ASSAY PANELS

Abstract
Described herein are kits and components thereof used for a multiplexed analysis of a set of cytokines.
Description
FIELD OF THE INVENTION

This application relates to kits used for the detection of cytokines using electrochemiluminescent technology.


BACKGROUND OF THE INVENTION

Cytokines are the soluble factors that mediate acute and chronic inflammatory responses, and are involved in many physiological events from wound healing to autoimmune disorders. They are important regulators of cell-mediated and humoral immune responses and their differential expression has been associated with a wide array of immune disorders. They function on a variety of cell types, having stimulatory or inhibitory effects on proliferation, differentiation, and maturation. Therefore, measuring the level of only a single cytokine in any biological system provides only partial information relevant to the response on a systemic level. Comprehensive tests for cytokine levels generally aim to measure the concentrations of a large set of cytokines to gain a better understanding of the underlying physiology.


The enzyme-linked immunosorbent assay (ELISA) is the most commonly used and reported method for the quantitation of secreted cytokines. However, ELISA can only detect one analyte per reaction in individual assay wells. This leads to high reagent cost, excessive technician time, and the need to use large sample volumes to generate each results. The ability to detect and quantitate many cytokines simultaneously in the same sample via a robust multiplexed assay would reduce costs and improve efficiency. The advantages of multiplex technology over conventional assay methods include simultaneous analyte detection, reduced reagent handling, high assay throughput, and decreased sample and reagent volumes.


SUMMARY OF THE INVENTION

The invention provides a kit tor the analysis of a cytokine panel comprising:


i. (a) a multi-well assay plate comprising a plurality of wells, each well comprising ten discrete binding domains to which capture antibodies to the following human analytes are bound: IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNFalpha; (b) in one or more vials, containers, or compartments, a set of labeled detection antibodies specific for said human analytes; and (c) in one or more vials, containers, or compartments, a set of calibrator protons.


ii. (a) a multi-well assay plate comprising a plurality of wells, each well comprising ten discrete binding domains to which capture antibodies to the following human analytes are bound: GM-CSF, IL-1alpha, IL-5, IL-7, IL-12/IL-23 p40, IL-15, IL-16, IL-17A, TNF-beta, VEGF-A; (b) in one or more vials, containers, or compartments, a set of labeled detection antibodies specific tor said human analytes; and (c) in one or more vials, containers, or compartments, a set of calibrator protons.


iii. (a) a multi-well assay plate comprising a plurality of wells, each well comprising ten discrete binding domains to which capture antibodies to the following human analytes are bound: Eotaxin, MIP-1 alpha, Eotaxin-3, TARC, IP-10, MIP-1 beta, IL-8, MCP-1, MDC, MCP-4; (b) in one or more vials, containers, or compartments, a set of labeled detection antibodies specific tor said human analytes; and (c) in one or more vials, containers, or compartments, a set of calibrator proteins;


iv. (a) a multi-well assay plate comprising a plurality of wells, each well comprising ten discrete binding domains to which capture antibodies to the following rat analytes are bound: IFN-gamma, IL-2, IL-4, IL-1 beta, IL-6, IL-6, KG/GRO, IL-10, IL-13, TNF-alpha; (b) in one or more vials, containers, or compartments, a set of labeled detection antibodies specific for said human analytes; and (c) in one or more vials, containers, or compartments, a set of calibrator proteins; or


v. (a) a multi-well assay plate comprising a plurality of wells, each well comprising ten discrete binding domains to which capture antibodies to the following mouse analytes are bound: IFN-gamma, IL-1-beta, IL-2, IL-4. IL-5. IL-6. KC/GRO, IL-10, IL-12p70, TNF-alpha; (b) in one or more vials, containers, or compartments, a set of labeled detection antibodies specific tor said human analytes; and (c) in one or more vials, containers, or compartments, a set of calibrator protons.


Also provided is a method of manufacturing a kit or a lot of kit such as those described herein that includes: (a) subjecting a preliminary set of detection antibodies specific for said human analytes to CIEF, DLS, and Experion; (b) selecting qualified detection antibodies from said preliminary set of detection antibodies based on said CIEF, DLS, and Experion testing; (c) subjecting a preliminary set of capture antibodies specific for said human analytes to CIEF, DLS, and Experion; and (b) selecting qualified capture antibodies from said preliminary set of capture antibodies based on said CIEF, DLS, and Experion testing. In a preferred embodiment, a lot of kits is manufacturing using this protocol and meets one or more of the following specifications: (a) average intraplate CV of ≤10%; (b) maximum intraplate CV of ≤13%; (c) average uniformity metric of ≤25%; (d) maximum uniformity metric of <37%; (e) CV of intraplate averages of ≤18%; (f) lower signal boundary of >1500; and (g) upper signal boundary of <108.


In a preferred embodiment, the invention provides a kit for the analysis of two or more cytokine panels comprising: (a) two or more multi-well assay plates each comprising a plurality of wells, each well comprising ten discrete binding domains to which capture antibodies to a set of analytes are bound, wherein said set of analytes is selected from the group consisting of:


(i) human analytes: IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNFalpha;


(ii) human analytes: GM-CSF, IL-1alpha, IL-5, IL-7, IL-12/IL-23 p40, IL-15, IL-16, IL-17A, TNF-beta, and VEGF-A;


(iii) human analytes: Eotaxin, MIP-1 alpha, Eotaxin-3, TARC, IP-10, MIP-1 beta, IL-8, MCP-1, MDC, and MCP-4;


(iv) rat analytes: IFN-gamma, IL-2, IL-4, IL-1 beta, IL-5, IL-6, KC/GRO, IL-10, IL-13, and TNF-alpha; or


(v) mouse analytes: IFN-gamma, IL-1-beta, IL-2, IL-4, IL-5. IL-6, KC/GRO, IL-10.


IL-12p70, and TNF-alpha;


(b) in one or more vials, containers, or compartments, a set of labeled detection antibodies specific for said analytes; and (c) in one or more vials, containers, or compartments, a set of calibrator proteins.


An additional embodiment of the invention is a 10-spot 96-well multi-well plate, wherein each plate comprises a plate top, a plate bottom, an x- and y-axis of the plate top and bottom, and each well comprises a spot pattern, wherein the plate meets the following specifications: Δx≤0.2 mm, Δy≤0.2 mm, and α≤0.1°, wherein (a) Δx is the difference between a center of the spot pattern and a center of a well along the x axis of the plate; (b) Δy is the difference between the center of a spot pattern and a center of the well along the y axis of the plate; and (c) α is a counter clockwise angle between the x axis of the plate bottom and the x axis of the plate top.


Moreover, the invention contemplates a 10-spot 96-well multi-well plate, wherein each plate comprises a plate top, a plate bottom, and each well comprises a spot pattern, wherein the plate meets the following specifications: (a) a length range of 3.8904-3.9004 inches; (b) a width range of 2.4736-2.4836 inches; and (c) well to well spacing of 0.3513-0.3573 inches.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1(a)-(c) illustrate a 10-spot pattern in a well of a multi-well plate (panel (a)), its placement in a 96-well 10-spot plate (panel (b)), and the principles of an immunoassay conducted using a multi-well assay plate such as those described herein.



FIGS. 2(a)-(e) are standard curves for each of the five cytokine panels.



FIGS. 3(a)-(b) shows the configuration of a 96 well multi-well assay plate.





DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


As used herein, the term “sample” is intended to mean any biological fluid, cell, tissue, organ or combinations or portions thereof, which includes or potentially includes a biomarker of a disease of interest. For example, a sample can be a histologic section of a specimen obtained by biopsy, or cells that are placed in or adapted to tissue culture. A sample further can be a subcellular fraction or extract, or a crude or substantially pure nucleic acid molecule or protein preparation, in one embodiment, the samples that are analyzed in the assays of the present invention are blood, peripheral blood mononuclear cells (PBMC), isolated blood cells, serum and plasma. Other suitable samples include biopsy tissue, intestinal mucosa, saliva, cerebral spinal fluid, and urine.


The present invention relates to a kit for the analysis of a cytokine panel. At least five assay panels are contemplated and each kit is configured to analyze one of the following panels:









TABLE 1







Cytokine Assay Panels









Panel
Species
Analytes





1
Human
IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-




12p70, IL-13, TNFalpha


2
Human
GM-CSF, IL-1alpha, IL-5, IL-7, IL-12/IL-23 p40, IL-15,




IL-16, IL-17A, TNF-beta, VEGF-A


3
Human
Eotaxin, MIP-1 alpha, Eotaxin-3, TARC, IP-10, MIP-1




beta, IL-8, MCP-1, MDC, MCP-4


4
Rat
IFN-gamma, IL-2, IL-4, IL-1 beta, IL-5, IL-6, KC/GRO,




IL-10, IL-13, TNF-alpha


5
Mouse
IFN-gamma, IL-1-beta, IL-2, IL-4, IL-5, IL-6, KC/GRO,




IL-10, IL-12p70, TNF-alpha









The kits can include (a) a single panel arrayed on a multi-well plate which is configured to be used in an electrochemiluminescence assay, as well as (b) associated consumables, e.g., detection antibodies, calibrators, and optional diluents and/or buffers. Alternatively, the multi-well plates and associated consumables can be provided separately. Still further, a kit can include two or more multi-well plates with panels arrayed thereon, i.e., panels 1-5, and the associated consumables can be provided in the kit or separately.


Panels 1, 2, 4, and 5 include inflammation-related and/or growth factor biomarkers that are important for inflammation response, immunity, and regulation of numerous biological processes. These secreted biomarkers can be detected in a variety of tissues and bodily fluids and their over- or under-expression can indicate a shift in biological equilibrium of the body. These panels also consist of many of the Th1/Th2 pathway biomarkers. The biomarkers in these panels are involved in numerous disorders such as rheumatoid arthritis, Alzheimer's disease, asthma, atherosclerosis, allergies, systematic lupus erythematosus, obesity, cancer, depression, multiple sclerosis, diabetes, psoriasis, and Crohn's disease, among others.


Panel 3 consists of eight CC chemokine assays (MCP-1, MIP-1a, MIP-1 b, Eotaxin, MCP-4, TARC, MDC, and Eotaxin-3) and two CXC chemokine assays (IL-8 and IP-10). Chemokines are small chemotactic cytokines with molecular weights around 8-10 kDa that are capable of inducing directed chemotaxis. The four cysteine residues in conserved locations result in their compact 3-dimensional structure. Based on the spacing of the first two cysteine residues, they are divided into four families of chemokines—CC chemokines, CXC chemokines, C chemokines, and CX3C chemokines, where C represents cysteine and X represents any other amino adds. Chemokines function by activating specific G protein-coupled receptors resulting in migration of inflammatory and non-inflammatory cells. The pro-inflammatory chemokines are responsible for migration of immune cells to the infection site while the homeostatic chemokines are responsible for the migration of cells for the purpose of tissue maintenance and development. Chemokines are associated with number of diseases.


Panels 1-5 are configured in a multi-well assay plate including a plurality of wells, each well having an array with 10 “spots” or discrete binding domains. An example of a 10 spot well is shown in FIG. 1(a) and the incorporation of that well into a multi-well plate is shown in FIG. 1(b). A capture antibody to each analyte is immobilized on a binding domain in the well and that capture antibody is used to detect the presence of the target analyte in an immunoassay as illustrated in FIG. 1(c). Briefly, a sample suspected of containing that analyte is added to the well and if present, the analyte binds to the capture antibody at the designated binding domain. The presence bound analyte on the binding domain is detected by adding labeled detection antibody. The detection antibody also binds to the analyte forming a “sandwich” complex (capture antibody-analyte-detection antibody) on the binding domain. The location of each analyte in Panels 1-5 in this 10-spot pattern is identified in Table 2.









TABLE 2







Spot Pattern Configuration Per Panel












Panel
Species
Spot Location
Analytes







1
Human
1
IFN-gamma





2
IL-1beta





3
IL-2





4
IL-4





6
IL-8





7
IL-8





8
IL-12p70





9
IL-13





10
TNFalpha



2
Human
1
GM-CSF





2
IL-1alpha





3
IL-5





4
IL-7





5
IL-12/IL-23 p40





6
IL-15





7
IL-16





8
IL-17A





9
TNF-beta





10
VEGF-A



3
Human
1
Eotaxin





2
MIP-1 alpha,





3
Eotaxin-3





4
TARC





5
IP-10





6
MIP-1 beta





7
IL-8





8
MCP-1





9
MDC





10
MCP-4



4
Rat
1
IFN-gamma





2
IL-2





3
IL-4





4
IL-1 beta





5
IL-5





6
IL-6





7
KC/GRO





8
IL-10





9
IL-13





10
TNF-alpha



5
Mouse
1
IFN-gamma





2
IL-1-beta





3
IL-2





4
IL-4





5
IL-5





6
IL-6





7
KC/GRO





8
IL-10





9
IL-12p70





10
TNF-alpha










The multiplexed immunoassay kits described herein allow a user to simultaneously quantify multiple biomarkers. The panels are selected and optimized such that the individual assays function well together. The sample may require dilution prior to being assayed. Sample dilutions for specific sample matrices of interest are optimized for a given panel to minimize sample matrix effects and to maximize the likelihood that all the analytes in the panel will be within the dynamic range of the assay. In a preferred embodiment, all of the analytes in the panel are analyzed with the same sample dilution in at least one sample type. In another preferred embodiment, all of the analytes in a panel are measured using the same dilution for most sample types.


For a given panel, the detection antibody concentration and the number of labels per protein (L/P ratio) for the detection antibody are adjusted to bring the expected levels of all analytes into a quantifiable range at the same sample dilution. If one wants to increase the high end of the quantifiable range for a given analyte, then the UP can be decreased and/or the detection antibody concentration is decreased. On the other hand, if one wants to increase the lower end of the quantifiable range, the UP can be increased, the detection antibody concentration can be increased if it is not at the saturation level, and/or the background signal can be lowered.


Calibration standards for use with the assay panels are selected to provide the appropriate quantifiable range with the recommended sample dilution for the panel. The calibration standards have known concentrations of one of more of the analytes in the panel. Concentrations of the analytes in unknown samples are determined by comparison to these standards. In one embodiment, calibration standards comprise mixtures of the different analytes measured by an assay panel. Preferably, the analyte levels in a combined calibrator are selected such that the assay signals for each analyte are comparable, e.g., within a factor of two, a factor of five or a factor of 10. In another embodiment, calibration standards include mixtures of analytes from multiple different assay panels.


A calibration curve may be fit to the assay signals measured with calibration standards using, e.g., curve fits known in the art such as linear fits, 4-parameter logistic (4-PL) and 5-parameter (5-PL) fits. Using such fits, the concentration of analytes in an unknown sample may be determined by backfitting the measured assay signals to the calculated fits. Measurements with calibration standards may also be used to determine assay characteristics such as the limit of detection (LOD), limit of quantification (LOQ), dynamic range, and limit of linearity (LOL).


A kit includes the following assay components: a multi-well assay plate configured to conduct an immunoassay for one of the panels described herein, a set of detection antibodies for the analytes in the panel (wherein the set comprises individual detection antibodies and/or a composition comprising a blend of one or more individual detection antibodies), and a set of calibrators for the analytes in the panel (wherein the set comprises individual calibrator protein compositions and/or a composition comprising a blend of one or more individual calibrator proteins). The kit can also include one of more of the following additional components: a blocking buffer (used to block assay plates prior to addition of sample), an antibody diluent (used to dilute stock detection antibody concentrations to the working concentration), an assay diluent (used to dilute samples), a calibrator diluent (used to dilute or reconstitute calibration standards) and a read buffer (used to provide the appropriate environment for detection of assay labels, e.g., by an ECL measurement). The antibody and assay diluents are selected to reduce background, optimize specific signal, and reduce assay interference and matrix effect. The calibrator diluent is optimized to yield the longest shelf life and retention of calibrator activity. The blocking buffer should be optimized to reduce background. The read buffer is selected to yield the appropriate sensitivity, quantifiable range, and slowest off-rate. The reagent components of the kit can be provided as liquid reagents, lyophilized, or combinations thereof, diluted or undiluted, and the kit includes instructions for appropriate preparation of reagents prior to use. In a preferred embodiment, a set of detection antibodies are included in the kit comprising a plurality of individual detection antibody compositions in liquid form. Moreover, the set of calibrators provided in the kit preferably comprise a lyophilized blend of calibrator proteins. Still further, the kit includes a multi-well assay plate that has been pre-coated with capture antibodies and exposed to a stabilizing treatment to ensure the integrity and stability of the immobilized antibodies.


As part of a multiplexed panel development, assays are optimized to reduce calibrator and detection antibody non-specific binding. In sandwich immunoassays, specificity mainly comes from capture antibody binding. Some considerations for evaluating multiplexed panels include: (a) detection antibody non-specific binding to capture antibodies is reduced to lower background of assays in the panel, and this can be achieved by adjusting the concentrations and UP of the detection antibodies; (b) non-specific binding of detection antibodies to other calibrators in the panel is also undesirable and should be minimized; (c) non-specific binding of other calibrators in the panel and other related analytes should be minimized; if there is calibrator non-specific binding, it can reduce the overall specificity of the assays in the panel and it can also yield unreliable results as there will be calibrator competition to bind the capture antibody.


Different assays in the panel may require different incubation times and sample handling requirements for optimal performance. Therefore, the goal is to select a protocol that's optimized for most assays in the panel. Optimization of the assay protocol includes, but is not limited to, adjusting one or more of the following protocol parameters: timing (incubation time of each step), preparation procedure (calibrators, samples, controls, etc.), and number of wash steps.


The reagents used in the kits, e.g., the detection and capture antibodies and calibrator proteins, are preferably subjected to analytical testing and meet or exceed the specifications for those tests. The analytical tests that can be used to characterize kit materials include but are not limited to, CIEF, DLS, reducing and/or non-reducing EXPERION, denaturing SDS-PAGE, non-denaturing SDS-PAGE, SEC-MALS, and combinations thereof. In a preferred embodiment, the materials are characterized by CIEF, DLS, and reducing and non-reducing EXPERION. One or more additional tests, including but not limited to denaturing SDS-PAGE, non-denaturing SDS-PAGE, SEC-MALS, and combinations thereof, can also be used to characterize the materials. In a preferred embodiment, the materials are also subjected to functional testing, i.e., a binding assay for the target analyte, as well as one or more characterization tests, such as those listed above. If the materials do not meet or exceed the specifications for the functional and/or characterization tests, they can be subjected to additional purification steps and re-tested. Each of these tests and the metrics applied to the analysis of raw materials subjected to these tests are described below:


Capillary Isoelectric Focusing (CIEF) is a technique commonly used to separate peptides and proteins, and it is useful in the detection of aggregates. During a CIEF separation, a capillary is filled with the sample in solution and when voltage is applied, the ions migrate to a region where they become neutral (pH=pI). The anodic end of the capillary sits in acidic solution (low pH), while the cathodic end sits in basic solution (high pH). Compounds of equal isoelectric points (pI) are “focused” into sharp segments and remain in their specific zone, which allows for their distinct detection based on molecular charge and isoelectric point. Each specific antibody solution will have a fingerprint CIEF that can change over time. When a protein solution deteriorates, the nature of the protein and the charge distribution can change. Therefore, CIEF is a particularly useful tool to assess the relative purity of a protein solution and it is a preferred method of characterizing the antibodies and calibrators in the plates and kits described herein. The metrics used in CIEF include pI of the main peak, the pI range of the solution, and the profile shape, and each of these measurements are compared to that of a reference standard.


Dynamic Light Scattering (DLS) is used to probe the diffusion of particulate materials either in solution or in suspension. By determining the rate of diffusion (the diffusion coefficient), information regarding the size of particles, the conformation of macromolecular chains, various interactions among the constituents in the solution or suspension, and even the kinetics of the scatterers can be obtained without the need for calibration, in a DLS experiment, the fluctuations (temporal variation, typically in a μs to ms time scale) of the scattered light from scatterers in a medium are recorded and analyzed in correlation delay time domain. Like CIEF, each protein solution will generate a fingerprint DLS for the particle size and it's ideally suited to detect aggregation. All IgGs, regardless of binding specificity, will exhibit the same DLS particle size. The metrics used to analyze a protein solution using DLS include percentage polydispersity, percentage intensity, percentage mass, and the radius of the protein peak. In a preferred embodiment, an antibody solution meets or exceeds one or more of the following DLS specifications: (a) radius of the antibody peak: 4-8 nm (antibody molecule size); (b) polydispersity of the antibody peak: <40% (measure of size heterogeneity of antibody molecules); (c) intensity of the antibody peak: >50% (if other peaks are present, then the antibody peak is the predominant peak): and (d) mass in the antibody peak: >50%.


Reducing and non-reducing gel electrophoresis are techniques welt known in the art. The EXPERION™ (Bio-Rad Laboratories, Inc., www.bio-rad.com) automated electrophoresis station performs all of the steps of gel-based electrophoresis in one unit by automating and combining electrophoresis, staining, destaining, band detection, and imaging into a single step, it can be used to measure purity. Preferably, an antibody preparation is greater 50% pure by Experion, more preferably, greater than 75% pure, and most preferably greater than 80% pure. Metrics that are applied to protein analysis using non-reducing Experion include percentage total mass of protein, and for reducing Experion they include percentage total mass of the heavy and light chains in an antibody solution, and the heavy to light chain ratio.


Multi-Angle Light Scattering (MALS) detection can be used in the stand-alone (batch) mode to measure specific or non-specific protein interactions, as well as in conjunction with a separation system such as flow field flow fractionation (FFF) or size exclusion chromatography (SEC). The combined SEC-MALS method has many applications, such as the confirmation of the oligomeric state of a protein, quantification of protein aggregation, and determination of protein conjugate stoichiometry. Preferably, this method is used to detect molecular weight of the components of a sample.


