNIAKDSM TVCWNRPDSD GGSEIIGYIV





     17560      17570      17580      17590      17600


EKRDRSGIRW IKCNKRRITD LRLRVTGLTE DHEYEFRVSA ENAAGVGEPS





     17610      17620      17630      17640      17650


PATVYYKACD PVFKPGPPTN AHIVDTTKNS ITLAWGKPIY DGGSEILGYV





     17660      17670      17680      17690      17700


VEICKADEEE WQIVTPQTGL RVTRFEISKL TEHQEYKIRV CALNKVGLGE





     17710      17720      17730      17740      17750


ATSVPGTVKP EDKLEAPELD LDSELRKGIV VRAGGSARIH IPFKGRPTPE





     17760      17770      17780      17790      17800


ITWSREEGEF TDKVQIEKGV NYTQLSIDNC DRNDAGKYIL KLENSSGSKS





     17810      17820      17830      17840      17850


AFVTVKVLDT PGPPQNLAVK EVRKDSAFLV WEPPIIDGGA KVKNYVIDKR





     17860      17870      17880      17890      17900


ESTRKAYANV SSKCSKTSFK VENLTEGAIY YFRVMAENEF GVGVPVETVD





     17910      17920      17930      17940      17950


AVKAAEPPSP PGKVTLTDVS QTSASLMWEK PEHDGGSRVL GYVVEMQPKG





     17960      17970      17980      17990      18000


TEKWSIVAES KVCNAVVTGL SSGQEYQFRV KAYNEKGKSD PRVLGVPVIA





     18010      18020      18030      18040      18050


KDLTIQPSLK LPFNTYSIQA GEDLKIEIPV IGRPRPNISW VKDGEPLKQT





     18060      18070      18080      18090      18100


TRVNVEETAT STVLHIKEGN KDDFGKYTVT ATNSAGTATE NLSVIVLEKP





     18110      18120      18130      18140      18150


GPPVGPVRED EVSADFVVIS WEPPAYTGGC QISNYIVEKR DTTTTTWHMV





     18160      18170      18180      18190      18200


SATVARTTIK ITKLKTGTEY QFRIFAENRY GKSAPLDSKA VIVQYPFKEP





     18210      18220      18230      18240      18250


GPPGTPFVTS ISKDQMLVQW HEPVNDGGTK IIGYHLEQKE KNSILWVKLN





     18260      18270      18280      18290      18300


KTPIQDTKFK TTGLDEGLEY EFKVSAENIV GIGKPSKVSE CFVARDPCDP





     18310      18320      18330      18340      18350


PGRPEAIVIT RNNVTLKWKK PAYDGGSKIT GYIVEKKDLP DGRWMKASFT





     18360      18370      18380      18390      18400


NVLETEFTVS GLVEDQRYEF RVIARNAAGN FSEPSDSSGA ITARDEIDAP





     18410      18420      18430      18440      18450


NASLDPKYKD VIVVHAGETF VLEADIRGKP IPDVVWSKDG KELEETAARM





     18460      18470      18480      18490      18500


EIKSTIQKTT LVVKDCIRTD GGQYILKLSN VGGTKSIPIT VKVLDRPGPP





     18510      18520      18530      18540      18550


EGPLKVTGVT AEKCYLAWNP PLQDGGANIS HYIIEKRETS RLSWTQVSTE





     18560      18570      18580      18590      18600


VQALNYKVTK LLPGNEYIFR VMAVNKYGIG EPLESGPVTA CNPYKPPGPP





     18610      18620      18630      18640      18650


STPEVSAITK DSMVVTWARP VDDGGTEIEG YILEKRDKEG VRWTKCNKKT





     18660      18670      18680      18690      18700


LTDLRLRVTG LTEGHSYEFR VAAENAAGVG EPSEPSVFYR ACDALYPPGP





     18710      18720      18730      18740      18750


PSNPKVTDTS RSSVSLAWSK PIYDGGAPVK GYVVEVKEAA ADEWTTCTPP





     18760      18770      18780      18790      18800


TGLQGKQFTV TKLKENTEYN FRICAINSEG VGEPATLPGS VVAQERIEPP





     18810      18820      18830      18840      18850


EIELDADLRK VVVLRASATL RLFVTIKGRP EPEVKWEKAE GILTDRAQIE





     18860      18870      18880      18890      18900


VTSSFTMLVI DNVTRFDSGR YNLTLENNSG SKTAFVNVRV LDSPSAPVNL





     18910      18920      18930      18940      18950


TIREVKKDSV TLSWEPPLID GGAKITNYIV EKRETTRKAY ATITNNCTKT





     18960      18970      18980      18990      19000


TFRIENLQEG CSYYFRVLAS NEYGIGLPAE TTEPVKVSEP PLPPGRVTLV





     19010      19020      19030      19040      19050


DVTRNTATIK WEKPESDGGS KITGYVVEMQ TKGSEKWSTC TQVKTLEATI





     19060      19070      19080      19090      19100


SGLTAGEEYV FRVAAVNEKG RSDPRQLGVP VIARDIEIKP SVELPFHTEN





     19110      19120      19130      19140      19150


VKAREQLKID VPFKGRPQAT VNWRKDGQTL KETTRVNVSS SKTVTSLSIK





     19160      19170      19180      19190      19200


EASKEDVGTY ELCVSNSAGS ITVPITIIVL DRPGPPGPIR IDEVSCDSIT





     19210      19220      19230      19240      19250


ISWNPPEYDG GCQISNYIVE KKETTSTTWH IVSQAVARTS IKIVRLTTGS





     19260      19270      19280      19290      19300


EYQFRVCAEN RYGKSSYSES SAVVAEYPFS PPGPPGTPKV VHATKSTMLV





     19310      19320      19330      19340      19350


TWQVPVNDGG SRVIGYHLEY KERSSILWSK ANKILIADTQ MKVSGLDEGL





     19360      19370      19380      19390      19400


MYEYRVYAEN IAGIGKCSKS CEPVPARDPC DPPGQPEVTN ITRKSVSLKW





     19410      19420      19430      19440      19450


SKPHYDGGAK ITGYIVERRE LPDGRWLKCN YTNIQETYFE VTELTEDQRY





     19460      19470      19480      19490      19500


EFRVFARNAA DSVSEPSEST GPIIVKDDVE PPRVMMDVKF RDVIVVKAGE





     19510      19520      19530      19540      19550


VLKINADIAG RPLPVISWAK DGIEIEERAR TEIISTDNHT LLTVKDCIRR





     19560      19570      19580      19590      19600


DTGQYVLTLK NVAGTRSVAV NCKVLDKPGP PAGPLEINGL TAEKCSLSWG





     19610      19620      19630      19640      19650


RPQEDGGADI DYYIVEKRET SHLAWTICEG ELQMTSCKVT KLLKGNEYIF





     19660      19670      19680      19690      19700


RVTGVNKYGV GEPLESVAIK ALDPFTVPSP PTSLEITSVT KESMTLCWSR





     19710      19720      19730      19740      19750


PESDGGSEIS GYIIERREKN SLRWVRVNKK PVYDLRVKST GLREGCEYEY





     19760      19770      19780      19790      19800


RVYAENAAGL SLPSETSPLI RAEDPVFLPS PPSKPKIVDS GKTTITIAWV





     19810      19820      19830      19840      19850


KPLFDGGAPI TGYTVEYKKS DDTDWKTSIQ SLRGTEYTIS GLTTGAEYVF





     19860      19870      19880      19890      19900


RVKSVNKVGA SDPSDSSDPQ IAKEREEEPL FDIDSEMRKT LIVKAGASFT





     19910      19920      19930      19940      19950


MTVPFRGRPV PNVLWSKPDT DLRTRAYVDT TDSRTSLTIE NANRNDSGKY





     19960      19970      19980      19990      20000


TLTIQNVLSA ASLTLVVKVL DTPGPPTNIT VQDVTKESAV LSWDVPENDG





     20010      20020      20030      20040      20050


GAPVKNYHIE KREASKKAWV SVINNCNRLS YKVTNLQEGA IYYFRVSGEN





     20060      20070      20080      20090      20100


EFGVGIPAET KEGVKITEKP SPPEKLGVTS ISKDSVSLTW LKPEHDGGSR





     20110      20120      20130      20140      20150


IVHYVVEALE KGQKNWVKCA VAKSTHHVVS GLRENSEYFF RVFAENQAGL





     20160      20170      20180      20190      20200


SDPRELLLPV LIKEQLEPPE IDMKNFPSHT VYVRAGSNLK VDIPISGKPL





     20210      20220      20230      20240      20250


PKVTLSRDGV PLKATMRENT EITAENLTIN LKESVTADAG RYEITAANSS





     20260      20270      20280      20290      20300


GTTKAFINIV VLDRPGPPTG PVVISDITEE SVTLKWEPPK YDGGSQVTNY





     20310      20320      20330      20340      20350


ILLKRETSTA VWTEVSATVA RTMMKVMKLT TGEEYQFRIK AENREGISDH





     20360      20370      20380      20390      20400


IDSACVTVKL PYTTPGPPST PWVTNVTRES ITVGWHEPVS NGGSAVVGYH





     20410      20420      20430      20440      20450


LEMKDRNSIL WQKANKLVIR TTHFKVTTIS AGLIYEFRVY AENAAGVGKP





     20460      20470      20480      20490      20500


SHPSEPVLAI DACEPPRNVR ITDISKNSVS LSWQQPAFDG GSKITGYIVE





     20510      20520      20530      20540      20550


RRDLPDGRWT KASFTNVTET QFIISGLTQN SQYEFRVFAR NAVGSISNPS





     20560      20570      20580      20590      20600


EVVGPITCID SYGGPVIDLP LEYTEVVKYR AGTSVKLRAG ISGKPAPTIE





     20610      20620      20630      20640      20650


WYKDDKELQT NALVCVENTT DLASILIKDA DRINSGCYEL KLRNAMGSAS





     20660      20670      20680      20690      20700


ATIRVQILDK PGPPGGPIEF KTVTAEKITL LWRPPADDGG AKITHYIVEK





     20710      20720      20730      20740      20750


RETSRVVWSM VSEHLEECII TTTKIIKGNE YIFRVRAVNK YGIGEPLESD





     20760      20770      20780      20790      20800


SVVAKNAFVT PGPPGIPEVT KITKNSMTVV WSRPIADGGS DISGYFLEKR





     20810      20820      20830      20840      20850


DKKSLGWFKV LKETIRDTRQ KVTGLTENSD YQYRVCAVNA AGQGPFSEPS





     20860      20870      20880      20890      20900


EFYKAADPID PPGPPAKIRI ADSTKSSITL GWSKPVYDGG SAVTGYVVEI





     20910      20920      20930      20940      20950


RQGEEEEWTT VSTKGEVRTT EYVVSNLKPG VNYYFRVSAV NCAGQGEPIE





     20960      20970      20980      20990      21000


MNEPVQAKDI LEAPEIDLDV ALRTSVIAKA GEDVQVLIPF KGRPPPTVTW





     21010      21020      21030      21040      21050


RKDEKNLGSD ARYSIENTDS SSLLTIPQVT RNDTGKYILT IENGVGEPKS





     21060      21070      21080      21090      21100


STVSVKVLDT PAACQKLQVK HVSRGTVTLL WDPPLIDGGS PIINYVIEKR





     21110      21120      21130      21140      21150


DATKRTWSVV SHKCSSTSFK LIDLSEKTPF FFRVLAENEI GIGEPCETTE





     21160      21170      21180      21190      21200


PVKAAEVPAP IRDLSMKDST KTSVILSWTK PDFDGGSVIT EYVVERKGKG





     21210      21220      21230      21240      21250


EQTWSHAGIS KTCEIEVSQL KEQSVLEFRV FAKNEKGLSD PVTIGPITVK





     21260      21270      21280      21290      21300


ELIITPEVDL SDIPGAQVTV RIGHNVHLEL PYKGKPKPSI SWLKDGLPLK





     21310      21320      21330      21340      21350


ESEFVRFSKT ENKITLSIKN AKKEHGGKYT VILDNAVCRI AVPITVITLG





     21360      21370      21380      21390      21400


PPSKPKGPIR FDEIKADSVI LSWDVPEDNG GGEITCYSIE KRETSQTNWK





     21410      21420      21430      21440      21450


MVCSSVARTT FKVPNLVKDA EYQFRVRAEN RYGVSQPLVS SIIVAKHQFR





     21460      21470      21480      21490      21500


IPGPPGKPVI YNVTSDGMSL TWDAPVYDGG SEVTGFHVEK KERNSILWQK





     21510      21520      21530      21540      21550


VNTSPISGRE YRATGLVEGL DYQFRVYAEN SAGLSSPSDP SKFTLAVSPV





     21560      21570      21580      21590      21600


DPPGTPDYID VTRETITLKW NPPLRDGGSK IVGYSIEKRQ GNERWVRCNF





     21610      21620      21630      21640      21650


TDVSECQYTV TGLSPGDRYE FRIIARNAVG TISPPSQSSG IIMTRDENVP





     21660      21670      21680      21690      21700


PIVEFGPEYF DGLIIKSGES LRIKALVQGR PVPRVTWFKD GVEIEKRMNM





     21710      21720      21730      21740      21750


EITDVLGSTS LFVRDATRDH RGVYTVEAKN ASGSAKAEIK VKVQDTPGKV





     21760      21770      21780      21790      21800


VGPIRFTNIT GEKMTLWWDA PLNDGCAPIT HYIIEKRETS RLAWALIEDK





     21810      21820      21830      21840      21850


CEAQSYTAIK LINGNEYQFR VSAVNKFGVG RPLDSDPVVA QIQYTVPDAP





     21860      21870      21880      21890      21900


GIPEPSNITG NSITLTWARP ESDGGSEIQQ YILERREKKS TRWVKVISKR





     21910      21920      21930      21940      21950


PISETRFKVT GLTEGNEYEF HVMAENAAGV GPASGISRLI KCREPVNPPG





     21960      21970      21980      21990      22000


PPTVVKVTDT SKTTVSLEWS KPVEDGGMEI IGYIIEMCKA DLGDWHKVNA





     22010      22020      22030      22040      22050


EACVKTRYTV TDLQAGEEYK FRVSAINGAG KGDSCEVTGT IKAVDRLTAP





     22060      22070      22080      22090      22100


ELDIDANFKQ THVVRAGASI RLFIAYQGRP TPTAVWSKPD SNLSLRADIH





     22110      22120      22130      22140      22150


TTDSFSTLTV ENCNRNDAGK YTLTVENNSG SKSITFTVKV LDTPGPPGPI





     22160      22170      22180      22190      22200


TFKDVTRGSA TLMWDAPLLD GGARIHHYVV EKREASRRSW QVISEKCTRQ





     22210      22220      22230      22240      22250


IFKVNDLAEG VPYYFRVSAV NEYGVGEPYE MPEPIVATEQ PAPPRRLDVV





     22260      22270      22280      22290      22300


DTSKSSAVLA WLKPDHDGGS RITGYLLEMR QKGSDFWVEA GHTKQLTFTV





     22310      22320      22330      22340      22350


ERLVEKTEYE FRVKAKNDAG YSEPREAFSS VIIKEPQIEP TADLTGITNQ





     22360      22370      22380      22390      22400


LITCKAGSPF TIDVPISGRP APKVTWKLEE MRLKETDRVS ITTTKDRTTL





     22410      22420      22430      22440      22450


TVKDSMRGDS GRYFLTLENT AGVKTFSVTV VVIGRPGPVT GPIEVSSVSA





     22460      22470      22480      22490      22500


ESCVLSWGEP KDGGGTEITN YIVEKRESGT TAWQLVNSSV KRTQIKVTHL





     22510      22520      22530      22540      22550


TKYMEYSFRV SSENRFGVSK PLESAPIIAE HPFVPPSAPT RPEVYHVSAN





     22560      22570      22580      22590      22600


AMSIRWEEPY HDGGSKIIGY WVEKKERNTI LWVKENKVPC LECNYKVTGL





     22610      22620      22630      22640      22650


VEGLEYQFRT YALNAAGVSK ASEASRPIMA QNPVDAPGRP EVTDVTRSTV





     22660      22670      22680      22690      22700


SLIWSAPAYD GGSKVVGYII ERKPVSEVGD GRWLKCNYTI VSDNFFTVTA





     22710      22720      22730      22740      22750


LSEGDTYEFR VLAKNAAGVI SKGSESTGPV TCRDEYAPPK AELDARLHGD





     22760      22770      22780      22790      22800


LVTIRAGSDL VLDAAVGGKP EPKIIWTKGD KELDLCEKVS LQYTGKRATA





     22810      22820      22830      22840      22850


VIKFCDRSDS GKYTLTVKNA SGTKAVSVMV KVLDSPGPCG KLTVSRVTQE





     22860      22870      22880      22890      22900


KCTLAWSLPQ EDGGAEITHY IVERRETSRL NWVIVEGECP TLSYVVTRLI





     22910      22920      22930      22940      22950


KNNEYIFRVR AVNKYGPGVP VESEPIVARN SFTIPSPPGI PEEVGTGKEH





     22960      22970      22980      22990      23000


IIIQWTKPES DGGNEISNYL VDKREKKSLR WTRVNKDYVV YDTRLKVTSL





     23010      23020      23030      23040      23050


MEGCDYQFRV TAVNAAGNSE PSEASNFISC REPSYTPGPP SAPRVVDTTK





     23060      23070      23080      23090      23100


HSISLAWTKP MYDGGTDIVG YVLEMQEKDT DQWYRVHTNA TIRNTEFTVP





     23110      23120      23130      23140      23150


DLKMGQKYSF RVAAVNVKGM SEYSESIAEI EPVERIEIPD LELADDLKKT





     23160      23170      23180      23190      23200


VTIRAGASLR LMVSVSGRPP PVITWSKQGI DLASRAIIDT TESYSLLIVD





     23210      23220      23230      23240      23250


KVNRYDAGKY TIEAENQSGK KSATVLVKVY DTPGPCPSVK VKEVSRDSVT





     23260      23270      23280      23290      23300


ITWEIPTIDG GAPVNNYIVE KREAAMRAFK TVTTKCSKTL YRISGLVEGT





     23310      23320      23330      23340      23350


MYYFRVLPEN IYGIGEPCET SDAVLVSEVP LVPAKLEVVD VTKSTVTLAW





     23360      23370      23380      23390      23400


EKPLYDGGSR LTGYVLEACK AGTERWMKVV TLKPTVLEHT VTSLNEGEQY





     23410      23420      23430      23440      23450


LFRIRAQNEK GVSEPRETVT AVTVQDLRVL PTIDLSTMPQ KTIHVPAGRP





     23460      23470      23480      23490      23500


VELVIPIAGR PPPAASWFFA GSKLRESERV TVETHTKVAK LTIRETTIRD





     23510      23520      23530      23540      23550


TGEYTLELKN VTGTTSETIK VIILDKPGPP TGPIKIDEID ATSITISWEP





     23560      23570      23580      23590      23600


PELDGGAPLS GYVVEQRDAH RPGWLPVSES VTRSTFKFTR LTEGNEYVER





     23610      23620      23630      23640      23650


VAATNRFGIG SYLQSEVIEC RSSIRIPGPP ETLQIFDVSR DGMTLTWYPP





     23660      23670      23680      23690      23700


EDDGGSQVTG YIVERKEVRA DRWVRVNKVP VTMTRYRSTG LTEGLEYEHR





     23710      23720      23730      23740      23750


VTAINARGSG KPSRPSKPIV AMDPIAPPGK PQNPRVTDTT RTSVSLAWSV





     23760      23770      23780      23790      23800


PEDEGGSKVT GYLIEMQKVD QHEWTKCNTT PTKIREYTLT HLPQGAEYRF





     23810      23820      23830      23840      23850


RVLACNAGGP GEPAEVPGTV KVTEMLEYPD YELDERYQEG IFVRQGGVIR





     23860      23870      23880      23890      23900


LTIPIKGKPF PICKWTKEGQ DISKRAMIAT SETHTELVIK EADRGDSGTY





     23910      23920      23930      23940      23950


DLVLENKCGK KAVYIKVRVI GSPNSPEGPL EYDDIQVRSV RVSWRPPADD





     23960      23970      23980      23990      24000


GGADILGYIL ERREVPKAAW YTIDSRVRGT SLVVKGLKEN VEYHFRVSAE





     24010      24020      24030      24040      24050


NQFGISKPLK SEEPVTPKTP LNPPEPPSNP PEVLDVTKSS VSLSWSRPKD





     24060      24070      24080      24090      24100


DGGSRVTGYY IERKETSTDK WVRHNKTQIT TTMYTVTGLV PDAEYQFRII





     24110      24120      24130      24140      24150


AQNDVGLSET SPASEPVVCK DPFDKPSQPG ELEILSISKD SVTLQWEKPE





     24160      24170      24180      24190      24200


CDGGKEILGY WVEYRQSGDS AWKKSNKERI KDKQFTIGGL LEATEYEFRV





     24210      24220      24230      24240      24250


FAENETGLSR PRRTAMSIKT KLTSGEAPGI RKEMKDVTTK LGEAAQLSCQ





     24260      24270      24280      24290      24300


IVGRPLPDIK WYRFGKELIQ SRKYKMSSDG RTHTLTVMTE EQEDEGVYTC





     24310      24320      24330      24340      24350


IATNEVGEVE TSSKLLLQAT PQFHPGYPLK EKYYGAVGST LRLHVMYIGR





     24360      24370      24380      24390      24400


PVPAMTWFHG QKLLQNSENI TIENTEHYTH LVMKNVQRKT HAGKYKVQLS





     24410      24420      24430      24440      24450


NVFGTVDAIL DVEIQDKPDK PTGPIVIEAL LKNSAVISWK PPADDGGSWI





     24460      24470      24480      24490      24500


TNYVVEKCEA KEGAEWQLVS SAISVTTCRI VNLTENAGYY FRVSAQNTFG





     24510      24520      24530      24540      24550


ISDPLEVSSV VIIKSPFEKP GAPGKPTITA VTKDSCVVAW KPPASDGGAK





     24560      24570      24580      24590      24600


IRNYYLEKRE KKQNKWISVT TEEIRETVFS VKNLIEGLEY EFRVKCENLG





     24610      24620      24630      24640      24650


GESEWSEISE PITPKSDVPI QAPHFKEELR NLNVRYQSNA TLVCKVTGHP





     24660      24670      24680      24690      24700


KPIVKWYRQG KEIIADGLKY RIQEFKGGYH QLIIASVTDD DATVYQVRAT





     24710      24720      24730      24740      24750


NQGGSVSGTA SLEVEVPAKI HLPKTLEGMG AVHALRGEVV SIKIPFSGKP





     24760      24770      24780      24790      24800


DPVITWQKGQ DLIDNNGHYQ VIVTRSFTSL VFPNGVERKD AGFYVVCAKN





     24810      24820      24830      24840      24850


RFGIDQKTVE LDVADVPDPP RGVKVSDVSR DSVNLTWTEP ASDGGSKITN





     24860      24870      24880      24890      24900


YIVEKCATTA ERWLRVGQAR ETRYTVINLF GKTSYQFRVI AENKFGLSKP





     24910      24920      24930      24940      24950


SEPSEPTITK EDKTRAMNYD EEVDETREVS MTKASHSSTK ELYEKYMIAE





     24960      24970      24980      24990      25000


DLGRGEFGIV HRCVETSSKK TYMAKFVKVK GTDQVLVKKE ISILNIARHR





     25010      25020      25030      25040      25050


NILHLHESFE SMEELVMIFE FISGLDIFER INTSAFELNE REIVSYVHQV





     25060      25070      25080      25090      25100


CEALQFLHSH NIGHFDIRPE NIIYQTRRSS TIKIIEFGQA RQLKPGDNFR





     25110      25120      25130      25140      25150


LLFTAPEYYA PEVHQHDVVS TATDMWSLGT LVYVLLSGIN PFLAETNQQI





     25160      25170      25180      25190      25200


IENIMNAEYT FDEEAFKEIS IEAMDFVDRL LVKERKSRMT ASEALQHPWL





     25210      25220      25230      25240      25250


KQKIERVSTK VIRTLKHRRY YHTLIKKDLN MVVSAARISC GGAIRSQKGV





     25260      25270      25280      25290      25300


SVAKVKVASI EIGPVSGQIM HAVGEEGGHV KYVCKIENYD QSTQVTWYFG





     25310      25320      25330      25340      25350


VRQLENSEKY EITYEDGVAI LYVKDITKLD DGTYRCKVVN DYGEDSSYAE





     25360      25370      25380      25390      25400


LFVKGVREVY DYYCRRTMKK IKRRTDTMRL LERPPEFTLP LYNKTAYVGE





     25410      25420      25430      25440      25450


NVRFGVTITV HPEPHVTWYK SGQKIKPGDN DKKYTFESDK GLYQLTINSV





     25460      25470      25480      25490      25500


TTDDDAEYTV VARNKYGEDS CKAKLTVTLH PPPTDSTLRP MFKRLLANAE





     25510      25520      25530      25540      25550


CQEGQSVCFE IRVSGIPPPT LKWEKDGQPL SLGPNIEIIH EGLDYYALHI





     25560      25570      25580      25590      25600


RDTLPEDTGY YRVTATNTAG STSCQAHLQV ERLRYKKQEF KSKEEHERHV





     25610      25620      25630      25640      25650


QKQIDKTLRM AEILSGTESV PLTQVAKEAL REAAVLYKPA VSTKTVKGEF





     25660      25670      25680      25690      25700


RLEIEEKKEE RKLRMPYDVP EPRKYKQTTI EEDQRIKQFV PMSDMKWYKK





     25710      25720      25730      25740      25750


IRDQYEMPGK LDRVVQKRPK RIRLSRWEQF YVMPLPRITD QYRPKWRIPK





     25760      25770      25780      25790      25800


LSQDDLEIVR PARRRTPSPD YDFYYRPRRR SLGDISDEEL LLPIDDYLAM





     25810      25820      25830      25840      25850


KRTEEERLRL EEELELGFSA SPPSRSPPHF ELSSLRYSSP QAHVKVEETR





     25860      25870      25880      25890      25900


KDFRYSTYHI PTKAEASTSY AELRERHAQA AYRQPKQRQR IMAEREDEEL





     25910      25920      25930      25940      25950


LRPVTTTQHL SEYKSELDEM SKEEKSRKKS RRQREVTEIT EIEEEYEISK





     25960      25970      25980      25990      26000


HAQRESSSSA SRLLRRRRSL SPTYIELMRP VSELIRSRPQ PAEEYEDDTE





     26010      26020      26030      26040      26050


RRSPTPERTR PRSPSPVSSE RSLSRFERSA RFDIFSRYES MKAALKTQKT





     26060      26070      26080      26090      26100


SERKYEVLSQ QPFTLDHAPR ITLRMRSHRV PCGQNTRFIL NVQSKPTAEV





     26110      26120      26130      26140      26150


KWYHNGVELQ ESSKIHYTNT SGVLTLEILD CHTDDSGTYR AVCTNYKGEA





     26160      26170      26180      26190      26200


SDYATLDVTG GDYTTYASQR RDEEVPRSVF PELTRTEAYA VSSFKKTSEM





     26210      26220      26230      26240      26250


EASSSVREVK SQMTETRESL SSYEHSASAE MKSAALEEKS LEEKSTTRKI





     26260      26270      26280      26290      26300


KTTLAARILT KPRSMTVYEG ESARFSCDTD GEPVPTVTWL RKGQVLSTSA





     26310      26320      26330      26340      26350


RHQVTTTKYK STFEISSVQA SDEGNYSVVV ENSEGKQEAE FTLTIQKARV





     26360      26370      26380      26390      26400


TEKAVTSPPR VKSPEPRVKS PEAVKSPKRV KSPEPSHPKA VSPTETKPTP





     26410      26420      26430      26440      26450


TEKVQHLPVS APPKITQFLK AEASKEIAKL TCVVESSVLR AKEVTWYKDG





     26460      26470      26480      26490      26500


KKLKENGHFQ FHYSADGTYE LKINNLTESD QGEYVCEISG EGGTSKTNLQ





     26510      26520      26530      26540      26550


FMGQAFKSIH EKVSKISETK KSDQKTTEST VTRKTEPKAP EPISSKPVIV





     26560      26570      26580      26590      26600


TGLQDTTVSS DSVAKFAVKA TGEPRPTAIW TKDGKAITQG GKYKLSEDKG





     26610      26620      26630      26640      26650


GFFLEIHKTD TSDSGLYTCT VKNSAGSVSS SCKLTIKAIK DTEAQKVSTQ





     26660      26670      26680      26690      26700


KTSEITPQKK AVVQEEISQK ALRSEEIKMS EAKSQEKLAL KEEASKVLIS





     26710      26720      26730      26740      26750


EEVKKSAATS LEKSIVHEEI TKTSQASEEV RTHAEIKAFS TQMSINEGQR





     26760      26770      26780      26790      26800


LVLKANIAGA TDVKWVLNGV ELTNSEEYRY GVSGSDQTLT IKQASHRDEG





     26810      26820      26830      26840      26850


ILTCISKTKE GIVKCQYDLT LSKELSDAPA FISQPRSQNI NEGQNVLFTC





     26860      26870      26880      26890      26900


EISGEPSPEI EWFKNNLPIS ISSNVSISRS RNVYSLEIRN ASVSDSGKYT





     26910      26920      26930      26940      26950


IKAKNFRGQC SATASLMVLP LVEEPSREVV LRTSGDTSLQ GSFSSQSVQM





     26960      26970      26980      26990      27000


SASKQEASFS SFSSSSASSM TEMKFASMSA QSMSSMQESF VEMSSSSFMG





     27010      27020      27030      27040      27050


ISNMTQLESS TSKMLKAGIR GIPPKIEALP SDISIDEGKV LTVACAFTGE





     27060      27070      27080      27090      27100


PTPEVTWSCG GRKIHSQEQG RFHIENTDDL TTLIIMDVQK QDGGLYTLSL





     27110


GNEFGSDSAT VNIHIRSI







Another example of a titin protein sequence is provided by UniProt as accession number Q8WZ42.


The N2-B splice variant of titin encodes the major N2-B cardiac muscle isoform, which lacks multiple exons in the region encoding PEVK repeats. This results in a shortened PEVK region in isoform N2-B compared to isoform IC. A sequence for such a human N2-B titin isoform is shown below (NCBI accession number NP 003310.4), provided below as SEQ ID NO:2.










