Hydrosalpinx is a significant long-term complication of pelvic inflammatory disease (PID). It is usually a result of fallopian tube damage and distal adhesion formation subsequent to PID leading to distally blocked fallopian tubes that are enlarged and filled with fluid. Despite declining rates of PID in North America and Western Europe, it remains a problematic disease process because of its impact on reproductive health (1). Many women with PID experience a subclinical course, resulting in delayed or no treatment. However, even those women who do receive the Center for Disease Control (CDC) recommended treatment upon diagnosis report infertility, ectopic pregnancy, and chronic pelvic pain. Those with recurrent PID have an almost two-fold increase in infertility (1). In addition to the impact of distal tubal occlusion, PID results in decreased ciliation and ciliary dyskinesia of the endosalpinx (2). Even when tubal patency is reestablished following surgical correction of distal tubal occlusion, intrauterine pregnancy rates remain low while ectopic pregnancy rates increased. These rates are further impacted by the degree of tubal damage secondary to hydrosalpinx (3).
Several clinical studies have shown detrimental effect of hydrosalpinx on IVF success rates. Two meta-analyses have validated the association between hydrosalpinx and poor IVF outcome via demonstrating 50% reduction in pregnancy, implantation, and delivery, while 2-fold increase in spontaneous abortion rate among women with hydrosalpinx (4, 5). Subsequent to these clinical observation, surgical removal of bilateral and unilateral hydrosalpinx, or proximal tubal occlusion have shown to resolve the deleterious impact of hydrosalpinx and improved IVF assisted pregnancy rates (6-8). In addition, transvaginal aspiration of the hydrosalpnix fluid has improved IVF assisted pregnancy rate (9, 10). Despite there is unambiguous negative impact of hydrosalpinx fluid and clear benefit to its surgical removal or transvaginal aspiration, the mechanism by which hydrosalpinx mediate pathogenesis at the molecular level remain poorly understood.
Given the prevalence of pelvic inflammatory disease and associated complications such as hydrosalpinx, procedures for infertility generally include an assessment of tubal patency which can be investigated with hysterosalpingography and/or laparoscopy. Hydrosalpinx can be reliably detected with these diagnostic tests, however, they are expensive, invasive, and not without risk. A 2011 National Institutes of Health Workshop identified research needs related to the diagnosis, treatment, and prevention of PID. Accurate diagnosis and treatment of hydrosalpinx is essential to the future success of both spontaneous and IVF pregnancies. Thus, the development of a less invasive, diagnostic approach for the diagnosis of hydrosalpinx is needed.
Table 1: Relative fold changes for the selected proteins determine from verification western blot analysis of hydrosalpinx and healthy control tubal lavages.
Table 2: Patient Information for fallopian tube aspirates (hydrosalpinx) and lavages (from fertile controls undergoing tubal re-anastomosis). A total of 26 independent samples were used for shotgun proteomics. The additional independent control samples were used for western blot verification analysis presented in
Table 3: Differential proteome profile of tubal fluids from subjects with hydrosalpinx relative to lavages from healthy fertile donors.
Embodiments of the invention relate to the accurate determination of certain biomarkers in bodily fluid or tissue samples from a subject. Monitoring of important biomarkers of disease is useful in preventing unnecessary test and treatments, such as IVF for patients suffering from infertility when the infertility is caused by inflammation or fluid filled pockets in the fallopian tube or surrounding tissues of the patient, and a diagnosis of hydrosalpinx and treatment thereof would be less invasive, save time, and reduce cost for patients.
Accordingly, embodiments of the present invention provide assays and methods for detecting the presence of hydrosalpinx biomarkers, in qualitative and quantitative form, in a biological sample. These assays and methods can be used to test for these biomarkers in any fluid taken from the subject, but preferably test for biomarkers of hydrosalpinx in a blood sample taken from the patient.
By using embodiments of the invention, unnecessary treatment rates and unnecessary risk associated with alternative infertility treatments, such as IVF for example, would reduce cost and complications or side effects, and increase quality of life for the patient.
Fallopian tube fluid is a complex mixture of components secreted from the epithelial cells and blood plasma to support early embryo development. Though human fallopian tube secretome changes across the menstrual cycle have not been well described, much has been inferred from animal studies, which has contributed to the development of cleavage stage embryo culture media (18-20). The fallopian tube is supported by a rich mesosalpingeal vasculature such that intratubal molecular alterations like those occurring in hydrosalpinx may be testable in the plasma. However, tubal secretome such as proteome are not well described neither in healthy human tubal fluid nor those with hydrosalpinx partly due to the inherent difficulty of collecting these bio-specimens.
Herein, a discovery label-free shotgun proteomics was carried out to identify proteome abundance differences in hydrosalpinx fluid compared to normal tubal lavages from fertile controls. This analysis provided several proteins of interest in the hydrosalpinx, and some of these proteins detected directly by shotgun proteomics were validated by western blotting and immunohistochemistry. To leverage the protein abundance changes, differentially expressed proteins were identified as inputs for bioinformatics analysis of pathways and bioprocesses that are likely involved in the disease process. This analysis uncovered significantly dysregulated pathways and bioprocesses due to hydrosalpinx. With these integrated approaches, hydrosalpinx biomarkers and proteins that provide valuable mechanistic insight, which are precursors to and/or responsible for hydrosalpinx induced tubal damages and/or impaired IVF successes have been identified.
There currently exists an unmet need in the art for methods for determining the presence and levels of biomarkers for detecting hydrosalpinx in a patient. The present invention provides useful embodiments for aspects of such determination, including sample collection and testing, as well as methods useful in assisting appropriate diagnosis and treatment of patient suffering from this condition.
Infertility diagnoses are growing, and hydrosalpinx has been found to cause at least temporary infertility in some patients. Treatment for hydrosalpinx in these patients results in regained fertility. Consequently, the typically subsequent step of fertility treatments, including, for example IVF, is unnecessary upon early identification of and treatment for hydrosalpinx in patients suffering therefrom.
The following terms as used herein have the following definitions. Unless otherwise defined, all technical and scientific terms used herein are intended to have the same meaning as commonly understood in the art to which this invention pertains and at the time of its filing. Although various methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. However, the skilled should understand that the methods and materials used and described are examples and may not be the only ones suitable for use in the invention. Moreover, because measurements are subject to inherent variability, any temperature, weight, volume, time interval, pH, salinity, molarity or molality, range, concentration and any other measurements, quantities or numerical expressions given herein are intended to be approximate and not exact or critical figures, unless expressly stated to the contrary. Hence, where appropriate to the invention and as understood by those of skill in the art, it is proper to describe the various aspects of the invention using approximate or relative terms and terms of degree commonly employed in patent applications, such as: so dimensioned, about, approximately, substantially, essentially, consisting essentially of, comprising, and effective amount. The terms front, back and side are only used as a frame of reference for describing components herein and are not to be limiting in any way.