In a preferred embodiment, an assay is conducted in a single assay chamber, such as a single well of an assay plate or an assay chamber that is an assay chamber of a cartridge. In a preferred embodiment, the kits of the invention include multi-well assay plates that are configured to conduct an electrochemiluminescence measurement as described for example, in US 20040022677; US 20050052646; US 20050142033; US 20040189311, each of which is incorporated herein by reference in their entireties. Assay plates and date readers are now commercially available (MULTI-SPOT® and MULTI-ARRAY® plates and SECTOR® instruments, Meso Scale Discovery, a division of Meso Scale Diagnostics, LLC, Gaithersburg, Md.).


As used herein, a lot of kits comprise a group of kits comprising kit components that meet a set of kit release specifications. A lot can include at least 10, at least 100, at least 500, at least 1,000, at least 5,000, or at least 10,000 kits and a subset of kits from that lot are subjected to analytical testing to ensure that the lot meets or exceeds the release specifications. In one embodiment, the release specifications include but are not limited to kit processing, reagent stability, and kit component storage condition specifications. Kit processing specifications include the maximum total sample incubation time and the maximum total time to complete an assay using the kit. Reagent stability specifications include the minimum stability of each reagent component of the kit at a specified storage temperature. Kit storage condition specifications include the range of storage temperatures for all components of the kit, the maximum storage temperature for frozen components of the kit and the maximum storage temperature for non-frozen components of the kit. A subset of kits in a lot are reviewed in relation to these specifications and the size of the subset depends on the lot size. In a preferred embodiment, for a lot of up to 300 kits, a sampling of 4-7 kits are tested; for a lot of 300-950 kits, a sampling of 8-10 kits are tested; and for a tot of greater than 950 kits, a sampling of 10-12 kits are tested. Alternatively or additionally, a sampling of up to 1-5% preferably up to 1-3%, and most preferably up to 2% is tested.


In addition, each lot of multi-well assay plates is preferably subjected to uniformity and functional testing. A subset of plates in a lot are subjected to these testing methods and the size of the subset depends on the lot size. In a preferred embodiment, for a lot of up to 300 plates, a sampling of 4-7 plates are tested; for a lot of 300-950 plates, a sampling of 8-10 plates are tested; and for a lot of greater than 950 plates, a sampling of 10-12 plates are tested. Alternatively or additionally, a sampling of up to 1-5% preferably up to 1-3%, and most preferably up to 2% is tested. The uniformity and functional testing specifications are expressed in terms of % CV, Coefficient of Variability, which is a dimensionless number defined as the standard deviation of a set of measurements, in this case, the relative signal detected from binding domains across a plate, divided by the mean of the set.


One type of uniformity testing is protein A/G testing. Protein A/G binding is used to confirm that all binding domains within a plate are coupled to capture antibody. Protein A/G is a recombinant fusion protein that combines IgG binding domains of Protein A and protein G and it binds to all subclasses of human IgG, as well as IgA, IgE, IgM and, to a lesser extent, IgD. Protein A/G also binds to all subclasses of mouse IgG but not mouse IgA, IgM, or serum albumin, making it particularly well suited to detect mouse monoclonal IgG antibodies without interference from IgA, IgM, and serum albumin that might be present in the sample matrix. Protein A/G can be labeled with a detectable moiety, e.g., a fluorescent, chemiluminescent, or electrochemiluminescent label, preferably an ECL label, to facilitate detection. Therefore, if capture antibody is adhered to a binding domain of a well, it will bind to labeled protein A/G, and the relative amount of capture antibody bound to the surface across a plate can be measured.


In addition to the uniformity testing described above, a uniformity metric for a subset of plates within a tot can be calculated to assess within-plate trending. A uniformity metric is calculated using a matrix of normalized signals from protein A/G and/or other uniformity or functional tests. The raw signal data is smoothed by techniques known in the art, thereby subtracting noise from the raw data, and the uniformity metric is calculated by subtracting the minimum signal in the adjusted data set from the maximum signal.


In a preferred embodiment, a subset of plates in a lot is subjected to protein A/G and functional testing and that subset meet or exceed the following specifications:









TABLE 3(a)







Plate Metrics











Preferred Specification for a



Metric
subset of 96 well multi-well piates







Average intrapiate CV
≤10%



Maximum intraplate CV
≤13%



Average Uniformity
≤25%



Maximum Uniformity
≤37%



CV of intraplate averages
≤18%



Signal, lower boundary
>1500



Signal, upper boundary
<10(6)










As disclosed in U.S. Pat. No. 7,842,246 to Wohlstadter et al., the disclosure of which is incorporated herein by reference in its entirety, each plate consists of several elements, e.g., a plate top, a plate bottom, wells, working electrodes, counter electrodes, reference electrodes, dielectric materials, electrical connects, and assay reagents. The wells of the plate are defined by holes/Openings in the plate top. The plate bottom can be affixed, manually or by automated means, to the plate top, and the plate bottom can serve as the bottom of the well. Plates may have any number of wens of any size or shape, arranged in any pattern or configuration, and they can be composed of a variety of different materials. Preferred embodiments of the invention use industry standard formats for the number, size, shape, and configuration of the plate and wells. Examples of standard formats include 96, 384, 1536, and 9600 well plates, with the wells configured in two-dimensional arrays. Other formats may include single well plates (preferably having a plurality of assay domains that form spot patterns within each well), 2 well plates, 6 well plates, 24 well plates, and 6144 well plates. Each well of the plate includes a spot pattern of varying density, ranging from one spot within a well to 2, 4, 7, 9, 10, 16, 25, etc. In a preferred embodiment, the plates used in the kits of the invention comprise 10-spot 96-well plates.


Each plate is assembled according to a set of preferred specifications. In a preferred embodiment, a plate bottom meets or exceeds the following specifications:









TABLE 3(b)





Plate bottom specifications
















Parameter
96-well (round well) specifications



in inches


Length range (C to C)*
3.8904-3.9004 (A1-A12 and H1-H12)**


Width range (C to C)
2.4736-2.4836 (A1-A12 and H1-H12)


Well to well spacing
0.3513-0.3573





*C to C well distance is the center of spot to center of spot distance between the outermost wells of a plate.


**As shown in FIG. 3, a 96-well multi-well plate includes a set of wells arranged in an 8 × 12 array, wherein the rows on the short side of the plate are identified by A-H, and the columns on the long side of the plate are identified by 1-12. Therefore, length and width can be measured in row A1-A12 and compared to that of row H1-H12.






In a further preferred embodiment, the plate also meets or exceeds defined specifications for alignment of a spot pattern within a well of the plate. These specifications include three parameters: (a) Δx, the difference between the center of the spot pattern and the center of the well along the x axis of the plate (column-wise, long axis); (b) Δy, the difference between the center of the spot pattern and the center of the well along the y axis of the plate (row-wise, short axis); and (c) α, the counter-clockwise angle between the long axis of the plate bottom and the long axis of the plate top of a 96-well plate. In a preferred embodiment, the plate meets or exceeds the following specifications: Δx≤0.2 mm, Δy≤0.2 mm, and α≤0.1°.


The following non-limiting examples serve to illustrate rather than limit the present invention.


EXAMPLES
Example 1. Reagent Preparation

All reagents were brought to room temperature and diluents were thawed in water at room temperature.


(i) Preparation of Standards


Multi-analyte lyophilized calibrator blends and all diluents for each panel were obtained from Meso Scale Discovery (Rockville, Md.) which yield the recommended highest standard upon reconstitution in one mL of diluent. The lyophilized calibrator was reconstituted and kept on ice. Seven (7) standard solutions and a zero calibrator blank were prepared for up to 4 replicates as follows: (x) The highest standard was prepared by adding 1000 μL of diluent to the lyophilized calibrator vial. The solution was mixed by vortexing and keep on wet ice for a minimum of 5 minutes prior to use. (y) The next standard was prepared by transferring 75 μL of the highest standard to 225 μL of diluent. The solution was mixed well and the procedure repeated 4-fold serial dilutions 5 additional times to generate 7 standards, (z) Diluent was used as the blank. Once reconstituted to the recommended highest standard in Diluent 2, the multi-analyte lyophilized calibrator for each kit is stable at 2-8° C. for 30 days.


(ii) Sample Collection & Handling


When preparing serum, samples were allowed to dot for two hours at room temperature. Plasma prepared in heparin tubes commonly display additional clotting following thawing of the sample. Both serum and plasma were centrifuged for 20 minutes at 2000×g prior to aliquoting. For serum-free medium, the presence of carrier proteins, e.g., 1% BSA, in the solution was used to prevent loss of analyte to the labware. Samples with extremely high levels of cytokines were diluted. Tissue culture supernatant samples were diluted at least 2-fold in diluent. Upon collection, samples were tested immediately or aliquots were frozen at ≤20° C. Samples were centrifuged at 2000 g for three minutes to remove particulates prior to sample preparation.


(iii) Dilution of Samples


For human serum, plasma, CSF, urine, and cell culture supernates, a minimum of 2-fold dilution in diluent was done.


(iv) Preparation of Controls


Controls were prepared in non-human animal matrix with spiked recombinant human analytes. The lyophilized controls were reconstituted in 250 uL of diluent and treated as a sample. Once reconstituted in 250 uL of diluent, the controls were stable for 30 days at 2-8° C.


(v) Preparation of Detection Antibody Solutions


Detection antibodies were obtained from Meso Scale Discovery (Rockville, Md.) as a 50× stock solution and the working detection antibody solution was 1×. Exposure of 1× detection antibody solution to light was avoided to prevent elevated assay background. Once prepared, the 1× detection antibody solution was kept in the dark.


For 1 plate of Panel 1, the following were combined:


1. 60 uL of 50× SULFO-TAG™ Anti-human IFN-gamma antibody


2. 60 uL of 50× SULFO-TAG Anti-human IL-1beta antibody


3. 60 uL of 50× SULFO-TAG Anti-human IL-2 antibody


4. 60 uL of 50× SULFO-TAG Anti-human IL-4 antibody


5. 60 uL of 50× SULFO-TAG Anti-human IL-6 antibody


6. 60 uL of 50× SULFO-TAG Anti-human IL-8 antibody


7. 60 uL of 50× SULFO-TAG Anti-human IL-10 antibody


8. 60 uL of 50× SULFO-TAG Anti-human IL-12p70 antibody


9. 60 uL of 50× SULFO-TAG Anti-human IL-13 antibody


10.60 uL of 50× SULFO-TAG Anti-human TNFalpha antibody


11. 2400 uL Diluent 3 from Meso Scale Discovery (Rockville, Md.)


For 1 plate of Panel 2, the following were combined:


1. 60 uL of 50× SULFO-TAG Anti-human GM-CSF antibody


2. 60 uL of 50× SULFO-TAG Anti-human IL-1 alpha antibody


3. 60 uL of 50× SULFO-TAG Anti-human IL-5 antibody


4. 60 uL of 50× SULFO-TAG Anti-Human IL-7 antibody


5. 60 uL of 50× SULFO-TAG Anti-human IL-12/IL-23p40 antibody


6. 60 uL of 50× SULFO-TAG Anti-human IL-15 antibody


7. 60 uL of 50× SULFO-TAG Anti-human IL-16 antibody


8. 60 uL of 50× SULFO-TAG Anti-human IL-17A antibody


9. 60 uL of 50× SULFO-TAG Anti-human TNFbeta antibody


10.60 uL of 50× SULFO-TAG Anti-human VEGF-A antibody


11. 2400 uL Diluent 3 from Meso Scale Discovery (Rockville, Md.)


For 1 plate of Panel 3, the following were combined:


1. 60 uL of 50× SULFO-TAG Anti-human Eotaxin antibody


2. 60 uL of 50× SULFO-TAG Anti-human MIP-1beta antibody


3. 60 uL of 50× SULFO-TAG Anti-human MCP-4 antibody


4. 60 uL of 50× SULFO-TAG Anti-human Eotaxin-3 antibody


5. 60 uL of 50× SULFO-TAG Anti-human TARC antibody


6. 60 uL of 50× SULFO-TAG Anti-human IP-10 antibody


7. 60 uL of 50× SULFO-TAG Anti-human MIP-1alpha antibody


8. 60 uL of 50× SULFO-TAG Anti-human IL-8 antibody


9. 60 uL of 50× SULFO-TAG Anti-human MCP-1 antibody


10.60 uL of 50× SULFO-TAG Anti-human MDC antibody


11. 2400 uL Diluent 3 from Meso Scale Discovery (Rockville, Md.)


For 1 plate of Panel 4, the following were combined:


1. 60 uL of 50× SULFO-TAG Anti-rat IFN-gamma antibody


2. 60 uL of 50× SULFO-TAG Anti-rat IL-2 antibody


3. 60 uL of 50× SULFO-TAG Anti-rat IL-4 antibody


4. 60 uL of 50× SULFO-TAG Anti-rat IL-1 beta antibody


5. 60 uL of 50× SULFO-TAG Anti-rat IL-5 antibody


6. 60 uL of 50× SULFO-TAG Anti-rat IP-6 antibody


7. 60 uL of 50× SULFO-TAG Anti-rat KC/GRO antibody


8. 60 uL of 50× SULFO-TAG Anti-rat IL-10 antibody


9. 60 uL of 50× SULFO-TAG Anti-rat IL-13 antibody


10.60 uL of 50× SULFO-TAG Anti-rat TNF alpha antibody


11. 2400 uL Diluent 40 from Meso Scale Discovery (Rockville, Md.)


For 1 plate of Panel 5, the following were combined:


1. 60 uL of 50× SULFO-TAG Anti-mouse IFN gamma antibody


2. 60 uL of 50× SULFO-TAG Anti-mouse IL-1 beta antibody


3. 60 uL of 50× SULFO-TAG Anti-mouse IL-2 antibody


4. 60 uL of 50× SULFO-TAG Anti-mouse IL-4 antibody


5. 60 uL of 50× SULFO-TAG Anti-mouse IL-5 antibody


6. 60 uL of 50× SULFO-TAG Anti-mouse IP-6 antibody


7. 60 uL of 50× SULFO-TAG Anti-mouse KC/GRO antibody


8. 60 uL of 50× SULFO-TAG Anti-mouse IL-10 antibody


9. 60 uL of 50× SULFO-TAG Anti-mouse IL-12p70 antibody


10.60 uL of 50× SULFO-TAG Anti-mouse TNF alpha antibody


11. 2400 uL Diluent 45 from Meso Scale Discovery (Rockville. Md.)


(vi) Preparation of Read Buffer


Read Buffer T (also available from Meso Scale Discovery) is obtained as a 4× stock solution and the working solution was 2×. For 1 plate, equal parts (10 mL) of Read Buffer T (4×) was combined with deionized water (10 mL). A working solution of read buffer was prepared in advance and stored at room temperature in a tightly sealed container (stable for up to three years).


(vii) Preparation of MSD Plate


Multi-well plates (also available from Meso Scale Discovery) were pre-coated with capture antibodies (FIG. 1) and exposed to a proprietary stabilizing treatment to ensure the integrity and stability of the immobilized antibodies. Plates were used as delivered; no additional preparation (e.g., pre-wetting) was required.


Example 2. Assay Protocol

(i) Fifty (50) uL of diluted sample (standards, controls, or unknowns) per well were added. The plate was sealed with an adhesive plate seal and incubated for 2 hours with vigorous shaking (300-1000 rpm) at room temperature.


(ii) The plate was washed 3 times with 150-300 uL/well of PBS-T. Twenty-five (25) uL of detection antibody solution was added to each well. The plate was sealed with an adhesive plate seal and incubated for 2 hours with vigorous shaking (300-1000 rpm) at room temperature.


(iii) The plate was washed 3 times with 150-300 uL/well of PBS-T. One hundred fifty (150) uL of 2× Read Buffer T (Meso Scale Discovery, Rockville. Md.) was added to each well. The plate was analyzed in a SECTOR® Imager (Meso Scale Discovery, Rockville, Md.).


Example 3. Panel Verification

Assay development and evaluation of assay performance was executed utilizing industry and regulatory guidelines. During product development, kit components and protocols were developed and optimized to yield optimum product performance. The robustness of the assay protocol was evaluated to examine the boundaries of selected incubation times. Accelerated stability studies for calibrators, antibodies, and controls were performed during assay development and were augmented with real-time stability studies on complete kits out to 36 months from the date of manufacture. Verification of product design specifications was performed by evaluating standard curves, and a set of controls for each panel (also obtained from Meso Scale Discovery, Rockville, Md.) for three days by two independent analysts for a total of eight plates. Each plate was considered as a run. A summary of the standard curve data is shown in FIGS. 2(a)-(e) and Tables 4-8.


Intra- and inter-run precision and accuracy for a set of controls for each panel was evaluated for nine runs. Precision and accuracy were verified for each lot as part of the lot verification and quality control release. The typical specification for precision is a concentration CV of less than 20% for controls on both intra- and inter-day runs. As part of product verification, the performance of each panel was evaluated for spike and recovery and dilution linearity in serum, heparin plasma, EDTA plasma, citrate plasma, CSF, urine, and/or cell culture supernates. Native human analyte levels were measured in serum, heparin plasma, EDTA plasma, citrate plasma, CSF, and urine. Native rat and mouse analyte levels were measured in serum, heparin plasma, EDTA plasma, and urine.


Pooled human blood was stimulated in vitro with different stimuli (LPS and Zymosan and Peptidoglycan) and at the end of the stimulation period, plasma was isolated. In addition, for panels 1-3, THP-1 cell line was stimulated with LPS and at the end of stimulation, lysates were prepared. Freshly isolated PBMC were treated with different stimulating agents and supernates were isolated. The plasma, the cell lysates, and PBMC supernates were then evaluated for native human analyte levels using panels 1-3. For panel 4, rat macrophase cell line NR8383 was stimulated with LPS, PHA, and Pokeweed mitogen (PWM) and the cell lysate and cell culture supernates were isolated. The plasma, cell lysates, and cell culture supernates were evaluated for native rat analyte levels using panel 4. For panel 5, RAW cell line was stimulated with LPS and J774A.1 cell line was stimulated with LPS and PWM and at the end of stimulation, lysates were prepared. The plasma and cell lysates were then evaluated for native mouse analyte levels using panel 5.



FIG. 2(a)-(e) shows a standard curve graph that illustrates the dynamic range of each panel (panels 1-5, respectively).