    1
MTTQAPTFTQ PLQSVVVLEG STATFEAHIS GFPVPEVSWF





   41
RDGQVISTST LPGVQISFSD GRAKLTIPAV TKANSGRYSL





   81
KATNGSGQAT STAELLVKAE TAPPNFVQRL QSMTVRQGSQ





  121
VRLQVRVTGI PTPVVKFYRD GAEIQSSLDF QISQEGDLYS





  161
LLIAEAYPED SGTYSVNATN SVGRATSTAE LLVQGEEEVP





  201
AKKTKTIVST AQISESRQTR IEKKIEAHFD ARSIATVEMV





  241
IDGAAGQQLP HKTPPRIPPK PKSRSPTPPS IAAKAQLARQ





  281
QSPSPIRHSP SPVRHVRAPT PSPVRSVSPA ARISTSPIRS





  321
VRSPLLMRKT QASTVATGPE VPPPWKQEGY VASSSEAEMR





  361
ETTLTTSTQI RTEERWEGRY GVQEQVTISG AAGAAASVSA





  401
SASYAAEAVA TGAKEVKQDA DKSAAVATVV AAVDMARVRE





  441
PVISAVEQTA QRTTTTAVHI QPAQEQVRKE AEKTAVTKVV





  481
VAADKAKEQE LKSRTKEVIT TKQEQMHVTH EQIRKETEKT





  521
FVPKVVISAA KAKEQETRIS EEITKKQKQV TQEAIMKETR





  561
KTVVPKVIVA TPKVKEQDLV SRGREGITTK REQVQITQEK





  601
MRKEAEKTAL STIAVATAKA KEQETILRTR ETMATRQEQI





  641
QVTHGKVDVG KKAEAVATVV AAVDQARVRE PREPGHLEES





  681
YAQQTTLEYG YKERISAAKV AEPPQRPASE PHVVPKAVKP





  721
RVIQAPSETH IKTTDQKGMH ISSQIKKTTD LTTERLVHVD





  761
KRPRTASPHF TVSKISVPKT EHGYEASIAG SAIATLQKEL





  781
SATSSAQKIT KSVKAPTVKP SETRVRAEPT PLPQFPFADT





  841
PDTYKSEAGV EVKKEVGVSI TGTTVREERF EVLHGREAKV





  881
TETARVPAPV EIPVTPPTLVVSGLKNVTVIE GESVTLECHI





  921
SGYPSPTVTW YREDYQIESS IDFQITFQSG IARLMIREAF





  961
AEDSGRFTCS AVNEAGTVST SCYLAVQVSE EFEKETTAVT





 1001
EKFTTEEKRF VESRDVVMTD TSLTEEQAGP GEPAAPYFIT





 1041
KPVVQKLVEG GSVVFGCQVG GNPKPHVYWK KSGVPLTTGY





 1081
RYKVSYNKQT GECKLVISMT FADDAGEYTI VVRNKHGETS





 1121
ASASLLEEAD YELLMKSQQE MLYQTQVTAF VQEPKVGETA





 1161
PGFVYSEYEK EYEKEQALIR KKMAKDTVVV RTYVEDQEFH





 1201
ISSFEERLIK EIEYRIIKTT LEELLEEDGE EKMAVDISES





 1241
EAVESGFDSR IKNYRILEGM GVTFHCKMSG YPLPKIAWYK





 1281
DGKRIKHGER YQMDFLQDGR ASLRIPVVLP EDEGIYTAFA





 1321
SNIKGNAICS GKLYVEPAAP LGAPTYIPTL EPVSRIRSLS





 1361
PRSVSRSPIR MSPARMSPAR MSPARMSPAR MSPGRRLEET





 1401
DESQLERLYK PVFVLKPVSF KCLEGQTARF DLKVVGRPMP





 1441
ETFWFHDGQQ IVNDYTHKVV IKEDGTQSLI IVPATPSDSG





 1481
EWTVVAQNRA GRSSISVILT VEAVEHQVKP MFVEKLKNVN





 1521
IKEGSRLEMK VRATGNPNPD IVWLKNSDII VPHKYPKIRI





 1561
EGTKGEAALK IDSTVSQDSA WYTATAINKA GRDTTRCKVN





 1601
VEVEFAEPEP ERKLIIPRGT YRAKEIAAPE LEPLHLRYGQ





 1641
EQWEEGDLYD KEKQQKPFFK KKLTSLRLKR FGPAHFECRL





 1681
TPIGDPTMVV EWLHDGKPLE AANRLRMINE FGYCSLDYGV





 1721
AYSRDSGIIT CRATNKYGTD HTSATLIVKD EKSLVEESQL





 1761
PEGRKGLQRI EELERMAHEG ALTGVTTDQK EKQKPDIVLY





 1801
PEPVRVLEGE TARFRCRVTG YPQPKVNWYL NGQLIRKSKR





 1841
FRVRYDGIHY LDIVDCKSYD TGEVKVTAEN PEGVIEHKVK





 1881
LEIQQREDFR SVLRRAPEPR PEFHVHEPGK LQFEVQKVDR





 1921
PVDTTETKEV VKLKRAERIT HEKVPEESEE LRSKFKRRTE





 1961
EGYYEAITAV ELKSRKKDES YEELLRKTKD ELLHWTKELT





 2001
EEEKKALAEE GKITIPTFKP DKIELSPSME APKIFERIQS





 2041
QTVGQGSDAH FRVRVVGKPD PECEWYKNGV KIERSDRIYW





 2081
YWPEDNVCEL VIRDVTAEDS ASIMVKAINI AGETSSHAFL





 2121
LVQAKQLITF TQELQDVVAK EKDTMATFEC ETSEPFVKVK





 2161
WYKDGMEVHE GDKYRMHSDR KVHFLSILTI DTSDAEDYSC





 2201
VLVEDENVKT TAKLIVEGAV VEFVKELQDI EVPESYSGEL





 2241
ECIVSPENIE GKWYHNDVEL KSNGKYTITS RRGRQNLTVK





 2281
DVTKEDQGEY SFVIDGKKTT CKLKMKPRPI AILQGLSDQK





 2321
VCEGDIVQLE VKVSLESVEG VWMKDGQEVQ PSDRVHIVID





 2361
KQSHMLLIED MTKEDAGNYS FTIPALGLST SGRVSVYSVD





 2401
VITPLKDVNV IEGTKAVLEC KVSVPDVTSV KWYLNDEQIK





 2441
PDDRVQAIVK GTKQRLVINR THASDEGPYK LIVGRVETNC





 2481
NLSVEKIKII RGLRDLTCTE TQNVVFEVEL SHSGIDVLWN





 2521
FKDKEIKPSS KYKIEAHGKI YKLTVLNMMK DDEGKYTFYA





 2561
GENMTSGKLT VAGGAISKPL TDQTVAESQE AVFECEVANP





 2601
DSKGEWLRDG KHLPLTNNIR SESDGHKRRL IIAATKLDDI





 2641
GEYTYKVATS KTSAKLKVEA VKIKKTLKNL TVTETQDAVE





 2681
TVELTHPNVK GVQWIKNGVV LESNEKYAIS VKGTIYSLRI





 2721
KNCAIVDESV YGFRLGRLGA SARLHVETVK IIKKPKDVTA





 2761
LENATVAFEV SVSHDTVPVK WFHKSVEIKP SDKHRLVSER





 2801
KVHKLMLQNI SPSDAGEYTA VVGQLECKAK LFVETLHITK





 2841
TMKNIEVPET KTASFECEVS HFNVPSMWLK NGVEIEMSEK





 2881
FKIVVQGKLH QLIIMNTSTE DSAEYTFVCG NDQVSATLTV





 2921
TPIMITSMLK DINAEEKDTI TFEVTVNYEG ISYKWLKNGV





 2961
EIKSTDKCQM RTKKLTHSLN IRNVHFGDAA DYTFVAGKAT





 3001
STATLYVEAR HIEFRKHIKD IKVLEKKRAM FECEVSEPDI





 3041
TVQWMKDDQE LQITDRIKIQ KEKYVHRLLI PSTRMSDAGK





 3081
YTVVAGGNVS TAKLFVEGRD VRIRSIKKEV QVIEKQRAVV





 3121
EFEVNEDDVD AHWYKDGIEI NFQVQERHKY VVERRIHRMF





 3161
ISETRQSDAG EYTFVAGRNR SSVTLYVNAP EPPQVLQELQ





 3201
PVTVQSGKPA RFCAVISGRP QPKISWYKEE QLLSTGFKCK





 3241
FLHDGQEYTL LLIEAFPEDA AVYTCEAKND YGVATTSASL





 3281
SVEVPEVVSP DQEMPVYPPA IITPLQDTVT SEGQPARFQC





 3321
RVSGTDLKVS WYSKDKKIKP SRFFRMTQFE DTYQLEIAEA





 3361
YPEDEGTYTF VASNAVGQVS STANLSLEAP ESILHERIEQ





 3401
EIEMEMKEFS SSFLSAEEEG LHSAELQLSK INETLELLSE





 3441
SPVYPTKFDS EKEGTGPIFI KEVSNADISM GDVATLSVTV





 3481
IGIPKPKIQW FFNGVLLTPS ADYKFVFDGD DHSLIILFTK





 3521
LEDEGEYTCM ASNDYGKTIC SAYLKINSKG EGHKDTETES





 3561
AVAKSLEKLG GPCPPHFLKE LKPIRCAQGL PAIFEYTVVG





 3601
EPAPTVTWFK ENKQLCTSVY YTIIHNPNGS GTFIVNDPQR





 3641
EDSGLYICKA ENMLGESTCA AELLVLLEDT DMTDTPCKAK





 3681
STPEAPEDFP QTPLKGPAVE ALDSEQEIAT FVKDTILKAA





 3721
LITEENQQLS YEHIAKANEL SSQLPLGAQE LQSILEQDKL





 3761
TPESTREFLC INGSIHFQPL KEPSPNLQLQ IVQSQKTFSK





 3801
EGILMPEEPE TQAVLSDTEK IFPSAMSIEQ INSLTVEPLK





 3841
TLLAEPEGNY PQSSIEPPMH SYLTSVAEEV LSPKEKTVSD





 3881
TNREQRVTLQ KQEAQSALIL SQSLAEGHVE SLQSPDVMIS





 3921
QVNYEPLVPS EHSCTEGGKI LIESANPLEN AGQDSAVRIE





 3961
EGKSLRFPLA LEEKQVLLKE EHSDNVVMPP DQIIESKREP





 4001
VAIKKVQEVQ GRDLLSKESL LSGIPEEQRL NLKIQICRAL





 4041
QAAVASEQPG LFSEWLRNIE KVEVEAVNIT QEPRHIMCMY





 4081
LVTSAKSVTE EVTIIIEDVD PQMANLKMEL RDALCAIIYE





 4121
EIDILTAEGP RIQQGAKTSL QEEMDSFSGS QKVEPITEPE





 4161
VESKYLISTE EVSYFNVQSR VKYLDATPVT KGVASAVVSD





 4201
EKQDESLKPS EEKEESSSES GTEEVATVKI QEAEGGLIKE





 4241
DGPMIHTPLV DTVSEEGDIV HLTTSITNAK EVNWYFENKL





 4281
VPSDEKFKCL QDQNTYTLVI DKVNTEDHQG EYVCEALNDS





 4321
GKTATSAKLT VVKRAAPVIK RKIEPLEVAL GHLAKFTCEI





 4361
QSAPNVRFQW FKAGREIYES DKCSIRSSKY ISSLEILRTQ





 4401
VVDCGEYTCK ASNEYGSVSC TATLTVTVPG GEKKVRKLLP





 4441
ERKPEPKEEV VLKSVLRKRP EEEEPKVEPK KLEKVKKPAV





 4481
PEPPPPKPVE EVEVPTVTKR ERKIPEPTKV PEIKPAIPLP





 4521
APEPKPKPEA EVKTIKPPPV EPEPTPIAAP VTVPVVGKKA





 4561
EAKAPKEEAA KPKGPIKGVP KKTPSPIEAE RRKLRPGSGG





 4601
EKPPDEAPFT YQLKAVPLKF VKEIKDIILT ESEFVGSSAI





 4641
FECLVSPSTA ITTWMKDGSN IRESPKHRFI ADGKDRKLHI





 4681
IDVQLSDAGE YTCVLRLGNK EKTSTAKLVV EELPVRFVKT





 4721
LEEEVTVVKG QPLYLSCELN KERDVVWRKD GKIVVEKPGR





 4761
IVPGVIGLMR ALTINDADDT DAGTYTVTVE NANNLECSSC





 4801
VKVVEVIRDW LVKPIRDQHV KPKGTAIFAC DIAKDTPNIK





 4841
WFKGYDEIPA EPNDKTEILR DGNHLYLKIK NAMPEDIAEY





 4881
AVEIEGKRYP AKLTLGEREV ELLKPIEDVT IYEKESASFD





 4921
AEISEADIPG QWKLKGELLR PSPTCEIKAE GGKRFLTLHK





 4961
VKLDQAGEVL YQALNAITTA ILTVKEIELD FAVPLKDVTV





 5001
PERRQARFEC VLTREANVIW SKGPDIIKSS DKFDIIADGK





 5041
KHILVINDSQ FDDEGVYTAE VEGKKTSARL FVTGIRLKFM





 5081
SPLEDQTVKE GETATFVCEL SHEKMHVVWF KNDAKLHTSR





 5121
TVLISSEGKT HKLEMKEVTL DDISQIKAQV KELSSTAQLK





 5161
VLEADPYFTV KLHDKTAVEK DEITLKCEVS KDVPVKWFKD





 5201
GEEIVPSPKY SIKADGLRRI LKIKKADLKD KGEYVCDCGT





 5241
DKTKANVTVE ARLIKVEKPL YGVEVFVGET AHFEIELSEP





 5281
DVHGQWKLKG QPLTASPDCE IIEDGKKHIL ILHNCQLGMT





 5321
GEVSFQAANA KSAANLKVKE LPLIFITPLS DVKVFEKDEA





 5361
KFECEVSREP KTFRWLKGTQ EITGDDRFEL IKDGTKHSMV





 5401
IKSAAFEDEA KYMFEAEDKH TSGKLIIEGI RLKFLTPLKD





 5441
VTAKEKESAV FTVELSHDNI RVKWFKNDQR LHTTRSVSMQ





 5481
DEGKTHSITF KDLSIDDTSQ IRVEAMGMSS EAKLTVLEGD





 5521
PYFTGKLQDY TGVEKDEVIL QCEISKADAP VKWFKDGKEI





 5561
KPSKNAVIKA DGKKRMLILK KALKSDIGQY TCDCGTDKTS





 5601
GKLDIEDREI KLVRPLHSVE VMETETARFE TEISEDDIHA





 5641
NWKLKGEALL QTPDCEIKEE GKIHSLVLHN CRLDQTGGVD





 5681
FQAANVKSSA HLRVKPRVIG LLRPLKDVTV TAGETATFDC





 5721
ELSYEDIPVE WYLKGKKLEP SDKVVPRSEG KVHTLTLRDV





 5761
KLEDAGEVQL TAKDFKTHAN LFVKEPPVEF TKPLEDQTVE





 5801
EGATAVLECE VSRENAKVKW FKNGTEILKS KKYEIVADGR





 5841
VRKLVIHDCT PEDIKTYTCD AKDFKTSCNL NVVPPHVEFL





 5881
RPLTDLQVRE KEMARFECEL SRENAKVKWF KDGAEIKKGK





 5921
KYDIISKGAV RILVINKCLL DDEAEYSCEV RTARTSGMLT





 5961
VLEEEAVFTK NLANIEVSET DTIKLVCEVS KPGAEVIWYK





 6001
GDEEIIETGR YEILTEGRKR ILVIQNAHLE DAGNYNCRLP





 6041
SSRTDGKVKV HELAAEFISK PQNLEILEGE KAEFVCSISK





 6081
ESFPVQWKRD DKTLESGDKY DVIADGKKRV LVVKDATLQD





 6121
MGTYVVMVGA ARAAAHLTVI EKLRIVVPLK DTRVKEQQEV





 6161
VFNCEVNTEG AKAKWFRNEE AIFDSSKYII LQKDLVYTLR





 6201
IRDAHLDDQA NYNVSLINHR GENVKSAANL IVEEEDLRIV





 6241
EPLKDIETME KKSVTFWCKV NRLNVTLKWT KNGEEVPFDN





 6281
RVSYRVDKYK HMLTIKDCGF PDEGEYIVTA GQDKSVAELL





 6321
IIEAPTEFVE HLEDQTVTEF DDAVFSCQLS REKANVKWYR





 6361
NGREIKEGKK YKFEKDGSIH RLIIKDCRLD DECEYACGVE





 6401
DRKSRARLFV EEIPVEIIRP PQDILEAPGA DVVFLAELNK





 6441
DKVEVQWLRN NMVVVQGDKH QMMSEGKIHR LQICDIKPRD





 6481
QGEYRFIAKD KEARAKLELA AAPKIKTADQ DLVVDVGKPL





 6521
TMVVPYDAYP KAEAEWFKEN EPLSTKTIDT TAEQTSFRIL





 6561
EAKKGDKGRY KIVLQNKHGK AEGFINLKVI DVPGPVRNLE





 6601
VTETFDGEVS LAWEEPLTDG GSKIIGYVVE RRDIKRKTWV





 6641
LATDRAESCE FTVTGLQKGG VEYLFRVSAR NRVGTGEPVE





 6681
TDNPVEARSK YDVPGPPLNV TITDVNRFGV SLTWEPPEYD





 6721
GGAEITNYVI ELRDKTSIRW DTAMTVRAED LSATVTDVVE





 6761
GQEYSFRVRA QNRIGVGKPS AATPFVKVAD PIERPSPPVN





 6801
LTSSDQTQSS VQLKWEPPLK DGGSPILGYI IERCEEGKDN





 6841
WIRCNMKLVP ELTYKVTGLE KGNKYLYRVS AENKAGVSDP





 6881
SEILGPLTAD DAFVEPTMDL SAFKDGLEVI VPNPITILVP





 6921
STGYPRPTAT WCFGDKVLET GDRVKMKTLS AYAELVISPS





 6961
ERSDKGIYTL KLENRVKTIS GEIDVNVIAR PSAPKELKFG





 7001
DITKDSVHLT WEPPDDDGGS PLTGYVVEKR EVSRKTWTKV





 7041
MDFVTDLEFT VPDLVQGKEY LFKVCARNKC GPGEPAYVDE





 7081
PVNMSTPATV PDPPENVKWR DRTANSIFLT WDPPKNDGGS





 7121
RIKGYIVERC PRGSDKWVAC GEPVAETKME VTGLEEGKWY





 7161
AYRVKALNRQ GASKPSRPTE EIQAVDTQEA PEIFLDVKLL





 7201
AGLTVKAGTK IELPATVTGK PEPKITWTKA DMILKQDKRI





 7241
TIENVPKKST VTIVDSKRSD TGTYIIEAVN VCGRATAVVE





 7281
VNVLDKPGPP AAFDITDVTN ESCLLTWNPP RDDGGSKITN





 7321
YVVERRATDS EVWHKLSSTV KDTNFKATKL IPNKEYIFRV





 7361
AAENMYGVGE PVQASPITAK YQFDPPGPPT RLEPSDITKD





 7401
AVTLTWCEPD DDGGSPITGY WVERLDPDTD KWVRCNKMPV





 7441
KDTTYRVKGL TNKKKYRFRV LAENLAGPGK PSKSTEPILI





 7481
KDPIDPPWPP GKPTVKDVGK TSVRLNWTKP EHDGGAKIES





 7521
YVIEMLKTGT DEWVRVAEGV PTTQHLLPGL MEGQEYSFRV





 7561
RAVNKAGESE PSEPSDPVLC REKLYPPSPP RWLEVINITK





 7601
NTADLKWTVP EKDGGSPITN YIVEKRDVRR KGWQTVDTTV





 7641
KDTKCTVTPL TEGSLYVFRV AAENAIGQSD YTEIEDSVLA