The terms “first,” “second,” and the like, as used herein, do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context. All ranges disclosed within this specification are inclusive and are independently combinable. Furthermore, to the extent that the terms “including,” “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.” The terms front, back and side are only used as a frame of reference for describing components herein and are not to be limiting in any way.
The term “analyte” refers to any compound or composition to be measured in an assay, for example a biomarker or a portion thereof. Such an analyte also is referred to as a target or target analyte, and is capable of binding specifically to a capture molecule, which can be an antigen, hapten, protein, drug, metabolite, nucleic acid, ligand, receptor, enzyme, aptamer, antibody or fragment thereof, affibody, affimer, avimer, aptamer, aptide, cell, or cytokine. Preferably, the analyte is mesothelin or a portion thereof, such as an epitope or hapten thereof. Analytes also can include antibodies and receptors, including active fragments or fragments thereof. An analyte can include an analyte analogue, which is a derivative of an analyte, such as, for example, an analyte altered by chemical or biological methods, such as by the action of reactive chemicals, such as adulterants or enzymatic activity.
The term “antibody” is used here in its broadest sense refers to an immunoglobulin, or fragment or active fragment thereof, or antibody substitutes. The antibody can be monoclonal or polyclonal and can be prepared by techniques that are well known in the art such as, for example, immunization of a host and collection of sera or hybrid cell line technology, or recombinant technology. The term includes monoclonal antibodies, polyclonal antibodies, anti-idiotypic antibodies, synthetic antibodies, multispecific antibodies (e.g., bispecific antibodies) formed from at least two intact antibodies, and antibody fragments so long as they exhibit the desired binding activity. The antibodies can be chimeric antibodies, including humanized antibodies as described in Jones et al., Nature 321:522-525, 1986, Riechmann et al., Nature 332:323-329, 1988, Presta, Curr. Opin. Struct. Biol. 2:593-596, 1992, Vaswani and Hamilton, Ann. Allergy, Asthma & Immunol. 1:105-115, 1998, Harris, Biochem. Soc. Transactions 23:1035-1038, 1995, and Hurle and Gross, Curr. Opin. Biotech. 5:428-433, 1994. Antibodies of any class or isotype (e.g., IgA, IgA1, IgA2, IgD, IgE, IgG, IgG1, IgG2, IgG3, IgG4, and IgM) can be used.
The term “antibody” also refers to any antibody fragment(s) that retain a functional antigen binding region. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments, all of which are known in the art. Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site. Pepsin treatment yields an F(ab′)2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen. Fab′ fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. F(ab′)2 antibody fragments are pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known. “Fv” is the minimum antibody fragment which contains a complete antigen-binding site. Diabodies are described more fully in, for example, European Patent No. 404,097, International Patent Application WO 1993/01161, Hudson et al., Nat. Med. 9:129-134, 2003, and Hollinger et al., PNAS USA 90: 6444-6448, 1993. Triabodies and tetrabodies also are described in Hudson et al., Nat. Med. 9:129-134, 2003.
The term “antibody,” also includes antibody substitutes or any natural, recombinant or synthetic molecule that specifically binds with high affinity and specificity to a particular target. Thus, the term “antibody” or the term “antibody substitute” includes such synthetic antibodies or antibody substitutes such as aptamers, affibodies, affimers, avimers, aptides, and the like. Therefore, when describing the assay systems, devices and methods according to embodiments of the invention here, use of the term “antibody” for use as, for example, a reagent in the assay, indicates any of these alternatives also can be used.
The term “aptamer” refers to a nucleic acid or peptide molecule that specifically binds to a molecule of interest (target) with high affinity and specificity. Generally, aptamers are engineered through repeated rounds of in vitro selection or equivalently, SELEX (systematic evolution of ligands by exponential enrichment) to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues and organisms. The aptamer may be prepared by any known method, including synthetic, recombinant, and purification methods, and may be used alone or in combination with other aptamers specific for the same target.
The term “biomarker” refers to an analyte that appears or increases or decreases in amount, as an indicator of or marker of a particular disease or condition. In particular, this term includes any naturally occurring and detectable biological molecule, the presence of which, or the modulation of their concentration (increase or decrease) in a subject or subject sample, indicates a hydrosalpinx condition. For example, mesothelin is an example of a biomarker that has been identified herein as being overabundant in hydrosalpinx patients. Other biomarkers contemplated as useful with the present invention include Galectin-3-binding protein, Clusterin, Polymeric immunoglobulin receptor, Neutrophil gelatinase-associated lipocalin, Leucine-rich alpha-2-glycoprotein, Osteopontin, Alpha-amylase 1, WAP four-disulfide core domain protein 2, Mucin-16, CD55, CD59, GSTP1, PRDX5, TXN, PRDX6, and SOD1. The term “biomarker” also can refer to any analyte used to determine the presence or degree of a hydrosalpinx-related disease or condition.
The term “control” or “healthy control” as used interchangeably herein in reference to any one of the methods of the invention defined may include one or more control(s) selected from: the level of analyte found in a healthy control sample from a healthy individual (i.e. individual without hydrosalpinx), a healthy analyte level; or a healthy analyte level range. Samples obtained from a subject to be tested may be compared to a control to determine if the level of an analyte is increased or decreased relative to the control.
A “hydrosalpinx control” used in any one of the methods of the invention defined herein may include one or more control(s) selected from: a level analyte found in a sample from a subject known to have hydrosalpinx, a hydrosalpinx analyte level or a hydrosalpinx analyte level range. Specific examples of a level of analyte found in a sample from a hydrosalpinx subject is found in Table 3.
The term “sample” refers to any acquired material to be tested for the presence or amount of an analyte. Preferably, a sample is a fluid sample, preferably a liquid sample. Examples of liquid samples that may be tested using an assay described in embodiments herein, include bodily fluids including blood, fallopian tube or “tubal” fluid, blood, serum, vaginal fluid, plasma, saliva, urine, and spinal fluid. The term “sample” also includes material that has been collected from a subject and treated further, for example solubilized or diluted in a solvent suitable for testing.
The term “reagent” refers to a molecule that is used to detect a target analyte, including reagents that bind to the target (e.g. a capture molecule for mesothelin), agents that bind to the capture molecule, detectably labeled reagents and the like. Reagents are molecules typically involved in assays described herein.