TABLE 4







Panel 1 Typical Data









Conc.
Average



(pg/mL)
Signal
% CV










IFNγ









0
364
9.5


0.31
485
5.0


1.2
856
5.1


4.9
2120
2.7


20
7559
1.8


78
29285
1.1


313
114776
2.0


1250
420758
1.6







IL-1β









0
979
7.6


0.12
1435
5.2


0.49
2640
4.6


2.0
7149
4.0


7.8
25643
3.5


31
97601
2.3


125
385790
4.3


500
1523384
2.5







IL-2









0
278
12.0


0.31
533
9.0


1.2
1257
5.4


4.9
3826
3.7


20
13922
3.2


78
55350
3.2


313
207898
2.8


1250
740647
3.8







IL-4









0
203
11.1


0.05
365
10.1


0.21
933
8.1


0.82
3008
6.6


3.3
12155
2.3


13
47521
2.0


53
178863
2.5


210
618057
2.2







IL-6









0
219
8.0


0.16
404
9.4


0.63
982
4.8


2.5
3137
3.6


10
12068
2.7


41
49674
3.4


163
215238
3.7


650
930463
2.7







IL-8









0
208
12.0


0.12
370
5.4


0.49
858
4.3


2.0
2724
2.7


7.8
10113
2.5


31
41493
2.2


125
169766
2.6


500
722931
2.2







IL-10









0
232
10.7


0.08
420
9.8


0.30
937
5.4


1.2
2970
3.1


4.8
10699
4.3


19
43376
3.5


78
163839
2.1


310
568597
2.3







IL-12p70









0
267
15.5


0.10
327
13.1


0.41
511
7.2


1.6
1348
6.1


6.6
4787
3.6


25
18351
2.3


105
69571
4.3


420
250748
2.8







IL-13









0
188
18.5


0.11
241
15.1


0.45
405
9.3


1.8
1030
3.7


7.3
3543
2.0


29
17828
2.1


118
110781
4.4


470
587447
1.7







TNFα









0
138
19.2


0.08
266
12.8


0.32
606
3.9


1.3
1960
3.7


5.2
7100
2.5


21
29253
2.6


83
118437
4.7


330
508866
2.7
















TABLE 5







Panel 2 Typical Data









Conc.
Average



(pg/mL)
Signal
% CV










GM-CSF









0
221
14.3


0.24
355
7.5


0.98
781
5.5


3.9
2374
4.8


16
9635
4.3


63
35827
3.4


250
139828
3.4


1000
472016
3.2







IL-1α









0
401
11.9


0.1
531
7.5


0.4
852
5.8


1.4
2167
8.4


5.8
7368
5.1


23
27075
5.5


93
110306
3.2


370
394888
3.6







IL-5









0
571
10.5


0.2
833
8.7


0.8
1438
7.4


3.1
3961
5.8


12
14364
7.9


49
52918
3.4


198
198664
3.8


790
639511
5.7







IL-7









0
235
12.6


0.2
342
9.5


0.7
712
6.1


2.9
2107
5.1


12
8770
6.3


47
32322
3.2


188
137340
2.8


750
581986
2.1







IL-12/IL-23 p40









0
285
8.7


0.7
431
7.1


2.9
874
3.5


12
2531
3.8


47
10105
6.5


188
36783
5.9


750
144847
2.8


3000
512130
5.5







IL-15









0
227
8.3


0.2
338
8.6


0.7
681
6.1


2.7
1954
4.6


11
7840
7.0


44
28139
3.5


175
105824
5.3


700
464580
3.0







IL-16









0
264
11.3


0.61
326
11.4


2.4
477
6.6


9.8
1090
4.8


39
4481
6.4


156
15741
2.1


625
82935
4.1


2500
436497
4.5







IL-17A









0
144
28.9


1.2
290
10.3


4.8
821
8.1


19
2179
4.3


76
12286
6.8


304
45447
4.4


1218
190122
2.5


4870
684182
4.4







TNFβ









0
248
10.9


0.1
456
6.1


0.6
1156
3.8


2.4
3813
3.0


10
15143
2.4


38
57815
2.1


153
233155
1.3


610
890796
3.2







VEGF









0
476
5.2


0.3
547
8.9


1.0
681
5.4


4.2
1235
3.5


17
4187
7.1


67
14990
3.7


268
93227
3.4


1070
517033
3.1
















TABLE 6







Panel 3 Typical Data









Conc.
Average



(pg/mL)
Signal
% CV










Eotaxin









0
189
13.2


0.37
215
7.6


1.5
252
14.5


5.9
430
6.3


23
2408
5.8


94
21595
1.8


375
159348
1.8


1500
813344
3.4







MIP-1β









0
91
39.9


0.24
160
16.9


1.0
313
5.9


3.9
1033
3.9


16
5293
3.0


63
35620
2.3


250
210203
3.4


1000
834900
4.2







Eotaxin-3









0
114
35.7


1.2
208
10.7


4.9
501
5.3


20
1610
3.4


78
6029
1.6


313
23154
3.0


1250
85026
5.2


5000
283990
4.9







TARC









0
283
16.7


0.37
546
8.5


1.5
1409
3.5


5.9
4580
3.0


23
18048
4.4


94
69091
2.7


375
269113
2.7


1500
873335
2.9







IL-10









0
58
29.3


0.6
435
7.1


2.4
1532
4.7


10
5855
3.5


39
22406
3.8


156
84024
4.2


625
264057
3.7


2500
437795
7.1







MIP-1α









0
141
18.3


0.2
170
16.9


1.0
185
14.5


3.9
297
14.3


15
1023
5.1


62
7812
2.7


248
69584
4.2


990
454451
3.0







IL-8









0
127
21.5


18
218
23.5


71
338
10.1


283
883
7.6


1131
4028
4.8


4525
31569
7.4


18100
314805
4.6


72400
1784204
3.3







MCP-1









0
171
17.8


0.1
277
11.1


0.5
654
6.6


2.0
2010
6.4


7.8
8243
6.1


31
33293
4.1


125
134498
3.3


500
547716
8.3







MDC









0
152
10.3


2
288
6.0


10
677
3.3


39
2273
4.1


156
9996
3.0


625
59008
4.3


2500
406977
4.2


10000
1763220
3.8







MCP-4









0
71
29.8


0.2
121
28.7


0.6
120
32.8


2.4
187
16.9


10
976
8.6


39
9827
3.8


156
80691
3.8


625
494877
1.7
















TABLE 7







Panel 4 Typical Data









Conc.
Average



(pg/mL)
Signal
% CV










IFNγ









0
462
11


1.2
663
6.8


4.9
1383
6.3


20
4056
3.8


78
15075
2.7


313
65765
3.8


1250
318965
2.3


5000
1334897
4.5







IL-2









0
334
13


12
330
16


49
425
8.8


195
747
5.9


781
1969
6.1


3125
7571
5.7


12500
32383
4.3


50000
147984
7.6







IL-4









0
281
11


0.2
348
11


1.0
499
7.9


4.0
1184
6.3


16
3974
6.4


64
21355
4.2


255
132949
3.7


1020
660873
4.9







IL-1β









0
523
14


2.6
506
13


11
542
9.2


42
683
7.6


169
1508
2.9


675
4915
2.9


2700
20813
2.8


10800
93359
4.4







IL-5









0
218
14


2.4
220
15


9.8
250
9.0


39
400
9.0


156
1477
6.6


625
11226
6.1


2500
75782
4.3


10000
295607
6.3







IL-6









0
491
7.4


3.0
485
8.8


12
542
7.2


48
729
9.0


194
1565
5.8


775
5186
5.7


3100
22199
5.6


12400
108108
11







KC/GRO









0
648
9.9


0.7
687
5.6


2.7
714
6.0


11
781
5.4


43
1228
6.8


174
5568
5.0


695
49356
3.9


2780
387251
6.6







IL-10









0
596
14


4.9
583
20


20
858
16


78
1630
7.9


313
5131
6.7


1250
19039
5.2


5000
73865
4.3


20000
278070
6.1







IL-13









0
275
16


0.4
269
17


1.6
336
9.1


6.3
563
8.6


25
1544
3.6


100
7033
4.5


400
44979
2.3


1600
299022
6.2







TNFα









0
208
17


0.3
259
9.9


1.1
404
10


4.5
993
6.1


18
3323
4.8


73
15943
2.8


290
92423
3.7


1160
535091
4.1
















TABLE 8







Panel 5 Typical Data









Conc.
Average



(pg/mL)
Signal
% CV










IFNγ









0
311
14.5


0.20
821
5.6


0.78
2443
2.4


3.1
8641
2.3


13
35510
1.9


50
137358
1.8


200
504897
2.2


800
1437412
2.2







IL-1β









0
284
12.4


0.34
562
6.3


1.4
1462
3.6


5.5
4909
2.6


22
19280
2.1


88
77541
2.2


350
307686
1.9


1400
1149886
1.9







IL-2









0
289
12.0


0.51
513
8.2


2.1
1232
5.4


8.2
4094
3.6


33
15136
3.5


131
64545
3.4


525
264160
2.3


2100
939169
1.6







IL-4









0
495
8.9


0.34
732
7.3


1.4
1529
4.0


5.5
4351
2.9


22
17081
1.6


88
65254
2.7


350
245316
2.6


1400
798882
2.1







IL-5









0
145
21.6


0.2
412
10.6


0.78
1298
4.2


3.1
4826
2.6


13
19027
3.0


50
79736
3.9


200
336576
2.9


800
1282609
2.9







IL-6









0
369
7.8


1.1
544
6.0


4.4
1107
5.9


18
3321
2.3


70
12162
1.8


281
50520
2.8


1125
225797
2.2


4500
1085547
2.8







KC/GRO









0
307
10.3


0.39
460
9.1


1.6
1129
2.6


6.3
3695
1.9


25
13975
2.8


100
65482
2.6


400
335078
1.9


1600
1609664
2.1







IL-10









0
763
10.1


0.63
819
5.9


2.5
1125
6.2


10
2349
3.1


41
7758
3.4


163
29289
2.2


650
121581
3.7


2600
504589
4.3







IL-12p70









0
372
7.6


6.4
453
11.1


26
684
5.1


103
1754
2.9


413
6261
2.6


1650
30330
2.9


6600
163885
2.8


26400
731703
2.9







TNFα









0
883
5.8


0.12
985
5.5


0.49
1291
4.3


2
2592
3.1


7.8
7460
3.4


31
29633
2.9


125
128475
3.0


500
582743
3.3









The lower limit of detection (LLOD) is a calculated concentration based on a signal 2.5 standard deviations above the background (zero calibrator blank). The LLOD shown in Tables 9-13 for each panel was calculated based on 8-9 runs.









TABLE 9







Panel 1 LLOD


















IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-13
TNFα





Median LLOD
0.22
0.05
0.12
0.03
0.07
0.01
0.03
0.13
0.27
0.06


(pg/mL)












LLOD Range
0.10-0.37
0.02-0.08
0.07-0.13
0.02-0.04
0.06-1.0
0.01-0.01
0.02-0.05
0.09-0.19
0.21-0.43
0.06-0.10


(pg/mL)
















TABLE 10







Panel 2 LLOD


















GM-



IL-12/IL-








CSF
IL-1α
IL-5
IL-7
23 p40
IL-15
IL-16
IL-17A
TNFβ
VEGF





Median LLOD
0.14
0.08
0.10
0.15
0.40
0.14
1.60
0.77
0.06
0.9


(pg/mL)












LLOD Range
0.10-0.34
0.05-0.29
0.08-0.28
0.11-0.22
0.30-0.58
0.08-0.19
0.98-2.77
0.50-2.70
0.04-0.12
0.75-1.39


(pg/mL)
















TABLE 11







Panel 3 LLOD


















Eotaxin
MIP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
IL-8
MCP-1
MDC
MCP-4





Median LLOD
3.2
0.34
1.2
0.13
0.13
1.4
5.6
0.09
2.6
2.3


(pg/mL)












LLOD Range
2.2-4.0
0.42-0.89
0.79-3.1
0.00-0.22
0.09-0.22
1.4-2.3
31-62
0.07-0.20
1.7-2.8
1.6-2.7


(pg/mL)
















TABLE 12







Panel 4 LLOD


















IFNγ
IL-2
IL-4
IL-1β
IL-5
IL-6
KC/GRO
IL-10
IL-13
TNFα





Median LLOD
0.7
57
0.7
35
27
23
21
14
3.7
0.9


(pg/mL)












LLOD Range
0.4-2.7
36-126
0.4-1.0
16-80
19-37
16-41
19-30
8.9-20
2.7-8.6
0.5-1.5


(pg/mL)
















TABLE 13







Panel 5 LLOD


















IFNγ
IL-1β
IL-2
IL-4
IL-5
IL-6
KC/GRO
IL-10
IL-12p70
TNFα





Median LLOD
0.042
0.11
0.22
0.19
0.056
0.606
0.22
1.1
8.9
0.15


(pg/mL)












LLOD Range
0.025-
0.093-
0.165-
0.099-
0.05-
0.486-
0.165-
0.518-
7.598-
0.109-


(pg/mL)
0.084
0.171
0.338
0.343
0.099
1.075
0.373
3.19
14.254
0.546









Controls were made by spiking calibrator into non-human animal matrix for panels 1-3, rat serum for pend 4, and mouse serum for panel 5, at levels throughout the range of the assay. Analyte levels were measured using a minimum of 3 replicates on 3 runs over 3 days. Average intra-run % CV is the average % CV of the control replicates within an individual run. Inter-run % CV is the variability of controls across a selected number of runs, inter-lot % CV is the variability at controls across a selected number of kit lots.









TABLE 14







Panel 1
















Average
Average
Inter-






Conc.
Intra-run
run
Inter-lot



Control
Runs
(pg/mL)
% CV
% CV
% CV
















IFNγ
High
9
1941
1.9
6.8
4.8



Mid
9
203
1.9
8.3




Low
9
16
4.8
7.8



IL-1β
High
9
107
2.6
5.3




Mid
9
11
1.8
6.5




Low
9
7
3.4
9.8



IL-2
High
9
986
2.2
3.2




Mid
9
99
2.2
4.8




Low
9
9
4.9
13



IL-4
High
9
294
1.7
6.2




Mid
9
32
4.4
6.7




Low
9
4
3.5
5.8



IL-6
High
9
801
3.4
5.8




Mid
9
76
3.0
4.6




Low
9
6
4.1
7.0



IL-8
High
9
613
2.3
5.2




Mid
9
60
1.8
6.1




Low
9
8
3.4
8.4



IL-10
High
9
372
2.2
2.8




Mid
9
39
1.5
5.5




Low
9
4
3.3
8.6



IL-12p70
High
9
467
4.4
6.4




Mid
9
51
3.2
6.6




Low
9
5
3.9
4.3



IL-13
High
9
657
3.0
8.6




Mid
9
74
2.7
13.8




Low
9
5
6.3
11.6



TNFα
High
9
270
4.0
7.2




Mid
9
24
3.7
9.6




Low
9
3
3.7
12.0
















TABLE 15







Panel 2
















Average
Average
Inter-






Conc.
Intra-run
run
Inter-lot



Control
Runs
(pg/mL)
% CV
% CV
% CV
















GM-CSF
High
9
506
4.0
22.1
N/A



Mid
9
53
2.6
20.8
N/A



Low
9
5
4.8
16.8
N/A


IL-1α
High
9
144
3.4
11.8
N/A



Mid
9
15
3.2
12.4
N/A



Low
9
2
5.7
13.8
N/A


IL-5
High
9
450
4.2
16.6
N/A



Mid
9
45
2.4
18.2
N/A



Low
9
4
4.4
16.0
N/A


IL-7
High
9
437
3.3
9.7
N/A



Mid
9
44
2.9
4.8
N/A



Low
9
5
3.8
4.6
N/A


IL-12/IL-
High
9
1631
3.7
10.9
N/A


23p40
Mid
9
173
2.4
9.9
N/A



Low
9
17
3.9
8.0
N/A


IL-15
High
9
317
3.5
26.0
N/A



Mid
9
35
3.8
31.1
N/A



Low
9
4
4.7
25.6
N/A


IL-16
High
9
1965
2.3
19.8
N/A



Mid
9
166
1.7
23.7
N/A



Low
9
19
5.2
25.8
N/A


IL-17A
High
9
2662
5.3
20.0
N/A



Mid
9
256
4.3
18.1
N/A



Low
9
25
4.3
16.2
N/A


TNFβ
High
9
298
4.4
27.2
N/A



Mid
9
30
3.0
27.7
N/A



Low
9
3
3.0
25.0
N/A


VEGF
High
9
766
2.6
18.3
N/A



Mid
9
64
2.7
12.1
N/A



Low
9
8
5.9
5.4
N/A
















TABLE 16







Panel 3
















Average
Average
Inter-






Conc.
Intra-run
run
Inter-lot



Control
Runs
(pg/mL)
% CV
% CV
% CV
















Eotaxin
High
9
2889
2.3
5.9




Mid
9
312
2.3
4.5




Low
9
34
12.8
3.4



MIP-1β
High
9
2071
3.0
5.3




Mid
9
222
1.4
4.8




Low
9
20
4.4
5.7



Eotaxin-3
High
9
13931
2.1
6.5




Mid
9
1025
4.4
5.0




Low
9
131
7.0
9.5



TARC
High
9
3240
4.6
6.2




Mid
9
332
3.0
3.6




Low
9
34
4.3
8.4



IP-10
High
9
5858
9.3
14.4




Mid
9
435
3.5
5.3




Low
9
51
4.2
10.2



MIP-1α
High
9
2253
1.8
4.0




Mid
9
219
1.6
5.4




Low
9
26
10.4
8.8



IL-8
High
9
125226
2.3
10.7




Mid
9
44664
1.3
13.2




Low
9
4830
2.1
18.8



MCP-1
High
9
1066
5.1
8.4




Mid
9
113
5.0
4.4




Low
9
11
6.3
6.2



MDC
High
9
25521
4.6
5.3




Mid
9
1548
4.1
5.2




Low
9
197
4.1
8.3



MCP-4
High
9
1349
3.0
5.3




Mid
9
170
2.5
5.1




Low
9
14
12.3
14.6
















TABLE 17







Panel 5
















Average
Average







Conc.
Intra-run
Inter-run
Inter-lot



Control
Runs
(pg/mL)
% CV
% CV
% CV
















IFNγ
High
9
305
2.1
4.5
4.8



Mid
9
722
2.2
9.6




Low
9
23
1.3
6.6



IL-1β
High
9
826
2.0
3.4




Mid
9
928
2.0
7.5




Low
9
53
1.7
5.2



IL-2
High
9
2,092
2.3
3.8




Mid
9
2,293
2.2
7.8




Low
9
80
2.4
5.6



IL-4
High
9
759
3.8
6.0




Mid
9
836
2.9
9.3




Low
9
70
2.4
6.8



IL-5
High
9
849
2.0
4.2




Mid
9
981
2.8
7.0




Low
9
36
2.2
4.8



IL-6
High
9
115
2.4
3.7




Mid
9
400
3.5
11




Low
9
26
2.5
5.4



KC/GRO
High
9
776
3.1
3.4




Mid
9
752
2.7
6.2




Low
9
106
3.4
4.8



IL-10
High
9
3,370
3.1
4.3




Mid
9
4,167
3.1
7.6




Low
9
627
2.4
6.1



IL-12p70
High
9
7,821
4.7
7.8




Mid
9
26,735
7.0
9.9




Low
9
3,193
4.5
12



TNFα
High
9
448
2.5
5.0




Mid
9
479
2.1
7.0




Low
9
22
3.0
5.1









To assess linearity in panels 1-3, normal individual human serum, EDTA plasma, heparin plasma, citrate plasma, and CSF samples from a commercial source were spiked with recombinant calibrators and diluted 2-fold, 4-fold, 8-fold, 16-fold, 32-fold, and 64-fold before testing. Normal individual human urine was spiked with recombinant calibrators and diluted 2-fold, 4-fold, 8-fold, and 16-fold. Percent recovery at each dilution was calculated by dividing the dilution adjusted calculated concentration by the expected concentration, i.e., the calculated dilution adjusted concentration at 2-fold dilution for panels 1-2 and a 4-fold dilution for panel 3 (see equation below).


To assess linearity in panel 4, normal rat serum, EDTA plasma, heparin plasma, citrate plasma, and urine samples from a commercial source were spiked with recombinant calibrators and diluted 4-fold, 8-fold, 16-fold, and 32-fold before testing. Percent recovery at each dilution was calculated by dividing the dilution adjusted calculated concentration by the expected concentration, i.e., the calculated dilution adjusted concentration at 4-fold dilution.


To assess linearity in panel 5, normal mouse serum, EDTA plasma, heparin plasma, citrate plasma, and urine samples from a commercial source were spiked with recombinant calibrators and diluted 2-fold, 4-fold, 8-fold, 16-fold, 32-fold, and 64-fold before testing. Percent recovery at each dilution was calculated by dividing the dilution adjusted calculated concentration by the expected concentration, i.e., the calculated dilution adjusted concentration at 2-fold dilution.


The average percent recovery shown below is based on samples within the quantitative range of the assay.







%





Recovery

=


(

Measured
Expected

)