 7681
KDTFTTPGPP YALAVVDVTK RHVDLKWEPP KNDGGRPIQR





 7721
YVIEKKERLG TRWVKAGKTA GPDCNFRVTD VIEGTEVQFQ





 7761
VRAENEAGVG HPSEPTEILS IEDPTSPPSP PLDLHVTDAG





 7801
RKHIAIAWKP PEKNGGSPII GYHVEMCPVG TEKWMRVNSR





 7841
PIKDLKFKVE EGVVPDKEYV LRVRAVNAIG VSEPSEISEN





 7881
VVAKDPDCKP TIDLETHDII VIEGEKLSIP VPFRAVPVPT





 7921
VSWHKDGKEV KASDRLTMKN DHISAHLEVP KSVRADAGIY





 7961
TITLENKLGS ATASINVKVI GLPGPCKDIK ASDITKSSCK





 8001
LTWEPPEFDG GTPILHYVLE RREAGRRTYI PVMSGENKLS





 8041
WTVKDLIPNG EYFFRVKAVN KVGGGEYIEL KNPVIAQDPK





 8081
QPPDPPVDVE VHNPTAEAMT ITWKPPLYDG GSKIMGYIIE





 8121
KIAKGEERWK RCNEHLVPIL TYTAKGLEEG KEYQFRVRAE





 8161
NAAGISEPSR ATPPTKAVDP IDAPKVILRT SLEVKRGDEI





 8201
ALDASISGSP YPTITWIKDE NVIVPEEIKK RAAPLVRRRK





 8241
GEVQEEEPFV LPLTQRLSID NSKKGESQLR VRDSLRPDHG





 8281
LYMIKVENDH GIAKAPCTVS VLDTPGPPIN FVFEDIRKTS





 8321
VLCKWEPPLD DGGSEIINYT LEKKDKTKPD SEWIVVTSTL





 8361
RHCKYSVTKL IEGKEYLFRV RAENRFGPGP PCVSKPLVAK





 8401
DPFGPPDAPD KPIVEDVTSN SMLVKWNEPK DNGSPILGYW





 8441
LEKREVNSTH WSRVNKSLLN ALKANVDGLL EGLTYVFRVC





 8481
AENAAGPGKF SPPSDPKTAH DPISPPGPPI PRVTDTSSTT





 8521
IELEWEPPAF NGGGEIVGYF VDKQLVGTNE WSRCTEKMIK





 8561
VRQYTVKEIR EGADYKLRVS AVNAAGEGPP GETQPVTVAE





 8601
PQEPPAVELD VSVKGGIQIM AGKTLRIPAV VTGRPVPTKV





 8641
WTKEEGELDK DRVVIDNVGT KSELIIKDAL RKDHGRYVIT





 8681
ATNSCGSKFA AARVEVFDVP GPVLDLKPVV TNRKMCLLNW





 8721
SDPEDDGGSE ITGFIIERKD AKMHTWRQPI ETERSKCDIT





 8761
GLLEGQEYKF RVIAKNKFGC GPPVEIGPIL AVDPLGPPTS





 8801
PERLTYTERT KSTITLDWKE PRSNGGSPIQ GYIIEKRRHD





 8841
KPDFERVNKR LCPTTSFLVE NLDEHQMYEF RVKAVNEIGE





 8881
SEPSLPLNVV IQDDEVPPTI KLRLSVRGDT IKVKAGEPVH





 8921
IPADVTGLPM PKIEWSKNET VIEKPTDALQ ITKEEVSRSE





 8961
AKTELSIPKA VREDKGTYTV TASNRLGSVF RNVHVEVYDR





 9001
PSPPRNLAVT DIKAESCYLT WDAPLDNGGS EITHYVIDKR





 9041
DASRKKAEWE EVTNTAVEKR YGIWKLIPNG QYEFRVRAVN





 9081
KYGISDECKS DKVVIQDPYR LPGPPGKPKV LARTKGSMLV





 9121
SWTPPLDNGG SPITGYWLEK REEGSPYWSR VSRAPITKVG





 9161
LKGVEFNVPR LLEGVKYQFR AMAINAAGIG PPSEPSDPEV





 9201
AGDPIFPPGP PSCPEVKDKT KSSISLGWKP PAKDGGSPIK





 9241
GYIVEMQEEG TTDWKRVNEP DKLITTCECV VPNLKELRKY





 9281
RFRVKAVNEA GESEPSDTTG EIPATDIQEE PEVFIDIGAQ





 9321
DCLVCKAGSQ IRIPAVIKGR PTPKSSWEFD GKAKKAMKDG





 9361
VHDIPEDAQL ETAENSSVII IPECKRSHTG KYSITAKNKA





 9401
GQKTANCRVK VMDVPGPPKD LKVSDITRGS CRLSWKMPDD





 9441
DGGDRIKGYV IEKRTIDGKA WTKVNPDCGS TTFVVPDLLS





 9481
EQQYFFRVRA ENRFGIGPPV ETIQRTTARD PIYPPDPPIK





 9521
LKIGLITKNT VHLSWKPPKN DGGSPVTHYI VECLAWDPTG





 9561
TKKEAWRQCN KRDVEELQFT VEDLVEGGEY EFRVKAVNAA





 9601
GVSKPSATVG PVTVKDQTCP PSIDLKEFME VEEGTNVNIV





 9641
AKIKGVPFPT LTWFKAPPKK PDNKEPVLYD THVNKLVVDD





 9681
TCTLVIPQSR RSDTGLYTIT AVNNLGTASK EMRLNVLGRP





 9721
GPPVGPIKFE SVSADQMTLS WFPPKDDGGS KITNYVIEKR





 9761
EANRKTWVHV SSEPKECTYT IPKLLEGHEY VFRIMAQNKY





 9801
GIGEPLDSEP ETARNLFSVP GAPDKPTVSS VTRNSMTVNW





 9841
EEPEYDGGSP VTGYWLEMKD TTSKRWKRVN RDPIKAMTLG





 9881
VSYKVTGLIE GSDYQFRVYA INAAGVGPAS LPSDPATARD





 9921
PIAPPGPPFP KVTDWTKSSA DLEWSPPLKD GGSKVTGYIV





 9961
EYKEEGKEEW EKGKDKEVRG TKLVVTGLKE GAFYKFRVRA





10001
VNIAGIGEPG EVTDVIEMKD RLVSPDLQLD ASVRDRIVVH





10041
AGGVIRIIAY VSGKPPPTVT WNMNERTLPQ EATIETTAIS





10081
SSMVIKNCQR SHQGVYSLLA KNEAGERKKT IIVDVLDVPG





10121
PVGTPFLAHN LTNESCKLTW FSPEDDGGSP ITNYVIEKRE





10161
SDRRAWTPVT YTVTRQNATV QGLIQGKAYF FRIAAENSIG





10201
MGPFVETSEA LVIREPITVP ERPEDLEVKE VTKNTVTLTW





10241
NPPKYDGGSE IINYVLESRL IGTEKFHKVT NDNLLSRKYT





10281
VKGLKEGDTY EYRVSAVNIV GQGKPSFCTK PITCKDELAP





10321
PTLHLDERDK LTIRVGEAFA LTGRYSGKPK PKVSWFKDEA





10361
DVLEDDRTHI KTTPATLALE KIKAKRSDSG KYCVVVENST





10401
GSRKGFCQVN VVDRPGPPVG PVSFDEVTKD YMVISWKPPL





10441
DDGGSKITNY IIEKKEVGKD VWMPVTSASA KTTCKVSKLL





10481
EGKDYIFRIH AENLYGISDP LVSDSMKAKD RFRVPDAPDQ





10521
PIVTEVTKDS ALVTWNKPHD GGKPITNYIL EKRETMSKRW





10561
ARVTKDPIHP YTKFRVPDLL EGCQYEFRVS AENEIGIGDP





10601
SPPSKPVFAK DPIAKPSPPV NPEAIDTTCN SVDLTWQPPR





10641
HDGGSKILGY IVEYQKVGDE EWRRANHTPE SCPETKYKVT





10681
GLRDGQTYKF RVLAVNAAGE SDPAHVPEPV LVKDRLEPPE





10721
LILDANMARE QHIKVGDTLR LSAIIKGVPF PKVTWKKEDR





10761
DAPTKARIDV TPVGSKLEIR NAAHEDGGIY SLTVENPAGS





10801
KTVSVKVLVL DKPGPPRDLE VSEIRKDSCY LTWKEPLDDG





10841
GSVITNYVVE RRDVASAQWS PLSATSKKKS HFAKHLNEGN





10881
QYLFRVAAEN QYGRGPFVET PKPIKALDPL HPPGPPKDLH





10921
HVDVDKTEVS LVWNKPDRDG GSPITGYLVE YQEEGTQDWI





10961
KFKTVTNLEC VVTGLQQGKT YRFRVKAENI VGLGLPDTTI





11001
PIECQEKLVP PSVELDVKLI EGLVVKAGTT VRFPAIIRGV





11041
PVPTAKWTTD GSEIKTDEHY TVETDNFSSV LTIKNCLRRD





11081
TGEYQITVSN AAGSKTVAVH LTVLDVPGPP TGPINILDVT





11121
PEHMTISWQP PKDDGGSPVI NYIVEKQDTR KDTWGVVSSG





11161
SSKTKLKIPH LQKGCEYVFR VRAENKIGVG PPLDSTPTVA





11201
KHKFSPPSPP GKPVVTDITE NAATVSWTLP KSDGGSPITG





11241
YYMERREVTG KWVRVNKTPI ADLKFRVTGL YEGNTYEFRV





11281
FAENLAGLSK PSPSSDPIKA CRPIKPPGPP INPKLKDKSR





11321
ETADLVWTKP LSDGGSPILG YVVECQKPGT AQWNRINKDE





11361
LIRQCAFRVP GLIEGNEYRF RIKAANIVGE GEPRELAESV





11401
IAKDILHPPE VELDVTCRDV ITVRVGQTIR ILARVKGRPE





11441
PDITWTKEGK VLVREKRVDL IQDLPRVELQ IKEAVRADHG





11481
KYIISAKNSS GHAQGSAIVN VLDRPGPCQN LKVTNVTKEN





11521
CTISWENPLD NGGSEITNFI VEYRKPNQKG WSIVASDVTK





11561
RLIKANLLAN NEYYFRVCAE NKVGVGPTIE TKTPILAINP





11601
IDRPGEPENL HIADKGKTFV YLKWRRPDYD GGSPNLSYHV





11641
ERRLKGSDDW ERVHKGSIKE THYMVDRCVE NQIYEFRVQT





11681
KNEGGESDWV KTEEVVVKED LQKPVLDLKL SGVLTVKAGD





11721
TIRLEAGVRG KPFPEVAWTK DKDATDLTRS PRVKIDTRAD





11761
SSKFSLTKAK RSDGGKYVVT ATNTAGSFVA YATVNVLDKP





11801
GPVRNLKIVD VSSDRCTVCW DPPEDDGGCE IQNYILEKCE





11841
TKRMVWSTYS ATVLTPGTTV TRLIEGNEYI FRVRAENKIG





11881
TGPPTESKPV IAKTKYDKPG RPDPPEVTKV SKEEMTVVWN





11921
PPEYDGGKSI TGYFLEKKEK HSTRWVPVNK SAIPERRMKV





11961
QNLLPDHEYQ FRVKAENEIG IGEPSLPSRP VVAKDPIEPP





12001
GPPTNFRVVD TTKHSITLGW GKPVYDGGAP IIGYVVEMRP





12041
KIADASPDEG WKRCNAAAQL VRKEFTVTSL DENQEYEFRV





12081
CAQNQVGIGR PAELKEAIKP KEILEPPEID LDASMRKLVI





12121
VRAGCPIRLF AIVRGRPAPK VTWRKVGIDN VVRKGQVDLV





12161
DTMAFLVIPN STRDDSGKYS LTLVNPAGEK AVFVNVRVLD





12201
TPGPVSDLKV SDVTKTSCHV SWAPPENDGG SQVTHYIVEK





12241
READRKTWST VTPEVKKTSF HVTNLVPGNE YYFRVTAVNE





12281
YGPGVPTDVP KPVLASDPLS EPDPPRKLEV TEMTKNSATL





12321
AWLPPLRDGG AKIDGYITSY REEEQPADRW TEYSVVKDLS





12361
LVVTGLKEGK KYKFRVAARN AVGVSLPREA EGVYEAKEQL





12401
LPPKILMPEQ ITIKAGKKLR IEAHVYGKPH PTCKWKKGED





12441
EVVTSSHLAV HKADSSSILI IKDVTRKDSG YYSLTAENSS





12481
GTDTQKIKVV VMDAPGPPQP PFDISDIDAD ACSLSWHIPL





12521
EDGGSNITNY IVEKCDVSRG DWVTALASVT KTSCRVGKLI





12561
PGQEYIFRVR AENRFGISEP LTSPKMVAQF PFGVPSEPKN





12601
ARVTKVNKDC IFVAWDRPDS DGGSPIIGYL IERKERNSLL





12641
WVKANDTLVR STEYPCAGLV EGLEYSFRIY ALNKAGSSPP





12681
SKPTEYVTAR MPVDPPGKPE VIDVTKSTVS LIWARPKHDG





12721
GSKIIGYFVE ACKLPGDKWV RCNTAPHQIP QEEYTATGLE





12761
EKAQYQFRAI ARTAVNISPP SEPSDPVTIL AENVPPRIDL





12801
SVAMKSLLTV KAGTNVCLDA TVFGKPMPTV SWKKDGTLLK





12841
PAEGIKMAMQ RNLCTLELFS VNRKDSGDYT ITAENSSGSK





12881
SATIKLKVLD KPGPPASVKI NKMYSDRAML SWEPPLEDGG





12921
SEITNYIVDK RETSRPNWAQ VSATVPITSC SVEKLIEGHE





12961
YQFRICAENK YGVGDPVFTE PAIAKNPYDP PGRCDPPVIS





13001
NITKDHMTVS WKPPADDGGS PITGYLLEKR ETQAVNWTKV





13041
NRKPIIERTL KATGLQEGTE YEFRVTAINK AGPGKPSDAS





13081
KAAYARDPQY PPGPPAFPKV YDTTRSSVSL SWGKPAYDGG





13121
SPIIGYLVEV KRADSDNWVR CNLPQNLQKT RFEVTGLMED





13161
TQYQFRVYAV NKIGYSDPSD VPDKHYPKDI LIPPEGELDA





13201
DLRKTLILRA GVTMRLYVPV KGRPPPKITW SKPNVNLRDR





13241
IGLDIKSTDF DTFLRCENVN KYDAGKYILT LENSCGKKEY





13281
TIVVKVLDTP GPPVNVTVKE ISKDSAYVTW EPPIIDGGSP





13321
IINYVVQKRD AERKSWSTVT TECSKTSFRV ANLEEGKSYF





13361
FRVFAENEYG IGDPGETRDA VKASQTPGPV VDLKVRSVSK





13401
SSCSIGWKKP HSDGGSRIIG YVVDFLTEEN KWQRVMKSLS





13441
LQYSAKDLTE GKEYTFRVSA ENENGEGTPS EITVVARDDV





13481
VAPDLDLKGL PDLCYLAKEN SNFRLKIPIK GKPAPSVSWK





13521
KGEDPLATDT RVSVESSAVN TTLIVYDCQK SDAGKYTITL





13561
KNVAGTKEGT ISIKVVGKPG IPTGPIKFDE VTAEAMTLKW





13601
APPKDDGGSE ITNYILEKRD SVNNKWVTCA SAVQKTTFRV





13641
TRLHEGMEYT FRVSAENKYG VGEGLKSEPI VARHPFDVPD





13681
APPPPNIVDV RHDSVSLTWT DPKKTGGSPI TGYHLEFKER





13721
NSLLWKRANK TPIRMRDFKV TGLTEGLEYE FRVMAINLAG





13761
VGKPSLPSEP VVALDPIDPP GKPEVINITR NSVTLIWTEP





13801
KYDGGHKLTG YIVEKRDLPS KSWMKANHVN VPECAFTVTD





13841
LVEGGKYEFR IRAKNTAGAI SAPSESTETI ICKDEYEAPT





13881
IVLDPTIKDG LTIKAGDTIV LNAISILGKP LPKSSWSKAG





13921
KDIRPSDITQ ITSTPTSSML TIKYATRKDA GEYTITATNP





13961
FGTKVEHVKV TVLDVPGPPG PVEISNVSAE KATLTWTPPL





14001
EDGGSPIKSY ILEKRETSRL LWTVVSEDIQ SCRHVATKLI





14041
QGNEYIFRVS AVNHYGKGEP VQSEPVKMVD RFGPPGPPEK





14081
PEVSNVTKNT ATVSWKRPVD DGGSEITGYH VERREKKSLR





14121
WVRAIKTPVS DLRCKVTGLQ EGSTYEFRVS AENRAGIGPP





14161
SEASDSVLMK DAAYPPGPPS NPHVTDTTKK SASLAWGKPH





14201
YDGGLEITGY VVEHQKVGDE AWIKDTTGTA LRITQFVVPD





14241
LQTKEKYNFR ISAINDAGVG EPAVIPDVEI VEREMAPDFE





14281
LDAELRRTLV VRAGLSIRIF VPIKGRPAPE VTWTKDNINL





14321
KNRANIENTE SFTLLIIPEC NRYDTGKFVM TIENPAGKKS





14361
GFVNVRVLDT PGPVLNLRPT DITKDSVTLH WDLPLIDGGS





14401
RITNYIVEKR EATRKSYSTA TTKCHKCTYK VTGLSEGCEY





14441
FFRVMAENEY GIGEPTETTE PVKASEAPSP PDSLNIMDIT





14481
KSTVSLAWPK PKHDGGSKIT GYVIEAQRKG SDQWTHITTV





14521
KGLECVVRNL TEGEEYTFQV MAVNSAGRSA PRESRPVIVK





14561
EQTMLPELDL RGIYQKLVIA KAGDNIKVEI PVLGRPKPTV





14601
TWKKGDQILK QTQRVNFETT ATSTILNINE CVRSDSGPYP





14641
LTARNIVGEV GDVITIQVHD IPGPPTGPIK FDEVSSDFVT





14681
FSWDPPENDG GVPISNYVVE MRQTDSTTWV ELATTVIRTT





14721
YKATRLTTGL EYQFRVKAQN RYGVGPGITS ACIVANYPFK





14761
VPGPPGTPQV TAVTKDSMTI SWHEPLSDGG SPILGYHVER





14801
KERNGILWQT VSKALVPGNI FKSSGLTDGI AYEFRVIAEN





14841
MAGKSKPSKP SEPMLALDPI DPPGKPVPLN ITRHTVTLKW





14881
AKPEYTGGFK ITSYIVEKRD LPNGRWLKAN FSNILENEFT





14921
VSGLTEDAAY EFRVIAKNAA GAISPPSEPS DAITCRDDVE





14961
APKIKVDVKF KDTVILKAGE AFRLEADVSG RPPPTMEWSK





15001
DGKELEGTAK LEIKIADFST NLVNKDSTRR DSGAYTLTAT





15041
NPGGFAKHIF NVKVLDRPGP PEGPLAVTEV TSEKCVLSWF





15081
PPLDDGGAKI DHYIVQKRET SRLAWTNVAS EVQVTKLKVT





15121
KLLKGNEYIF RVMAVNKYGV GEPLESEPVL AVNPYGPPDP





15161
PKNPEVTTIT KDSMVVCWGH PDSDGGSEII NYIVERRDKA





15201
GQRWIKCNKK TLTDLRYKVS GLTEGHEYEF RIMAENAAGI





15241
SAPSPTSPFY KACDTVFKPG PPGNPRVLDT SRSSISIAWN





15281
KPIYDGGSEI TGYMVEIALP EEDEWQIVTP PAGLKATSYT





15321