The terms “capture molecule” or “capture reagent” are used interchangeably herein to refer to an antibody or antibody substitute that specifically binds to the target analyte to be detected. The capture reagent may include a detectable label associated therewith.
The term “hydrosalpinx therapy” refers to any treatment or method used to cure or treat, either partially or completely, hydrosalpinx or infertility caused by hydrosalpinx in a subject. Examples of therapies may include sclerotherapy, surgical removal or excision of all or a part of a fallopian tube, dilating the obstructed lumen, i.e., fallopian tube with a balloon catheter or other mechanism, removal of any peritubal or other adhesions in the fallopian tube, laser treatment of all or a portion of the anatomy to remove an adhesion or otherwise treat hydrosalpinx, treatment of any illness or cause of the onset of hydrosalpinx, for example, treatment or prevention of an infection, such as a chlamydial infection or any other infection or disease which may lead to hydrosalpinx.
The term “fertility treatment” pertains to a treatment designed to increase incidence of successful pregnancy. Examples of a fertility treatment include in vitro fertilization (IVF), fertility drug administration, intrauterine insemination (IUI), intracytoplasmic sperm injection (ICSI), gamete intrafallopian transfer (GIFT), and/or zygote intrafallopian transfer (ZIFT)
The terms “subject” and “patient” are used interchangeably herein. The term “subject refers to an animal, preferably a mammal such as a non-primate and primate (e.g., monkey and human” and most preferably a human of the female gender. A target subject may include a subject to which the assays, methods and treatments herein are targeted to, which may include, in a non-limiting embodiment, a human of the female gender of approximately 40 years of age or younger. In a more specific embodiment, the subject is 35 years or younger, or 30 years or younger.
The invention is described herein with reference to specific embodiments thereof. Various modifications and changes, however, can be made to the invention without departing from the broader spirit and scope of the invention. The specification and drawings are, accordingly, illustrative rather than restrictive. Throughout this specification and the claims, unless the context requires otherwise, the word “comprise” and its cognates, such as “comprises” and “comprising,” imply the inclusion of a stated item, element or step or group of items, elements or steps but not the exclusion of any other item, element or step or group of items, elements or steps. Furthermore, the indefinite article “a” or “an” is meant to indicate one or more of the item, element or step modified by the article.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope are approximations, the numerical values set forth in specific non-limiting examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Unless otherwise clear from the context, a numerical value presented herein has an implied precision given by the least significant digit. Thus a value 1.1 implies a value from 1.05 to 1.15. The term “about” is used to indicate a broader range centered on the given value, and unless otherwise clear from the context implies a broader range around the least significant digit, such as “about 1.1” implies a range from 1.0 to 1.2. If the least significant digit is unclear, then the term “about” implies a factor of two, e.g., “about X” implies a value in the range from 0.5X to 2X, for example, about 100 implies a value in a range from 50 to 200. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 4.
Assays according to the invention are biochemical tests that detect, in a specific and qualitative, semi-quantitative or quantitative manner, the presence of a target analyte in a sample. Specific binding assays of this type rely on the ability of a specific-binding “capture” molecule to bind to the target analyte to be detected or measured without appreciable binding to any other component of a complex sample containing numerous other macromolecules. Commonly, these types of tests are referred to as ligand binding tests, or, for example, immunoassays. A detection method is used to determine the presence and extent of the binding which occurs, therefore the assay involves a label or other means to produce a detectable or measurable signal in response to this binding. Many different labels or other mechanisms are available to permit detection of the signal through different means, such as detection of radiation, color change or intensity, fluorescence, chemiluminescence, enzyme activity, physical agglutination or clumping, and the like. Steps in a typical assay of this type usually involve (1) sample collection and preparation; (2) analyte capture; and (3) detection. Examples of assays that may be implemented to detect analytes useful in accord with the assay and method embodiments herein are further described below.
Sample collection can be performed according to any of the methods known in the art for collecting a bodily fluid, cellular, tissue or other sample. Any sample which contains or is suspected of containing the target analyte to be detected in the assay can be used. Samples can be taken from any subject, including human and animal subjects such as companion animals, laboratory animals, or livestock. Suitable subjects include, but are not limited to humans, simians, mice, rats, rabbits, dogs, cats, horses, cattle, sheep, and the like.
Fluid (liquid, semi-liquid, gelatinous, and the like) samples commonly are be collected by aspiration using a needle or collection in a vessel or by swab. Fluid samples optionally are treated prior to assay by, for example, mixing, filtration, dilution or serial dilution, or centrifugation (e.g., to remove cells, cellular debris, or other particulates) to produce a better or cleaner sample for assay. When the sample is a solid or semi-solid material, including but not limited to stool, biopsy or autopsy tissue samples, and the like, it optionally is treated by maceration or dissolution, for example.
Target analytes which can be detected using the systems and methods according to embodiments of the invention include any molecule for which a specific binding capture molecule can be found or made. Important analytes include nucleic acids, proteins, peptides, pharmaceuticals, hormones, biomarkers of disease, and the like. Most preferably, the analyte is a molecule of biomedical importance to diagnosis or treatment of a patient. In preferred embodiments, the analyte is of diagnostic significance, for example a biomarker, the presence of which indicates a disease or condition in the subject from whom the sample was taken. In some embodiments, if the analyte is a nucleic acid, the analyte in the sample optionally can be amplified by known methods of molecular biology such as PCR (polymerase chain reaction), or RT-PCR, prior to assay to increase the sensitivity of the method.
Capture of the analyte can be performed in solution or on a substrate using any convenient capture molecule. Most commonly, antibodies, such as polyclonal or monoclonal antibodies, or binding fragments thereof are used as the capture molecule, however any convenient capture molecule is suitable for use with the invention as long as it binds to the analyte specifically and with high affinity and specificity. Preferably, the capture molecule is able to bind the analyte at nanomolar concentrations or less, more preferably at picomolar or attomolar concentrations. Antibody substitute capture molecules such as aptamers, aptides, affibodies, affimers, avimers, and the like can serve as capture molecules, as well as receptors, specific binding partners, ligands, and the like.