*
100












TABLE 18





Panel 1


























Average
%
Average
%
Average
%
Average
%


Sample
Fold
%
Recovery
%
Recovery
%
Recovery
%
Recovery


Type
Dilution
Recovery
Range
Recovery
Range
Recovery
Range
Recovery
Range

















IFNγ
IL-1β
IL-2
IL-4



















Serum
4
105
95-109
106
100-118 
91
78-121
106
93-128


(N = 12)
8
101
91-112
103
92-129
91
71-158
103
87-133



16
100
92-119
102
85-121
94
63-196
107
94-139



32
98
87-120
106
85-136
107
63-283
103
88-135



64
102
88-125
110
88-143
120
63-402
108
88-142


EDTA
4
108
101-124 
108
100-115 
92
81-121
110
96-129


Plasma
8
107
93-131
106
94-119
91
75-157
108
86-140


(N = 12)
16
108
89-135
107
85-125
96
69-210
111
80-153



32
103
79-135
107
81-128
105
66-282
105
71-140



32
109
80-141
112
84-136
116
65-412
109
76-152


Heparin
4
106
97-116
109
100-123 
94
76-122
107
92-128


Plasma
8
101
90-110
108
99-118
96
70-161
104
84-142


(N = 12)
16
102
89-112
106
93-122
102
65-206
108
82-151



32
98
84-112
108
96-124
110
61-277
105
81-149



64
101
83-124
109
93-137
125
64-435
110
81-157


Citrate
4
102
95-107
100
92-105
79
61-115
103
91-109


Plasma
8
97
87-104
99
94-107
74
50-146
99
89-110


(N = 10)
16
94
85-105
96
89-109
71
46-174
98
86-115



32
89
80-104
94
80-113
72
46-191
95
82-124



64
91
81-106
94
84-113
73
45-207
99
85-129


Urine
4
95
92-100
98
93-102
87
75-103
97
93-102


(N = 5)
8
88
79-91 
91
85-96 
79
63-96 
98
90-110



16
87
83-90 
90
88-94 
78
58-100
99
90-112


Cell Culture
4
102
95-105
100
95-105
87
85-88 
101
96-108


Supernates
8
97
92-103
96
90-104
83
78-88 
100
94-107


(N = 6)
16
98
89-105
89
83-97 
77
73-81 
102
94-114



32
88
82-94 
86
81-99 
75
71-77 
95
87-103



64
90
80-97 
85
75-94 
70
65-77 
94
78-104

















IL-6
IL-8
IL-10
IL-12p70



















Serum
4
105
95-113
97
89-103
102
93-108
104
99-117


(N = 12)
8
106
96-124
93
86-104
102
91-114
102
90-111



16
104
89-117
88
78-100
97
89-113
104
91-119



32
104
93-118
92
79-106
102
90-123
105
93-118



64
110
95-127
95
79-110
104
89-124
110
94-131


EDTA
4
104
99-115
97
94-104
106
100-116 
106
94-126


Plasma
8
106
97-121
92
86-99 
106
93-120
107
95-133


(N = 12)
16
106
90-132
90
74-104
103
82-119
108
92-142



32
105
88-133
90
71-102
107
81-131
108
87-152



64
113
93-144
95
72-108
108
81-132
114
88-154


Heparin
4
108
100-130 
99
92-104
101
91-108
105
96-115


Plasma
8
105
94-121
94
83-101
101
86-111
102
94-116


(N = 12)
16
106
84-121
92
83-100
97
81-111
106
93-131



32
104
81-121
94
80-102
100
83-112
103
93-126



64
108
89-130
96
82-108
99
81-118
109
92-155


Citrate
4
107
95-169
97
98-107
97
94-100
101
90-115


Plasma
8
112
83-264
89
83-97 
94
87-108
96
84-111


(N = 10)
16
127
85-416
85
74-95 
88
74-105
94
78-109



32
136
78-550
85
72-97 
90
75-114
91
73-111



64
156
79-702
86
73-99 
88
71-111
95
74-118


Urine
4
106
104-104 
98
94-104
95
91-99 
94
91-100


(N = 5)
8
102
100-100 
93
82-101
90
86-93 
90
84-98 



16
100
101-101 
92
84-98 
86
83-87 
94
81-106


Cell
4
97
80-107
96
90-98 
101
99-104
88
77-95 


Culture
8
93
84-101
92
89-98 
100
95-106
86
81-89 


Supernates
16
87
79-95 
85
80-92 
94
87-100
84
81-89 


(N = 6)
32
84
74-92 
86
82-95 
94
87-101
79
70-85 



64
84
75-96 
84
78-91 
90
83-98 
81
74-88 















IL-13
TNFα












Sample
Fold
Average %
% Recovery
Average %
% Recovery


Type
Dilution
Recovery
Range
Recovery
Range





Serum
4
88
79-103
98
88-107


(N = 12)
8
79
70-101
95
89-111



16
73
63-101
90
82-110



32
74
62-108
94
85-115



64
79
65-114
95
85-119


EDTA
4
90
84-102
97
93-103


Plasma
8
83
74-111
94
87-103


(N = 12)
16
77
62-117
89
77-103



32
76
58-117
92
77-104



64
81
59-127
94
76-107


Heparin
4
93
83-109
99
89-105


Plasma
8
84
72-114
96
81-101


(N = 12)
16
79
63-111
93
78-102



32
77
60-114
94
78-97 



64
82
62-126
95
77-105


Citrate
4
87
81-95 
95
90-101


Plasma
8
76
67-88 
89
80-106


(N = 10)
16
66
57-78 
83
70-108



32
65
57-79 
84
71-108



64
67
60-88 
84
71-108


Urine
4
88
82-95 
87
82-92 


(N = 5)
8
77
68-84 
80
76-84 



16
75
62-81 
76
68-83 


Cell
4
89
84-98 
86
80-91 


Culture
8
79
74-83 
79
74-85 


Supernates
16
70
65-73 
72
63-81 



32
67
64-71 
73
67-80 



64
68
65-73 
71
61-78 
















TABLE 19





Panel 2


























Average
%
Average
%
Average
%
Average
%


Sample
Fold
%
Recovery
%
Recovery
%
Recovery
%
Recovery


Type
Dilution
Recovery
Range
Recovery
Range
Recovery
Range
Recovery
Range

















CM-CSF
IL-1α
IL-5
IL-7



















Serum
4
108
 91-136
118
 98-170
108
 89-169
96
 84-120


(N = 11)
8
98
 77-141
120
 65-220
101
 76-134
85
 65-104



16
94
 68-145
138
 59-320
94
 74-129
82
 64-107



32
89
 64-144
175
 63-621
99
 73-129
78
 66-108



64
92
 66-143
209
 75-834
99
 76-125
82
 71-122


EDTA
4
100
 89-122
103
 85-137
102
 93-116
91
86-95


Plasma
8
91
 80-123
101
 78-182
98
 82-124
82
75-91


(N = 11)
16
87
 74-119
100
 66-202
90
 69-114
78
70-88



32
80
 66-103
104
 62-247
88
 66-115
72
62-88



64
81
 68-106
114
 65-276
86
 65-107
76
62-84


Heparin
4
102
 88-135
105
 88-139
106
 87-123
98
 84-106


Plasma
8
93
 78-142
102
 74-181
103
 86-127
91
73-99


(N = 11)
16
93
 72-152
109
 63-258
96
 77-127
89
72-99



32
89
 72-144
114
 59-294
97
 73-124
87
 65-100



64
93
 74-159
134
 68-422
96
 65-122
93
 66-110


Citrate
4
97
95-99
120
 92-156
98
 89-114
92
 88-100


Plasma
8
85
81-88
129
 88-209
92
 78-115
82
73-94


(N = 10)
16
81
72-86
139
 86-253
86
 73-112
79
70-93



32
74
65-80
140
 84-266
82
 71-109
74
66-86



64
75
69-83
145
 83-320
78
 68-111
75
68-82


Urine
4
114
104-122
131
 73-167
108
 96-132
107
 99-112


(N = 5)
8
122
104-127
116
 57-157
121
111-134
111
101-116



16
131
127-135
102
 91-127
132
124-155
124
114-132


Cell Culture
4
93
86-98
110
 95-124
94
89-98
88
85-91


Supernates
8
91
86-98
109
 96-137
89
87-92
89
83-93


(N = 6)
16
89
 83-101
101
 89-116
83
80-85
86
82-91



32
88
83-95
105
 96-122
83
81-85
89
82-97



64
91
84-99
104
 88-120
80
78-83
92
 86-100

















IL-12/IL-23 p40
IL-15
IL-16
IL-17A



















Serum
4
101
 90-128
90
 79-115
95
 86-103
104
 74-128


(N = 11)
8
91
 65-114
85
69-94
88
72-99
95
 58-108



16
90
 66-114
80
62-94
86
 73-101
90
64-95



32
87
 71-107
83
73-98
91
 77-101
87
72-96



64
89
 78-119
83
 70-101
98
 83-122
88
 77-100


EDTA
4
98
 85-110
85
77-93
93
 81-104
101
 92-111


Plasma
8
91
 72-106
82
75-94
79
68-93
96
 86-108


(N = 11)
16
87
 68-102
77
69-82
74
58-88
93
 79-111



32
81
62-97
74
62-83
77
 60-100
86
 68-106



64
83
61-99
73
63-81
80
 60-106
87
 67-102


Heparin
4
107
 91-133
83
72-93
97
 79-115
102
 83-110


Plasma
8
101
 82-131
78
64-87
89
 64-102
95
 84-108


(N = 11)
16
103
 80-145
75
64-84
87
 57-107
94
 82-104



32
99
 73-130
74
58-89
93
 58-120
87
76-97



64
103
 78-144
75
61-86
99
 63-123
89
 75-109


Citrate
4
102
 95-112
85
76-93
92
86-99
102
 93-128


Plasma
8
96
 77-113
79
70-90
81
76-91
94
 81-113


(N = 10)
16
97
 82-116
77
68-88
75
67-85
93
 75-158



32
90
 72-113
75
67-87
76
67-91
89
 70-156



64
93
 74-110
72
64-81
78
70-93
90
 73-152


Urine
4
116
 80-142
107
 77-136
134
118-163
113
 95-148


(N = 5)
8
127
 95-155
120
 98-143
149
127-183
124
 99-170



16
146
116-181
131
107-156
153
142-199
136
109-187


Cell
4
103
 94-109
80
78-81
101
 95-110
89
83-91


Culture
8
95
 90-101
80
76-85
99
 95-103
81
74-89


Supernates
16
93
 86-100
82
77-87
96
 91-114
79
75-84


(N = 6)
32
90
87-94
84
77-90
107
 97-129
79
73-84



64
94
 90-100
90
86-95
112
102-140
84
76-89















TNFβ
VEGF












Sample
Fold
Average %
% Recovery
Average %
% Recovery


Type
Dilution
Recovery
Range
Recovery
Range





Serum
4
106
 86-143
106
 91-121


(N = 11)
8
100
 76-116
95
 77-113



16
98
 72-115
96
 70-122



32
99
 69-120
118
 74-170



64
97
 71-116
145
 82-213


EDTA
4
100
 93-108
92
 74-107


Plasma
8
94
 83-108
83
69-96


(N = 11)
16
85
 74-104
77
65-90



32
80
68-92
84
 66-101



64
79
66-95
95
 71-121


Heparin
4
102
 90-114
107
 85-115


Plasma
8
99
 83-115
94
 80-110


(N = 11)
16
96
 82-114
82
65-99



32
94
 77-111
96
 57-130



64
94
 77-114
139
 54-234


Citrate
4
117
106-143
96
 87-108


Plasma
8
122
102-159
89
 77-102


(N = 10)
16
120
 94-167
89
 69-114



32
113
 82-169
102
 71-137



64
108
 81-153
116
 76-148


Urine
4
111
 94-119
106
103-111


(N = 5)
8
120
 97-130
108
105-115



16
143
105-176
112
105-119


Cell Culture
4
87
86-89
89
67-90


Supernates
8
84
82-86
79
76-82


(N = 6)
16
61
79-83
75
70-80



32
81
79-83
76
72-82



64
82
77-85
77
72-82
















TABLE 20





Panel 3


























Average
%
Average
%
Average
%
Average
%


Sample
Fold
%
Recovery
%
Recovery
%
Recovery
%
Recovery


Type
Dilution
Recovery
Range
Recovery
Range
Recovery
Range
Recovery
Range

















Eotaxin
MIP-1β
Eotaxin-3
TARC



















Serum
2
88
 73-106
97
 55-117
113
 88-134
92
 80-108


(N = 12)
4
100
N/A
100
N/A
100
N/A
100
N/A



8
104
100-112
105
 91-150
93
 86-106
94
 86-102



16
105
 95-124
113
 87-192
90
 74-105
94
 83-108



32
110
 85-145
118
 87-226
96
 73-119
92
 83-111



64
111
 81-146
120
 81-245
100
 73-128
98
 81-126


EDTA
2
91
 84-102
93
 59-107
131
 95-163
94
 79-109


Plasma
4
100
N/A
100
N/A
100
N/A
100
N/A


(N = 12)
8
104
 86-115
108
 99-143
78
61-96
95
 85-108



16
106
 92-119
114
 96-177
72
59-93
95
 78-112



32
105
 87-135
123
 96-207
73
 60-103
88
 72-112



64
105
 85-151
122
 91-220
77
 64-115
92
 76-131


Heparin
2
89
 75-119
94
 61-109
112
 97-143
75
 61-103


Plasma
4
100
N/A
100
N/A
100
N/A
100
N/A


(N = 12)
8
108
101-119
107
 96-138
89
 78-100
110
 95-121



16
120
 80-135
111
 93-173
89
 71-104
118
 67-135



32
135
 86-157
117
 95-197
92
 60-125
120
 80-139



64
145
 81-170
113
 90-202
101
 66-138
126
 80-170


Citrate
2
95
 85-104
106
 99-117
122
111-137
97
 89-141


Plasma
4
100
N/A
100
N/A
100
N/A
100
N/A


(N = 10)
8
102
 98-105
99
 91-105
86
74-98
85
 60-102



16
102
 95-110
95
 89-101
78
66-87
78
48-97



32
99
 88-110
95
 86-106
79
64-90
72
44-86



64
98
 83-118
93
 82-110
87
 71-100
74
43-89


Urine
2
96
 78-116
88
 63-107
106
 97-119
92
 78-110


(N = 6)
4
100
N/A
100
N/A
100
N/A
100
N/A



8
106
102-110
105
101-109
97
 92-102
94
 87-108



16
114
108-116
109
103-114
94
87-99
92
 85-110


Cell Culture
2
134
117-141
110
 98-116
93
88-97
93
 84-101


Supernates
4
100
N/A
100
N/A
100
N/A
100
N/A


(N = 6)
8
95
 91-100
95
 91-100
100
 96-102
91
87-98



16
95
88-99
94
90-99
108
101-114
87
80-94



32
95
 89-101
91
87-99
112
105-118
82
75-89



64
99
 88-107
95
 89-102
126
116-133
90
76-99

















IP-10
MIP-1α
IL-6
MCP-1



















Serum
2
118
107-130
105
 91-115
91
 82-104
92
81-97


(N = 12)
4
100
N/A
100
N/A
100
N/A
100
N/A



8
89
80-95
97
 89-104
102
 85-108
98
 92-107



16
84
76-93
93
 81-106
98
 77-112
94
 86-100



32
81
71-90
93
 78-118
112
 88-135
92
 82-102



64
84
72-95
92
 71-119
128
 97-162
98
 82-116


EDTA
2
117
104-149
102
 73-112
93
 84-108
99
 93-107


Plasma
4
100
N/A
100
N/A
100
N/A
100
N/A


(N = 12)
8
89
81-96
99
 90-111
90
 79-100
92
83-97



16
86
73-99
97
 88-113
87
 75-100
88
78-98



32
86
 71-100
98
 86-116
98
 83-109
88
77-98



64
91
 75-106
97
 80-119
112
 94-127
95
 83-108


Heparin
2
112
 98-124
107
101-116
97
 87-123
96
 82-106


Plasma
4
100
N/A
100
N/A
100
N/A
100
N/A


(N = 12)
8
89
80-98
95
 90-100
91
 76-113
96
 82-106



16
86
75-97
92
 80-103
82
66-99
92
 81-106



32
84
 69-101
90
 76-107
88
 65-116
90
 79-105



64
95
 75-110
88
 71-109
100
 75-140
94
 76-112


Citrate
2
131
 98-169
109
102-115
98
 90-109
99
 90-105


Plasma
4
100
N/A
100
N/A
100
N/A
100
N/A


(N = 10)
8
88
72-97
94
 88-106
88
 79-100
91
 83-101



16
82
68-95
87
 78-108
79
73-90
87
82-95



32
79
62-89
83
 74-111
87
 79-102
83
74-89



64
84
 65-101
79
 70-108
97
 87-114
86
78-94


Urine
2
93
 75-102
111
104-115
117
107-126
95
 91-101


(N = 5)
4
100
N/A
100
N/A
100
N/A
100
N/A



8
97
 93-106
96
95-99
87
78-94
98
 95-102



16
97
 87-109
92
89-97
77
68-85
96
 91-103


Cell Culture
2
179
127-256
120
104-128
89
84-94
98
 93-108


Supernates
4
100
N/A
100
N/A
100
N/A
100
N/A


(N = 6)
8
73
55-84
90
85-94
96
 89-113
95
89-98



16
68
60-88
85
78-94
89
83-95
94
 89-101



32
63
52-77
80
72-89
93
82-97
88
81-91



64
68
57-81
81
73-95
107
 95-121
98
 90-103















MDC
MCP-4












Sample
Fold
Average %
% Recovery
Average %
% Recovery


Type
Dilution
Recovery
Range
Recovery
Range





Serum
2
109
101-121
84
78-93


(N = 12)
4
100
N/A
100
N/A



8
89
81-96
113
 98-127



16
79
66-87
116
 97-141



32
72
57-83
125
 99-168



64
69
48-81
123
 97-174


EDTA
2
108
 91-118
76
65-86


Plasma
4
100
N/A
100
N/A


(N = 12)
8
93
 83-101
115
102-144



16
84
69-94
122
 97-163



32
79
65-89
126
 89-188



64
76
64-87
125
 83-193


Heparin
2
106
 98-118
84
75-92


Plasma
4
100
N/A
100
N/A


(N = 12)
8
90
78-99
112
 99-125



16
78
62-89
118
 94-154



32
73
57-83
124
 87-181



64
70
57-82
127
 86-209


Citrate
2
105
 77-130
89
81-98


Plasma
4
100
N/A
100
N/A


(N = 10)
8
88
69-94
102
 95-108



16
74
57-85
96
 90-106



32
68
55-75
94
 66-103



64
64
52-69
95
 86-110


Urine
2
92
 71-112
96
95-97


(N = 5)
4
100
N/A
100
N/A



8
86
 61-102
105
103-107



16
75
54-89
106
106-113



2
191
158-211
91
84-96


Cell Culture
4
100
N/A
100
N/A


Supernates
8
75
73-76
110
105-113


(N = 6)
16
63
61-65
113
105-120



32
56
54-59
111
103-118



64
55
52-57
113
105-124
















TABLE 21





Panel 4


























Average
%
Average
%
Average
%
Average
%


Sample
Fold
%
Recovery
%
Recovery
%
Recovery
%
Recovery


Type
Dilution
Recovery
Range
Recovery
Range
Recovery
Range
Recovery
Range

















IFNγ
IL-2
IL-4
IL-1β



















Serum
8
109%
100%-
100%
 88%-107%
 96%
 91%-
106%
101%-


(N = 5)


110% 



109% 

119% 



16
109%
 87%-
103%
 97%-109%
 96%
 88%-
118%
109%-





112% 



110% 

126% 



32
118%
106%-
102%
 99%-106%
111%
106%-
125%
 98%-





128% 



117% 

163% 


EDTA
8
114%
100%-
102%
 88%-105%
 96%
 92%-
112%
104%-


Plasma


119% 



101% 

120% 


(N = 5)
16
125%
107%-
110%
 97%-124%
101%
 97%-
135%
120%-





140% 



107% 

1485



32
127%
115%-
104%
 96%-116%
105%
100%-
162%
102%-





136% 



112% 

193% 


Heparin
8
116%
113%-
102%
100%-104%
112%
104%-
108%
 97%-


Plasma


119% 



119% 

114% 


(N = 5)
16
130%
121%-
111%
101%-118%
118%
103%-
129%
115%-





147% 



124% 

149% 



32
141%
129%-
111%
104%-119%
131%
119%-
134%
111%-





162% 



139% 

150% 


Urine
8
114%
100%-
102%
104%-105%
 96%
 92%-
112%
104%-


(N = 5)


121% 



101% 

120% 



16
125%
107%-
110%
 97%-124%
101%
 97%-
135%
120%-





140% 



107% 

148% 



32
127%
115%-
104%
 96%-116%
105%
100%-
162%
102%-





136% 



112% 

193% 


Cell Culture
8










Supernates
16










(N = 4)
32

















IL-5
IL-6
KC/GRO
IL-10



















Serum
8
100%
 99%-
100%
 95%-
 98%
 95%-
100%
 99%-


(N = 5)


106% 

107% 

103% 

106% 



16
101%
 67%-
102%
 87%-
 97%
 87%-
101%
 87%-





113% 

111% 

102% 

113% 



32
106%
 96%-
117%
 96%-
105%
 93%-
106%
 96%-





113% 

135% 

113% 

113% 


EDTA
8
 96%
 83%-
107%
 98%-
 96%
 93%-
 96%
 83%-


Plasma


108% 

125% 

100% 

108% 


(N = 5)
16
101%
 92%-
119%
 88%-
101%
 94%-
101%
 92%-





124% 

149% 

108% 

124% 



32
 85%
 62%-
N/A
N/A
 93%
 65%-
 85%
 62%-





 97% 



106% 

 97% 


Heparin
8
106%
101%-
136%
118%-
116%
104%-
106%
101%-


Plasma


118% 

154% 

128% 

116% 


(N = 5)
16
110%
100%-
N/A
N/A
127%
116%-
110%
100%-





127% 



148% 

127% 



32
118%
107%-
N/A
N/A
131%
119%-
118%
107%-





144% 



155% 

144% 


Urine
8
 96%
 83%-
107%
 98%-
 96%
 93%-
 98%
 83%-


(N = 5)