ITGLTENQEY KIRIYAMNSE GLGEPALVPG TPKAEDRMLP





15361
PEIELDADLR KVVTIRACCT LRLFVPIKGR PAPEVKWARD





15401
HGESLDKASI ESTSSYTLLI VGNVNRFDSG KYILTVENSS





15441
GSKSAFVNVR VLDTPGPPQD LKVKEVTKTS VTLTWDPPLL





15481
DGGSKIKNYI VEKRESTRKA YSTVATNCHK TSWKVDQLQE





15521
GCSYYFRVLA ENEYGIGLPA ETAESVKASE RPLPPGKITL





15561
MDVTRNSVSL SWEKPEHDGG SRILGYIVEM QTKGSDKWAT





15601
CATVKVTEAT ITGLIQGEEY SFRVSAQNEK GISDPRQLSV





15641
PVIAKDLVIP PAFKLLFNTF TVLAGEDLKV DVPFIGRPTP





15681
AVTWHKDNVP LKQTTRVNAE STENNSLLTI KDACREDVGH





15721
YVVKLTNSAG EAIETLNVIV LDKPGPPTGP VKMDEVTADS





15761
ITLSWGPPKY DGGSSINNYI VEKRDTSTTT WQIVSATVAR





15801
TTIKACRLKT GCEYQFRIAA ENRYGKSTYL NSEPTVAQYP





15841
FKVPGPPGTP VVTLSSRDSM EVQWNEPISD GGSRVIGYHL





15881
ERKERNSILW VKLNKTPIPQ TKFKTTGLEE GVEYEFRVSA





15921
ENIVGIGKPS KVSECYVARD PCDPPGRPEA IIVTRNSVTL





15961
QWKKPTYDGG SKITGYIVEK KELPEGRWMK ASFTNIIDTH





16001
FEVTGLVEDH RYEFRVIARN AAGVFSEPSE STGAITARDE





16041
VDPPRISMDP KYKDTIVVHA GESFKVDADI YGKPIPTIQW





16081
IKGDQELSNT ARLEIKSTDF ATSLSVKDAV RVDSGNYILK





16121
AKNVAGERSV TVNVKVLDRP GPPEGPVVIS GVTAEKCTLA





16161
WKPPLQDGGS DIINYIVERR ETSRLVWTVV DANVQTLSCK





16201
VTKLLEGNEY TFRIMAVNKY GVGEPLESEP VVAKNPFVVP





16241
DAPKAPEVTT VTKDSMIVVW ERPASDGGSE ILGYVLEKRD





16281
KEGIRWTRCH KRLIGELRLR VTGLIENHDY EFRVSAENAA





16321
GLSEPSPPSA YQKACDPIYK PGPPNNPKVI DITRSSVFLS





16361
WSKPIYDGGC EIQGYIVEKC DVSVGEWTMC TPPTGINKTN





16401
IEVEKLLEKH EYNFRICAIN KAGVGEHADV PGPIIVEEKL





16441
EAPDIDLDLE LRKIINIRAG GSLRLFVPIK GRPTPEVKWG





16481
KVDGEIRDAA IIDVTSSFTS LVLDNVNRYD SGKYTLTLEN





16521
SSGTKSAFVT VRVLDTPSPP VNLKVTEITK DSVSITWEPP





16561
LLDGGSKIKN YIVEKREATR KSYAAVVTNC HKNSWKIDQL





16601
QEGCSYYFRV TAENEYGIGL PAQTADPIKV AEVPQPPGKI





16641
TVDDVTRNSV SLSWTKPEHD GGSKIIQYIV EMQAKHSEKW





16681
SECARVKSLQ AVITNLTQGE EYLFRVVAVN EKGRSDPRSL





16721
AVPIVAKDLV IEPDVKPAFS SYSVQVGQDL KIEVPISGRP





16761
KPTITWTKDG LPLKQTTRIN VTDSLDLTTL SIKETHKDDG





16801
GQYGITVANV VGQKTASIEI VTLDKPDPPK GPVKFDDVSA





16841
ESITLSWNPP LYTGGCQITN YIVQKRDTTT TVWDVVSATV





16881
ARTTLKVTKL KTGTEYQFRI FAENRYGQSF ALESDPIVAQ





16921
YPYKEPGPPG TPFATAISKD SMVIQWHEPV NNGGSPVIGY





16961
HLERKERNSI LWTKVNKTII HDTQFKAQNL EEGIEYEFRV





17001
YAENIVGVGK ASKNSECYVA RDPCDPPGTP EPIMVKRNEI





17041
TLQWTKPVYD GGSMITGYIV EKRDLPDGRW MKASFTNVIE





17081
TQFTVSGLTE DQRYEFRVIA KNAAGAISKP SDSTGPITAK





17121
DEVELPRISM DPKFRDTIVV NAGETFRLEA DVHGKPLPTI





17161
EWLRGDKEIE ESARCEIKNT DFKALLIVKD AIRIDGGQYI





17201
LRASNVAGSK SFPVNVKVLD RPGPPEGPVQ VTGVTSEKCS





17241
LTWSPPLQDG GSDISHYVVE KRETSRLAWT VVASEVVTNS





17281
LKVTKLLEGN EYVFRIMAVN KYGVGEPLES APVLMKNPFV





17321
LPGPPKSLEV TNIAKDSMTV CWNRPDSDGG SEIIGYIVEK





17361
RDRSGIRWIK CNKRRITDLR LRVTGLTEDH EYEFRVSAEN





17401
AAGVGEPSPA TVYYKACDPV FKPGPPTNAH IVDTTKNSIT





17441
LAWGKPIYDG GSEILGYVVE ICKADEEEWQ IVTPQTGLRV





17481
TRFEISKLTE HQEYKIRVCA LNKVGLGEAT SVPGTVKPED





17521
KLEAPELDLD SELRKGIVVR AGGSARIHIP FKGRPTPEIT





17561
WSREEGEFTD KVQIEKGVNY TQLSIDNCDR NDAGKYILKL





17601
ENSSGSKSAF VTVKVLDTPG PPQNLAVKEV RKDSAFLVWE





17641
PPIIDGGAKV KNYVIDKRES TRKAYANVSS KCSKTSFKVE





17681
NLTEGAIYYF RVMAENEFGV GVPVETVDAV KAAEPPSPPG





17721
KVTLTDVSQT SASLMWEKPE HDGGSRVLGY VVEMQPKGTE





17761
KWSIVAESKV CNAVVTGLSS GQEYQFRVKA YNEKGKSDPR





17801
VLGVPVIAKD LTIQPSLKLP FNTYSIQAGE DLKIEIPVIG





17841
RPRPNISWVK DGEPLKQTTR VNVEETATST VLHIKEGNKD





17881
DFGKYTVTAT NSAGTATENL SVIVLEKPGP PVGPVREDEV





17921
SADFVVISWE PPAYTGGCQI SNYIVEKRDT TTTTWHMVSA





17961
TVARTTIKIT KLKTGTEYQF RIFAENRYGK SAPLDSKAVI





18001
VQYPFKEPGP PGTPFVTSIS KDQMLVQWHE PVNDGGTKII





18041
GYHLEQKEKN SILWVKLNKT PIQDTKFKTT GLDEGLEYEF





18081
KVSAENIVGI GKPSKVSECF VARDPCDPPG RPEAIVITRN





18121
NVTLKWKKPA YDGGSKITGY IVEKKDLPDG RWMKASFTNV





18161
LETEFTVSGL VEDQRYEFRV IARNAAGNES EPSDSSGAIT





18201
ARDEIDAPNA SLDPKYKDVI VVHAGETFVL EADIRGKPIP





18241
DVVWSKDGKE LEETAARMEI KSTIQKTTLV VKDCIRTDGG





18281
QYILKLSNVG GTKSIPITVK VLDRPGPPEG PLKVTGVTAE





18321
KCYLAWNPPL QDGGANISHY IIEKRETSRL SWTQVSTEVQ





18361
ALNYKVTKLL PGNEYIFRVM AVNKYGIGEP LESGPVTACN





18401
PYKPPGPPST PEVSAITKDS MVVTWARPVD DGGTEIEGYI





18441
LEKRDKEGVR WTKCNKKTLT DLRLRVTGLT EGHSYEFRVA





18481
AENAAGVGEP SEPSVFYRAC DALYPPGPPS NPKVTDTSRS





18521
SVSLAWSKPI YDGGAPVKGY VVEVKEAAAD EWTTCTPPTG





18561
LQGKQFTVTK LKENTEYNFR ICAINSEGVG EPATLPGSVV





18601
AQERIEPPEI ELDADLRKVV VLRASATLRL FVTIKGRPEP





18641
EVKWEKAEGI LTDRAQIEVT SSFTMLVIDN VTRFDSGRYN





18681
LTLENNSGSK TAFVNVRVLD SPSAPVNLTI REVKKDSVTL





18721
SWEPPLIDGG AKITNYIVEK RETTRKAYAT ITNNCTKTTF





18761
RIENLQEGCS YYFRVLASNE YGIGLPAETT EPVKVSEPPL





18801
PPGRVTLVDV TRNTATIKWE KPESDGGSKI TGYVVEMQTK





18841
GSEKWSTCTQ VKTLEATISG LTAGEEYVFR VAAVNEKGRS





18881
DPRQLGVPVI ARDIEIKPSV ELPFHTFNVK AREQLKIDVP





18921
FKGRPQATVN WRKDGQTLKE TTRVNVSSSK TVTSLSIKEA





18961
SKEDVGTYEL CVSNSAGSIT VPITIIVLDR PGPPGPIRID





19001
EVSCDSITIS WNPPEYDGGC QISNYIVEKK ETTSTTWHIV





19041
SQAVARTSIK IVRLTTGSEY QFRVCAENRY GKSSYSESSA





19081
VVAEYPFSPP GPPGTPKVVH ATKSTMLVTW QVPVNDGGSR





19121
VIGYHLEYKE RSSILWSKAN KILIADTQMK VSGLDEGLMY





19161
EYRVYAENIA GIGKCSKSCE PVPARDPCDP PGQPEVTNIT





19201
RKSVSLKWSK PHYDGGAKIT GYIVERRELP DGRWLKCNYT





19241
NIQETYFEVT ELTEDQRYEF RVFARNAADS VSEPSESTGP





19281
IIVKDDVEPP RVMMDVKFRD VIVVKAGEVL KINADIAGRP





19321
LPVISWAKDG IEIEERARTE IISTDNHTLL TVKDCIRRDT





19361
GQYVLTLKNV AGTRSVAVNC KVLDKPGPPA GPLEINGLTA





19401
EKCSLSWGRP QEDGGADIDY YIVEKRETSH LAWTICEGEL





19441
QMTSCKVTKL LKGNEYIFRV TGVNKYGVGE PLESVAIKAL





19481
DPFTVPSPPT SLEITSVTKE SMTLCWSRPE SDGGSEISGY





19521
IIERREKNSL RWVRVNKKPV YDLRVKSTGL REGCEYEYRV





19561
YAENAAGLSL PSETSPLIRA EDPVFLPSPP SKPKIVDSGK





19601
TTITIAWVKP LFDGGAPITG YTVEYKKSDD TDWKTSIQSL





19641
RGTEYTISGL TTGAEYVFRV KSVNKVGASD PSDSSDPQIA





19681
KEREEEPLFD IDSEMRKTLI VKAGASFTMT VPFRGRPVPN





19721
VLWSKPDTDL RTRAYVDTTD SRTSLTIENA NRNDSGKYTL





19761
TIQNVLSAAS LTLVVKVLDT PGPPTNITVQ DVTKESAVLS





19801
WDVPENDGGA PVKNYHIEKR EASKKAWVSV TNNCNRLSYK





19841
VTNLQEGAIY YFRVSGENEF GVGIPAETKE GVKITEKPSP





19881
PEKLGVTSIS KDSVSLTWLK PEHDGGSRIV HYVVEALEKG





19921
QKNWVKCAVA KSTHHVVSGL RENSEYFFRV FAENQAGLSD





19961
PRELLLPVLI KEQLEPPEID MKNFPSHTVY VRAGSNLKVD





20001
IPISGKPLPK VTLSRDGVPL KATMRENTEI TAENLTINLK





20041
ESVTADAGRY EITAANSSGT TKAFINIVVL DRPGPPTGPV





20081
VISDITEESV TLKWEPPKYD GGSQVTNYIL LKRETSTAVW





20121
TEVSATVART MMKVMKLTTG EEYQFRIKAE NRFGISDHID





20161
SACVTVKLPY TTPGPPSTPW VTNVTRESIT VGWHEPVSNG





20201
GSAVVGYHLE MKDRNSILWQ KANKLVIRTT HFKVTTISAG





20241
LIYEFRVYAE NAAGVGKPSH PSEPVLAIDA CEPPRNVRIT





20281
DISKNSVSLS WQQPAFDGGS KITGYIVERR DLPDGRWTKA





20321
SFTNVTETQF IISGLTQNSQ YEFRVFARNA VGSISNPSEV





20361
VGPITCIDSY GGPVIDLPLE YTEVVKYRAG TSVKLRAGIS





20401
GKPAPTIEWY KDDKELQTNA LVCVENTTDL ASILIKDADR





20441
LNSGCYELKL RNAMGSASAT IRVQILDKPG PPGGPIEFKT





20481
VTAEKITLLW RPPADDGGAK ITHYIVEKRE TSRVVWSMVS





20521
EHLEECIITT TKIIKGNEYI FRVRAVNKYG IGEPLESDSV





20561
VAKNAFVTPG PPGIPEVTKI TKNSMTVVWS RPIADGGSDI





20601
SGYFLEKRDK KSLGWFKVLK ETIRDTRQKV TGLTENSDYQ





20641
YRVCAVNAAG QGPFSEPSEF YKAADPIDPP GPPAKIRIAD





20681
STKSSITLGW SKPVYDGGSA VTGYVVEIRQ GEEEEWTTVS





20721
TKGEVRTTEY VVSNLKPGVN YYFRVSAVNC AGQGEPIEMN





20761
EPVQAKDILE APEIDLDVAL RTSVIAKAGE DVQVLIPFKG





20801
RPPPTVTWRK DEKNLGSDAR YSIENTDSSS LLTIPQVTRN





20841
DTGKYILTIE NGVGEPKSST VSVKVLDTPA ACQKLQVKHV





20881
SRGTVTLLWD PPLIDGGSPI INYVIEKRDA TKRTWSVVSH





20921
KCSSTSFKLI DLSEKTPFFF RVLAENEIGI GEPCETTEPV





20961
KAAEVPAPIR DLSMKDSTKT SVILSWTKPD FDGGSVITEY





21001
VVERKGKGEQ TWSHAGISKT CEIEVSQLKE QSVLEFRVFA





21041
KNEKGLSDPV TIGPITVKEL IITPEVDLSD IPGAQVTVRI





21081
GHNVHLELPY KGKPKPSISW LKDGLPLKES EFVRFSKTEN





21121
KITLSIKNAK KEHGGKYTVI LDNAVCRIAV PITVITLGPP





21161
SKPKGPIRFD EIKADSVILS WDVPEDNGGG EITCYSIEKR





21201
ETSQTNWKMV CSSVARTTFK VPNLVKDAEY QFRVRAENRY





21241
GVSQPLVSSI IVAKHQFRIP GPPGKPVIYN VTSDGMSLTW





21281
DAPVYDGGSE VTGFHVEKKE RNSILWQKVN TSPISGREYR





21321
ATGLVEGLDY QFRVYAENSA GLSSPSDPSK FTLAVSPVDP





21361
PGTPDYIDVT RETITLKWNP PLRDGGSKIV GYSIEKRQGN





21401
ERWVRCNFTD VSECQYTVTG LSPGDRYEFR IIARNAVGTI





21441
SPPSQSSGII MTRDENVPPI VEFGPEYFDG LIIKSGESLR





21481
IKALVQGRPV PRVTWFKDGV EIEKRMNMEI TDVLGSTSLF





21521
VRDATRDHRG VYTVEAKNAS GSAKAEIKVK VQDTPGKVVG





21561
PIRFTNITGE KMTLWWDAPL NDGCAPITHY IIEKRETSRL





21601
AWALIEDKCE AQSYTAIKLI NGNEYQFRVS AVNKFGVGRP





21641
LDSDPVVAQI QYTVPDAPGI PEPSNITGNS ITLTWARPES





21681
DGGSEIQQYI LERREKKSTR WVKVISKRPI SETRFKVTGL





21721
TEGNEYEFHV MAENAAGVGP ASGISRLIKC REPVNPPGPP





21761
TVVKVTDTSK TTVSLEWSKP VEDGGMEIIG YIIEMCKADL





21801
GDWHKVNAEA CVKTRYTVTD LQAGEEYKFR VSAINGAGKG





21841
DSCEVTGTIK AVDRLTAPEL DIDANFKQTH VVRAGASIRL





21881
FIAYQGRPTP TAVWSKPDSN LSLRADIHTT DSFSTLTVEN





21921
CNRNDAGKYT LTVENNSGSK SITFTVKVLD TPGPPGPITF





21961
KDVTRGSATL MWDAPLLDGG ARIHHYVVEK REASRRSWQV





22001
ISEKCTRQIF KVNDLAEGVP YYFRVSAVNE YGVGEPYEMP





22041
EPIVATEQPA PPRRLDVVDT SKSSAVLAWL KPDHDGGSRI





22081
TGYLLEMRQK GSDFWVEAGH TKQLTFTVER LVEKTEYEFR





22121
VKAKNDAGYS EPREAFSSVI IKEPQIEPTA DLTGITNQLI





22161
TCKAGSPFTI DVPISGRPAP KVTWKLEEMR LKETDRVSIT





22201
TTKDRTTLTV KDSMRGDSGR YFLTLENTAG VKTFSVTVVV





22241
IGRPGPVTGP IEVSSVSAES CVLSWGEPKD GGGTEITNYI





22281
VEKRESGTTA WQLVNSSVKR TQIKVTHLTK YMEYSFRVSS





22321
ENRFGVSKPL ESAPIIAEHP FVPPSAPTRP EVYHVSANAM





22361
SIRWEEPYHD GGSKIIGYWV EKKERNTILW VKENKVPCLE





22401
CNYKVTGLVE GLEYQFRTYA LNAAGVSKAS EASRPIMAQN





22441
PVDAPGRPEV TDVTRSTVSL IWSAPAYDGG SKVVGYIIER





22481
KPVSEVGDGR WLKCNYTIVS DNFFTVTALS EGDTYEFRVL





22521
AKNAAGVISK GSESTGPVTC RDEYAPPKAE LDARLHGDLV





22561
TIRAGSDLVL DAAVGGKPEP KIIWTKGDKE LDLCEKVSLQ





22601
YTGKRATAVI KFCDRSDSGK YTLTVKNASG TKAVSVMVKV





22641
LDSPGPCGKL TVSRVTQEKC TLAWSLPQED GGAEITHYIV





22681
ERRETSRLNW VIVEGECPTL SYVVTRLIKN NEYIFRVRAV





22721
NKYGPGVPVE SEPIVARNSF TIPSPPGIPE EVGTGKEHII





22761
IQWTKPESDG GNEISNYLVD KREKKSLRWT RVNKDYVVYD





22801
TRLKVTSLME GCDYQFRVTA VNAAGNSEPS EASNFISCRE





22841
PSYTPGPPSA PRVVDTTKHS ISLAWTKPMY DGGTDIVGYV





22881
LEMQEKDTDQ WYRVHTNATI RNTEFTVPDL KMGQKYSFRV





22921
AAVNVKGMSE YSESIAEIEP VERIEIPDLE LADDLKKTVT





22961
IRAGASLRLM VSVSGRPPPV ITWSKQGIDL ASRAIIDTTE





23001