Assays according to embodiments of the invention can be configured to operate in any convenient format known in the art. For example, the assay can be competitive or non-competitive, or a sandwich assay, and can be performed in solution (liquid phase) or on any of several known substrates. Some immunoassays can be carried out simply by mixing the reagents and sample and making a physical measurement, including newer “mix-and-measure” assays, which do not require the separation of bound from free ligand, for example bead-based assays. Such assays are called homogenous assays or less frequently non-separation assays. Multi-step assays are often called separation assays or heterogeneous assays. Commonly used assay types include radioimmune assays (RIA), immunoradiometric assays (IRA), enzyme-linked immunosorbant assays (ELISA), agglutination assays, precipitation or sedimentation assays, lateral flow (immuno)assays (LFIA), or blotting assays such as dot blots, western blots, and the like, each using any of the known capture molecules and detection systems. The assays according to embodiments of the invention can be automated using high throughput automatic analyzer instruments or robotic methods.
Many assays are named for the detection system which they employ, for example radioimmunoassays use a radioactive label, magnetic immunoassays use a magnet for separation, fluorescent immunoassays use a fluorescent label, while ELISA tests use an enzyme-substrate reaction to develop a detectable color. Fluorescent resonance energy transfer (FRET) systems and proximity ligation assays are other examples of assays that are described based on the detection system. Any of these assay types are contemplated for use with embodiments of the invention. Further description of detection methods is found below. Liquid phase ligand binding assays that rely on specifically binding capture molecules also include nucleic acid hybridization assays, which typically use an intercalating fluorescent dye that emits fluorescence via secondary structure conversion, molecular beacon capture of specific nucleic acid sequences, or real-time RT-qPCR using a molecular beacon or fluorophore intercalating dye.
A very simple form of assay is the “mix-and-measure” type or homogenous assay, in which the reagents are mixed together and the signal is read. Specific examples of such assays are described in, for example, Kreisig et al., Scientific Reports 4:5613, 2014; Miskolci et al., Meth. Mol. Biol. 1172:173-184, 2014; Wang et al., Biosensors and Bioelectronics 26(2):743-747, 2010; Luu et al., http://www.kiko-tech.co.jp/products/intellicyt/ique_screener/intellicyt_hybridoma.pdf; Edelhoch, H., Hayaishi, O., and Teply, L.: The Preparation and Properties of a Soluble Disphosphopyridine Nucleotide Cytochrome C Reductase, J Biol Chem 197, 97, 1952; Mahler, H., Sarkar, N., Vernon, L., and Alberty, R.: Studies on Diphosphopyridine Nucleotide-Cytochrome c Reductase II. Purification and Properties, J Biol Chem 199, 585, 1952; Stowell et al., Anal. Biochem. 15:58-64, 2016; Einhorn et al., EPMA J. 6:23. 2015. Other homogenous assays that may be implemented with the system and method embodiments described herein include:
Assays according to the invention can be used on a purely qualitative basis particularly when detecting the presence of mesothelin, and optionally, another analyte, or alternatively, detecting the presence of mesothelin in view of a subject symptomatic for hydrosalpinx. Indications of or symptoms of of hydrosalpinx include infertility, pelvic pain, vaginal discharge, or existence of or history of pelvic inflammatory disease (PID) in some embodiments. However, in many embodiments, assays according to the invention can be used with a measure of the intensity of the signal indicating binding to produce a quantitative or semi-quantitative result. These assays may provide a level of analyte in the sample, which may be compared to a threshold level of one or more analytes in the sample in order to detect hydrosalpinx in the subject.
For example, hand-held point-or-care analytical devices can provide a quantitative result by using unique wavelengths of light for illumination and either complementary-symmetry metal-oxide-semiconductor (CMOS; complementary metal-oxide-semiconductor) or charge couple device (CCD) detection technology to produce a readable image of the result. Using image processing algorithms specifically designed for a particular test type and medium, intensity is correlated with analyte concentrations. Other non-optical techniques for reporting quantitative results in the lateral flow test form include magnetic immunoassay (MIA). Liquid phase binding assays are performed in solution. Solid phase specific binding assays provide very sensitive detection of analytes in fluid samples. These assays incorporate a solid support to which a capture molecule (such as an antibody, antibody substitute, antigen, hapten, receptor, analyte, receptor, ligand, and the like, or any member of a specific binding pair) is attached. The support can be any convenient substrate, including but not limited to the inside surface of a reaction vessel, a plate, tube, well, dipstick, microfluidic conduit, particles or beads made of a material such as polystyrene, nylon, nitrocellulose, cellulose acetate, glass fibers, poly-vinylidene fluoride), gold, magnetic material, polysaccharide (e.g., agarose), and the like. The reaction site or substrate on which the capture molecules are immobilized also is chosen to provide characteristics for detection of light absorbance. For example, the reaction site may be functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof. In general, any suitable or appropriate material(s) can be used in accordance with the present invention.
Methods for immobilizing the capture molecule on these substrates depend on the identity of the substance to be immobilized and the surface. These methods are well known in the art and can be chosen and/or modified according to need by any person of skill in the art.
Detection of the binding of capture molecule to target analyte can be achieved by any of a large number of known methods. Any of these methods are contemplated for use with embodiments of the invention. Examples of labeling and detection methods include, but are not limited to, radioactive isotope, enzyme-substrate, colorimetric and visual, fluorescence, chemiluminescence, magnetic, molecular beacons, and the like.
In certain embodiments, the assay platform is configured for multiplex detection of more than one analyte. Such assays employ two or more capture molecules, each of which specifically binds an analyte, and two or more detection methods so that the binding of each analyte can be determined. In preferred assays of this type, the target analytes include an angiogenic ocular analyte and an inflammatory ocular analyte. The dual detection can be performed in a single container where all the reagents for both assays are mixed together, or in two separate containers or vessels.
In one embodiment, homogenous temperature and substrate resolved chemiluminescence multi-analyte immunoassay format can be implemented to detect one or more analytes in a sample. See Kang et al., Analyst, 2009, 134:2246-2252 for explanation of this assay format.
Traditional competitive (homogenous) assays involve a competition reaction in which the target analyte in the sample competes for binding to a specific binding capture molecule (such as an antibody or aptamer, for example) with a labeled analyte reagent. After binding, the amount of the labeled, unbound analyte is measured. The more analyte present in the sample, the less labelled analyte reagent is able to bind to the capture molecule, therefore the amount of labeled, unbound analyte is inversely proportional to the amount of analyte in the sample. In a competitive (heterogenous) assay, unlabeled target analyte from the sample competes for binding to the capture molecule with a labeled analyte reagent as described above, however the labeled unbound analyte reagent is separated or washed away and the remaining labeled bound analyte is measured. Any of these types of assays, or variations thereof as known in the art, are contemplated for use with embodiments of the invention.