108% 

125% 

100% 

108% 



16
101%
 92%-
119%
 88%-
101%
 94%-
101%
 92%-





124% 

149% 

108% 

124% 



32
 85%
 62%-
N/A
N/A
 93%
 65%-
 85%
 62%-





 97% 



106% 

 97% 


Cell Culture
8










Supernates
16










(N = 4)
32















IL-13
TNFα














Average
%
Average
%


Sample
Fold
%
Recovery
%
Recovery


Type
Dilution
Recovery
Range
Recovery
Range





Serum
8
132%
126%-141%
103%
96%-112%


(N = 5)
16
151%
140%-165%
108%
100%-115%



32
N/A
N/A
121%
108%-132%


EDTA
8
118%
111%-125%
104%
100%-107%


Plasma
16
146%
144%-156%
113%
107%-121%


(N = 5)
32
N/A
N/A
117%
102%-126%


Heparin
8
124%
117%-131%
114%
108%-119%


Plasma
16
154%
136%-197%
123%
116%-129%


(N = 5)
32
163%
150%-200%
139%
135%-146%


Citrate
8
118%
111%-125%
104%
100%-107%


Plasma
16
146%
131%-156%
113%
104%-121%


(N = 5)
32
N/A
N/A
117%
102%-126%


Urine
8
118%
111%-125%
104%
100%-107%


(N = 6)
16
146%
131%-156%
113%
104%-121%



32
N/A
N/A
117%
102%-126%















Cell Culture
8









Supernates
16









(N = 04)
32
















TABLE 22





Panel 5


























Average
%
Average
%
Average
%
Average
%


Sample
Fold
%
Recovery
%
Recovery
%
Recovery
%
Recovery


Type
Dilution
Recovery
Range
Recovery
Range
Recovery
Range
Recovery
Range

















IFNγ
IL-1β
IL-2
IL-4



















Serum
4
103
94-115
108
99-122
106
99-115
144
128-154


(N = 0)
8
99
86-107
96
82-102
103
89-110
156
136-169



16
98
86-108
98
89-105
94
82-110
170
145-182



32
95
92-101
99
87-109
96
79-110
171
139-191



64
98
92-109
100
89-109
97
83-111
194
144-204


EDTA
4
101
90-112
103
98-109
95
92-106
123
114-129


Plasma
8
100
80-115
101
86-111
94
84-104
134
127-149


(N = 0)
16
106
78-155
100
85-112
90
78-105
147
138-157



32
103
79-124
100
83-115
93
82-108
149
133-177



64
114
80-157
104
79-125
94
79-109
160
143-198


Heparin
4
105
82-122
106
100-112 
101
94-112
134
124-139


Plasma
8
95
81-123
102
97-109
95
90-104
147
138-152


(N = 3)
16
107
91-171
100
93-111
92
83-107
162
153-179



32
103
86-161
100
92-111
95
81-109
159
129-174



64
106
87-147
101
94-115
93
78-108
174
154-194


Citrate
4
99
83-109
103
95-109
102
94-111
120
106-131


Plasma
8
91
79-100
95
85-102
94
89-103
125
112-133


(N = 3)
16
88
71-103
92
83-101
90
85-99 
133
112-149



32
83
71-96 
89
75-104
97
74-97 
129
105-143



64
96
74-101
91
73-108
97
97-115
134
111-155


Urine
4
99
93-104
104
93-110
105
97-115
122
110-128


(N = 6)
8
96
97-104
102
93-111
103
95-119
136
129-143



16
96
89-101
99
81-103
101
94-118
149
145-153



32
94
89-100
101
94-112
103
95-124
151
146-157



64
97
86-103
102
86-112
103
91-122
166
160-169


Cell Culture
4
103
100-105 
105
101-108 
96
93-100
112
108-118


Supernates
8
98
96-99 
102
99-107
92
89-95 
112
108-115


(N = 4)
16
100
96-104
102
99-108
88
87-90 
115
112-122



32
95
94-97 
101
97-106
92
91-93 
112
109-115



64
100
96-105
104
101-107 
93
87-96 
119
111-125

















IL-5
IL-8
KC/GRO
IL-10



















Serum
4
106
92-129
98
87-109
111
105-154
120
105-142


(N = 0)
8
101
95-124
90
72-102
110
 96-146
117
102-135



16
99
94-126
90
74-100
106
 95-136
119
105-136



32
94
93-116
94
73-112
112
 98-145
117
101-143



64
100
98-124
98
74-113
110
103-143
126
107-159


EDTA
4
100
90-107
97
83-95 
91
83-95
103
 88-127


Plasma
8
98
79-110
91
72-93 
85
72-93
101
103-127


(N = 0)
16
95
80-114
88
64-90 
82
84-90
102
 94-122



32
99
79-120
91
83-106
87
 68-106
99
 95-124



64
105
82-133
95
72-112
90
 72-112
102
 90-129


Heparin
4
100
89-113
95
76-111
93
 76-111
111
 92-131


Plasma
8
95
87-105
98
88-115
90
 88-115
107
 94-122


(N = 3)
16
93
85-118
97
85-118
88
 85-118
109
 95-124



32
93
78-121
101
85-122
88
 85-122
105
 93-129



64
95
81-131
104
84-125
88
 84-125
111
 92-181


Citrate
4
97
94-106
91
86-99 
90
77-99
99
 86-106


Plasma
8
97
76-93 
83
72-97 
79
64-94
89
75-99


(N = 3)
16
83
70-102
79
67-94 
73
59-86
87
 75-101



32
83
66-102
90
65-99 
71
53-91
93
71-90



64
83
50-107
92
60-102
74
54-91
90
 76-103


Urine
4
96
94-114
99
95-104
85
78-95
103
 87-114


(N = 6)
8
97
99-115
94
83-106
70
59-79
98
 84-109



16
91
75-106
93
81-101
64
53-75
94
 74-111



32
93
92-106
96
85-105
63
49-77
91
 82-106



64
95
91-105
101
92-108
64
50-78
95
 85-108


Cell Culture
4
96
94-98 
93
91-94 
76
72-80
93
 87-100


Supernates
8
93
92-97 
90
88-92 
69
63-72
84
79-92


(N = 4)
16
92
86-96 
88
89-31 
65
60-69
84
77-94



32
92
85-99 
93
88-97 
67
62-72
81
74-90



64
95
89-100
96
90-102
70
66-76
85
 77-101















IL-12p70
TNFα












Sample
Fold
Average %
% Recovery
Average %
% Recovery


Type
Dilution
Recovery
Range
Recovery
Range





Serum
4
98
 84-112
111
110-124


(N = 1)
8
87
 73-100
108
 99-120



16
91
65-94
109
 97-123



32
79
62-90
117
105-142



64
81
61-93
123
107-156


EDTA
4
93
 87-101
90
 90-110


Plasma
8
85
78-94
100
 88-111


(N = 0)
16
61
75-89
96
 84-112



32
81
68-92
102
 85-124



64
86
 69-102
105
 89-138


Heparin
4
87
77-95
102
 95-111


Plasma
8
77
66-89
100
 89-109


(N = 1)
16
75
68-84
100
 88-109



32
74
62-87
105
 89-118



64
78
63-90
107
 91-119


Citrate
4
96
 86-105
99
 92-106


Plasma
8
84
68-96
94
89-97


(N = 1)
16
79
52-94
91
85-95



32
76
46-98
92
89-97



64
79
 44-103
93
87-98


Urine
4
108
 96-122
90
 91-107


(N = 8)
8
107
 87-133
96
 84-112



16
106
 90-132
97
 85-116



32
106
 91-140
102
 89-122



64
113
101-148
107
 94-130


Cell
4
94
92-98
93
92-94


Culture
8
87
85-88
89
87-93


Supernates
16
83
79-88
89
84-93


(N = 4)
32
81
78-87
93
88-96



64
85
79-93
96
 92-100









Spike and recovery measurements of different sample types throughout the quantifiable range of the assays were evaluated. Multiple individual human serum, EDTA plasma, heparin plasma, titrate plasma, urine, and/or CSF samples from a commercial source and cell culture supernates were spiked with calibrators at three levels (high, mid, and low) and subsequently diluted two-fold.









TABLE 23







Panel 1














Spike


Spike Level





Conc.
Average
%
& Conc.
Average
%


Sample
Range
%
Recovery
Range
%
Recovery


Type
(pg/mL)
Recovery
Range
(pg/mL)
Recovery
Range













IFNγ
IL-1β
















Serum
17-20
100
91-126
6-7
88
81-99 


(N = 12)
173-193
99
84-121
59-67
89
77-103



1835-1874
107
95-117
630-635
100
81-112


EDTA
17-17
101
84-114
6-6
96
64-119


Plasma
173-178
103
82-118
59-61
97
71-119


(N = 12)
1874-1902
103
78-127
635-665
97
71-125


Heparin
16-17
101
89-123
6-6
97
78-118


Plasma
171-178
102
85-121
61-62
94
72-114


(N = 12)
1871-1902
98
86-119
665-681
92
74-112


Citrate
16-20
103
94-113
6-7
97
71-117


Plasma
171-214
105
95-121
62-74
96
66-114


(N = 10)
1871-2108
97
91-109
681-735
90
72-104


Urine
19-20
101
94-108
7-7
96
88-107


(N = 5)
204-214
103
93-111
69-74
99
90-108



2076-2108
99
91-106
733-735
95
83-101


Cell Culture
11-13
107
86-122
4-5
112
87-125


Supernates
168-173
105
97-123
60-81
115
101-133 


(N = 6)
1919-2037
93
88-102
718-762
96
92-104













IL-2
IL-4
















Serum
13-15
91
27-151
3-3
89
81-114


(N = 12)
131-147
93
22-151
26-29
93
78-106



1524-1556
107
33-155
253-261
103
90-115


EDTA
13-13
98
23-170
3-3
97
81-106


Plasma
131-141
97
14-169
26-27
98
81-117


(N = 12)
1556-1674
104
18-181
261-269
102
81-128


Heparin
12-13
106
22-149
2-3
96
87-116


Plasma
135-141
105
16-143
26-27
93
78-115


(N = 12)
1633-1674
110
21-148
269-278
92
74-110


Citrate
12-15
104
39-155
2-3
96
74-121


Plasma
135-161
105
34-158
26-32
96
70-119


(N = 10)
1633-1775
105
43-144
278-296
89
73-104


Urine
14-15
123
92-163
3-3
99
91-110


(N = 5)
153-161
122
95-166
30-32
100
90-112



1726-1775
115
86-145
295-296
97
87-110


Cell Culture
 9-10
140
106-165 
2-2
93
70-111


Supernates
133-148
134
111-160 
25-28
97
82-115


(N = 6)
1637-1828
119
110-131 
273-304
85
78-98 













IL-6
IL-8
















Serum
7-8
80
59-92 
1-1
94
87-104


(N = 12)
63-73
83
83-96 
7-7
97
90-107



725-768
97
83-119
74-76
109
94-118


EDTA
6-7
89
72-107
1-1
101
85-114


Plasma
63-66
91
72-109
7-7
104
83-114


(N = 12)
748-768
96
77-122
76-81
108
81-122


Heparin
6-7
90
49-107
1-1
98
87-115


Plasma
66-72
84
39-112
7-7
106
89-124


(N = 12)
748-881
89
47-111
78-81
103
89-119


Citrate
7-6
89
 8-111
1-1
100
85-109


Plasma
72-79
92
11-120
7-8
108
93-119


(N = 10)
880-881
83
 8-107
78-86
105
92-115


Urine
8-8
98
88-106
1-1
104
97-114


(N = 5)
79-81
96
82-104
8-8
102
93-110



880-908
91
74-99 
84-86
100
84-107


Cell Culture
4-5
114
86-113
0-1
113
84-130


Supernates
66-67
114
98-139
7-7
116
103-138 


(N = 6)
853-904
97
91-103
88-88
104
96-112













IL-10
IL-12p70
















Serum
4-4
101
83-129
5-5
96
78-137


(N = 12)
39-44
101
91-123
47-53
66
73-158



408-433
113
100-123 
495-499
100
85-113


EDTA
4-4
103
82-119
4-5
99
73-122


Plasma
39-41
102
81-117
47-48
97
75-118


(N = 12)
433-434
104
80-127
499-506
100
82-121


Heparin
4-4
105
90-124
4-4
103
78-126


Plasma
41-42
106
91-123
48-48
98
74-121


(N = 12)
434-466
103
91-122
506-519
99
70-122


Citrate
4-5
107
94-126
4-5
104
89-132


Plasma
42-50
106
94-126
48-59
100
83-127


(N = 10)
466-480
100
93-109
519-550
95
71-122


Urine
4-5
98
90-108
5-6
107
97-121


(N = 5)
48-50
98
87-108
57-59
107
92-117



480-480
94
79-104
550-556
104
89-121


Cell Culture
2-3
103
75-119
3-3
120
94-137


Supernates
38-42
104
90-123
46-49
111
93-135


(N = 6)
422-487
93
86-99 
522-547
111
103-119 













IL-13
TNFα
















Serum
5-6
106
74-126
4-5
104
83-146


(N = 12)
45-50
118
77-205
40-45
107
84-166



552-564
125
89-139
457-460
110
79-125


EDTA
5-6
116
92-130
4-4
108
95-120


Plasma
45-46
120
88-142
40-42
112
96-125


(N = 12)
564-574
124
87-157
460-469
110
88-132


Heparin
5-5
111
81-134
4-4
111
99-131


Plasma
46-46
116
87-138
42-44
111
102-130 


(N = 12)
574-596
114
81-128
489-509
108
96-122


Citrate
5-6
120
103-134 
4-5
112
101-122 


Plasma
46-55
127
111-149 
44-51
114
102-131 


(N = 10)
596-629
118
105-137 
509-530
105
95-122


Urine
6-6
114
106-127 
5-5
99
83-112


(N = 5)
55-65
124
117-132 
51-51
103
84-119



629-633
119
98-127
530-539
110
91-120


Cell Culture
4-4
124
95-143
4-4
126
99-147


Supernates
46-54
135
116-169 
47-54
127
114-154 


(N = 6)
617-896
118
104-126 
581-872
117
104-127 
















TABLE 24







Panel 2














Spike Level &

%
Spike Level





Conc. Range
Average %
Recovery
& Conc. Range
Average %
% Recovery


Sample Type
(pg/mL)
Recovery
Range
(pg/mL)
Recovery
Range













GM-CSF
IL-1α













Serum
6-6
92
70-102
6-6
74
44-102


(N = 11)
60-61
91
68-104
60-69
70
22-107



563-560
90
65-108
623-626
71
18-90 


EDTA
6-6
97
62-115
6-6
84
48-100


Plasma
60-60
96
62-120
60-63
88
24-112


(N = 11)
562-563
95
60-128
611-623
86
17-108


Heparin
6-6
91
51-120
6-6
69
11-105


Plasma
 58-60−
91
64-127
59-63
69
14-110


(N = 11)
506-562
94
64-123
556-611
69
12-108


Citrate
6-6
109
97-118
6-7
65
27-94 


Plasma
58-59
104
96-110
59-64
63
23-100


(N = 11)
506-507
112
98-132
550-556
64
22-101


Urine
6-6
120
112-129 
7-7
94
91-98 


(N = 5)
57-59
120
106-138 
61-64
102
90-115



507-515
126
113-132 
543-550
104
90-113


Cell Culture
 11
101
93-114
 4
97
91-105


Supernates
 105
95
87-103
 34
90
76-96 


(N = 6)
1121
95
93-110
343
89
77-96 










IL-5
IL-7













Serum
3-3
87
74-110
1-1
101
68-111


(N = 11)
31-32
87
63-107
12-13
100
74-112



300-332
65
54-105
124-131
100
63-117


EDTA
3-3
85
56-106
1-1
102
92-115


Plasma
31-35
85
57-101
12-12
106
92-119


(N = 11)
326-332
88
52-120
124-127
105
91-130


Heparin
3-3
84
57-107
1-1
87
76-113


Plasma
34-35
82
55-104
12-13
83
72-126


(N = 11)
326-361
85
61-112
126-127
86
75-124


Citrate
3-4
101
78-125
1-1
104
94-117


Plasma
34-35
101
75-126
13-13
111
97-120


(N = 11)
321-361
98
79-117
126-127
115
88-130


Urine
3-4
104
99-111
1-1
110
100-117 


(N = 5)
32-35
108
105-114 
13-13
111
97-125



305-321
114
109-125 
125-127
120
108-135 


Cell Culture
 9
107
97-119
 6
84
71-93 


Supernates
 86
99
90-105
 66
80
74-86 


(N = 6)
838
106
68-130
691
94
77-93 










IL-12/IL-23 p-40
IL-15













Serum
21-21
92
31-104
3-4
98
78-110


(N = 11)
194-221
90
79-101
35-36
100
76-118



1819-2112
94
78-107
284-300
119
92-138


EDTA
21-21
91
81-99 
4-4
100
92-100


Plasma
194-199
97
88-109
35-35
108
97-120


(N = 11)
1819-1951
96
79-130
290-300
122
103-143 


Heparin
19-21
89
72-99 
4-4
92
78-112


Plasma
193-199
86
71-121
34-35
103
88-132


(N = 11)
1684-1951
88
74-127
261-290
123
100-150 


Citrate
19-20
91
85-99 
4-4
104
87-113


Plasma
188-193
89
77-105
34-35
118
102-131 


(N = 10)
1645-1684
95
71-117
261-276
150
129-173 


Urine
20-20
127
119-131 
3-4
105
98-113


(N = 5)
188-204
121
102-140 
33-35
120
111-131 



1645-1758
126
118-135 
276-278
141
126-152 


Cell Culture
 38
119
104-132 
 6
76
71-89 


Supernates
 346
112
96-125
 56
71
68-78 


(N = 6)
3784
110
105-143 
593
85
71-95 










IL-16
IL-17A













Serum
17-17
90
80-102
7-7
102
62-132


(N = 11)
142-146
94
83-110
63-70
103
88-129



1594-1627
90
73-103
682-833
91
77-124


EDTA
17-17
88
82-99 
7-7
97
81-110


Plasma
142-153
98
89-108
53-69
102
84-120


(N = 11)
1627-1665
96
85-116
682-721
95
80-120


Heparin
17-18
90
82-101
7-7
97
60-145


Plasma
153-155
92
83-107
69-72
97
72-115


(N = 11)
1665-1713
90
78-114
703-721
96
78-113


Citrate
18-18
89
84-97 
7-9
96
56-113


Plasma
155-156
100
91-112
72-79
99
59-117


(N = 10)
1679-1713
104
83-124
667-703
97
49-113


Urine
18-19
78
65-96 
8-9
131
119-142 


(N = 5)
153-156
75
59-87 
74-79
142
126-171 



1673-1679
88
48-83 
667-711
134
105-155 


Cell Culture
 31
102
87-131
 53
111
91-119


Supernates
 287
85
78-96 
 561
117
96-128


(N = 6)
3811
101
83-110
6298
122
108-133 










TNFβ
VEGF













Serum
9-9
66
76-103
10-11
81
61-96 


(N = 11)
85-93
84
69-104
112-119
73
37-103



882-884
85
63-108
1708-1733
65
40-104


EDTA
9-9
93
71-105
11-12
88
60-115


Plasma
85-91
92
66-105
119-120
91
62-110


(N = 11)
884-904
89
67-110
1706-1733
88
74-101


Heparin
8-9
89
64-128
12-17
78
39-96 


Plasma
85-91
89
69-127
120-142
62
39-118


(N = 11)
798-904
88
66-124
1676-1708
47
32-110


Citrate
6-8
70
44-90 
17-19
71
35-96 


Plasma
85-85
87
42-81 
142-158
83
67-121


(N = 10)
784-798
69
44-87 
1676-1739
78
58-113


Urine
8-8
135
123-148 
18-19
94
88-98 


(N = 5)
83-85
138
128-152 
153-156
118
107-134 



784-816
139
128-149 
1739-1749
119
111-124 


Cell Culture
 6
117
91-132
 12
92
85-100


Supernates
 65
111
89-126
 118
93
88-102


(N = 6)
644
119
66-130
1718
140
131-151 
















TABLE 25







Panel 3














Spike Conc.