SYSLLIVDKV NRYDAGKYTI EAENQSGKKS ATVLVKVYDT





23041
PGPCPSVKVK EVSRDSVTIT WEIPTIDGGA PVNNYIVEKR





23081
EAAMRAFKTV TTKCSKTLYR ISGLVEGTMY YFRVLPENIY





23121
GIGEPCETSD AVLVSEVPLV PAKLEVVDVT KSTVTLAWEK





23161
PLYDGGSRLT GYVLEACKAG TERWMKVVTL KPTVLEHTVT





23201
SLNEGEQYLF RIRAQNEKGV SEPRETVTAV TVQDLRVLPT





23241
IDLSTMPQKT IHVPAGRPVE LVIPIAGRPP PAASWFFAGS





23281
KLRESERVTV ETHTKVAKLT IRETTIRDTG EYTLELKNVT





23321
GTTSETIKVI ILDKPGPPTG PIKIDEIDAT SITISWEPPE





23361
LDGGAPLSGY VVEQRDAHRP GWLPVSESVT RSTFKFTRLT





23401
EGNEYVFRVA ATNRFGIGSY LQSEVIECRS SIRIPGPPET





23441
LQIFDVSRDG MTLTWYPPED DGGSQVTGYI VERKEVRADR





23481
WVRVNKVPVT MTRYRSTGLT EGLEYEHRVT AINARGSGKP





23521
SRPSKPIVAM DPIAPPGKPQ NPRVTDTTRT SVSLAWSVPE





23561
DEGGSKVTGY LIEMQKVDQH EWTKCNTTPT KIREYTLTHL





23601
PQGAEYRFRV LACNAGGPGE PAEVPGTVKV TEMLEYPDYE





23641
LDERYQEGIF VRQGGVIRLT IPIKGKPFPI CKWTKEGQDI





23681
SKRAMIATSE THTELVIKEA DRGDSGTYDL VLENKCGKKA





23721
VYIKVRVIGS PNSPEGPLEY DDIQVRSVRV SWRPPADDGG





23761
ADILGYILER REVPKAAWYT IDSRVRGTSL VVKGLKENVE





23801
YHFRVSAENQ FGISKPLKSE EPVTPKTPLN PPEPPSNPPE





23841
VLDVTKSSVS LSWSRPKDDG GSRVTGYYIE RKETSTDKWV





23881
RHNKTQITTT MYTVTGLVPD AEYQFRIIAQ NDVGLSETSP





23921
ASEPVVCKDP FDKPSQPGEL EILSISKDSV TLQWEKPECD





23961
GGKEILGYWV EYRQSGDSAW KKSNKERIKD KQFTIGGLLE





24001
ATEYEFRVFA ENETGLSRPR RTAMSIKTKL TSGEAPGIRK





24041
EMKDVTTKLG EAAQLSCQIV GRPLPDIKWY RFGKELIQSR





24081
KYKMSSDGRT HTLTVMTEEQ EDEGVYTCIA TNEVGEVETS





24121
SKLLLQATPQ FHPGYPLKEK YYGAVGSTLR LHVMYIGRPV





24161
PAMTWFHGQK LLQNSENITI ENTEHYTHLV MKNVQRKTHA





24201
GKYKVQLSNV FGTVDAILDV EIQDKPDKPT GPIVIEALLK





24241
NSAVISWKPP ADDGGSWITN YVVEKCEAKE GAEWQLVSSA





24281
ISVTTCRIVN LTENAGYYFR VSAQNTFGIS DPLEVSSVVI





24321
IKSPFEKPGA PGKPTITAVT KDSCVVAWKP PASDGGAKIR





24361
NYYLEKREKK QNKWISVTTE EIRETVFSVK NLIEGLEYEF





24401
RVKCENLGGE SEWSEISEPI TPKSDVPIQA PHFKEELRNL





24441
NVRYQSNATL VCKVTGHPKP IVKWYRQGKE IIADGLKYRI





24481
QEFKGGYHQL IIASVTDDDA TVYQVRATNQ GGSVSGTASL





24521
EVEVPAKIHL PKTLEGMGAV HALRGEVVSI KIPFSGKPDP





24561
VITWQKGQDL IDNNGHYQVI VTRSFTSLVF PNGVERKDAG





24601
FYVVCAKNRF GIDQKTVELD VADVPDPPRG VKVSDVSRDS





24641
VNLTWTEPAS DGGSKITNYI VEKCATTAER WLRVGQARET





24681
RYTVINLFGK TSYQFRVIAE NKFGLSKPSE PSEPTITKED





24721
KTRAMNYDEE VDETREVSMT KASHSSTKEL YEKYMIAEDL





24761
GRGEFGIVHR CVETSSKKTY MAKFVKVKGT DQVLVKKEIS





24801
ILNIARHRNI LHLHESFESM EELVMIFEFI SGLDIFERIN





24841
TSAFELNERE IVSYVHQVCE ALQFLHSHNI GHFDIRPENI





24881
IYQTRRSSTI KIIEFGQARQ LKPGDNFRLL FTAPEYYAPE





24921
VHQHDVVSTA TDMWSLGTLV YVLLSGINPF LAETNQQIIE





24961
NIMNAEYTFD EEAFKEISIE AMDFVDRLLV KERKSRMTAS





25001
EALQHPWLKQ KIERVSTKVI RTLKHRRYYH TLIKKDLNMV





25041
VSAARISCGG AIRSQKGVSV AKVKVASIEI GPVSGQIMHA





25081
VGEEGGHVKY VCKIENYDQS TQVTWYFGVR QLENSEKYEI





25121
TYEDGVAILY VKDITKLDDG TYRCKVVNDY GEDSSYAELF





25161
VKGVREVYDY YCRRTMKKIK RRTDTMRLLE RPPEFTLPLY





25201
NKTAYVGENV RFGVTITVHP EPHVTWYKSG QKIKPGDNDK





25241
KYTFESDKGL YQLTINSVTT DDDAEYTVVA RNKYGEDSCK





25281
AKLTVTLHPP PTDSTLRPMF KRLLANAECQ EGQSVCFEIR





25321
VSGIPPPTLK WEKDGQPLSL GPNIEIIHEG LDYYALHIRD





25361
TLPEDTGYYR VTATNTAGST SCQAHLQVER LRYKKQEFKS





25401
KEEHERHVQK QIDKTLRMAE ILSGTESVPL TQVAKEALRE





25441
AAVLYKPAVS TKTVKGEFRL EIEEKKEERK LRMPYDVPEP





25481
RKYKQTTIEE DQRIKQFVPM SDMKWYKKIR DQYEMPGKLD





25521
RVVQKRPKRI RLSRWEQFYV MPLPRITDQY RPKWRIPKLS





25561
QDDLEIVRPA RRRTPSPDYD FYYRPRRRSL GDISDEELLL





25601
PIDDYLAMKR TEEERLRLEE ELELGFSASP PSRSPPHFEL





25641
SSLRYSSPQA HVKVEETRKD FRYSTYHIPT KAEASTSYAE





25681
LRERHAQAAY RQPKQRQRIM AEREDEELLR PVTTTQHLSE





25721
YKSELDFMSK EEKSRKKSRR QREVTEITEI EEEYEISKHA





25761
QRESSSSASR LLRRRRSLSP TYIELMRPVS ELIRSRPQPA





25801
EEYEDDTERR SPTPERTRPR SPSPVSSERS LSRFERSARF





25841
DIFSRYESMK AALKTQKTSE RKYEVLSQQP FTLDHAPRIT





25881
LRMRSHRVPC GQNTRFILNV QSKPTAEVKW YHNGVELQES





25921
SKIHYTNTSG VLTLEILDCH TDDSGTYRAV CTNYKGEASD





25961
YATLDVTGGD YTTYASQRRD EEVPRSVFPE LTRTEAYAVS





26001
SFKKTSEMEA SSSVREVKSQ MTETRESLSS YEHSASAEMK





26041
SAALEEKSLE EKSTTRKIKT TLAARILTKP RSMTVYEGES





26081
ARFSCDTDGE PVPTVTWLRK GQVLSTSARH QVTTTKYKST





26121
FEISSVQASD EGNYSVVVEN SEGKQEAEFT LTIQKARVTE





26161
KAVTSPPRVK SPEPRVKSPE AVKSPKRVKS PEPSHPKAVS





26201
PTETKPTPTE KVQHLPVSAP PKITQFLKAE ASKEIAKLTC





26241
VVESSVLRAK EVTWYKDGKK LKENGHFQFH YSADGTYELK





26281
INNLTESDQG EYVCEISGEG GTSKTNLQFM GQAFKSIHEK





26321
VSKISETKKS DQKTTESTVT RKTEPKAPEP ISSKPVIVTG





26361
LQDTTVSSDS VAKFAVKATG EPRPTAIWTK DGKAITQGGK





26401
YKLSEDKGGF FLEIHKTDTS DSGLYTCTVK NSAGSVSSSC





26441
KLTIKAIKDT EAQKVSTQKT SEITPQKKAV VQEEISQKAL





26481
RSEEIKMSEA KSQEKLALKE EASKVLISEE VKKSAATSLE





26521
KSIVHEEITK TSQASEEVRT HAEIKAFSTQ MSINEGQRLV





26561
LKANIAGATD VKWVLNGVEL TNSEEYRYGV SGSDQTLTIK





26601
QASHRDEGIL TCISKTKEGI VKCQYDLTLS KELSDAPAFI





26641
SQPRSQNINE GQNVLFTCEI SGEPSPEIEW FKNNLPISIS





26681
SNVSISRSRN VYSLEIRNAS VSDSGKYTIK AKNFRGQCSA





26721
TASLMVLPLV EEPSREVVLR TSGDTSLQGS FSSQSVQMSA





26761
SKQEASFSSF SSSSASSMTE MKFASMSAQS MSSMQESFVE





26801
MSSSSFMGIS NMTQLESSTS KMLKAGIRGI PPKIEALPSD





26841
ISIDEGKVLT VACAFTGEPT PEVTWSCGGR KIHSQEQGRF





26881
HIENTDDLTT LIIMDVQKQD GGLYTLSLGN EFGSDSATVN





26921
IHIRSI






In some cases, SARS-CoV-2 infection can be monitored by observing cleavage of titin in the C-terminal region. For example, such cleavage can occur in the M-band (also called the M-line) region of titin. The M band is at the C-terminal end 35 of the titin protein and in the center of the A band, which is in the center of the sarcomere. The approximate 250 kilodalton M band is an attachment site for the thick filaments, and it is encoded by six exons, exons 359 to 364, which are also termed M-band exons 1 to 6 (Mex1 to Mex6). The M band region interacts with several sarcomeric proteins including myosin-binding protein C, calmodulin 1, CAPN3, obscurin, and MURF1.


Cleavage of titin can be observed within the C-terminal 2000-4000 amino acids, or the 2000-3000 amino acids of the titin protein. Such cleavage is observed when SARS-CoV-2 infection occurs. A test agent that causes a reduction in titin cleavage (e.g., compared to a control) can be useful for treating and/or preventing SARS-CoV-2 infection.


COVID-19

Initial descriptions of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), characterized it as a primarily respiratory syndrome (see website at pubmed.ncbi.nlm.nih.gov/32031570/). However, increasing clinical evidence now implicates multiple organ systems in COVID-19 infection, including the heart, gastrointestinal tract, and kidneys (Wang, see websites at sciencedirect.com/science/article/pii/S0140673620302117; ahajournals.org/doi/10.1161/CIRCULATIONAHA.120.047164; jamanetwork.com/journals/jama/fullarticle/2763485; jamanetwork.com/joumals/jama/fullarticle/2765184).


As illustrated herein, multiple COVID-19 patients frequently present with significant myocardial damage (see also websites at jamanetwork.com/journals/jamacardiology/fullarticle/2763845; academic.oup.com/cardiovascres/article/116/10/1666/5826160; nature.com/articles/s41569-020-0413-9), even when they exhibited no prior cardiovascular disease (CVD) (jamanetwork.com/journals/jamacardiology/fullarticle/2763524), indicating that viral infection may be directly responsible for the cardiac damage. Meta-analyses identify elevated high-sensitivity troponin-I or natriuretic peptides as the strongest predictor of mortality in hospitalized patients, eclipsing both cardiovascular disease and congestive obstructive pulmonary disease (see websites at thelancet.com/journals/lancet/article/PIIS0140-6736(20)30566-3/fulltext; pubmed.ncbi.nlm.nih.gov/32362922/; pubmed.ncbi.nlm.nih.gov/32125452/; jamanetwork.com/joumals/jamacardiology/fullarticle/2763524). Alarmingly, evidence of elevated troponin can be found even in mild cases of COVID-19, and a recent study observed that the majority of recovered patients in the studied cohort presented with impaired cardiac function, indicating that long-term heart sequelae from COVID-19 may not be limited to intensive care unit cases (see website atjamanetwork.com/joumals/jamacardiology/fullarticle/2768916).


Identifying therapeutic strategies to prevent or manage myocardial injury in COVID-19 patients is hindered by limited understanding of the mechanisms by which SARS-CoV-2 induces cardiac damage. Besides direct myocardial infection, cardiac damage may be caused by other systemic impacts of SARS-CoV-2, such as hypoxic stress due to pulmonary damage, microvascular thrombosis, and/or the systemic immune response to viral infection (see website at ncbi.nlm.nih.gov/pmc/articles/PMC7270045/). Recent histological results from deceased COVID-19 patients detect viral RNA in the myocardium without inflammatory cell infiltrates (see website at jamanetwork.com/joumals/jamacardiology/fullarticle/2768914), but whether these transcripts arise from infected myocytes, cardiac stroma, or blood vessels was previously unknown (see website at onlinelibrary.wiley.com/doi/abs/10.1002/ejhf.1828). Cardiomyocytes are known to express the primary receptor for viral entry, ACE2 (see website at sciencedirect.com/science/article/pii/S0092867420302294) and may be infectable by SARS-CoV-2 (see website at ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.120.047549). Developing effective interventions for cardiac injury in COVID-19 requires identification of the key molecules and cell types involved in mediating viral infection and cellular anomalies.


As described herein, ex vivo studies employed using human cell-based models of the heart were used to afford the most direct route for the prospective and clinically relevant study of the effects of cardiac viral infection. Human induced pluripotent stem cells (iPSCs) can be used as described herein to obtain functional cardiac tissue models for disease modeling and discovery, overcoming the infeasibility of using primary human hearts. Stem-cell derived models have already demonstrated the susceptibility of hepatocytes (see website at sciencedirect.com/science/article/pii/S1934590920302824), intestinal epithelium (see website at nature.com/articles/s41591-020-0912-6; see website at ncbi.nlm.nih.gov/pmc/articles/PMC7199907/), and lung organoids (see website at biorxiv.org/content/10.1101/2020.05.05.079095v1. abstract) to SARS-CoV-2 infection.