Commonly, the capture molecule is immobilized on a membrane, a reaction vessel surface or on suspended beads such as agarose beads, and detection is achieved using a labeled secondary binding molecule, such as an antibody or aptamer, that specifically binds to the primary capture molecule or to another binding region on the target analyte. If the capture molecule is immobilized on beads, separation and detection can be achieved using flow cytometry, magnetic separation, and the like. In addition, binding of the capture molecule and target analyte can be detected in solution without immobilization on a substrate.
In a typical non-competitive assay, the target analyte binds to a specific capture molecule that is labeled. After separating the unbound labeled capture reagent, the bound material is measured. The intensity of the signal is directly proportional to the amount of unknown analyte in the original sample. Alternatively, the assay is performed in a “sandwich” format where the target analyte binds to the capture molecule (which usually is bound to a surface for ease of separation) and labeled secondary capture molecule also binds to the target analyte. The amount of labeled capture molecule on the surface is then measured. The label intensity is directly proportional to the concentration of the analyte because labelled antibody will not bind forming a “sandwich” if the analyte is not present in the unknown sample.
Sandwich format binding ligand affinity assays can be performed with different detection methods. Typically, these assays are performed as solid-phase assays, where the target analyte is “sandwiched” between an immobilized capture molecule and a labeled capture molecule, each capture molecule binding to a different, non-overlapping epitope or binding area of the analyte. Immobilization allows the user to remove unbound substances from the bound analyte prior to detection with the labeled capture molecule. The primary capture molecule can be immobilized on any surface, for example the surface of the testing vessel (e.g., a multiwell plate), beads, a dipstick, filters, or column resins. The capture molecules (primary and secondary (labelled)) can be selected individually from antibodies, antibody substitutes, receptors, aptamers, nucleic acids, or any specific binding molecule. Most commonly these assays use an enzyme detection system, but any detection system can be used. Further labels and detection systems are discussed below.
An exemplary sandwich-type assay can be performed using a biotinylated aptamer or antibody capture molecule, immobilized on a streptavidin plate or beads. Sample containing the target analyte is incubated in a buffered solution with the immobilized capture molecule and then is washed away, leaving bound target analyte. A secondary capture molecule, such as an antibody or antibody substitute, then is incubated in a buffered solution with the bound target. The sandwich complexes are detected directly, by detecting the label on the secondary capture molecule, or indirectly using a labeled antibody that binds to the secondary capture molecule. These assays are known in the art and can be modified as necessary by a person of skill, including determining optimum concentrations of the reagents, and the like.
Competitive assays can be designed on a number of platforms and using various detection methods, however a two-step assay is preferable when greater sensitivity is required or the available sample size is small. In a typical two-step assay, sample containing the target analyte is exposed to immobilized capture molecules that bind the analyte. The immobilized analyte, bound to the capture molecules, then is exposed to a solution containing conjugated (labeled) analyte at a high concentration. This conjugated analyte saturates any of the immobilized capture molecules which are not bound to target analyte from the sample. Before equilibrium is reached and the previously bound target analyte can be displaced, the conjugate solution is removed. The amount of label bound to the immobilized capture molecules is inversely proportional to the amount of analyte present in the sample.
“Pull-down assay” refers to an assay which comprises removal of a target from solution. This removal occurs when a capture molecule in solution or suspension is mixed with the sample containing the target analyte and specifically binds to it. The capture molecule is labeled or bound to a substrate which allows the bound material to precipitate, agglutinate or otherwise be physically separated, for example using simple gravity, a magnet, centrifugation, and the like. In an agglutination assay, capture molecules that are bi- or multimeric- (i.e., that possess two or more specific binding areas, like an antibody) or substrates bearing multiple capture molecules, bind to the target analyte, forming large complexes that clump, precipitate, or agglutinate in the solution and fall to the bottom of the testing vessel. These large complexes can be seen with the naked eye if large enough and contain a visible color, for example, or can be seen with the aid of a microscope. In some embodiments, the clumps also contain a label that can be detected by other means, or the clumped material can be analyzed by chromatographic means. Latex agglutination involves latex particles, preferably colored particles, which are coated with bound capture molecules, which form complexes in the presence of the target analyte. Pull-down assays are convenient methods to determine whether a physical interaction between the target analyte and the capture molecule has taken place, i.e., to determine the presence of the analyte or as a semi-quantitative assay to determine relative amounts of the analyte.
Lateral flow tests also known as lateral flow immunochromatographic assays, are simple devices intended to detect the presence (or absence) of a target analyte in sample (matrix) without the need for specialized and costly equipment. Typically, these tests are used for medical diagnostics either for home testing, point of care testing, or laboratory use. These tests are based on a series of capillary beds through and across which the sample fluid migrates from a sample area or sample pad, across defined areas that contain various reagents. A typical assay uses a conjugate pad, in which the conjugated capture molecule which binds specifically to the target analyte is located. Upon binding, the captured analyte continues to flow laterally to a second area where a secondary capture molecule binds and immobilizes the conjugate-analyte complex in a relatively small area. Once the complexes accumulate, the conjugate's label, usually a colored particle, becomes more concentrated and hence detectable, often by the accumulation of color. Lateral flow tests of this type can operate as either competitive or sandwich assays.
General background information regarding lateral flow immunoassay systems is provided in Lateral Flow Immunoassay, Raphael C. Wong and Harley Y. Tse (Editors), 2009, Humana Press, a part of Springer Science+Business Media, LLC. (Library of Congress Control Number 2008939893) and U.S. Pat. No. 8,011,228. A specific embodiment of a lateral flow test is as follows.
A certain threshold level of analyte preferably is detected in a sample in order to provide beneficial information regarding the subject. Persons of skill are able to determine the optimal concentrations of the capture molecule, conjugate (labeled) molecule, and other reagents and assay components tor optimal sensitivity and accuracy.
Preferred targets are proteins or peptides. The most preferred target analytes include, but are not limited to, mesothelin, Galectin-3-binding protein, Clusterin, Polymeric immunoglobulin receptor, Neutrophil gelatinase-associated lipocalin, Leucine-rich alpha-2-glycoprotein, Osteopontin, Alpha-amylase 1, WAP four-disulfide core domain protein 2, Mucin-16, CD55, CD59, GSTP1, PRDX5, TXN, PRDX6 and SOD1. Mesothelin is the most preferred target analyte. Other preferred targets are found in Table 3. In addition, explanation and scientific relevance of various targets are provided in the Examples below.
Experimental Procedures
Reagents.