%
Spike Level &





Range
Average %
Recovery
Conc. Range
Average %
% Recovery


Sample Type
(pg/mL)
Reovery
Range
(pg/mL)
Recovery
Range













Eotaxin
MIP-1β













Serum
70-75
100
86-113
51-54
107
72-123


(N = 12)
295-304
100
79-124
210-213
106
57-119



2336-2467
100
84-135
1988-2256
103
47-127


EDTA
74-75
99
95-114
54-59
106
57-114


Plasma
295-312
103
96-113
213-228
102
57-114


(N = 12)
2336-2483
113
96-129
1988-2114
100
56-119


Heparin
73-74
109
74-126
56-59
103
71-117


Plasma
312-331
91
68-106
228-241
97
51-109


(N = 12)
2345-2483
79
64-104
1866-2114
99
50-116


Citrate
73-73
100
82-113
58-59
108
102-121 


Plasma
331-338
95
75-103
241-263
102
92-109


(N = 10)
2345-2483
99
76-119
1866-2203
107
93-121


Urine
73-73
111
97-119
58-59
114
109-121 


(N = 5)
331-338
104
94-116
250-263
104
96-109



2398-2483
101
75-125
2016-2203
102
89-115


Cell Culture
70-75
100
86-113
51-54
107
72-123


Supernates
295-304
100
79-124
210-213
106
57-119


(N = 6)
2336-2467
100
84-135
1988-2256
103
47-127










Eotaxin-3
TARC













Serum
250-271
105
83-135
65-74
106
71-123


(N = 12)
1044-1189
100
78-135
269-270
112
78-133



12 348-12 607
106
67-164
2719-2753
120
99-153


EDTA
271-279
126
114-135 
74-79
96
69-105


Plasma
1044-1116
135
119-150 
269-279
105
79-119


(N = 12)
12 348-13 154
145
102-177 
2719-2969
106
77-127


Heparin
279-284
106
90-129
70-79
104
44-140


Plasma
1116-1257
106
92-128
279-287
87
46-111


(N = 12)
11 390-13 154
130
85-171
2592-2969
91
59-111


Citrate
273-284
110
93-126
70-70
105
94-121


Plasma
1257-1310
104
93-114
287-308
108
94-123


(N = 10)
11 390-11 682
112
98-130
2592-2692
124
100-226 


Urine
273-298
113
109-119 
70-62
129
96-162


(N = 5)
1310-1356
96
92-100
308-337
115
83-141



11 682-11 692
96
89-103
2692-2742
112
83-140


Cell Culture
262-297
91
84-95 
81-89
119
115-126 


Supernates
1161-1276
94
90-99 
358-375
120
117-123 


(N = 6)
  9226-10 407
101
95-108
3194-3905
125
110-135 










IP-10
MIP-1α













Serum
126-130
101
91-110
52-55
105
88-117


(N = 12)
475-522
111
102-120 
213-215
110
90-125



5723-6186
113
79-131
1922-2000
112
91-123


EDTA
126-138
104
99-113
55-56
103
85-113


Plasma
475-511
115
103-124 
213-218
112
95-125


(N = 12)
5982-6188
112
91-134
1922-2009
114
92-123


Heparin
138-145
99
92-104
55-56
97
80-106


Plasma
511-563
106
96-114
216-241
103
77-115


(N = 12)
5982-6172
117
77-136
1781-2009
113
77-130


Citrate
144-145
103
91-121
55-55
105
65-141


Plasma
563-632
102
87-113
241-242
104
67-115


(N = 10)
6172-6601
110
88-139
1761-1916
119
78-133


Urine
144-153
111
104-124 
54-55
116
104-127 


(N = 5)
566-632
102
97-106
242-242
115
109-123 



6492-6601
84
55-97 
1916-2167
121
116-129 


Cell Culture
116-144
110
97-121
44-52
112
100-118 


Supernates
548-681
134
121-150 
230-259
117
111-124 


(N = 6)
  5276-28 154
274
113-603 
2341-2692
119
110-127 










IL-8
MCP-1













Serum
3826-3911
67
76-97 
22-24
97
87-107


(N = 12)
12 490-12 841
91
81-110
91-92
102
90-109



156 805-157 779
88
77-99 
916-926
100
77-109


EDTA
3911-4338
94
86-100
24-26
88
77-99 


Plasma
12 490-13 720
104
81-115
91-94
90
84-96 


(N = 12)
153 349-156 805
94
74-110
928-972
85
72-102


Heparin
3861-4338
84
73-93 
26-27
102
88-130


Plasma
13 720-14 211
88
76-97 
 94-103
105
94-123


(N = 12)
143 226-153-349
93
71-102
877-972
100
80-116


Citrate
3727-3881
96
78-109
26-27
94
85-108


Plasma
14 211-14 529
94
82-102
103-108
95
85-108


(N = 10)
143 226-144 105
102
92-115
877-954
92
81-110


Urine
3727-3913
114
108-119 
26-27
103
95-116


(N = 5)
13 811-14 529
105
101-108 
106-108
106
96-117



144 105-159 737
105
103-106 
924-954
102
90-112


Cell Culture
3697-4844
86
71-93 
21-24
101
96-109


Supernates
17 099-19 472
103
95-109
 98-105
106
103-110 


(N = 6)
167 913-183 991
103
97-108
 994-1187
106
99-119










MDC
MCP-4













Serum
421-443
97
 86-115
31-33
104
70-124


(N = 12)
1707-1780
122
113-129
123-133
94
57-108



23 795-24 625
120
115-127
1016-1031
95
71-104


EDTA
443-465
99
 91-105
31-32
107
78-127


Plasma
1707-1744
115
107-123
123-136
90
57-106


(N = 12)
23 795-26 159
113
101-128
1016-1085
89
64-101


Heparin
439-465
104
 94-117
32-32
128
113-146 


Plasma
1744-1948
114
101-130
136-137
108
86-121


(N = 12)
21 657-26 159
105
 92-119
 960-1085
94
72-111


Citrate
426-439
105
 93-126
31-32
118
104-148 


Plasma
1948-2048
111
106-125
137-147
97
85-107


(N = 10)
21 657-23 766
117
 99-151
 960-1075
102
90-111


Urine
426-465
130
112-140
30-31
125
118-134 


(N = 5)
1967-2048
123
 96-138
146-147
107
96-115



22 796-23 766
124
 99-140
1057-1075
107
101-118 


Cell Culture
527-592
129
122-137
16-24
87
64-93 


Supernates
2694-2954
142
138-152
125-132
98
95-100


(N = 6)
33 416-39 552
147
134-159
1120-1201
103
100-107 
















TABLE 26







Panel 4














Spike Level &

%
Spike Level





Conc. Range
Average %
Recovery
& Conc. Range
Average %
% Recovery


Sample Type
(pg/mL)
Recovery
Range
(pg/mL)
Recovery
Range













IFNγ
IL-2













Serum
833.3
92%
 84%-102%
8333.3
 90%
 79%-101%


(N = 6)
208.3
88%
82%-96%
2083.3
 98%
 81%-108%



52.1
89%
90%-96%
520.8
102%
 82%-113%


EDTA
833.3
89%
86%-99%
8333.3
 98%
 89%-106%


Plasma
208.3
89%
68%-98%
2083.3
104%
102%-115%


(N = 6)
52.1
94%
 86%-101%
520.8
109%
102%-115%


Heparin
833.3
71%
66%-75%
8333.3
 98%
 91%-106%


Plasma
208.3
70%
68%-71%
2083.3
103%
 99%-105%


(N = 6)
52.1
63%
57%-68%
520.8
111%
104%-118%


Urine
833.3
88%
76%-96%
8333.3
 64%
42%-86%


(N = 6)
208.3
93%
 74%-103%
2083.3
 65%
43%-85%



52.1
100% 
 88%-108%
520.8
 71%
42%-92%


Cell Culture








Supernates (N = 4)
















IL-4
IL-1β













Serum
170
96%
 91%-102%
1800
59%
51%-65%


(N = 6)
42.5
84%
80%-85%
450
66%
62%-72%



10.6
91%
90%-94%
112.5
77%
62%-93%


EDTA
170
102% 
 99%-107%
1800
69%
65%-72%


Plasma
42.5
94%
 91%-104%
450
80%
74%-86%


(N = 6)
10.6
103% 
 97%-108%
112.5
87%
82%-94%


Heparin
170
91%
82%-95%
1800
76%
69%-81%


Plasma
42.5
80%
69%-90%
450
82%
73%-86%


(N = 6)
10.6
87%
74%-98%
112.5
87%
 77%-104%


Urine
170
75%
 43%-101%
1800
265% 
166%-389%


(N = 6)
42.5
65%
41%-85%
450
183% 
102%-235%



10.6
71%
47%-85%
112.5
161% 
 91%-235%


Cell Culture








Supernates (N = 4)
















IL-5
IL-6













Serum
1686.7
87%
80%-97%
2066.7
 95%
 83%-108%


(N = 6)
416.7
88%
82%-90%
516.7
107%
 83%-116%



129.2
83%
 67%-100%
129.2
109%
 89%-127%


EDTA
1666.7
81%
69%-91%
2066.7
97%
 88%-111%


Plasma
416.7
84%
71%-93%
516.7
113%
 98%-139%


(N = 6)
129.2
91%
 81%-100%
129.2
126%
111%-135%


Heparin
1666.7
91%
 81%-110%
2066.7
106%
 99%-112%


Plasma
416.7
92%
 81%-114%
516.7
117%
105%-130%


(N = 6)
129.2
81%
58%-92%
129.2
128%
111%-154%


Urine
1666.7
77%
 32%-132%
2066.7
130%
124%-138%


(N = 6)
416.7
80%
 44%-118%
516.7
141%
126%-165%



129.2
90%
 52%-140%
129.2
147%
118%-201%


Cell Culture








Supernates (N = 4)
















KC/GRO
IL-10













Serum
463.3
84%
68%-96%
3333.3
91%
 80%-102%


(N = 6)
115.8
90%
87%-98%
833.3
94%
83%-99%



29
99%
 94%-109%
208.3
99%
 86%-112%


EDTA
463.3
88%
76%-95%
3333.3
98%
 86%-106%


Plasma
115.8
92%
 78%-101%
833.3
113% 
104%-125%


(N = 6)
29
122% 
 94%-134%
208.3
117% 
110%-130%


Heparin
463.3
59%
41%-81%
3333.3
82%
66%-96%


Plasma
115.8
61%
42%-77%
833.3
79%
70%-88%


(N = 6)
29
76%
51%-99%
208.3
75%
67%-83%


Urine
463.3
142% 
132%-170%
3333.3
128% 
118%-135%


(N = 6)
115.8
130% 
119%-157%
833.3
119% 
104%-139%



29
120% 
107%-135%
208.3
119% 
100%-136%


Cell Culture








Supernates (N = 4)
















IL-13
TNF-α













Serum
268.7
80%
66%-88%
193.3
87%
81%-92%


(N = 6)
66.7
71%
67%-75%
48.3
83%
79%-87%



16.7
77%
65%-87%
12.1
100% 
 93%-112%


EDTA
266.7
92%
89%-95%
193.3
86%
82%-93%


Plasma
66.7
69%
66%-95%
48.3
84%
79%-91%


(N = 6)
16.7
105% 
102%-114%
12.1
91%
87%-96%


Heparin
266.7
82%
73%-90%
193.3
81%
72%-85%


Plasma
66.7
63%
58%-68%
48.3
73%
69%-77%


(N = 6)
16.7
70%
58%-92%
12.1
84%
 66%-107%


Urine
266.7
82%
 83%-121%
193.3
82%
46%-97%


(N = 6)
66.7
83%
 74%-110%
46.3
83%
52%-92%



16.7
104% 
 86%-121%
12.1
104% 
 62%-111%


Cell Culture








Supernates (N = 4)
















TABLE 27







Panel 5














Spike Level &

%
Spike Level





Conc. Range
Average %
Recovery
& Conc. Range
Average %
% Recovery


Sample Type
(pg/mL)
Recovery
Range
(pg/mL)
Recovery
Range













IFNγ
IL-1β













Serum
High (390-580)
117
100-128 
High (1080-1850)
106
94-118


(N = 8)
Mid (90-370)
117
91-137
Mid (380-530)
106
81-121



Low (8-90)
112
96-123
Low (10-180)
103
84-112


EDTA
High (420-580)
117
97-142
High (1120-1990)
114
94-135


Plasma
Mid (90-330)
110
103-120 
Mid (420-570)
105
98-117


(N = 7)
Low (80-90)
83
85-100
Low (140-150)
95
90-100


Heparin
High (380-580)
105
95-109
High (1120-1730)
98
87-104


Plasma
Mid (80-330)
105
98-114
Mid (380-570)
107
96-117


(N = 7)
Low (90-90)
87
89-110
Low (140-150)
94
89-102


Citrate
High (380-580)
115
100-131 
High (1080-1800)
99
93-108


Plasma
Mid (80-370)
110
93-120
Mid (400-530)
101
85-121


(N = 8)
Low (8-90)
102
92-109
Low (20-180)
105
85-123


Urine
High (450-590)
102
91-117
High (1120-1830)
89
82-90 


(N = 5)
Mid (90-340)
105
99-110
Mid (260-590)
89
87-91 



Low (20-90)
105
97-117
Low (70-150)
94
99-105


Cell Culture
High (500-680)
102
96-111
High (950-1130)
100
93-108


Supernates
Mid (280-330)
111
110-112 
Mid (540-570)
104
102-106 


(N = 4)
Low (70-90)
105
104-108 
Low (140-150)
101
99-104










IL-2
IL-4













Serum
High (1540-2150)
108
94-115
High (990-1430)
74
59-86


(N = 8)
Mid (470-870)
105
94-117
Mid (350-600)
68
53-77



Low (10-220)
105
94-113
Low (10-150)
71
53-81


EDTA
High (1580-2400)
108
103-117 
High (1030-1550)
67
58-81


Plasma
Mid (470-870)
105
99-109
Mid (330-530)
68
58-72


(N = 7)
Low (10-220)
106
100-111 
Low (140-140)
67
59-72


Heparin
High (1580-2090)
97
91-102
High (1030-1370)
56
48-80


Plasma
Mid (470-850)
97
93-103
Mid (310-530)
59
57-81


(N = 7)
Low (200-240)
89
90-104
Low (140-140)
59
54-87


Citrate
High (1540-2220)
100
90-111
High (990-1320)
68
64-73


Plasma
Mid (500-870)
99
95-108
Mid (340-600)
65
58-72


(N = 8)
Low (10-220)
99
92-110
Low (20-150)
66
55-75


Urine
High (1670-2440)
91
83-100
High (1100-1580)
57
40-65


(N = 5)
Mid (450-900)
89
80-99 
Mid (310-580)
59
52-88



Low (90-220)
95
85-101
Low (80-140)
63
53-71


Cell Culture
High (1480-1690)
103
98-109
High (820-1040)
96
 91-105


Supernates
Mid (820-850)
108
105-111 
Mid (520-530)
104
103-105


(N = 4)
Low (200-210)
108
107-109 
Low (130-140)
99
 99-100










IL-5
IL-6













Serum
High (650-950)
111
101-121 
High (3330-4680)
112
88-131


(N = 8)
Mid (230-380)
108
92-122
Mid (900-1980)
105
72-122



Low (6-90)
103
95-107
Low (72-540)
105
82-118


EDTA
High (570-1370)
106
83-128
High (3510-5400)
117
85-143


Plasma
Mid (320-330)
102
92-117
Mid (900-1800)
108
66-118


(N = 7)
Low (80-90)
98
92-104
Low (450-3870)
89
84-97 


Heparin
High (870-990)
96
79-118
High (3510-4590)
99
80-115


Plasma
Mid (230-330)
102
87-114
Mid (810-1800)
104
86-116


(N = 7)
Low (80-90)
98
85-108
Low (450-420)
88
82-92 


Citrate
High (860-1130)
104
90-115
High (3330-4410)
102
91-113


Plasma
Mid (250-380)
103
91-114
Mid (990-1980)
98
81-115


(N = 8)
Low (10-90)
97
81-113
Low (90-540)
97
78-108


Urine
High (710-1010)
94
85-107
High (3780-4880)
88
80-90 


(N = 5)
Mid (240-370)
94
89-100
Mid (810-1980)
90
72-94 



Low (40-90)
100
87-119
Low (100-540)
90
73-108


Cell Culture
High (590-680)
103
100-107 
High (3050-3530)
109
103-114 


Supernates
Mid (290-330)
111
108-114 
Mid (170-1800)
111
108-113 


(N = 4)
Low (80-90)
99
93-104
Low (430-460)
109
105-111 










KC/GRO
IL10













Serum
High (1150-1920)
84
79-90 
High (2180-6020)
87
80-96 


(N = 8)
Mid (380-640)
82
74-91 
Mid (1080-1230)
87
72-98 



Low (30-160)
85
73-89 
Low (40-310)
89
75-99 


EDTA
High (1330-1940)
101
82-113
High (2280-4840)
103
88-130


Plasma
Mid (350-630)
99
87-107
Mid (970-1150)
98
91-105


(N = 7)
Low (150-150)
93
85-101
Low (270-280)
101
95-108


Heparin
High (1330-1730)
107
90-129
High (2280-4810)
85
73-95 


Plasma
Mid (380-630)
95
91-100
Mid (1010-1150)
91
86-95 


(N = 7)
Low (140-150)
97
89-103
Low (240-280)
98
89-111


Citrate
High (1150-1730)
112
99-123
High (2180-4880)
90
82-96 


Plasma
Mid (370-640)
111
98-121
Mid (1130-1230)
93
84-100


(N = 8)
Low (50-160)
100
91-112
Low (30-310)
89
77-97 


Urine
High (1350-1930)
131
116-142 
High (2170-5290)
94
84-99 


(N = 5)
Mid (310-600)
135
123-145 
Mid (1020-1130)
95
90-101



Low (80-100)
120
122-164 
Low (200-290)
99
90-106


Cell Culture
High (1010-1340)
125
122-129 
High (1690-2270)
112
100-128 


Supernates
Mid (610-630)
135
125-141 
Mid (1010-1150)
121
118-126 


(N = 4)
Low (140-150)
132
122-138 
Low (240-280)
125
122-127 










IL-12p70
TNF-α













Serum
High (20 200-30 710)
128
119-144
High (391-510)
90
85-96 


(N = 8)
Mid (6220-11640)
126
107-139
Mid (85-220)
92
75-101



Low (1110-2550)
118
111-124
Low (17-88)
92
82-95 


EDTA
High (21 960-26 790)
152
115-194
High (425-544)
95
89-113


Plasma
Mid (8240-10880)
123
116-128
Mid (102-221)
95
94-105


(N = 7)
Low (2380-2580)
118
111-124
Low (51-102)
91
88-95 


Heparin
High (21 960-28 320)
133
118-143
High (425-493)
88
82-93 


Plasma
Mid (5830-10850)
117
108-127
Mid (85-221)
95
91-99 


(N = 7)
Low (2380-2410)
100
 91-105
Low (51-102)
91
87-95 


Citrate
High (20 200-28 280)
127
100-196
High (391-478)
94
87-106


Plasma
Mid (6370-11640)
121
 85-187
Mid (102-238)
94
91-96 


(N = 8)
Low (1110-2550)
114
 86-143
Low (34-88)
96
88-100


Urine
High (20900-30370)
90
79-97
High (425-527)
74
69-84 


(N = 5)
Mid (5510-10710)
91
85-98
Mid (102-238)
77
67-87 



Low (1040-2430)
102
 86-124
Low (17-88)
83
71-95 


Cell Culture
High (18990-21960)
116
112-123
High (350-420)
113
105-121


Supernates
Mid (10830-10880)
120
116-123
Mid (190-210)
117
113-121


(N = 4)
Low (2380-2400)
122
119-125
Low (50-60)
112
108-116









To assess specificity of the individual assays, each panel was run using blended antibodies with individual calibrators at concentration that yield signal around 100,000 counts.







Non


-


specificity






(
%
)


=


(


Specific





Signal


Non


-


specific





Signal


)

*
100












TABLE 28







Panel 1

















Calibrator
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-13
TNFα




















Concentration
153
34
92
40
120
50
100
313
208
120


(pg/mL)












Highest non-
0.01
0.01
0.03
0.02
0.51
0.15
0.01
0.01
0.05
0.02


specificity (%)
















TABLE 29







Panel 2






















IL-12/IL-23







Calibrator
GM-CSF
IL-1α
IL-5
IL-7
p40
IL-15
IL-16
IL-17A
TNFβ
VEGF




















Concentration
125
30
33
82
328
88
469
457
43
108


(pg/mL)












Highest non-
0.13
0.11
0.08
0.05
0.22
0.81
0.10
0.12
0.89
0.06


specificity (%)
















TABLE 30







Panel 3

















Calibrator
Eotaxin
MIP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
IL-8
MCP-1
MDC
MCP-4




















Concentration
250
100
1250
100
200
150
6000
100
300
156


(pg/mL)












Highest non-
0.02
0.06
0.03
0.04
0.33
0.63
0.03
0.04
0.04
0.05


specificity (%)
















TABLE 31







Panel 4

















Calibrator
IFNγ
IL-2
IL-4
IL-1β
IL-5
IL-6
KC/GRO
IL-10
IL-13
TNFα




















Concentration
1250
15 000
300
13 000
2000
3330
600
3830
750
200


(pg/mL)












Highest Non-
0.05
0.08
0.08
0.00
0.14
0.25
0.34
0.47
0.81
0.81


specificity (%)
















TABLE 32







Panel 5

















Calibrator
IFNγ
IL-1β
IL-2
IL-4
IL-5
IL-6
KC/GRO
IL-10
IL-12p70
TNFα




















Concentration
40
100
160
100
60
420
200
500
5020
83


(pg/mL)












Highest Non-
0.01
0.03
0.02
0.02
0.04
0.19
0.19
0.46
0.07
0.03


specificity (%)









To assess the specificity of each antibody, each panel was run using blended calibrators with concentrations listed above and individual antibodies at 1× concentration.









TABLE 33







Panel 1

















Antibody
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-13
TNFα





Highest Non-
0.02
0.2
0.03
0.2
0.52
0.11
0.5
0.11
0.04
0.43


specificity (%)
















TABLE 34







Panel 2

















Antibody
GM-CSF
IL-1α
IL-5
IL-7
IL-12/IL-23 p40
IL-15
IL-16
IL-17A
TNFα
VEGF





Highest non-
0.08
0.10
0.05
0.06
0.19
0.27
0.47
0.12
0.06
0.02


specificity (%)
















TABLE 35







Panel 3
















Antibody
Eotaxin
MP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
MCP-1
MDC
MCP-4





Highest non-
0.05
0.29
0.20
0.12
0.36
0.34
0.49
0.35
1.2


specificity (%)
















TABLE 36







Panel 4

















Antibody
IFNγ
IL-2
IL-4
IL-1β
IL-5
IL-6
KC/GRO
IL-10
IL-13
TNFα





Highest Non-
0.00
0.1
0.08
0.07
0.07
0.12
0.22
0.11
0.25
0.08


specificity (%)
















TABLE 37







Panel 5

















Antibody
IFNγ
IL-1β
IL-2
IL-4
IL-5
IL-6
KC/GRO
IL-10
IL-12p70
TNFα





Highest Non-
0.01
0.00
0.01
0.05
0.02
0.02
0.05
0.04
0.03
0.04


specificity (%)









To evaluate the specificity of the Panel 1 Kit assays against other biomarkers, each kit was run using blended antibodies with individual recombinant human proteins.









TABLE 38





Panel 1

























Protein
IL-5
GM-CSF
IL-1α
IL-7
IL-12/IL-23 p40
IL-15
IL-16
IL-17A
TNFβ
VEGF





Concentration
49
63
23
47
188
44
156
304
38
67


(pg/mL)












Highest non-
0.15
0.28
1
0.25
0.43
0.42
0.78
0.29
0.16
0.91


specificity (%)



















Protein
Eotaxin
MIP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
MCP-1
MDC
MCP-4





Concentration
94
63
313
94
156
62
31
625
39


(pg/mL)











Highest non-
0.71
0.48
0.45
0.17
0.24
1
0.57
0.27
1


specificity (%)
















TABLE 39





Panel 2
























Protein
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-13
TNFα





Concentration
78
31
78
13
41
4
19
29
21


(pg/mL)











Highest non-
0.91
0.23
0.16
0.23
0.26
0.26
0.27
0.68
0.37


specificity (%)





Protein
Eotaxin
MIP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
MCP-1
MDC
MCP-4





Concentration
94
63
313
94
156
62
31
625
39


(pg/mL)











Highest non-
0.3
0.57
0.32
0.14
0.11
0.85
0.25
0.19
0.92


specificity (%)
















TABLE 40





Panel 3

























Protein
IL-5
GM-CSF
IL-1α
IL-7
IL-12/IL-23 p40
IL-15
IL-16
IL-17A
TNFβ
VEGF





Concentration
49
63
23
47
100
44
156
304
30
67


(pg/mL)












Highest non-
0.19
0.10
0.34
0.22
0.26
0.30
0.49
0.10
0.10
0.41


specificity (%)





Protein
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-13
TNFα





Concentration
70
31
70
13
41
4
19
24
29
21


(pg/mL)












Highest non-
0.26
0.09
0.10
0.10
0.19
N/A
0.39
0.61
0.33
0.23


specificity (%)



















To evaluate the impact of multiplexing on assay signal, standards in the quantifiable ranges were compared between individual assays (individual calibrator and individual antibody) and multiplexed assays (blended calibrators and blended antibodies) using each kit. The calculated % signal difference between individual and multiplexed assay is shown below.