While two recent reports indicated that human iPSC-cardiomyocytes are susceptible to SARS-CoV-2 infection (see websites at cell.com/cell-reports-medicine/fulltext/S2666-3791(20)30068-9, biorxiv.org/content/10.1101/2020.06.01.127605v1), clear indications of specific cardiac cytopathic features have not been identified. In addition, the relative viral tropism for other cardiac cell types that may be involved in microthrombosis or weakening of the ventricular wall has previously not been explored, nor has there been direct correlation of in vitro results to clinical pathology specimens.


Identifying phenotypic biomarkers of SARS-CoV-2 infection and cardiac cytopathy that recapitulate features of patient tissue is critical for rapidly developing novel cardioprotective therapies efficacious against COVID-19. As described herein, the inventors have examined the relative susceptibility of three iPS-derived cardiac cell types: cardiomyocytes (CMs), cardiac fibroblasts (CFs), and endothelial cells (ECs), to SARS-CoV-2 infection, and identify clear hallmarks of infection and cardiac cytopathy that predict pathologic features found in human COVID-19 tissue specimens.


Definitions

The term “about” as used herein when referring to a measurable value such as an amount, a length, and the like, is meant to encompass variations of 20% or +10%, more preferably 5%, even more preferably 1%, and still more preferably 0.1% from the specified value.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosed subject matter. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the disclosed subject matter, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosed subject matter.


As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a nucleic acid” or “a protein” or “a cell” includes a plurality of such nucleic acids, proteins, or cells (for example, a solution or dried preparation of nucleic acids or expression cassettes, a solution of proteins, or a population of cells), and so forth. In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.


“Recombinant” as used herein to describe a nucleic acid molecule means a polynucleotide of genomic, cDNA, bacterial, mammalian, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation, is not associated with all or a portion of the polynucleotide with which it is associated in nature.


The term “recombinant” as used with respect to a protein or polypeptide means a polypeptide produced by expression of a recombinant polynucleotide. In general, the gene of interest is cloned and then expressed in transformed organisms. The host organism expresses the foreign gene to produce the protein under expression conditions.


As used herein, a “cell” refers to any type of cell. The cell can be in an organism or it can be maintained outside of an organism. The cell can be within a living organism and be in its normal (native) state. The term “cell” includes an individual cell or a group or population of cells. The cell(s) can be a prokaryotic, eukaryotic, or archaeon cell(s), such as a bacterial, archaeal, fungal, protist, plant, or animal cell(s). The cell(s) can be from or be within tissues, organs, and biopsies. The cell(s) can be a recombinant cell(s), a cell(s) from a cell line cultured in vitro. The cell(s) can include cellular fragments, cell components, or organelles comprising nucleic acids. In some cases, the cell(s) are human cells. The term cell(s) also encompasses artificial cells, such as nanoparticles, liposomes, polymersomes, or microcapsules encapsulating nucleic acids. The methods described herein can be performed, for example, on a sample comprising a single cell or a population of cells. The term also includes genetically modified cells.


The term “transformation” refers to the insertion of an exogenous polynucleotide into a host cell, irrespective of the method used for the insertion. For example, direct uptake, transfection, or transduction are included. The exogenous polynucleotide may be maintained as a non-integrated vector, for example, a plasmid, or alternatively, may be integrated into the host genome.


“Recombinant host cells,” “host cells”, “cells”, “cell lines”, “cell cultures”, and other such terms denoting microorganisms or higher eukaryotic cell lines cultured as unicellular entities refer to cells which can be, or have been, used as recipients for recombinant vector or other transferred DNA, and include the original progeny of the original cell which has been transfected.


A “coding sequence” or a sequence which “encodes” a selected RNA or a selected polypeptide, is a nucleic acid molecule which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide in vivo when placed under the control of appropriate regulatory sequences (or “control elements”). The boundaries of the coding sequence can be determined by a start codon at the 5′ (amino) terminus and a translation stop codon at the 3′ (carboxy) terminus. A coding sequence can include, but is not limited to, cDNA from viral, prokaryotic or eukaryotic mRNA, genomic DNA sequences from viral or prokaryotic DNA, and even synthetic DNA sequences. A transcription termination sequence may be located 3′ to the coding sequence.


Typical “control elements,” include, but are not limited to, transcription promoters, transcription enhancer elements, transcription termination signals, polyadenylation sequences (located 3′ to the translation stop codon), sequences for optimization of initiation of translation (located 5′ to the coding sequence), and translation termination sequences.


“Operably linked” refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, a given promoter operably linked to a coding sequence is capable of effecting the expression of the coding sequence when the proper enzymes are present. The promoter need not be contiguous with the coding sequence, so long as it functions to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between the promoter sequence and the coding sequence and the promoter sequence can still be considered “operably linked” to the coding sequence.


“Encoded by” refers to a nucleic acid sequence which codes for a polypeptide or RNA sequence. For example, the polypeptide sequence or a portion thereof contains an amino acid sequence of at least 3 to 5 amino acids, more preferably at least 8 to 10 amino acids, and even more preferably at least 15 to 20 amino acids from a polypeptide encoded by the nucleic acid sequence. The RNA sequence or a portion thereof contains a nucleotide sequence of at least 3 to 5 nucleotides, more preferably at least 8 to 10 nucleotides, and even more preferably at least 15 to 20 nucleotides.


The terms “isolated,” “purified,” or “biologically pure” refer to material that is free to varying degrees from components which normally accompany it as found in its native state. “Isolate” denotes a degree of separation from original source or surroundings. “Purify” denotes a degree of separation that is higher than isolation. A “purified” or “biologically pure” protein is sufficiently free of other materials such that any impurities do not materially affect the biological properties of the protein or cause other adverse consequences. That is, a nucleic acid or peptide of this invention is purified if it is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Purity and homogeneity are typically determined using analytical chemistry techniques, for example, polyacrylamide gel electrophoresis or high-performance liquid chromatography. The term “purified” can denote that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. For a protein that can be subjected to modifications, for example, phosphorylation or glycosylation, different modifications may give rise to different isolated proteins, which can be separately purified.


“Expression” refers to detectable production of a gene product by a cell. The gene product may be a transcription product (i.e., RNA), which may be referred to as “gene expression”, or the gene product may be a translation product of the transcription product (i.e., a protein), depending on the context.


“Purified polynucleotide” refers to a polynucleotide of interest or fragment thereof which is essentially free, e.g., contains less than about 50%, preferably less than about 70%, and more preferably less than about at least 90%, of the protein and/or nucleic acids with which the polynucleotide is naturally associated. Techniques for purifying polynucleotides of interest are available in the art and include, for example, disruption of the cell containing the polynucleotide with a chaotropic agent and separation of the polynucleotide(s) and proteins by ion-exchange chromatography, affinity chromatography and sedimentation according to density.


“Substantially purified” generally refers to isolation of a substance (compound, polynucleotide, protein, polypeptide, peptide composition) such that the substance comprises the majority percent of the sample in which it resides. Typically, in a sample, a substantially purified component comprises 50%, preferably 80%-85%, more preferably 90-95% of the sample. Techniques for purifying polynucleotides and polypeptides of interest are well-known in the art and include, for example, ion-exchange chromatography, affinity chromatography and sedimentation according to density.


The term “transfection” is used to refer to the uptake of foreign DNA by a cell. A cell has been “transfected” when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al. (1973) Virology, 52:456, Sambrook et al. (2001) Molecular Cloning, a laboratory manual, 3rd edition, Cold Spring Harbor Laboratories, New York, Davis et al. (1995) Basic Methods in Molecular Biology, 2nd edition, McGraw-Hill, and Chu et al. (1981) Gene 13:197. Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells. The term refers to both stable and transient uptake of the genetic material and includes uptake of peptide-linked or antibody-linked DNAs.


The term “transduction” refers to the introduction of foreign nucleic acid to a cell through a replication-incompetent viral vector.


A “vector” is capable of transferring nucleic acid sequences to target cells (e.g., viral vectors, non-viral vectors, particulate carriers, and liposomes). Typically, “vector construct,” “expression vector,” and “gene transfer vector,” mean any nucleic acid construct capable of directing the expression of a nucleic acid of interest and which can transfer nucleic acid sequences to target cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors.


“Mammalian cell” refers to any cell derived from a mammalian subject suitable for transfection with an engineered vector system comprising an expression system described herein. The cell may be xenogeneic, autologous, or allogeneic. The cell can be a primary cell obtained directly from a mammalian subject. The cell may also be a cell derived from the culture and expansion of a cell obtained from a mammalian subject. Immortalized cells are also included within this definition. In some embodiments, the cell has been genetically engineered to express a recombinant protein and/or nucleic acid.


The term “subject” includes animals, including both vertebrates and invertebrates, including, without limitation, invertebrates such as arthropods, mollusks, annelids, and cnidarians; and vertebrates such as amphibians, including frogs, salamanders, and caecillians; reptiles, including lizards, snakes, turtles, crocodiles, and alligators; fish; mammals, including human and non-human mammals such as non-human primates, including chimpanzees and other apes and monkey species; laboratory animals such as mice, rats, rabbits, hamsters, guinea pigs, and chinchillas; domestic animals such as dogs and cats; farm animals such as sheep, goats, pigs, horses and cows; and birds such as domestic, wild and game birds, including chickens, turkeys and other gallinaceous birds, ducks, geese, and the like. In some cases, the disclosed methods find use in experimental animals, in veterinary application, and in the development of animal models for disease, including, but not limited to, rodents including mice, rats, and hamsters; primates, and transgenic animals.


“Gene transfer” or “gene delivery” refers to methods or systems for reliably inserting DNA or RNA of interest into a host cell. Such methods can result in transient expression of non-integrated transferred DNA, extrachromosomal replication and expression of transferred replicons (e.g., episomes), or integration of transferred genetic material into the genomic DNA of host cells. Gene delivery expression vectors include, but are not limited to, vectors derived from bacterial plasmid vectors, viral vectors, non-viral vectors, alphaviruses, pox viruses and vaccinia viruses.


The term “derived from” is used herein to identify the original source of a molecule but is not meant to limit the method by which the molecule is made which can be, for example, by chemical synthesis or recombinant means.


A polynucleotide “derived from” a designated sequence refers to a polynucleotide sequence which comprises a contiguous sequence of approximately at least about 6 nucleotides, preferably at least about 8 nucleotides, more preferably at least about 10-12 nucleotides, and even more preferably at least about 15-20 nucleotides corresponding, i.e., identical or complementary to, a region of the designated nucleotide sequence. The derived polynucleotide will not necessarily be derived physically from the nucleotide sequence of interest, but may be generated in any manner, including, but not limited to, chemical synthesis, replication, reverse transcription or transcription, which is based on the information provided by the sequence of bases in the region(s) from which the polynucleotide is derived. As such, it may represent either a sense or an antisense orientation of the original polynucleotide.


As used herein, the terms “complementary” or “complementarity” refers to polynucleotides that are able to form base pairs with one another. Base pairs are typically formed by hydrogen bonds between nucleotide units in an anti-parallel orientation between polynucleotide strands. Complementary polynucleotide strands can base pair in a Watson-Crick manner (e.g., A to T, A to U, C to G), or in any other manner that allows for the formation of duplexes. As persons skilled in the art are aware, when using RNA as opposed to DNA, uracil (U) rather than thymine (T) is the base that is considered to be complementary to adenosine. However, when uracil is denoted in the context of the present invention, the ability to substitute a thymine is implied, unless otherwise stated. “Complementarity” may exist between two RNA strands, two DNA strands, or between an RNA strand and a DNA strand. It is generally understood that two or more polynucleotides may be “complementary” and able to form a duplex despite having less than perfect or less than 100% complementarity. Two sequences are “perfectly complementary” or “100% complementary” if at least a contiguous portion of each polynucleotide sequence, comprising a region of complementarity, perfectly base pairs with the other polynucleotide without any mismatches or interruptions within such region. Two or more sequences are considered “perfectly complementary” or “100% complementary” even if either or both polynucleotides contain additional non-complementary sequences as long as the contiguous region of complementarity within each polynucleotide is able to perfectly hybridize with the other. “Less than perfect” complementarity refers to situations where less than all of the contiguous nucleotides within such region of complementarity are able to base pair with each other. Determining the percentage of complementarity between two polynucleotide sequences is a matter of ordinary skill in the art.


The following example illustrate some of the experiments used in the development of the invention and some features of the invention.


Example 1: Materials and Methods

This Example describes some of the materials and methods used in developing and practicing the invention.


hiPSC Maintenance; iPS-Cardiomyocyte Differentiation and Purification


Human iPS cells (WTC11 line; see website at ncbi.nlm.nih.gov/pmc/articles/PMC4063274/) were maintained in mTESR or mTESR+(STEMCELL Technologies) on Matrigel (8 μg/ml, BD Biosciences)-coated cell culture plates at 37° C., 5% CO2. Cells were passaged every 3 days using Relesr (STEMCELL Technologies) and supplemented with Rock Inhibitor Y-27632 (SelleckChem) for 24 hours after each passaging. hiPSCs were differentiated into cardiomyocytes following a modified Wnt pathway modulation-based GiWi protocol (see website at ncbi.nlm.nih.gov/pmc/articles/PMC3612968/). Briefly, hiPSCs cultures were harvested using Accutase (STEMCELL Technologies) and seeded onto Matrigel-coated 12-well plates. Three days later, cells were exposed to 12 uM CHIR99021 (Tocris) in RPMI1640 (Gibco, 11875093) supplemented with B27 without insulin (Gibco, A1895601) (R/B media) for 24 hours. After an additional 48 hours, media was changed to R/B media supplemented with 5 uM IWP2 (Tocris) for 48 hours. On day 7, media was changed to RPMI1640 medium supplemented with B27 with insulin (Gibco, 17504044) (R/B*) and refreshed every 3 days thereafter. Beating was generally observed around day 8-11. At day 15, cells were cryopreserved using CryoStor CS10 (STEMCELL Technologies). After thawing, cell cultures were enriched for iPS-cardiomyocytes following metabolic switch purification (see website at pubmed.ncbi.nlm.nih.gov/23168164/). Briefly, cells were washed once with saline buffer and incubated in DMEM (without glucose, without sodium pyruvate; Gibco, 11966025) supplemented with GlutaMax (Gibco, 35050061), MEM Non-Essential Amino Acids (Gibco, 11140050) and sodium L-lactate (4 mM, Sigma-Aldrich). Lactate media was refreshed every other day for a total of 6 days. Four to six days later (day 28-30), iPS-CMs were replated into assay plates for infection using 0.25% Trypsin (Gibco, 15050065) at a density of approximately 60,000 cells/cm2.


scRNAseq Analysis of SARS-CoV-2 Entry Factors


A historic single cell RNA sequencing data set consisting of iPSC-derived cardiomyocytes, primary fetal cardiac fibroblasts, and iPSC-derived endothelial cells was re-analyzed to compare relative expression levels of SARS-CoV-2 relevant receptors and proteases (GSE155226) (see web at biorxiv.org/content/10.1101/2020.07.06.190504v1). Briefly, day 30 lactate purified cardiomyocytes were force aggregated either alone or with a single supporting cell type. The cardiomyocytes were then cultured in suspension culture. Aggregates were dissociated and libraries prepared using the Chromium 3′ v2 library preparation platform (10× Genomics). Libraries were sequenced on a NextSeq 550 sequencer (Illumina) to a depth of at least 30 million reads per sample. Samples were demultiplexed and aligned to GRCh38 with CellRanger v3.0.2. Samples were normalized and clustered with Seurat v3.2.0, yielding four primary clusters corresponding to each cell type, which were used to profile cell-type specific expression of SARS-CoV-2 relevant factors.


Cardiac Fibroblast Differentiation

Second heart field-derived cardiac fibroblasts (SHF-CFs) were differentiated following the GiFGF protocol, as described by (website at nature.com/articles/s41467-019-09831-5). Briefly, hiPSCs were seeded at 15,000 cells/cm2 in mTeSR1 medium. Once they reached 100% confluency, they were treated with R/B media supplemented with 12 μM CHIR99021 (day 0) and refreshed with R/B media 24 hours later (day 1). From days 2-20, cells were fed every 2 days with cardiac fibroblast basal media (CFBM) (Lonza, CC-3131) supplemented with 75 ng/mL bFGF. On day 20, CFs were singularized with Accutase for 10 minutes and replated at 7,000 cells/cm2 onto tissue culture plastic 10 cm dishes in FibroGRO medium (Millipore Sigma, SCMF001). FibroGRO media was changed every two days until the CFs reached approximately 80-90% confluency, at which point they were passaged with Accutase. SHF-CFs were validated to be >80% double-positive for TE-7 and vimentin by flow cytometry.


Endothelial Cell Differentiation

WTC11 iPSCs were directed towards an endothelial cell (EC) lineage by the addition of E8 media supplemented with BMP4 (5 ng/ml) and Activin A (25 ng/ml) for 48 hours followed by E7BVi media, consisting of E6 medium supplemented with bFGF (50 ng/ml), VEGF-A (50 ng/ml), BMP4 (50 ng/ml) and a TGFβ inhibitor, SB431542, (5 μM) for 72 hours. After 5 days of successive media changes, ECs were split and plated at high density in EGM media (Lonza, CC-3162) on tissue culture flasks coated with fibronectin (1:100, Sigma Aldrich F0895). On day 8, all cells were cryo-preserved and a fraction of ECs were assayed for >95% purity by flow cytometry using antibodies against mature EC markers CD31 and CDH5.


Mixed Cultures of CMs, CFs, and ECs

Mixed cultures of induced pluripotent stem cell derived cardiomyocytes (iPS-CMs), induced pluripotent stem cell derived endothelial cells (iPS-ECs), and induced pluripotent stem cell derived cardiac fibroblasts (iPS-CFs) were created by combining single cell suspensions of each cell types in a ratio of 60:30:10 CM:EC:CF at a density of 200,000 cells/mL. The mixed suspension was replated onto Matrigel-coated tissue culture plates 48 hours prior to infection at a density of 62,500 cells/cm2.


Reagents









TABLE 1A







Drugs









Drug
Concentration
Provider





DMSO
0.1% (1:1000)
Fisher Scientific (BP231-100)










Interferon α
2500
U/mL
Sigma Aldrich (SRP4596-100UG)


Interferon β
2500
U/mL
Sigma Aldrich (IF014)


Interferon γ
2500
U/mL
BioRad (PHP050A)


Interferon λ
2500
U/mL
Cedarlane Laboratories (CLY100-





169-5UG)


Ruxolitinib
500
nM
Thermo (NC1399519)









Doxorubicin
20 nM and
Sigma (D1515)



200 nM


Bortezomib
1 uM and 10 uM
Sigma (CAS 179324-69-7)










Dutasteride
2
uM
Cayman Chemical (164656-23-9)


Albendazole
2
uM
Cayman Chemical (54965-21-8)


Bafilomycin
100
nM
Cayman Chemical (98813-13-9)


IL-32 blocking antibody
50
ng/mL
R&D Systems (AF3040)


IL-8 recombinant
50
ng/mL
Sigma (I1645-10UG)


IL-32 recombinant
100
ng/mL
Thermo Fisher (4690IL025CF)


IL-8 blocking antibody
100
ng/mL
R&D Systems (MAB208-100)


Repaxirin
1
uM
MedChem Express (HY-15252)


Aprotinin
50
uM
Cayman Chemical (9087-70-1)


Camostat mesilate
2
uM
Cayman Chemical (59721-29-8)


CA074
30
uM
Cayman Chemical (134448-10-5)


E-64d
25
uM
Cayman Chemical (88321-09-9)


Z-Phe-Tyr(tBu)-
30
uM
Cayman Chemical (114014-15-2)


diazomethylketone


ACE2 blocking antibody
20
ug/ml
R&D Systems (AF933)









Cardiac Troponin antibody
1:200
Abcam (ab45932-100 ug)


ACTN2 polyclonal antibody
1:200
Life Technologies Corporation




(14221-1-AP)










Apilimod
1
uM
SelleckChem Chemicals (S6414)









Anti-SARS-CoV-2 Spike
1:200
Provided by BEI resources (NR-616)


protein antibody


Anti-dsRNA antibody (J2)
1:200
Absolute Antibody (Ab01299-2.0)









SARS-CoV-2 Infection

The WA-1 strain (BEI resources) of SARS-CoV-2 was used for all experiments. SARS-CoV-2 stocks were passaged in Vero cells (ATCC) and titer was determined via plaque assay on Vero cells as previously described (Honko et al ref). Briefly, virus was diluted 1:102-1:106 and incubated for 1 hour on Vero cells before an overlay of Avicel and complete DMEM (Sigma Aldrich, SLM-241) was added. After incubation at 37° C. for 72 hours, the overlay was removed and cells were fixed with 10% formalin, stained with crystal violet, and counted for plaque formation. SARS-CoV-2 infections of iPS-derived cardiac cells were done at a multiplicity of infection of 0.006 for 48 hours unless otherwise specified. For heat inactivation, SARS-CoV-2 stocks were incubated at 85° C. for 5 min.