The majority of chemicals used herein were obtained from Thermo scientific (Rockford, Ill.), Cell signaling Technology (Danvers, Mass.) and Invitrogen (Carlsbad, Calif.) and used without further purification unless otherwise stated. Antibodies to MSLN, CD59, SOD1, GSTP1 (Cell Signaling Technology, Danvers, Mass.) PRDX pathway cocktail and TF (abcam, Cambridge, Mass.) were purchased from the indicated vendors.
Ethical approval for this study was obtained from the Institutional Review Board at Madigan Army Medical Center (No. 212093). All women were aged 18-45 years and provided written and informed consent for study inclusion before sample collection. Fallopian tube aspirates (from women with hydrosalpinx) or lavages (from women undergoing tubeal re-anastomosis) and sera (for measurement of circulating estradiol and progesterone concentrations for endocrine staging and for validation analysis) were collected from women with regular menstrual cycles (24-34 days) who had no previous history of ectopic pregnancy and had not taken any hormonal preparations in the three months prior to surgery (n=26; mean age 31 years; see Table 2). Women in the control group (n=16; mean age 32.1±1 years) were fertile with a history of isthmic tubal interruption and desired fertility requesting microtubal anastomosis (MTA) surgery. Prior to laparotomy for MTA, a laparoscopic survey was conducted to assess adequacy of segments for re-anastomosis at which time a normal pelvis (no endometriosis, tubal disease or leiomyomata) was visually documented. Women in the hydrosalpinx group (n=10; mean age 30.5±2 years) were identified as having a communicating hydrosalpinx by hysterosalpingogram (HSG) performed three or more months prior to surgery. At laparoscopy, hydrosalpinx was confirmed by the presence of tubal distention>3 cm diameter in the setting of distal tubal phimosis and a variable degree surrounding pelvic and/or perihepatic adhesions.
Prior to general anesthesia, serum was collected by venipuncture for estradiol and progesterone analysis. For fallopian tube lavage specimen collection, laparoscopy, which is used to enter the abdomen, was converted to laparotomy via Pfannenstiel incision for women with adequate tubal segments to support re-anastomosis surgery. The external surface of the fallopian tube and fimbria were rinsed of any blood with warm normal saline (NS). The proximal (isthmic) end of each distal fallopian tube segment was entered with a 24-gauge needle and irrigated with 1 mL of NS. The lavage fluid was collected from the distal fimbriated end of the tube in a sterile conical tube, immediately placed on ice and taken to the lab for further processing. For hydrosalpinx specimen, the affected tube was entered at the isthmic-ampullary region of the tube using a laparoscopic aspirating needle attached to a sterile 10 cc syringe prior to salpingectomy for hydrosalpinx-associated infertility. The hydrosalpinx fluid was aspirated, transferred to a sterile collection tube, immediately placed on ice, and taken to the lab for further processing. The in vivo collection of tubal fluids precluded the potential confounding influence of ischemia on proteomic signatures.
Power analysis was performed using a pilot shotgun proteomics data set and an open source RnaSeqSampleSize package (http://www.biocondactor.org) to estimate the number of samples providing enough power to detect minimum differences in mean protein abundance between hydrosalpinx and lavages from healthy fertile controls. The within-group median dispersion (variances) was computed using DEseq2 ((http://www.biocondactor.org) for spectral count data collected from a pilot shotgun proteomics experiment for hydrosalpinx fluids (n=5) and lavages from healthy fertile controls (n=7). The power curves per hypothesis of the negative binomial distribution test were generated as a function of sample size required to detect log 2 fold changes of 1.5, 2, 3, at the adjusted p-value of 0.05, 0.01, and 0.001 and shown in
Tubal fluids collected from women with hydrosalpinx (n=10) and healthy fertile women undergoing tubal sterilization reversal (n=16) were immediately spun down at 200 g to pellet any cellular contaminants. The supernatant was then transferred to Eppendorf tube (e.p.t) and any cell debris was removed by further centrifugation at 14,000 g for 10 minutes. The supernatant was transferred into clean e.p.t tube, spiked with cocktails of protease inhibitors (Thermo Scientific) and then stored in 50 μl aliquots at −80° C. until used for the downstream analysis.
For label free shotgun proteomics, proteome content of each tubal fluid was normalized via BCA assay (Thermo Scientific), and each sample was diluted to 5 micrograms in 20 microliters reduced and alkylated with DTT and iodacetamide respectively. Proteolytic digestion was performed with modified trypsin (Promega) for 18 hours at 37° C. A primary stock solution of pierce peptide retention time calibration mixture standard (ThermoFisher Scientific) containing heavy labeled lysine and arginine was prepared to a concentration of 1 pmole/μL each. The standard peptides mix was added to each proteolytic digestion such that their final concentration was 75 fmole/μL. Six hundred nanograms of each sample was analyzed by LC-MS and the order of sample injections were randomized to account for random error. Separation of peptides via liquid chromatography was performed using Acquity UPLC system. Mobile phase A (aqueous) contains 0.1% formic acid in water and mobile phase B (organic) contained 0.1% formic acid in 100% acetonitrile. Sample was trapped and desalted on-line in mobile phase A at 10 μL/minute for 5 minutes using a nanoAcquity UPLC trap column 5 μm, 180 μm×20 mm. The sample was subsequently loaded onto an Acquity UPLC M-class peptide BEH C18 130 Å, 1.7 μm, 75 μm×150 mm, reversed phase column with 5% mobile phase B.
Separation was obtained by employing a gradient of 5% to 30% mobile B at 0.300 μL/minute over 180 minutes. The column was washed at 90% mobile phase B for 10 minutes, followed by a re-equilibration at 99% A for 15 minutes. Mass spectrometry analyses of samples were performed using LTQ Orbitrap XL mass spectrometer (Thermo Scientific). Positive mode electrospray was conducted using a nebulized nanoflow sprayer and the mass spectrometer was operated at a resolution of 60,000. Quantitative and qualitative data was acquired using alternating full MS scan and MS/MS scans. Survey data was acquired from m/z of 380 to 1800 and each full MS scan was followed by six MS/MS scans using data-dependent acquisition with the dynamic exclusion option specified as follows: repeat count, 2; repeat duration, 30 s; exclusion duration, 45 s.