TABLE 41







Panel 1

















Assay
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-13
TNFα





Signal
0.02
0.02
0.03
0.02
0.52
0.11
0.05
0.11
0.04
0.43


Difference (%)
















TABLE 42







Panel 2

















Assay
GM-CSF
IL-1α
IL-5
IL-7
IL-12/IL-23 p40
IL-15
IL-16
IL-17A
TNFβ
VEGF





Signal
4
30
24
27
2
6
22
14
3
10


Difference (%)

















TABLE 43








Panel 3

















Assay
Eotaxin
MIP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
IL-8
MCP-1
MDC
MCP-4





Signal
4
4
24
11
22
2
7
3
6
11


Difference (%)
















TABLE 44







Panel 4

















Antibody
IFNγ
IL-2
IL-4
IL-1β
IL-5
IL-6
KC/GRO
IL-10
IL-15
TNFα





Signal
11
17
13
23
37
29
3
3
5
9


Difference (%)
















TABLE 45







Panel 5

















Assay
IFNγ
IL-1β
IL-2
IL-4
IL-5
IL-6
KC/GRO
IL-10
IL-12p70
TNFα





Signal
14
10
2
16
15
8
7
0
1
17


Difference (%)









The kits were designed to minimize interference by receptors and other related proteins. For each panel, a multi-analyte calibrator in diluent and normal human were spiked with three different concentrations of receptors and binding partners. The recovered calibrator concentrations were compared to unspiked standards and normal serum.


All the assays in each panel were calibrated against a reference calibrator obtained from Meso Scale Discovery (Rockville, Md.). The NiBSC/WHO Standards for the following human analytes were evaluated against the MSD reference calibrators. To convert sample values obtained with a panel to approximate NIBSC/WHO concentration, the calculated sample value was multiplied by the concentration ratio.









TABLE 46







Panel 1











Concentration




Ratio



NIBSC/WHO
(MSD Reference:


Analyte
Standard
NIBSC)





IL-1β
86/680
1.0


IL-2
86/504
1.1


IL-4
88/656
1.0


IL-6
89/548
1.0


IL-8
89/520
1.0


IL-10
93/322
1.0


IL-12p70
95/544
1.0


IL-13
94/622
1.0


TNFα
88/186
1.0
















TABLE 47







Panel 2











Concentration




Ratio



NIBSC/WHO
(MSD Reference:


Analyte
Standard
NIBSC)












GM-CSF
88/646
1.08


IL-1α
86/632
1.0


IL-5
90/586
1.0


IL-7
90/530
1.0


IL-15
95/554
0.95


IL-17A
01/420
1.0


TNFα
87/640
1.0


VEGF
02/286
1.0
















TABLE 48







Panel 3











Concentration




Ratio



NIBSC/WHO
(MSD Reference:


Analyte
Standard
NIBSC)





MIP-1α
92/518
1.0 


IL-8
89/520
1.0 


MCP-1
92/394
0.85
















TABLE 49







Panel 5











Concentration




Ratio



NIBSC/WHO
(MSD Reference:


Analyte
Standard
NIBSC)





IL-1β
96/668
1.18


IL-2
93/566
0.98


IL-4
91/656
0.89


IL-6
93/730
1.0 


TNFα
88/532
1.0 









(a) Normal Sample Testing


Normal mouse serum (rat serum for panel 4), EDTA plasma, heparin plasma, citrate plasma, and urine samples from a commercial source were diluted 2- to 4-fold and tested with each panel. Median and range of concentrations for each sample set are displayed below. Concentrations are corrected for sample dilution.









TABLE 50







Panel 1


















Sample Type
Statistic
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-13
TNFα





















Serum
Median
3.77
0.0955
0.403
0.00565
0.167
9.61
0.0605
0.0102
0.0994
0.199


(N = 27)
(pg/mL)













Range
1-14
0-14
0-3
0-0
0-27
1-1.721
0-3
0-0
0-3
0-2



(pg/mL)













Samples in
26
12
15
14
17
27
26
16
12
27



Quantitative













Range












EDTA
Median
3.80
0.538
0.174
0.0166
0.174
0.519
0.167
0.150
0.0
0.735


Plasma
(pg/mL)












(N = 22)
Range
0-23
0-1 
0-4
0-0
0-1 
0-20  
0-3
0-1
0-1
0-2



(pg/mL)













Samples in
21
22
16
17
15
22
21
17
13
22



Quantitative













Range












Heparin
Median
2.87
0.0894
0.0510
0.0
0.114
60.1
0.0798
0.0473
0.0
0.456


Plasma
(pg/mL)












(N = 27)
Range
0-8 
0-11
0-3
0-0
0-3 
2-2626 
0-3
0-0
0-3
0-1



(pg/mL)













Samples in
27
27
16
13
18
27
23
15
17
27



Quantitative













Range












Citrate
Median
3.28
0.0627
0.0897
0.00496
0.190
2.85
0.115
0.0283
0.0
0.481


Plasma
(pg/mL)












(N = 20)
Range
1-35
0-0 
0-1
0-0
0-0 
0-112  
0-2
0-0
0-0
0-3



(pg/mL)













Samples in
20
11
10
12
10
20
20
11
10
20



Quantitative













Range












Urine
Median
0.3999
0.350
0.0513
0.0168
0.088
35.185
0.018
0.009
0.0
0.0


(N = 5)
(pg/mL)













Range
0-1 
0-10
0-0
0-0
0-0 
1-105  
0-0
0-0
0-0
0-0



(pg/mL)













Samples in
5
5
5
5
5
5
5
5
5
5



Quantitative













Range















ND = Non-detectable













TABLE 51







Panel 2


















Sample





IL-12/IL-







Type
Statistic
GM-CSF
IL-1α
IL-5
IL-7
23 p40
IL-15
IL-16
IL-17A
TNFβ
VEGF





















Serum
Median
34.1
1
ND
1
53
1
60
5
ND
9


(N = 20)
(pg/mL)













Range
11-44
1-82
ND
 1-3  
13-159
1-3 
24-137
5-5 
ND
 2-187



(pg/mL)













Samples in
8
9
0
15
20
20
20
1
0
15



Quantitative













Range












EDTA
Median
1.5
2
1
3
65
2
76
9
ND
95


Plasma
(pg/mL)












(N = 20)
Range
 0-1
0-99
1-1 
 0-40 
 3-395
1-3 
 0-973
1-55
ND
18-338



(pg/mL)













Samples in
2
18
1
15
17
16
15
5
0
13



Quantitiative













Range












Heparin
Median
ND
1
45
100
ND
1
5
1
ND
9


Plasma
(pg/mL)












(N = 20)
Range
ND
1-1 
9-148
35-1109
ND
1-57
 1-39 
1-2 
ND
 5-484



(pg/mL)













Samples in
0
2
19
19
0
7
17
19
0
17



Quantitiative













Range












Citrate
Median
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND


Plasma
(pg/mL)












(N = 20)
Range
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND



(pg/mL)













Samples in
0
0
0
0
0
0
0
0
0
0



Quantitiative













Range












Urine
Median
2
3
ND
1
27
1
47
5
ND
50


(N = 5)
(pg/mL)













Range
 2-2
2-3 
ND
 1-1  
27-27 
1-2 
47-47 
5-5 
ND
37-85 



(pg/mL)













Samples in
1
3
0
2
1
2
1
1
0
4



Quantitiative













Range





ND = Non-detectable













TABLE 52







Panel 3


















Sample








MCP-




Type
Statistic
Eotaxin
MIP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
IL-8
1
MDC
MCP-4





















Serum
Median
41
46
6
28
65
9
547
107
1.246
34


(N = 27)
(pg/mL)













Range
19-145 
 7-95 
5-9 
 5-70 
27-261
7-202 
262-665 
76-205
606-3249
11-117



(pg/mL)













Samples in
26
27
10
27
27
19
7
27
27
27



Quantitative













Range












EDTA
Median
117
63
13
79
197
11
769
79
1.309
67


Plasma
(pg/mL)












(N = 23)
Range
37-796 
 8-153
5-115
13-373
97-676
7-661 
340-2478
42-165
869-2144
12-582



(pg/mL)













Samples in
27
27
26
27
27
20
11
27
27
27



Quantitative













Range












Heparin
Median
293
121
31
92
146
41
775
137
1.050
183


Plasma
(pg/mL)












(N = 27)
Range
22-1522
10-301
5-147
 6-957
91-625
7-2231
234-3281
69-319
589-1963
67-716



(pg/mL)













Samples in
27
27
27
27
27
26
7
27
27
27



Quantitative













Range












Citrate
Median
191
51
12
51
77
9
964
135
994
64


Plasma
(pg/mL)












(N = 20)
Range
72-286 
19-123
7-19 
25-131
36-373
7-30 
328-1869
76-242
576-1364
35-161



(pg/mL)













Samples in
20
20
19
20
20
9
4
20
20
20



Quantitative













Range












Urine
Median
13
3
ND
1
8
ND
296
80
ND
13


(N = 5)
(pg/mL)













Range
13-13 
 2-13 
ND
 1-1 
 3-64 
ND
296-296 
56-122
ND
11-15 



(pg/mL)













Samples in
1
5
0
1
3
0
1
5
0
2



Quantitative













Range















ND = Non-detectable













TABLE 53







Panel 5


















Sample









IL-



Type
Statistic
IFNγ
IL-1β
IL-2
IL-4
IL-5
IL-6
KC/GRO
IL-10
12p70
TNFα





















Serum
Median
0.95
2.27
1.02
0.43
2.32
21.6
48.3
11.0
81.0
12.0


(N = 16)
(pg/mL)













Range
0.34-
1.13-
0.55-
0.23-
058-
5.28-
28.3-
5.71-
64.8-
8.23-



(pg/mL)
28.3
3.95
3.98
1.10
6.52
110.3
101.8
45.4
97.1
34.4



Samples in
16
16
16
15
16
16
16
16
2
16



Quantitative













Range












EDTA
Median
41.2
0.86
3.86
0.63
2.59
113.1
30.5
58.5
69.3
38.5


Plasma
(pg/mL)












(N = 15)
Range
18.6-
0.46-
2.60-
0.48-
1.50-
11.0-
54.2-
31.5-
50.2-
21.3-



(pg/mL)
262.1
2.40
5.89
0.70
2.88
184.6
96.9
74.7
170.8
47.0



Samples in
15
13
15
9
15
15
15
15
11
15



Quantitative













Range












Heparin
Median
251.5
1.62
4.63
0.75
4.01
175.2
269.4
76.4
85.6
65.3


Plasma
(pg/mL)












(N = 15)
Range
156.4-
0.61-
3.35-
0.42-
2.26-
28.8-
220.1-
63.7-
38.0-
35.0-



(pg/mL)
352.4
2.25
7.36
1.49
5.32
354.6
368.6
104.6
152.0
76.7



Samples in
15
13
15
9
15
15
15
15
8
15



Quantitative













Range












Citrate
Median
7.04
1.01
3.09
0.73
3.37
41.9
65.3
30.7
71.2
42.8


Plasma
(pg/mL)












(N = 16)
Range
0.31-
0.45-
0.65-
0.39-
1.32-
6.84-
34.9-
5.30-
50.4-
5.45-



(pg/mL)
121.8
2.02
5.03
1.43
8.24
34.2
132.0
68.2
107.4
58.8



Samples in
16
16
15
16
16
16
16
16
16
16



Quantitative













Range












Urine
Median
0.32
0.57
0.49
0.43
ND
ND
2.31
1.36
101.6
0.63


(N = 10)
(pg/mL)













Range
0.09-
0.35-
0.49-
0.43-
ND
ND
1.91-
0.98-
67.3-
0.48-



(pg/mL)
0.66
1.34
0.65
0.62


2.84
1.53
125.1
3.90



Samples in
3
6
3
9
0
0
10
4
9
8



Quantitative













Range





ND = Non-detectable






(b) Stimulated Samples


Panel 1: Freshly collected normal human whole blood was incubated with LPS and simultaneously incubated with peptidoglycan (PG) and Zymosan (ZY) for different time periods and plasma was then isolated. These samples were then tested with panel 1. The dilution adjusted concentrations for each stimulation model is displayed below.









TABLE 54







Panel 1

















Incubation


























Stimulant
Time (hr)
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-13
TNFα





















Control
0
11.8
0.22
0.68
0.09
0.63
6.08
0.37
0.37
ND
2.57


Control
6 hr
9.1
4.53
0.31
0.01
1.09
40.01
0.37
0.45
0.61
3.16


LPS
3
34.4
1028
ND
4.84
8028
5635
8.58
2.99
5.14
7962.8



12
458.6
9453
ND
0.11
22033
9778
115.8
4.14
ND
9158


PHA 100
6 hr
0.04
14.51
ND
ND
ND
301.6
0.63
0.21
ND
9.30


μg













PHA 1 μg
6 hr
14.7
164.5
ND
0.13
3669
1978.8
10.4
0.23
ND
261.18









Panel 2: Freshly collected normal human whole blood was incubated at 37° C. with LPS and PHA tor different time periods and plasma was isolated. The samples were tested with panel 2.









TABLE 55







Panel 2



















Incubation




IL-12/IL-23







Stimulant
Time (hr)
GM-CSF
IL-1α
IL-5
IL-7
p40
IL-15
IL-16
IL-17A
TNFβ
VEGF





















Control
0
ND
ND
ND
ND
96
2
73
ND
ND
ND


Control
6 hr
ND
12
ND
4
55
2
129
ND
ND
44


LPS
3
ND
ND
ND
ND
96
2
73
ND
ND
ND



12
ND
19
ND
3
6427
2
161
ND
1
3


PHA 100
6 hr
ND
10
ND
4
75
2
130
ND
ND
33


μg













PHA 1 μg
6 hr
ND
16
ND
4
343
ND
794
ND
ND
2096









Panel 3: Freshly collected normal human whole blood was incubated at 37° C. with LPS for different time period and plasma was isolated. The samples were tested with panel 3.









TABLE 56







Panel 3











Incubation




















Stimulant
Time (hr)
Eotaxin
MIP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
IL-6
MCP-1
MDC
MCP-4





















Control
0
184
51
11
81
239
10
ND
114
1128
62


LPS (10
3
158
>4000
5
134
>10 000
>3960
3468
412
1891
89


ng/mL)
12
91
>4000
10
161
>10 000
>3960
2764
250
1210
114









Panel 5: Freshly collected normal pooled mouse whole blood was incubated with LPS and simultaneously incubated with peptidoglycan (PG) and Zymosan (ZY) for different time periods and plasma isolated. Samples were run on panel 5.









TABLE 57







Panel 5



















Incubation












Stimulant
Time (hr)
IFNγ
IL-β
IL-2
IL-4
IL-5
IL-6
KC/GRO
IL-10
IL-12p70
TNFα





















None
0
11.76
1.02
2.74
0.50
3.20
135.40
96.75
34.02
26.17
35.40


(Control)













LPS
3
6.00
7.49
1.85
8.73
6.73
1,510.01
66.75
57.20
115.60
200.37



12
11.73
89.00
1.63
10.90
6.92
3,352.90
120.59
47.35
130.06
360.90


None
3
6.00
2.59
2.58
4.60
2.49
400.00
99.27
31.55
93.99
30.65


(Control)













PG/ZY
3
14.05
87.45
2.65
1.40
3.93
300.30
213.05
43.27
150.34
111.53


None
12
16.01
4.57
2.48
6.23
3.03
230.04
50.65
15.51
94.13
31.45


(Control)













PG/ZY
12
30.76
150.00
3.01
3.03
3.00
1,500.23
159.85
59.44
90.93
723.63









For panels 1-3, freshly isolated PBMC from normal whole blood was stimulated with LPS, PHA, PWM, Con A, and co-stimulated with CD3 and CD28 antibodies. The samples were then tested with panels 1-3. The dilution actuated concentrations in pg/mL for each stimulation model is displayed.









TABLE 58







Panel 1



















Incubation












Stimulant
Time (hr)
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-13
TNFα





















Control
24 hr
2.56
16.56
0.49
ND
ND
4043
0.8
0.53
7.6
1.1


PWM 5
24 hr
13829
222
1614
20.26
9052
>1000
136.3
13.05
277.1
365.6


μg/mL













LPS 10
24 hr
1494
>1000
ND
ND
27701
>1000
748
9.8
228.5
>660


μg/mL













PWM 50
24 hr
9468
5974
995
5.09
29858
205183
1123
3.96
5.5
1276


μg/mL













A = CD3 +
24 hr
1747
4.11
571.2
11.03
ND
8017
42.9
ND
35
11.35


CD28 (5 + 5













μg/mL)













Con A 20
24 hr
24658
116.5
3589
11.4
236.9
46528
146
24.04
45.08
263.5


μg/mL



























TABLE 59







Panel 2



















Incubation




IL-12/IL-







Stimulant
Time (hr)
GM-CSF
IL-1α
IL-5
IL-7
23 p40
IL-15
IL-16
IL-17A
TNFα
VEGF





















Control
24 hr
ND
ND
ND
7
14
ND
1270
ND
ND
1243


PWM 5
24 hr
178
51
291
14
338
ND
960
1677
9
1147


μg/mL













LPS 10
24 hr
17
940
2
11
343
ND
794
ND
ND
2096


μg/mL













PWM 50
24 hr
66
811
31
9
526
ND
782
658
2
2194


μg/mL













A = CD3 +
24 hr
78

339
10
132
ND
1046
321
27
804


CD28 (5 + 5













μg/mL)













Con A 20
24 hr
212
272
194
11
1390
ND
1252
816
53
1299


μg/mL



























TABLE 60







Panel 3



















Incubation












Stimulant
Time (hr)
Eotaxin
MIP-1β
Eotaxin-3
TARC
IP-10
MIP-1α
IL-8
MCP-1
MDC
MCP-4





















Control
 6 hr
140
181
33
132
312
41
ND
80
1157
47


Control
24 hr
127
76
31
199
2322
34
3742
141
769
59


PWM (100
 6 hr
197
1753
31
147
372
117
NaN
71
942
55


mg/mL)













PWM (1
 6 hr
149
>4100
21
141
1653
1853
NaN
443
940
55


μg/mL)













PWM (5
24 hr
130
19163
NaN
683
107930
10374
192588
80659
1986
278


μg/mL)













LPS (10
24 hr
84
59243
NaN
256
3036
46161
182842
355
515
149


μg/mL)













PWM (50
24 hr
131
59467
NaN
232
4169
43588
195681
466
560
123


μg/mL)













CD3 +
24 hr
143
1358
NaN
1250
75234
534
4646
6844
2543
507


CD28 (5













μg/mL













each)













CON A (20
24 hr
230
4347
NaN
1307
105145
700
35480
43377
3889
320


μg/mL)









For panels 1-3, human acute monocyte leukemia cell line (THP-1 cell line) was stimulated with LPS for six and 18 hours. The supernates were then isolated and tested with panels 1-3. The dilution adjusted concentrations in pg/mL for each sample displayed below.









TABLE 61







Panel 1



















Incubation












Stimulant
Time (hr)
IFNγ
IL-1β
IL-2
IL-4
IL-6
IL-8
IL-10
IL-12p70
IL-15
TNFα





















Control
 0 hr
1.09
20.48
0.345
0.07
0.19
449.8
0.44
0.38
1.41
9.91


LPS
 6 hr
1.1
645.5
11.5
ND
ND
61066
97.2
11.12
0.87
12472



16 hr
0.67
423
ND
ND
ND
69638
15.5
ND
1.06
2915
















TABLE 62







Panel 2



















Incubation




IL/12/IL-







Stimulant
Time (hr)
GM-CSF
IL-1α
IL-5
IL-7
23 p40
IL-15
IL-16
IL-17A
TNFα
VEGF





















Control
 0 hr
ND
ND
ND
ND
ND
ND
205
ND
ND
1995


LPS
 6 hr
ND
47
ND
ND
56
ND
421
ND
ND
275



16 hr
ND
22
ND
ND
234
ND
552
ND
ND
>1070
















TABLE 63







Pane1 3



















Incubation












Stimulant
Time (hr)
Eotaxin
MIP-1β
Eotaxin-3
TAR
IP-10
MIP-1α
IL-8
MCP-1
MDC
MCP-4





















Control
 0 hr
26
983
12
ND
96
70
1132
205
148
ND


LPS
 6 hr
ND
>4000
ND
ND
324
>3960
45 546
577
14 998
57



16 hr
ND
>4000
ND
20
687
2759
52 262
1290
>40 000
332









For panel 5, a mouse monocyte macrophage cell line (J774A.1) and a mouse leukemic monocyte macrophage cell line (RAW 264.7) were stimulated with different stimulants. The J774A.1 cell line stimulation was for four house while the RAW cell line stimulation was for six hours. The lysates were collected and run on panel 5. The concentrations are listed in pg/ml and normalized for 50 μg of lysate per well.