Immunocytochemistry

Infected and mock-treated cell cultures were washed with Phosphate Buffered Solution (PBS) and fixed in 4% paraformaldehyde (PFA) overnight, followed by blocking and permeabilization with 0.1% Triton-X 100 (T8787, Sigma) and 5% BSA (A4503, Sigma) for one hour at RT. Antibody dilution buffer (Ab buffer) was comprised of PBS supplemented with 0.1% Triton-X 100 and 1% BSA. Samples were incubated with primary antibodies overnight at 4° C. (Table 1), followed by 3 washes with PBS and incubation with fluorescent-conjugated secondary antibodies at 1:250 in Ab buffer for 1 hour at room temperature (Table 1). For immunofluorescence staining, epitopes were retrieved through 35 min incubation at 95° C. in citrate solution (pH 6) or TE buffer (pH 9) and coverslips were mounted onto SuperFrost Slides (FisherBrand, 12-550-15) with ProLong Antifade mounting solution with DAPI (Invitrogen, P36931). Primary antibodies and nuclear stains were used as follows: J2 (Absolute Antibody Ab02199-2.0, 1:200), Spike (Ms, BEI Resources NR-616, 1:200), ACE2 (ProteinTech 21115-1-AP, 1:200), TNNT2 (Abcam ab45932, 1:400), ACTN2 (Sigma A7732, 1:200), PECAM-1 (Santa Cruz sc1506, 1:50), GFP (Abcam ab13970, 1:200), MTCO2 (Abcam ab110258, 1:200), Hoechst 33342 (ThermoFisher 62249, 1:10,000). Images were acquired with a Zeiss Axio Observer Z.1 Spinning Disk Confocal (Carl Zeiss) or with an ImageXpress Micro Confocal High-Content Imaging System (Molecular Devices) and processed using ZenBlue and ImageJ.


Histology

Paraffin sections of healthy and COVID-19 patient hearts were deparaffinized using xylene, re-hydrated through a decrease series of ethanol solutions (100%, 100%, 95%, 80%, 70%) and rinsed in PB1X. Hematoxylin and eosin staining was performed according manufacturer instructions and the slides were mounted with Cytoseal 60 (Richard-Allan Scientific) and glass coverslips. For immunofluorescence staining, epitopes were retrieved by immersing slides through 35 min incubation at 95° C. in citrate buffer (Vector Laboratories, pH 6) or Tris-EDTA buffer (Cellgro, pH 9). Slides were cooled for 20 min at RT and washed with PBS. Samples were permeabilized in 0.2% Triton X-100 (Sigma) in PBS by slide immersion and washed in PBS. Blocking was performed in 1.5% normal donkey serum (NDS; Jackson ImmunoResearch) and PBS solution for 1 h at RT. Primary and secondary antibody cocktails were diluted in blocking solution (Table 1). PBS washes were performed after primary (overnight, 4° C.) and secondary antibody (1 h, RT) incubations. Nuclei were stained with Hoechst and coverslips were mounted on slides using ProLong™ Gold Antifade Mountant. Samples were imaged on the Zeiss Axio Observer Z1.









TABLE 1B







Reagents










Protein
Source
Catalog #
Dilution





ACE2
ProteinTech
21115-1-AP
1:200


ACTN2
Sigma
A7732
1:200


Alexa Fluor 488 Donkey
Invitrogen

1:400


anti-mouse IgG


Alexa Fluor 555 Donkey
Invitrogen

1:400


anti-rabbit IgG


Alexa Fluor 647 Donkey
Invitrogen

1:400


anti-rabbit IgG


Alexa Fluor 647 Donkey
Invitrogen

1:400


anti-goat IgG


Collagen IV
Millipore
AB769
1:100


GFP
Abcam
ab13970
1:200


Hoechst 33342
Thermo Scientific
62246
1:10000


J2
Absolute Antibody
Ab02199-2.0
1:200


MTCO2
Abcam
ab110258
1:200


PECAM-1
Santa Cruz
sc1506
1:50


SARS Nucleoprotein
Thermo
MA1-7404
1:100


Spike
BEI Resources
NR-616
1:200


Troponin T
Abcam
ab45932
1:400









RT-qPCR

Cultured cells were lysed with Qiagen buffer RLT (Qiagen, 79216) supplemented with 1% β-mercaptoethanol (Bio-Rad, 1610710) and RNA was isolated using the RNeasy Mini Kit (Qiagen 74104) or Quick-RNA MicroPrep (ThermoFisher, 50444593) and quantified using the NanoDrop 2000c (ThermoFisher). Viral load was measured by detection of the viral Nucleocapsid (N5) transcript through one-step quantitative real-time PCR, performed using PrimeTime Gene Expression Master Mix (Integrated DNA Technologies, 1055772) with primers and probes specific to N5 and RPP30 as in internal reference. RT-qPCR reactions were performed on a CFX384 (BioRad) and delta cycle threshold (ΔCt) was determined relative to RPP30 levels. Viral detection levels in pharmacologically treated samples were normalized to DMSO-treated controls.









TABLE 2







Primers











Name
Direction
Sequence (5′-3′)






RNAse P
Forward
AGA TTT GGA CCT 



PF_030_RP_F
(F)
GCG AGC G





(SEQ ID NO: 3)






RNAse P
Reverse
GAG CGG CTG TCT 



PF_031_RP_R
(R)
CCA CAA GT





(SEQ ID NO: 4)






RNAse P
Forward
FAM-TTC TGA CCT 



PF_032_RP_P
(probe)
GAA GGC TCT GCG 





CG-BHQ1





(SEQ ID NO: 5)






SARS-CoV-2
Forward
AAATTTTGGGGACCAG



N gene

GAAC



PF_039_nCoV_N5_F

(SEQ ID NO: 6)






SARS-CoV-2
Reverse
TGGCACCTGTGTAGGT



N gene

CAAC



PF_040_nCoV_N5_R

(SEQ ID NO: 7)






SARS-CoV-2
Forward
ATGTCGCGCATTGGCA



N gene
(probe)
TGGA



PF_041_nCoV_N5_P

(SEQ ID NO: 8)






SARS-CoV-2
Forward
ACAGGTACGTTAATAG



E gene

TTAATAGCGT



PF_042_nCoV_E_F

(SEQ ID NO: 9)






SARS-CoV-2
Reverse
ATATTGCAGCAGTACG



E gene

CACACA



PF_043_nCoV_E_R

(SEQ ID NO: 10)






SARS-CoV-2
Forward
ACACTAGCCATCCTTA



E gene
(probe)
CTGCGCTTCG



PF_044_nCoV_E_P

(SEQ ID NO: 11)






RNAse P
Forward
AGA TTT GGA CCT 



PF_030_RP_F

GCG AGC G





(SEQ ID NO: 12)






RNAse P
Reverse
GAG CGG CTG TCT 



PF_031_RP_R

CCA CAA GT





(SEQ ID NO: 13)






RNAse P
Forward
FAM-TTC TGA CCT 



PF_032_RP_P
(probe)
GAA GGC TCT GCG 





CG-BHQ1





(SEQ ID NO: 14)






SARS-CoV-2
Forward
AAATTTTGGGGACCAG



N gene

GAAC



PF_039_nCoV_N5_F

(SEQ ID NO: 15)






SARS-CoV-2
Reverse
TGGCACCTGTGTAGGT



N gene

CAAC



PF_040_nCoV_N5_R

(SEQ ID NO: 16)






SARS-CoV-2
Forward
ATGTCGCGCATTGGCA



N gene
(probe)
TGGA



PF_041_nCoV_N5_P

(SEQ ID NO: 17)









RNA-Seq

For generating libraries for RNA-sequencing, RNA isolate quality was assessed with an Agilent Bioanalyzer 2100 on using the RNA Pico Kit (Agilent, 5067-1513). 10 ng of each RNA isolate was then prepared using the Takara SMARTer Stranded Total RNA-Seq Kit v2—Pico Input Mammalian (Takara, 634412). Transcripts were fragmented for 3.5 minutes and amplified for 12 cycles. Library concentrations were quantified with the Qubit dsDNA HS Assay Kit (Thermo Fisher, Q32851) and pooled for sequencing. Sequencing was performed on an Illumina NextSeq 550 system, using the NextSeq 500/550 High Output Kit v2.5 (150 Cycles) (Illumina, 20024907) to a depth of at least 10 million reads per sample.


Bioinformatic Analyses

Samples were demultiplexed using bcl2fastq v2.20.0 and aligned to both GRCh38 and the SARS-CoV-2 reference sequence (NC_045512) using hisat2 v2.1.0 (see website at nature.com/articles/nmeth.3317). Aligned reads were converted to counts using featureCounts v1.6.2 (see website at pubmed.ncbi.nlm.nih.gov/24227677/). Cell-type clustering, gene loadings, and technical replication were assessed using the PCA and MDS projections implemented in scikit-learn v0.23.1 (see website at scikit-learn.org/stable/about.html#citing-scikit-leam). Differential expression analysis was performed using limma v3.44.3 with voom normalization (see website at genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29) and GO term enrichment analysis was performed using clusterProfiler v3.16.0 (see website at liebertpub.com/doi/10.1089/omi.2011.0118). Unbiased GO term selection was performed by non-negative matrix factorization using scikit-learn.


TEM/CLEM

Cells grown on gridded 35 mm MatTek glass-bottom dishes (MatTek Corp., Ashland, MA, USA) were fixed in 2.5% glutaraldehyde and 2.5% paraformaldehyde in 0.1M sodium cacodylate buffer, pH 7.4 (EMS, Hatfield, PA, USA) following fluorescence imaging. Samples were rinsed 3×5 min at RT in 0.1M sodium cacodylate buffer, pH 7.2, and immersed in 1% osmium tetroxide with 1.6% potassium ferricyanide in 0.1M sodium cacodylate buffer for 30 minutes. Samples were rinsed (3×5 min, RT) in buffer and briefly washed with distilled water (1×1 min, RT) before sample were then subjected to an ascending ethanol gradient (7 min; 35%, 50%, 70%, 80%, 90%) followed by pure ethanol. Samples were progressively infiltrated (using ethanol as the solvent) with Epon resin (EMS, Hatfield, PA, USA) and polymerized at 60° C. for 24-48 hours. Care was taken to ensure only a thin amount of resin remained within the glass bottom dishes to enable the best possible chance for separation of the glass coverslip. Following polymerization, the glass coverslips were removed using ultra-thin Personna razor blades (EMS, Hatfield, PA, USA) and liquid nitrogen exposure as needed. The regions of interest, identified by the gridded alpha-numerical labeling, were carefully removed and mounted with cyanoacrylate glue for sectioning on a blank block. Serial thin sections (100 nm) were cut using a Leica UC 6 ultramicrotome (Leica, Wetzlar, Germany) from the surface of the block until approximately 4-5 microns in to ensure complete capture of the cell volumes. Section-ribbons were then collected sequentially onto formvar-coated 50 mesh copper grids. The grids were post-stained with 2% uranyl acetate followed by Reynold's lead citrate, for 5 min each. The sections were imaged using a Tecnai 12 120 kV TEM (FEI, Hillsboro, OR, USA), data were recorded using an UltraScan 1000 with Digital Micrograph 3 software (Gatan Inc., Pleasanton, CA, USA), and montaged datasets were collected with SerialEM (bio3d.colorado.edu/SerialEM) and reconstructed using IMOD eTOMO (bio3d.colorado.edu/imod).


Example 2: Relative Susceptibility of Cardiac Cells to SARS-CoV-2 Infection

The relative infectability of different cardiac cell types had not previously been characterized for SARS-CoV-2, leading to ambiguity over the sources of cardiac damage and relevant therapeutic targets. The inventors determined the tropism of SARS-CoV-2 for different cardiac cell types by infecting cardiomyocytes (CMs), cardiac fibroblasts (CFs), endothelial cells (ECs), or a mix of all three with SARS-CoV-2 at a relatively low MOI (MOI=0.006).


Viral infection load was measured by qPCR detection of the SARS-CoV-2 nucleocapsid transcript (N5) at 48 hours (FIG. 1A) or by immunostaining for double-stranded viral RNA (dsRNA) or Spike protein at 24, 48, and 72 hours (FIG. 1C-1E).


Viral replication measured in each cell type after 48 h largely correlated with corresponding ACE2 expression levels. Undifferentiated iPSCs were not infectable (FIG. 1F-1G). CFs and ECs also showed little to no viral N5 transcript detection (FIG. 1A, 1H), whereas CMs exhibited >104 greater levels of viral RNA than any other cell type (FIG. 1A, 1C-1E, 1H). There was no significant difference in viral detection between CMs and mixed cultures, indicating that CMs are exclusively responsible for viral infection in the mixed cell condition that mimics native myocardial cellularity.


To further study if cardiac cells enable productive infection by SARS-CoV-2, plaque assays were performed on Vero cells from the supernatants of exposed cells that confirmed CFs, ECs, and iPSCs did not support productive infection, but CMs robustly produced new replication competent virions (FIG. 1H).


Immunostaining for replicating virus in the form of double-stranded viral RNA (dsRNA) or Spike protein further confirmed that infected CMs support viral replication. Positive dsRNA and Spike staining were only detected throughout infected CM cultures. Consistent with our qPCR results and plaque assays, CFs and ECs showed no dsRNA or Spike staining. However, all three cultures showed significant cytopathic effects after 48 hours of viral exposure, characterized by significant cell loss in all cell types (FIG. 1B-1E), fragmented cell bodies and dissociation from neighboring cells, with cytopathic effects most prevalent in CFs and particularly ECs (FIG. 1C-IE). Interestingly, despite cytopathic effects resulting from viral exposure without detectable infection, inoculation with heat-inactivated SARS-CoV-2 did not cause cell death or dissociation in any of the cell types assayed (FIG. 1B), suggesting the observed toxicity is due to live viral exposure.


Replication of (+)ssRNA viruses, including SARS-CoV and MERS-CoV, involves budding of double-membrane vesicles (DMVs) from the endoplasmic reticulum, with viral particle assembly occurring in the ER-Golgi intermediate compartment (ERGIC) cisternae (see website at biorxiv.org/content/10.1101/2020.06.23.167064v1). In CMs infected with SARS-CoV-2, dsRNA and Spike signals initially (24 h post infection) accumulated near the nucleus in small perinuclear puncta, closely matching the typical location of this ERGIC region, indicating potential active centers of replication. After 48 h post infection, an increase in the number of cells was observed with dsRNA signals throughout their cytoplasm, potentially correlating with breakdown of the ER-Golgi membrane as viral replication accelerates and the cell deteriorates, as evidenced by a decrease in sarcomeric integrity and intensity. By 72 h post infection, SARS-CoV-2 had spread throughout the culture and large swathes of the CMs had died, with the remaining cells displaying dispersed viral stain localization, dissociation from neighboring cells, and heavily reduced sarcomeric signal (FIG. 1C-1E).


Using transmission electron microscopy of infected CMs, the inventors readily identified the remnants of the ER-Golgi membranes and large vesicles in the proximity of the nucleus (FIG. 1C-1E). These vesicles, about 500-750 nanometers in diameter, contained multiple complete viral particles approximately 50-60 nm in diameter (FIG. 1D-1E), consistent with the dsRNA/Spike+ aggregates detected in infected CMs.


These results demonstrate that SARS-CoV-2 is able to readily infect, replicate in, and rapidly propagate through CMs.


Example 3: Pharmacological Modulation of SARS-CoV-2 Cardiomyocytes Infection

Cardiomyocytes (CMs) were the only type of cell that proved infectable by SARS-CoV-2, from amongst the cell types tested (cardiomyocytes, cardiac fibroblasts, endothelial cells, and stem cells). This Example describes experiments for elucidating the mechanism of viral entry into CMs by using exogenous inhibition of CM factors.


Cells pretreated with an ACE2 blocking antibody, cathepsin inhibitor E-64-D, or serine protease inhibitor aprotinin were able to significantly reduce the detection of viral transcripts in infected CMs (FIG. 2A-2B). Despite detection of FURIN in CMs, inhibition of FURIN (FURUNi) did not lead to a reduction in infection (FIG. 2B). Further probing revealed that cathepsin-L inhibition via Z-Phe-Tyr(tBu)-diazomethylketone (Z-FY-DK) was able to decrease viral detection in infected cells to about 10% of vehicle levels, but inhibition of cathepsin-B with CA-074 did not (FIG. 2A). In addition, the PIKfyve inhibitor apilimod and autolysosome acidification blocker bafilomycin also successfully reduced viral infection to ˜0.1% and 1% viral RNA detection compared to vehicle, respectively (FIG. 2A). In contrast, inhibition of TMPRSS2 with aprotinin or camostat mesylate did not significantly inhibit viral infection (FIG. 2A).


Taken altogether, these results strongly indicate that the SARS-CoV-2 virus employs the ACE2 receptor to bind to iPS-CMs and is able to utilize a cathepsin-L (CTSL)-dependent endolysosomal route, but not a cathepsin-B (CSTB)-dependent endolysosomal route, to infection without TMPRSS2/serine protease-mediated activation at the cellular membrane.


Based on the ability of SARS-CoV-2 to robustly infect and propagate through CMs, the inventors examined whether priming the innate immune response could effectively combat SARS-CoV-2 infection. CMs were primed with IFNα, IFNβ, IFNγ, or IFNλ, in addition to a combination of IFNs and a JAK/Stat inhibitor (ruxolitinib; ruxo) prior to infection. Only pre-exposure to IFNs was able to prevent infection, and this phenotype was reversed by JAK/Stat inhibition (FIG. 2C). Surprisingly, none of the other interferon exposures were able to prevent infection (FIG. 2C). Single-cell RNA-sequencing data indicated that CMs express undetectable levels of IFNβ, perhaps indicating that their high infectivity may be due to an intrinsic inability to appropriately trigger a sufficient immune response to combat viral infection.


Example 4: Transcriptomic Response to SARS-CoV-2 Exposure

This Example describes experiments for evaluating the transcriptional response of cardiac cells exposed to SARS-CoV-2, and in particular to identify differences in the level of immune suppression or cytokine activation across different levels of viral load. The experiments involved RNA-sequencing of infected and mock-treated CFs, ECs, and iPSCs at a MOI of 0.006, or a range of MOIs (0.001, 0.01, and 0.1) for CMs.


Sequencing recovered a high proportion of SARS-CoV-2 transcripts in an MOI and cell-type dependent fashion (FIG. 3A), with CMs at the highest MOI reaching >50% SARS-CoV-2 recovered reads (FIG. 3A). Principal component analysis (PCA) of the biological conditions revealed the expected clustering primarily based on cell type, with CFs and ECs clustering near together and CMs and iPSCs clustering separately (FIG. 3B). Loading plots of the principal components complemented this interpretation: the genes determining the spectrum of variation between CMs and CF/ECs were associated with CMs (MYH7, MYH6, TNNT2) at one pole (FIG. 3C) and anti-correlated with CF/EC specific genes at the other (FN1, COL1A2, TFPI2, MME). Notably, the distance between mock CMs and the furthest infected CMs was slightly further than the distance between CMs and CFs or ECs, indicating that viral infection altered cellular expression profiles at least as strongly as cellular identity. Along this axis, however, the inventors also observed that the level of transcriptional disruption correlated poorly with MOI across all CM samples, potentially due to natural stochasticity in the kinetics of infection. Regrouping conditions by the level of transcriptional disruption showed transcriptional trends resulting from viral exposure more clearly.


However, the significant distance between infected and mock conditions indicates that viral infection impacted the variation in expression profiles at least as strongly as the differences in cell type. Individual samples within the low, middle, and high MOI conditions correlated poorly with the degree of transcriptional disruption observed, potentially due to natural stochasticity in the kinetics of infection.


Regrouping conditions by the level of transcriptional disruption allowed transcriptional trends to be deduced as a function of viral impact. Loading plots of the principal components indicated that the main axis of variation aligned along a CM, CF/EC spectrum with CM specific genes (MYH7, MYH6, TNNT2) at one pole (FIG. 3C), anti-correlated with CF/EC specific genes (FN1, COL1A2).


Analysis of differential regulation of genes involved in inflammation and innate immunity for infected CFs, ECs, and CMs agree with the observed infectivity of CMs. Infected CFs and ECs have a depressed cytokine response compared to all three levels of disrupted CMs, which are enriched for genes involved in cytokine production and T-cell activation (OAS2, MX1, IFIT1, IL1B, IL6, TNF) (FIG. 3D) in addition to olfactory receptor (OR) genes, the ectopic expression of which may reflect a stress response (see websites at link.springer.com/chapter/10.1007/978-3-319-26932-0_33; www.nature.com/articles/s41573-018-0002-3?WT.feed_name=subjects_neuroscience).


Interestingly, the inventors noted that CMs at each MOI showed very clear dysregulation of genes involved in contractile machinery and proteasome homeostasis. All MOI conditions tested showed very clear dysregulation of genes involved in contractile machinery and proteasome homeostasis. In particular, sarcomeric structural proteins, myosin light chains, and proteasome kinases and chaperones were strongly downregulated, and most myosin heavy chains were significantly upregulated (FIG. 3D), indicating a potential effect of SARS-CoV-2 infection in the contractile and structural integrity of CMs.