Automated identification followed by differential quantification of proteins in sets of samples was accomplished by Proteome Discoverer version 1.4.0.288 (Thermo Fisher Scientific) and open source R-packages respectively. Within this over all workflow, first peak lists from Xcalibur raw data file were extracted using Proteome Discoverer spectrum selector algorithm once the raw data files of interest were imported into proteome discoverer. Spectrum selector node was set to its default values, therefore the data was not smoothed, no signal to noise threshold was set, and no charge state filtering or de-isotoping took place. Prior to searching the peak list files, Swiss-Prot.fasta human database 20,183 sequences was downloaded (Mar. 23, 2017) from UniPort (http://www.uniprot.org/) to the local server and appended with decoy sequences. The resulting peak list files were then searched against the human database by running SEQUEST search engine. SEQUEST searches performed with search parameters set to search for tryptic peptides with up to 2 missed cleavages (C-Term K/R restrict P), static modifications with carbamidomethyl (C), dynamic modifications with deamidation (N/Q), and/or oxidation (M). Precursor mass tolerance was set to 10 ppm and fragment mass tolerance to 0.5 Da.
Peptides identification were validated via running decoy database search with Percolator. Peptide-spectrum match (PSM) is considered correct if it achieved the estimated q-value (minimal false discovery rate) of 0.01 or less. For protein identification, a minimum of two peptides with delta Cn (delta correlation) <=0.05 and with high confidence based on q<=0.01 were utilized to ensure the protein level stringency. Peptide and protein grouping were enabled, peptides were grouped by both mass and sequence similarities. Protein grouping was considered only PSMs with high confidence and via applying strict maximum parsimony principle.
The relative abundance for identified proteins was measured on the basis of the spectral count (the total number of identified peptide spectra matched to the protein of interest, including those redundantly identified). The spectral counts or peptide-spectrum matches (PSMs) and associated protein identity was exported to MS-EXCEL. This MS-excel file was then processed to generate spectral count matrix. The count matrix cell in the ith row and the jth column indicates how many peptide spectra matched to protein i in sample j (which stems from an independent biological replicate). Missing count values were replaced with zero and zero counts in DEseq algorithm (21) treated as some positive value below 1. The spectral count matrix along with the metadata Table, which contains samples ID, Factors and Levels were read into R.
For differential expression analysis, the raw count data was processed using an DESeq2 which is implemented as a package for the R statistical environment (21) and available through Bioconductor repository (http://www.biocondactor.org). DESeq2 is an open source and one of the two widely used differential expression analysis methods for high throughput count data. The method and the workflow used to test for differential expression is described in detail by Love et al (21). Briefly, the analysis with DEseq2 started with the observed spectral count matrix where the matrix entries Xij indicate the number of spectral counts that have been unambiguously mapped to a protein i in a sample j. In case where there were multiple isoforms in the sample and they were resolved based on additional unique peptides, PSMs from the common peptides were shared among the isoforms. DESeq2 analysis is based on the assumption that Xij are observation from the negative binomial distribution with expected mean μij and dispersion αij, the expected spectral count matrix is expressed as generalized linear model (GLM) of binomial family with log link (22). Based on prior studies demonstrating sex steroid regulation of protein expression in the Fallopian tube (23, 24), we sought to control for menstrual cycle phase in comparing the proteomic signatures from hydrosalpinx-affected and normal tubes. Experimental samples from each group were matched for menstrual cycle phase (Table 2), and cycle phase was added to the model formulae as a second factor affecting protein expression. The raw spectral count data (spectral count Table) and the metadata Table were used to generate a DESeqDataSet object using DESeqDataSetFromMatrix. The DEseq function was run using DESeqDataSet object which sequentially performs estimateSizeFactors, estimateDispersions, and nbinomWald Test analysis that are wrapped into a single DEseq function. Proteome result Table including log 2 fold changes, P-values, and adjusted P values were extracted using results function. Differential expressed proteins were then filtered with Benjamini Hochberg adjusted p<=0.05 and summarized in Table 3.
To assess overall similarity or differences between samples within and among the experimental groups and to identify any outlier data, we computed the Euclidean distance between samples using the R function dist on normalized and regularized log (r log) transformed spectral count data. Sample-to-sample distances were then visualized via hierarchical clustering and Heatmap and/or PCA analysis using heatmap and/or plotPCA R-function.
Tubal fluid collected from women with hydrosalpinx (n=6) and tubal lavages from cycle phase matched healthy fertile women (n=5) were processed for immunoblot analysis using an established protocol. Briefly, twenty micrograms of tubal fluid proteome from each sample resolved on 4-12% polyacrylamide gels (Invitrogen) and transferred onto nitrocellulose membrane. The membrane was blocked with 5% skim milk, washed, and incubated overnight with specific primary antibody against MSLN (0.59 ng/μl), CD59 (8 pg/μl) SOD1 (1.11 ng/μl), GSTP1 (0.04 ng/μl), PRX pathway (cocktail of TXN, PRX1, and TXNRD1, at 0.38X/μl), or TF (0.70 ng/μl). The membrane was washed and incubated with horseradish peroxidase (HRP)-conjugated secondary antibody (2 ng/μl). Once the blot was incubated in chemiluminescent substrate, signals were captured using Kodak imaging system. The bands on the image were processed and quantified using an open source image processing tool ImageJ 1.48V (http://imagej.nih.gov/ij) software. Each blot was re-probed for transferrin for the purpose of signal normalization (loading control).
Immunohistochemical analysis of fallopian tissue sections from both hydrosalpinx and healthy control was conducted using an established protocol. Briefly, 4 μm tissue sections from formalin-fixed paraffin-embedded tissues were prepared and deparaffinized. The antigenic epitopes were unmasked using the antigen retrieval method. Then, the sections were soaked in peroxidase and alkaline phosphatase blocking reagent (Dako North America Inc.,) for 30 min at room temperature to inactivate the endogenous peroxidase activity. The sections were then blocked with 2.5% horse serum for 30 minutes, and incubated overnight at 4° C. with anti-MSLN at 52 pg/μl. Sections were then incubated with a peroxidase-conjugated anti-rabbit and visualized with DAB (Impact DAB kit, Vector). Cell nuclei were counterstained with hematoxylin for 5 seconds, and then rinsed in water. For CD45, however, staining in 4 μm paraffin-embedded tissue section was performed using automated system (Ventana Discovery).