TABLE 64







Panel 5


















Cell Lines
Stimulant
IFNγ
IL-1β
IL-2
IL-4
IL-5
IL-6
KC/GRO
IL-10
IL-12p70
TNFα





















J774A.1
None
ND
1.9
ND
ND
ND
13
ND
34
ND
812


J774A.1
5 μg/mL LPS
ND
8948
3.9
ND
ND
62 529
107
320
ND
>10 000


J774A.1
5 μg/mL PWM
ND
10 674
2.8
ND
ND
43 527
111
209
ND
>10 000


J774A.1
1 ng/mL LPS
ND
304
ND
ND
ND
403
074
57
ND
364


J774A.2
100 ng/mL
ND
150
ND
ND
ND
57
ND
54
ND
264



PWM












RAN 264.7
100 ng/mL LPS
ND
41 458
1.0
0.16
ND
8129
12
1257
ND
>10 000









The following calibrator blends were used in each panel as follows:









TABLE 65







Panel 1









Calibrator
Sequence
Expression System





IFNγ
Gln24 -Gln66

E. coli



IL-1β
Ala117- Ser269

E. coli



IL-2
Ala21-Thr153

E. coli



IL-4
His25-Ser153

E. coli



IL-6
Pro29-Met212

E. coli



IL-8
Ser28-Ser99

E. coli



IL-10
Ser19-Asn178
sf21 insect cells


IL-12p70
IL-12p40
sf21 insect cells



(Ile23-Ser328)




IL-12p35




(Arg23-Ser219)



IL-13
Gly21-Asn132

E. coli



TNFα
Val11-Leu233

E. coli

















TABLE 66







Panel 2









Calibrator
Sequence
Expression System





GM-CSF
Ala18-Glu144

E. coli



IL-1α
Ser113-Ala271

E. coli



IL-5
Ile20-Ser134
sf21 insect cells


IL-7
Asp26-His177

E. coli



IL-12/IL-23 p40
Ile23-Ser328
sf21 insect cells


IL-15
Asn49-Ser162

E. coli



IL-16
Pro2-Ser130

E. coli



IL-17A
Ile-20-Ala155

E. coli



TNFβ
Leu35-Leu205

E. coli



VEGF
Ala21-Arg191
sf21 insect cells
















TABLE 67







Panel 3









Calibrator
Sequence
Expression System





Eotaxin
Gly24-Pro97

E. coli



MIP-1β
Ala24-Asn92

E. coli



Eotaxin-3
Thr24-Leu94

E. coli



TARC
Ala24-Ser94

E. coli



IP-10
Val22-Pro98

E. coli



MIP-1α
Ala27-Ala92

E. coli



IL-8
Ser28-Ser99

E. coli



MCP-1
Gln24-Thr99

E. coli



MDC
Gly25-Gln93

E. coli



MCP-4
Gln24-Thr98

E. coli

















TABLE 68







Panel 4









Calibrator
Sequence
Expression System





ILNγ
Glu23-Cys156

E. coli



IL-2
Ala21-Gln155

E. coli



IL-4
Cys25-Ser147

E. coli



IL-1β
Val117-Ser268

E. coli



IL-5
Met20-Val132

E. coli



IL-6
Phe25-Thr211

E. coli



KC/GRO
Ala25-Lys96

E. coli



IL-10
Ser19- Asn178

E. coli



IL-13
Thr19- His131

E. coli



TNFα
Leu80-Leu235

E. coli

















TABLE 69







Panel 5









Calibrator
Sequence
Expression System





IFNγ
His23-Cys155

E. coli



IL-1β
Val118-Ser269

E. coli



IL-2
Ala21-Gln169

E. coli



IL-4
His23-Ser140

E. coli



IL-5
Met21-Gly133
sf21 insect cells


IL-6
Phe25-Thr211

E. coli



KC/GRO
Arg20-Lys96

E. coli



IL-10
Ser19-Ser178

E. coli



IL-12p70
Met23-Ser335
sf21 insect cells



(mouse IL-12p40) &




Arg23-Ala215




(mouse IL-12p35)



TNFα
Leu80-Leu235

E. coli










The following antibodies, capture and detection, were used in each panel as follows:









TABLE 70







Panel 1









Source Species










MSD Capture
MSD Detection


Analyte
Antibody
Antibody





IFNγ
Mouse Monoclonal
Mouse Monoclonal


IL-1β
Mouse Monoclonal
Goat Polyclonal


IL-2
Mouse Monoclonal
Mouse Monoclonal


IL-4
Mouse Monoclonal
Mouse Monoclonal


IL-6
Mouse Monoclonal
Goat Polyclonal


IL-8
Mouse Monoclonal
Goat Polyclonal


IL-10
Mouse Monoclonal
Mouse Monoclonal


IL-12p70
Mouse Monoclonal
Mouse Monoclonal


IL-13
Rat Monoclonal
Mouse Monoclonal


TNFα
Mouse Monoclonal
Goat Polyclonal
















TABLE 71







Panel 2









Source Species










MSD Capture
MSD Detection


Analyte
Antibody
Antibody





GM-CSF
Mouse Monoclonal
Rat Monoclonal


IL-1α
Mouse Monoclonal
Goat Polyclonal


IL-5
Mouse Monoclonal
Mouse Monoclonal


IL-7
Mouse Monoclonal
Goat Polyclonal


IL-12/IL-23 p40
Mouse Monoclonal
Mouse Monoclonal


IL-15
Mouse Monoclonal
Mouse Monoclonal


IL-16
Mouse Monoclonal
Goat Polyclonal


IL-17A
Mouse Monoclonal
Goat Polyclonal


TNFβ
Mouse Monoclonal
Mouse Monoclonal


VEGF
Mouse Monoclonal
Mouse Monoclonal
















TABLE 72







Panel 3









Source Species










MSD Capture
MSD Detection


Analyte
Antibody
Antibody





Eotaxin
Mouse Monoclonal
Mouse Monoclonal


MIP-1β
Mouse Monoclonal
Mouse Monoclonal


Eotaxin-3
Mouse Monoclonal
Mouse Monoclonal


TARC
Mouse Monoclonal
Mouse Monoclonal


IP-10
Mouse Monoclonal
Mouse Monoclonal


MIP-1α
Mouse Monoclonal
Mouse Monoclonal


IL-8
Mouse Monoclonal
Goat Polyclonal


MCP-1
Mouse Monoclonal
Mouse Monoclonal


MDC
Mouse Monoclonal
Mouse Monoclonal


MCP-4
Mouse Monoclonal
Mouse Monoclonal
















TABLE 73







Panel 4









Source Species










MSD Capture
MSD Detection


Analyte
Antibody
Antibody





IFNγ
Mouse Monoclonal
Goat Polyclonal


IL-2
Mouse Monoclonal
Goat Polyclonal


IL-4
Mouse Monoclonal
Goat Polyclonal


IL-1β
Mouse Monoclonal
Goat Polyclonal


IL-5
Rat Monoclonal
Rat Monoclonal


IL-6
Mouse Monoclonal
Goat Polyclonal


KC/GRO
Mouse Monoclonal
Goat Polyclonal


IL-10
Mouse Monoclonal
Goat Polyclonal


IL-15
Mouse Monoclonal
Goat Polyclonal


TNFα
Hamster Monoclonal
Goat Polyclonal
















TABLE 74







Panel 5









Source Species










MSD Capture
MSD Detection


Analyte
Antibody
Antibody





IFNγ
Rat Monoclonal
Rat Monoclonal


IL-1β
Mouse Monoclonal
Goat Polyclonal


IL-2
Rat Monoclonal
Rat Monoclonal


IL-4
Rat Monoclonal
Rat Monoclonal


IL-5
Rat Monoclonal
Rat Monoclonal


IL-6
Rat Monoclonal
Goat Polyclonal


KC/GRO
Rat Monoclonal
Goat Polyclonal


IL-10
Rat Monoclonal
Goat Polyclonal


IL-12p70
Rat Monoclonal
Rat Monoclonal


TNFα
Hamster Monoclonal
Goat Polyclonal









Various publications and test methods are cited herein, the disclosures of which are incorporated herein by reference in their entireties, in cases where the present specification and a document incorporated by reference and/or referred to herein include conflicting disclosure, and/or inconsistent use of terminology, and/or the incorporated/referenced documents use or define terms differently than they are used or defined in the present specification, the present specification shall control.


REFERENCES



  • 1. Kause M L, et al. Assessing immune function by profiling cytokine release from stimulated blood leukocytes and the risk of infection in rheumatoid arthritis. Clin. Immunol. 2011; 141(1): 67-72.

  • 2. Holmes C, et al. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 2011; 77:212-8.

  • 3. Desai D, et al. Cytokines and cytokine-specific therapy in asthma. Ad. Clin. Chem. 2012; 57: 57-97.

  • 4. Gui T, et al. Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. 2012 Apr. 11; 693083.

  • 5. Islam S A, et al. T cell homing to epithelial barriers in allergic disease. Nat. Med. 2012 May 4; 18 (5): 705-15.

  • 6. Su D L, et al. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. Biomed. Biotechnol. 2012; 347141

  • 7. Lukens J R, et al. Inflammasome activation in obesity-related inflammatory disease and autoimmunity. Discov. Med. 2011 July; 12 (62): 65-74.

  • 8. Laoui D, et al. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. 2011; 55 (7-9): 861-7.

  • 9. Hallberg L. et al. Exercise-induced release of cytokines in patients with major depressive disorder. J. Affect. Disord. 2010; 126(1): 262-267.

  • 10. Oreja-Guevara C, et al. TH1/TH2 Cytokine profile in relapsing-remitting multiple sclerosis patients treated with Glatiramer acetate or Natalizumab. BMC Neurol. 2012 Sep. 18; 12(1): 95.

  • 11. Svensson J, et al. Few differences in cytokines between patients newly diagnosed with type 1 diabetes and their healthy siblings. Hum. Immunol. 2012 Aug. 17; S0198-8859 (12): 00502-2.

  • 12. Yehuda H, et al. isothiocyanates inhibit psoriasis-related proinflammatory factors in human skin. Inflamm. Res. 2012 July; 61 (7): 735-42.

  • 13. Gologan S, et al. Inflammatory gene expression profiles in Crohn's disease and ulcerative colitis: A comparative analysis using a reverse transcriptase multiplex ligation-dependent probe amplification protocol. J. Crohns Colitis. 2012 Sep. 24; S1873-9946 (12)00393-5.

  • 14. Kwan W, et al. Bone marrow transplantation confers modest benefits in mouse models of Huntington's disease. J. Neurosci. 2012; 32 (1): 133-42.

  • 15. Crotta S, et al. Hepatitis C virions subvert natural killer cell activation to generate a cytokine environment permissive for infection. J. Hepatol. 2010; 52(2): 183-90.

  • 16. Liu X. et al. Age-dependent neuroinflammatory responses and deficits in long-term potentiation in the hippocampus during systemic inflammation. Neuroscience. 2012 Aug. 2; 216:133-42.

  • 17. Moon M H, et al. Sphingosine-1-phosphate inhibits interleukin-1b-induced inflammation in human articular chondrocytes. Int. J. Mol. Med. 2012 Sep. 19; 1135.

  • 18. Mihai G, et al. Circulating cytokines as mediators of fever. Clin. Infect. Dis. 2000; 31: s178-s184.

  • 19. Liao W, et al. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 2011 October; 23(5): 598-604.

  • 20. Aberg J A, Aging, inflammation, and HIV infection. Top Antivir. Med. 2012 August; 20(3): 101-5.

  • 21. Sharma M, et al. Enhanced pro-inflammatory chemokine/cytokine response triggered by pathogenic Entamoeba histolytica: basis of invasive disease. 2005 December; 131 (pt. 6): 783-96.

  • 22. Jacysyn J F, et al. IL-4 from Th2-type cells suppresses induction of delayed-type hypersensitivity elicited shortly after immunization. Immunol. Cell Biol. 2003 December; 81(6): 424-30.

  • 23. Poon A H, et al. Pathogenesis of severe asthma. Clin. Exp. Allergy. 2012 May; 42(5): 625-37.

  • 24. Deng B, et al. Cytokine and chemokine levels in patients with sever fever with thrombocytopenia syndrome virs. PLoS One. 2012: 7(7): e41365.

  • 25. Zupan J, et al. J. Biomed. Sci. The relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human osteoporotic and osteoarthritic bone tissues. J. Biomed. Sci. 2012 Mar. 1; 19:28.

  • 26. O'Donoghue R J, et al. Genetic partitioning of interleukin-6 signaling in mice dissociates Stat3 from Smad3-mediated lung fibrosis. EMBO Mol. Med. 2012 September; 4(9): 939-51.

  • 27. Goral V, et al. The relation between pathogenesis of liver cirrhosis, hepatic encephalopathy and serum cytokine levels: what is the role of tumor necrosis factor a?Hepatogastoenterology. 2011 May-June; 58(107-108): 943-8.

  • 28. Smith P D, et al. The evolution of chemokine release supports a bimodal mechanism of spinal cord ischemia and reperfusion injury. Circulation. 2012 Sep. 11; 126 (11 Suppl 1): S110-7.

  • 29. Tinkle S S, et al. Beryllium-stimulated release of tumor necrosis factor-alpha, interleukin-6, and their soluble receptors in chronic beryllium disease. J. Respir. Crit. Care Med. 1997 December; 156(6): 1884-91.

  • 30. Aoun E, et al. Diagnostic accuracy of interleukin-6 and interleukin-8 in predicting severe acute pancreatitis: a meta-analysis. Pancreatolody. 2009 January; 9(6): 777-85.

  • 31. Bliss S K, et al. IL-10 prevents liver necrosis during murine infection with Trichinella spiralis. J. Immunol. 2003; 171:3142-3147.

  • 32. Weijer S, et al. Endogenous interleukin-12 improves the early antimicrobial host response to murine Escherichia coli peritonitis. Shock. 2005; 23:54-8.

  • 33. Middleton M K, et al. 12/15-lipoxygenase-dependent myeloid production of interleukin-12 is essential for resistance to chronic toxoplasmosis. Infect. Immunol. 2009; 77: 5690-700.

  • 34. Ying X, et al. Association of interleukin-13 SNP rs1800925 with allergic rhinitis risk: a meta-analysis based on 1,411 cases and 3169 controls. Gene. 2012 September; 506(1): 179-83.

  • 35. Walczak A, et al. The IL-8 and IL-13 gene polymorphisms in inflammatory bowel disease and colorectal cancer. DNA Cell Biol. 2012 August; 31(8); 1431-8.

  • 36. Hamishehkar H, et al. Pro-inflammatory cytokine profile of critically ill septic patients following therapeutic plasma exchange. Transfs. Apher. Sci. 2012 Sep. 11; S1473-0502(12)00205-4.

  • 37. McClellan J L, et al. Intestinal inflammatory response in relation to tumorigenesis in the Apc(Min/+) mouse. Cytokine. 2012; 57:113-9.

  • 38. Lane B R, et al. TNF-alpha inhibits HIV-1 replication in peripheral blood monocytes and alveolar macrophages by inducing the production of RANTES and decreasing C-C chemokine receptor 5 (CCR5) expression. J. Immunol. 1999; 163:3653-61.

  • 39. Bowen R A, et al. Impact of blood collection devices on clinical chemistry assays. Clin. Biochem. 2010 January; 43(1-2): 4-25.

  • 40. Zhou H, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney. 2006; 69:1471-76.

  • 41. Thomas C E, et al. Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiol Biomarkers & Prevention. 2010; 19:953-59.

  • 42. Schoonenboom N S, et al. Effects of processing and storage conditions on amyloid beta (1-42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin Chem. 2005; 51:189-95.

  • 43. Girgrah N, et al. Purification and characterization of the P-80 glycoprotein from human brain. Biochem J. 1988; 256: 351-56.


Claims
  • 1-29. (canceled)
  • 30. A method of performing quality control on a lot of kits used in analyzing a cytokine panel, wherein said kits comprise qualified detection and capture antibodies specific for: (i) human analytes: IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNFalpha;(ii) human analytes: GM-CSF, IL-1alpha, IL-5, IL-7, IL-12/IL-23 p40, IL-15, IL-16, IL-17A, TNF-beta, and VEGF-A;(iii) human analytes: Eotaxin, MIP-1 alpha, Eotaxin-3, TARC, IP-10, MIP-1 beta, IL-8, MCP-1, MDC, and MCP-4;(iv) rat analytes: IFN-gamma, IL-2, IL-4, IL-1 beta, IL-5, IL-6, KC/GRO, IL-10, IL-13, and TNF-alpha; or(v) mouse analytes: IFN-gamma, IL-1-beta, IL-2, IL-4, IL-5, IL-6, KC/GRO, IL-10, IL-12p70, and TNF-alpha; said method comprising subjecting a subset of said lot of kits to plate coating uniformity testing and passing said lot based on results of said uniformity testing.
  • 31. The method of claim 30, wherein said lot meets a specification selected from: (a) average intraplate coefficient of variability (CV) of <10%; (b) maximum intraplate CV of <13%; (c) average uniformity metric of <25%; (d) maximum uniformity metric of <37%; (e) CV of intraplate averages of <18%; (f) lower signal boundary of >1500; and (g) upper signal boundary of <106.
  • 32. The method of claim 30, wherein said lot comprises: (a) average intraplate CV of <10%; (b) maximum intraplate CV of <13%; (c) average uniformity metric of <25%; (d) maximum uniformity metric of <37%; (e) CV of intraplate averages of <18%; (f) lower signal boundary of >1500; and (g) upper signal boundary of <106.
  • 33. The method of claim 30, wherein said kits comprise qualified detection and capture antibodies specific for said: (i) human analytes: IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNFalpha;(ii) human analytes: GM-CSF, IL-1alpha, IL-5, IL-7, IL-12/IL-23 p40, IL-15, IL-16, IL-17A, TNF-beta, and VEGF-A;(iii) human analytes: Eotaxin, MIP-1 alpha, Eotaxin-3, TARC, IP-10, MIP-1 beta, IL-8, MCP-1, MDC, and MCP-4.
  • 34. The method of claim 30, wherein said kits comprise qualified detection and capture antibodies specific for said human analytes: IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNFalpha.
  • 35. The method of claim 30, wherein said kits comprise qualified detection and capture antibodies specific for said mouse analytes.
  • 36. The method of claim 30, wherein said kits comprise qualified detection and capture antibodies specific for said human analytes IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNFalpha.
  • 37. The method of claim 30, wherein said kits comprise qualified detection and capture antibodies specific for said human analytes GM-CSF, IL-1alpha, IL-5, IL-7, IL-12/IL-23 p40, IL-15, IL-16, IL-17A, TNF-beta, and VEGF-A.
  • 38. The method of claim 30, wherein said kits comprise qualified detection and capture antibodies specific for said human analytes Eotaxin, MIP-1 alpha, Eotaxin-3, TARC, IP-10, MIP-1 beta, IL-8, MCP-1, MDC, and MCP-4.
  • 39. The method of claim 30, wherein said kits comprise qualified detection and capture antibodies specific for said rat analytes.
  • 40. A method of manufacturing a kit used in analyzing a cytokine panel, wherein said kit comprises qualified detection and capture antibodies specific for: (i) human analytes: IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNFalpha;(ii) human analytes: GM-CSF, IL-1alpha, IL-5, IL-7, IL-12/IL-23 p40, IL-15, IL-16, IL-17A, TNF-beta, and VEGF-A;(iii) human analytes: Eotaxin, MIP-1 alpha, Eotaxin-3, TARC, IP-10, MIP-1 beta, IL-8, MCP-1, MDC, and MCP-4;(iv) rat analytes: IFN-gamma, IL-2, IL-4, IL-1 beta, IL-5, IL-6, KC/GRO, IL-10, IL-13, and TNF-alpha; or(v) mouse analytes: IFN-gamma, IL-1-beta, IL-2, IL-4, IL-5, IL-6, KC/GRO, IL-10, IL-12p70, and TNF-alpha;said method comprising: (a) selecting qualified detection antibodies from a preliminary set of detection antibodies based on capillary isoelectric focusing (CIEF), dynamic light scattering (DLS), or Experion testing; and(b) selecting qualified capture antibodies from a preliminary set of capture antibodies based on CIEF, DLS, or Experion testing.
  • 41. The method of claim 40, wherein said method further comprises subjecting said preliminary set of detection antibodies to denaturing SDS-PAGE, non-denaturing SDS-PAGE, SEC-MALS, or a combination thereof.
  • 42. The method of claim 40, wherein said method further comprises subjecting said preliminary set of detection antibodies to denaturing SDS-PAGE, non-denaturing SDS-PAGE, or SEC-MALS.
  • 43. The method of claim 40, wherein said method further comprises subjecting said preliminary set of capture antibodies to denaturing SDS-PAGE, non-denaturing SDS-PAGE, size exclusion chromatography-multi-angle light scattering (SEC-MALS), or a combination thereof.
  • 44. The method of claim 40, wherein said method further comprises subjecting said preliminary set of capture antibodies to denaturing SDS-PAGE, non-denaturing SDS-PAGE, or SEC-MALS.
  • 45. The method of claim 40, wherein said method further comprises subjecting each of said preliminary set of detection and capture antibodies to denaturing SDS-PAGE, non-denaturing SDS-PAGE, SEC-MALS, or a combination thereof.
  • 46. A method of performing quality control on a lot of kits used in analyzing a cytokine panel, wherein said kits comprise qualified detection and capture antibodies specific for human analytes: IFN-gamma, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNFalpha, said method comprising subjecting a subset of said lot of kits to plate coating uniformity testing and passing said lot based on results of said uniformity testing, wherein said lot meets a specification selected from (a) average intraplate coefficient of variability (CV) of <10%; (b) maximum intraplate CV of <13%; (c) average uniformity metric of <25%; (d) maximum uniformity metric of <37%; (e) CV of intraplate averages of <18%; (f) lower signal boundary of >1500; and (g) upper signal boundary of <106.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of copending application Ser. No. 14/146,066, filed on Jan. 2, 2014, which claims the benefit of U.S. Provisional Application No. 61/748,626, filed on Jan. 3, 2013, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61748626 Jan 2013 US
Divisions (1)
Number Date Country
Parent 14146066 Jan 2014 US
Child 15601297 US
Continuations (1)
Number Date Country
Parent 15601297 May 2017 US
Child 17099190 US