In light of observations that impairment of cardiac function can occur even in mild cases of COVID-19 (which were mimicked by low MOIs), these results illustrate that SARS-CoV-2 may have unique interactions with structural features of CMs that can potentially cause cardiac dysfunction. Deeper analyses of the individual genes driving the GO terms revealed significant downregulation of mitochondrial metabolism networks, decreased regulation of protein degradation, and loss of genes associated with sarcomere formation and maintenance.


Example 5: Differential Expression of Viral Entry Factors in Cardiac Cells

Historical single-cell RNA-Seq data was first analyzed to determine the expression of putative viral entry host factors in CMs, ECs, and primary cardiac fibroblasts (see website at biorxiv.org/content/10.1101/2020.07.06.190504v1).


The primary SARS-CoV-2 receptor, ACE2, was detected at low levels in all cells, but ACE2 displayed greater than 10-fold higher expression in cardiomyocytes than in cardiac fibroblasts or endothelial cells, indicating that cardiomyocytes are more susceptible to infection than other cardiac cell types (FIG. 3E). Of the proteases thought to cleave the viral Spike protein to prime SARS-CoV-2 entry, TMPRSS2 was not detected in any cell types, but FURIN was ubiquitously expressed (FIG. 3F). It has also been proposed that SARS-CoV-2 can infect cells via endocytosis (see website at nature.com/articles/s41467-020-15562-9), similar to SARS-CoV. Endosomal entry factors for SARS-CoV include cathepsin-L (CTSL), cathepsin-B (CTSB), and the endosomal kinase PIKfyve (see website at pnas.org/content/102/33/11876.short). Protein structural similarity studies predict that these factors can also act on SARS-CoV-2 (see website at mdpi.com/2076-0817/9/3/186), and all three were expressed in all the examined cell types, with elevated PIKfyve in CMs (FIG. 3G-3I. In addition, DPP4, the surface protease used by the closely related MERS-CoV (see website at nature.com/articles/cr201392) and speculated to facilitate SARS-CoV-2 invasion (see website at ncbi.nlm.nih.gov/pmc/articles/PMC7103712/), was also detected, though at higher levels in primary cardiac fibroblasts (FIG. 3J).


These data support the viability of SARS-CoV-2 infection of cardiac cells via an ACE2-endocytosis axis.


To validate expression of the ACE2 receptor in CMs, the inventors directly examined ACE2 transcript and protein expression. While ACE2 transcripts were undetected in iPSCs by qPCR, differentiated and purified CMs exhibited robust expression (FIG. 1F). Heterotypic tissues comprising CMs and iPS-derived stromal non-myocytes were also examined, and strong expression was observed of ACE2 protein in cardiac muscle troponin T (cTnT)+ CMs while low to no expression in the surrounding cTnT-non-myocytes.


These results demonstrate that CMs are susceptible to SARS-CoV-2 infection.


Example 6: SARS-CoV-2 Infection Disrupts Multiple Intracellular CM Features

As described in this Example, motivated by the discovery of disruptions to various structural and contractile genes in our transcriptomic data, the inventors performed high content imaging of CMs following SARS-CoV-2 infection.


A number of abnormal structural features were immediately observed in many of the infected CMs that were not seen in parallel mock samples. Widespread myofibrillar disruption throughout the cytoplasm was the most common feature observed, which manifested as a unique pattern of very specific and periodic cleavage of myofibrils into individual sarcomeric units of identical size but without any alignment (FIG. 4A). Evidence of sarcomeric fragmentation was generally identified as early as 24 hours after infection, but was more widespread and common after 48 hours, and also observed in many of the CMs that remained after 72 hours. At a single time point 48 h post infection, up to 20% of cells exposed to virus displayed similar phenotypes of this rapid fragmentation (FIG. 4B), indicating this is a pervasive and continuous phenomenon. Curiously, myofibrillar fragmentation was more prevalent in bystander CMs that lacked signs of active viral infection (as per viral dsRNA staining), while cells positive for dsRNA rarely showed signs of myofibrillar fragmentation. The inventors found an inverse correlation (p-value<0.01) between the number of viral RNA positive cells in a well and the number of cells presenting sarcomere fragmentation (FIG. 4A-4C).


Since transcriptomic profiling data indicated viral infection altered the proteasome system (FIG. 3), CMs were exposed to the proteasome inhibitor bortezomib and observed that only high doses of bortezomib (but not the well-known cardiotoxic drug doxorubicin) induced myofibril fragmentations in CMs. However, bortezomib treatment induced fragmentation much more infrequently and less severely than SARS-CoV-2 and was generally accompanied by diffuse cTnT staining throughout the cell cytoplasm.


Altogether, these results indicate that the observed fragmentation of the sarcomere is dependent on SARS-CoV-2 infection of neighboring CMs. Reducing productive infection of CMs by means of IFN-β pre-treatment or E64D treatment did not reduce the incidence of myofibrillar disruption. However, ACE2 blocking did reduce the incident of myofibrillar disruption, potentially indicating an immediate response to viral exposure to the cell surface.


Co-staining SARS-CoV-2-exposed CMs with cTnT and the Z-disk marker α-actinin 2 revealed the myofibrillar fragments observed upon SARS-CoV-2 exposure consisted of two cTnT-positive bands flanking a single α-actinin 2 band, indicating cleavage at the M-line or a separation of thick and thin filaments (FIG. 4D). To examine sarcomeric fragmentation in greater detail, the inventors employed TEM imaging of SARS-CoV-2 infected and mock-treated cardiomyocytes. While intact sarcomeres were clearly identifiable with a classic dark Z-disk, light I-band, and dark A-band, single fragmented sarcomeres displayed an extended I-band and complete absence of the A-band (FIG. 4E), suggesting a mechanism by which thick filaments are liberated from sarcomere subunits. The intracellular network of mitochondria in CMs exposed to SARS-CoV-2 also appeared to be disrupted relative to normal mitochondrial organization.


In addition, the inventors observed that CMs with intact or moderately disrupted myofibrils often appeared to lack nuclear DNA staining (FIG. 4F). This phenomenon was observed most frequently in localized patches, with numerous cells lacking dsRNA staining along with stark nuclear absence (FIG. 4F).


Example 7: Intracellular Disruption in Myocardium of COVID-19 Patients

Based on the in vitro findings, the inventors sought to identify whether similar features were contributing to COVID-19 myocardial damage in vivo. The sarcomere fragmentation observed in COVID-19 patients appears to present some extreme features even compared to in vitro system.


Patient specimens were obtained from four COVID-19 positive patients—one diagnosed with viral myocarditis. Compared to healthy myocardial tissue (FIG. 5A), significant histological alterations were observed of the myocardium in the COVID-19 myocarditis case (FIG. 5B), in addition to moderate levels of immune infiltration. Mononuclear cells that appeared to be immune cells were detected, as well as nuclei with loss of nuclear material. Intercalated disks between cardiomyocytes were broken.


The tissues from the COVID-19 myocarditis case exhibited signs of edema with increased spacing between adjacent cardiomyocytes (FIG. 5B) and highly uneven staining for cardiac troponin-T, indicating sarcomere disruption (FIG. 5B, 5E) and there was evidence of troponin-T positive cells in the blood vessels, indicating phagocytosis of compromised myocytes (FIG. 5B, 5E). Some of the observed cardiomyocytes lacked hematoxylin staining for nuclei, showing that the in vitro phenotype of nuclear loss was also observed in patients infected with COVID-19 (FIG. 5B).


In COVID-19 infected patients that were not diagnosed with myocarditis (FIG. 5D), clear evidence was observed of nuclear loss (FIG. 5D) as well as evidence of myocyte compaction (FIG. 5D), and large regions exhibiting significant disruption of intercalated disk connections between cardiomyocytes (FIG. 5D). Strikingly, immunohistochemical labeling of the myofibrils revealed regions of extreme myofibrillar anomalies. Patients without diagnoses of myocarditis present large regions of myofibrils (ACTN2+) within cardiomyocytes that were entirely missing or collapsed (FIG. 5D).


The results described herein demonstrate that the in vitro phenotypes are able to predict previously unobserved disruptions in myocardium. Therefore, the in vitro methods described herein can be used to dissect the mechanisms of COVID-19 cardiovascular injury and identify agents that reduce or inhibit such injury.


REFERENCES



  • Honko, A. N.; Storm, N.; Bean, D. J.; Henao Vasquez, J.; Downs, S. N.; Griffiths, A. Rapid Quantification and Neutralization Assays for Novel Coronavirus SARS-CoV-2 Using Avicel RC-591 Semi-Solid Overlay. Preprints 2020, 2020050264 (doi: 10.20944/preprints202005.0264.v1)

  • Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. PNAS (2012) doi:10.1073/pnas.1200250109.

  • Tohyama, S. et al. Distinct Metabolic Flow Enables Large-Scale Purification of Mouse and Human Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Stem Cell 12, 127-137 (2013).



All patents and publications referenced or mentioned herein are indicative of the levels of skill of those skilled in the art to which the invention pertains, and each such referenced patent or publication is hereby specifically incorporated by reference to the same extent as if it had been incorporated by reference in its entirety individually or set forth herein in its entirety. Applicants reserve the right to physically incorporate into this specification any and all materials and information from any such cited patents or publications.


The following statements are intended to describe and summarize various embodiments of the invention according to the foregoing description in the specification.


Statements:





    • 1. A method comprising: incubating one or more test agents with cardiomyocytes in the presence of SARS-CoV-2 virus; and identifying any of the one or more test agents that reduce any of myofibrillar disruption, sarcomeric fragmentation, nuclear material, nuclear staining, enucleation, cardiac troponin solute levels, herniated mitochondria, apoptotic mitochondria, or a combination thereof in the cardiomyocytes compared to a control assay comprising with cardiomyocytes in the presence of SARS-CoV-2 virus without the test agent(s).

    • 2. The method of statement 1, wherein the SARS-CoV-2 virus is present at a multiplicity of infection at one or more SARS-CoV-2 virion particle per about 1000 cardiomyocyte cells; or at two or more SARS-CoV-2 virion particles per about 1000 cardiomyocyte cells; or at three or more SARS-CoV-2 virion particles per about 1000 cardiomyocyte cells; or at five or more SARS-CoV-2 virion particles per about 1000 cardiomyocyte cells; or at ten or more SARS-CoV-2 virion particles per about 1000 cardiomyocyte cells.

    • 3. The method of statement 1 or 2, wherein the SARS-CoV-2 virion particles infect cardiomyocytes, but do not infect cardiac fibroblasts, endothelial cells, or stem cells.

    • 4. The method of statement 1, 2, or 3, wherein the cardiomyocytes are generated from induced pluripotent stem cells.

    • 5. The method of statement 1-3 or 4, wherein the SARS-CoV-2 virion particles do not infect induced pluripotent stem cells.

    • 6. The method of any one of statements 1-5, wherein the cardiomyocytes are from a subject without a cardiac condition or a cardiac disease.

    • 7. The method of any one of statements 1-5, wherein the cardiomyocytes are mutant cardiomyocytes.

    • 8. The method of any one of statements 6 or 7, wherein the cardiac condition or a cardiac disease comprises a genetic mutation or a disease correlated with a genetic mutation.

    • 9. The method of any one of statements 1-7 or 8, wherein the cardiomyocytes are from a subject with a cardiac condition or a cardiac disease.

    • 10. The method of any one of statement 6-9, wherein the mutant cardiomyocytes, the cardiac condition, or the cardiac disease leads to or contributes to impairments in contractility, impairments in ability to relax (e.g., diastolic dysfunction), abnormal or improper functioning of the heart's valves, diseases of the heart muscle (e.g., cardiomyopathies), diseases such as angina pectoris, myocardial ischemia, infarction characterized by inadequate blood supply to the heart muscle, infiltrative diseases such as amyloidosis and hemochromatosis, global or regional hypertrophy (e.g., as may occur in some kinds of cardiomyopathy or systemic hypertension), abnormal communications between chambers of the heart, or a combination thereof in the subject.

    • 11. The method of any one of statement 6-10, wherein the mutant cardiomyocytes, the cardiac condition, or the cardiac disease can lead to or can contribute to a disease or dysfunction of the myocardium (heart muscle) in which a heart is abnormally enlarged, thickened and/or stiffened in a subject.

    • 12. The method of any one of statements 6-11, wherein the mutant cardiomyocytes, the cardiac condition, or the cardiac disease can lead to or can contribute to ischemic cardiomyopathy, coronary artery disease, non-ischemic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, restrictive cardiomyopathy, infiltrative cardiomyopathy, congestive heart failure, myocardial infarction, cardiac ischemia, myocarditis, arrhythmia, or a combination thereof in a subject.

    • 13. The method of any one of statements 6-12, wherein the mutant cardiomyocytes, cardiac condition or a cardiac disease leads to or contributes to myocarditis, Duchenne muscular dystrophy or Emery Dreiffuss dilated cardiomyopathy in a subject.

    • 14. The method of any one of statements 1-13, comprising identifying (e.g., by Hoechst or hematoxylin staining) any of the one or more test agents that reduce cardiomyocyte enucleation compared to the control assay.

    • 15. The method of any one of statements 1-14, comprising identifying any of the one or more test agents that reduce titin protein cleavage compared to the control assay; or comprising identifying any of the one or more test agents that reduce M-band titin cleavage compared to the control assay.

    • 16. The method of any one of statements 1-15, wherein one or more of the test agents is a small molecule, an antibody, a nucleic acid, a carbohydrate, a protein, or a combination thereof.

    • 17. The method of any one of statements 1-16, wherein the one or more test agents block ACE2, inhibit cathepsin, or inhibit serine proteases.

    • 18. The method of any one of statements 1-17, further comprising manufacturing one or more of the test agents that reduce myofibrillar disruption, sarcomeric fragmentation, nuclear staining, enucleation, cardiac troponin solute levels, or a combination thereof.

    • 19. The method of any one of statements 1-18, further comprising administering to an animal one or more of the test agents that reduce myofibrillar disruption, sarcomeric fragmentation, nuclear staining, enucleation, cardiac troponin solute levels, or a combination thereof.

    • 20. One or more compounds identified by the method of any one of statements 1-19.

    • 21. The one or more compounds of statement 20 formulated into a composition.

    • 22. The one or more compounds of statement 20 or 21, comprising an ACE2 blocking agent, a cathepsin inhibitor, or a serine protease inhibitor.

    • 23. The one or more compounds of statement 20, 21 or 22, comprising an ACE2 blocking antibody, cathepsin inhibitor E-64-D, or aprotinin.

    • 24. A method comprising administering to a subject one or more of the compounds of statement 20-22 or 23.





The specific methods and compositions described herein are representative of preferred embodiments and are exemplary and not intended as limitations on the scope of the invention. Other objects, aspects, and embodiments will occur to those skilled in the art upon consideration of this specification and are encompassed within the spirit of the invention as defined by the scope of the claims. It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, or limitation or limitations, which is not specifically disclosed herein as essential. The methods and processes illustratively described herein suitably may be practiced in differing orders of steps, and the methods and processes are not necessarily restricted to the orders of steps indicated herein or in the claims.


The terms and expressions that have been employed are used as terms of description and not of limitation, and there is no intent in the use of such terms and expressions to exclude any equivalent of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention as claimed. Thus, it will be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims and statements of the invention. Under no circumstances may the patent be interpreted to be limited to the specific examples or embodiments or methods specifically disclosed herein. Under no circumstances may the patent be interpreted to be limited by any statement made by any Examiner or any other official or employee of the Patent and Trademark Office unless such statement is specifically and without qualification or reservation expressly adopted in a responsive writing by Applicants.

Claims
  • 1. A method comprising: incubating one or more test agents with cardiomyocytes in the presence of SARS-CoV-2 virus; and identifying any of the one or more test agents that reduce myofibrillar disruption, sarcomeric fragmentation, nuclear staining, enucleation, cardiac troponin solute levels, or a combination thereof in the cardiomyocytes compared to a control assay comprising with cardiomyocytes in the presence of SARS-CoV-2 virus without the test agent(s).
  • 2. The method of claim 1, wherein the SARS-CoV-2 virus is present at a multiplicity of infection of one or more SARS-CoV-2 virion particle per about 1000 cardiomyocyte cells; or of two or more SARS-CoV-2 virion particles per about 1000 cardiomyocyte cells; or of three or more SARS-CoV-2 virion particles per about 1000 cardiomyocyte cells; or of five or more SARS-CoV-2 virion particles per about 1000 cardiomyocyte cells; or of ten or more SARS-CoV-2 virion particles per about 1000 cardiomyocyte cells.
  • 3. The method of claim 1, wherein the SARS-CoV-2 virion particles infect cardiomyocytes, but do not infect cardiac fibroblasts, endothelial cells, or stein cells.
  • 4. The method of claim 1, wherein the cardiomyocytes are generated from induced pluripotent stem cells.
  • 5. The method of claim 1, wherein the SARS-CoV-2 virion particles do not infect induced pluripotent stem cells.
  • 6. The method of claim 1, wherein the cardiomyocytes are mutant cardiomyocytes.
  • 7. The method of claim 1, wherein the cardiomyocytes are from a subject without a cardiac condition or a cardiac disease.
  • 8. The method of claim 7, wherein the cardiac condition or a cardiac disease comprises a genetic mutation or a disease correlated with a genetic mutation.
  • 9. The method of claim 1, wherein the cardiomyocytes comprise a mutation or genetic variation that leads to or contributes to impairments in contractility, impairments in ability to relax, diastolic dysfunction, abnormal or improper functioning of the heart's valves, cardiomyopathies, angina pectoris, myocardial ischemia, infarction, hypertension, inadequate blood supply to heart muscle, amyloidosis, hemochromatosis, global hypertrophy, regional hypertrophy, abnormal communications between heart chambers, or a combination thereof in a subject.
  • 10. The method of claim 1, wherein the cardiomyocytes comprise a mutation or genetic variation that leads to or contributes to an abnormally enlarged, thickened heart, an abnormally stiffened heart, or a combination thereof in a subject.
  • 11. The method of claim 1, wherein the cardiomyocytes comprise a mutation or genetic variation that leads to or contributes to ischemic cardiomyopathy, coronary artery disease, non-ischemic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, restrictive cardiomyopathy, infiltrative cardiomyopathy, congestive heart failure, myocardial infarction, cardiac ischemia, myocarditis, arrhythmia, or a combination thereof in a subject.
  • 12. The method of claim 1, wherein the cardiomyocytes comprise a mutation or genetic variation that leads to or contributes to myocarditis, Duchenne muscular dystrophy or Emery Dreiffuss dilated cardiomyopathy in a subject.
  • 13. The method of claim 1, comprising Hoechst and/or hematoxylin staining.
  • 14. The method of claim 1, comprising identifying one or more test agents that reduce cardiomyocyte enucleation compared to the control assay.
  • 15. The method of claim 1, comprising identifying one or more test agents that reduce titin cleavage compared to the control assay.
  • 16. The method of claim 1, comprising identifying any of the one or more test agents that reduce M-band titin cleavage compared to the control assay.
  • 17. The method of claim 1, wherein one or more of the test agents is a small molecule, an antibody, a nucleic acid, a carbohydrate, a protein, or a combination thereof.
  • 18. The method of claim 1, wherein the one or more test agents block ACE2, inhibit cathepsin, or inhibit serine proteases.
  • 19. The method of claim 1, further comprising manufacturing one or more of the test agents that reduce myofibrillar disruption, sarcomeric fragmentation, nuclear staining, enucleation, cardiac troponin solute levels, or a combination thereof.
  • 20. The method claim 1, further comprising administering to an animal or subject one or more of the test agents that reduce myofibrillar disruption, sarcomeric fragmentation, nuclear staining, enucleation, cardiac troponin solute levels, or a combination thereof.
  • 21. The method of claim 1, further comprising formulating one or more test agents into a composition.
  • 22. The method of claim 21, further comprising formulating the composition to comprise ACE2 blocking agent, a cathepsin inhibitor, or a serine protease inhibitor.
  • 23. The method of claim 21, comprising administering the composition to an animal or subject.
PRIORITY APPLICATION

This application is a U.S. National Stage Filing under 35 U.S.C. 371 from International Patent Application Serial No. PCT/US2021/047255, filed Aug. 24, 2021, published on Mar. 3, 2022 as WO2022/046706 which application claims benefit of priority to the filing date of U.S. Provisional Application Ser. No. 63/069,361, filed Aug. 24, 2020, the contents of which are specifically incorporated herein by reference in their entireties.

GOVERNMENT SUPPORT

This invention was made with government support under ES032673 and RO1-HL135358 awarded by the National Institutes of Health, and under ERC 1648035 awarded by the National Science Foundation. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US21/47255 8/24/2021 WO
Provisional Applications (1)
Number Date Country
63069361 Aug 2020 US