Plasma collected from women with hydrosalpinx (n=9) and healthy fertile women (n=9) were processed for ELISA using an established protocol (www.RnDSystem.com). Briefly, human mesothelin standards with working concentration of 10, 5, 2.5, 1.25, 0.625, 0.313, 0.156, 0 ng/mL (each in duplicates) and 10 fold diluted plasma samples (each in triplicates) were added into 96-well plate coated with a monoclonal antibody specific for human mesothelin and incubated for 2-hours. The plate was washed and incubated with monoclonal antibody specific to mesothelin conjugated to HRP. The plate was washed, incubated with substrate for 30 min for signal to develop. The absorbance of each well was read at 450 nm and at 570 nm after the addition of stop solution. Once the absorbance readings at 570 nm and for blanks subtracted from 450 nm reading, standard curve was generated and fitted using a four-parameter logistic curve fit (
List of proteins with significant changes (Padj value<=0.05) and their corresponding estimated log 2 fold changes were uploaded into Ingenuity Pathway Analysis (IPA) (https://www.qiagenbioinformatics.com). Cellular locations and biological insights for the uploaded protein lists were performed using IPA software and manually curated databases.
Plasma Mesothelin Concentration in Women with and without Hydosalpinx
Plasma collected using heparin as anticoagulant from patients with and without hydrosalpinx were tested for mesothelin using Fujirebio Diagnostic Inc. Mesomark ELISA kit Assay protocol. However, the diluted (101-fold, per assay protocol) plasma levels of mesothelin in women with and without hydrosalpinx were below the lowest concentration of the Calibration Fit. In order to optimize the accuracy of the results, the levels of mesothelin were re-assayed at various dilutions of plasma from one of hydrosalpinx patients.
From the linearity test (
Thus, plasma collected from women with hydrosalpinx (n=13) and health controls (n=18) were 20-fold diluted and re-assayed for mesothelin. Concentration of mesothelin in the healthy control and patients with hydrosalpinx (
From the shotgun proteomics and validation ELISA analyses we have confirmed elevated levels of mesothelin in patients with hydrosalpinx. Based on this finding, we believe that higher and lower values for mesothelin in the plasma is a predictor of a positive and a negative test for hydrosalpinx respectively. In order to know what these relationship looks like we run Receiver operating characteristic (ROC) analysis on the second ELISA data set using SPSS. Looking at the ROC curve (blue line),
Label free LC-MS/MS analysis provided coverage with over 5,000 peptides which mapped to 519 non-redundant proteins in the two experimental groups combined. The distribution of these 519 proteins with respect to cellular location is provided in
As expected with samples obtained from a fluidic microenvironment, the majority (47%) of the identified proteins were extracellular. However, cytosolic, nuclear and proteins with unknown localization were also represented, comprising 39, 10 and 4% of the total proteins identified, respectively.
Global relationships among samples were visualized by performing a principal component analysis on r log transformed spectral count data and shown in
The overall protein quantification for the contrast hydrosalpinx verses lavages from healthy controls were visualized in log 2 fold changes against the mean normalized counts plot (
To identify relationship of the differentially expressed proteins, and their enrichment in pre-defined pathways, the list of differential abundant proteome were analyzed using IPA core analysis a web-based entry tool developed by Ingenuity System, Inc. (https://www.qiagenbioinformatics.com). The core analysis algorithms are based on a master network which derived from Ingenuity Knowledge Based (https://www.qiagenbioinformatics.com). The significant results from this analysis were summarized in the pre-defined pathway (
Enrichment analysis revealed up-regulation of more than 25% of proteins involved the complement pathway in hydrosalpinx fluid, suggesting significant activation of the complement system in the pathophysiology of this tubal disorder (
It is clear from these networks that the direction of the fold changes for the majority of proteins are consistent with the predicted downstream status of the biological processes. The increase in the generation of reactive oxygen species (ROS), but decease in the metabolism of hydrogen peroxide was consistent with the directionality of the fold changes for the proteins on this network with the exception of MUC1 and FTH1. It is also clear in this network that the predictive increase in ROS could also be attributed to the predictive decrease in metabolism of hydrogen peroxide due to dysregulation of proteins that are responsible for ROS detoxification.
The interactions described by these networks identify significant functional modules that are coordinately dysregulated in hydrosalpinx tubal fluid relative to tubal lavage from fertile controls. IPA core analysis not only helped uncover the dysregulated protein modules and processes but also provided a framework for evaluating individual protein.
To verify the directionality of fold change identified by shotgun spectral counting proteomic analysis, western blot for representative proteins was conducted in a subset of 11 patient samples (six hydrosalpinx, and five healthy control tubal lavages). Protein that is novel in the hydrosalpinx pathology (MSLN) and proteins which are involved in inflammatory and tissue damage pathway (CD59) and in the oxidative stress pathway (SOD1, GSTP1, PRX1, TXN and TXNRD1) were selected for immunoblot validation. The relative fold changes for these proteins were computed using ImageJ software with statistical significance computed using student's T-test (Table 1). For all 6 proteins, the directionality of significant fold change difference detected by shotgun spectral counting proteomics was confirmed.
It is clear from the western blot (
Mesothelin is a C-terminal cleaved product of the parent 69 Kda protein encoded by MSLN gene. This cleavage also gives rise to N-terminal 31 Kda megakaryocyte potentiating factor (MPF). To explore whether observed bands in the before and after de-glycosylated samples represent MPF in addition to MSLN and its glycosylated variants we cut out the gel bands, in-gel digested, followed by LC-MS/MS analysis. The LC-MS/MS analysis identified peptide sequences spanning from the N- to the C-terminus of the parent 69 Kda protein. However, there is no band around 69 Kda precursor on the western blot (
The result from IPA core analysis shown in
To evaluate the involvement of the PRX pathways key targets in hydrosalpinx compared to control lavages were analyzed using the PRX pathway western blot cocktail (Abcam) which is designed to determine the relative abundance of TXN, TXNRD1, and PRX1 proteins that are key enzymes in the thioredoxin redox pathway. As shown in (
In addition, verification western blot analysis for additional redox modulator proteins including GSTP1 and SOD1 in hydrosalpinx and healthy control lavages (
To determine mesothelin tissue localization immunohistochemistry (IHC) analysis was carried out in representative fallopian tissues sections from hydrosalpinx- and healthy controls.
A very strong immunostaining for MSLN observed in hydrosalpinx (
In addition, IHC analysis for CD45, shown in
To determine whether mesothelin shed into the peripheral blood and to accurately measure it, plasma collected from women with hydrosalpinx and healthy fertile control were analyzed using quantikine ELISA. The concentration of mesothelin (ng/mL) in each plasma sample was determined using a calibration curve (
The scatterplot of plasma mesothelin in women with hydrosalpinx (n=9) and healthy fertile controls (n=9) is shown in
The adverse effects of hydrosalpinx not only on the physiology and morphology of the fallopian tube but also on the outcome of IVF have been well documented (11, 35-38). Examination of molecular changes in the fallopian tube lavage upon hydrosalpinx-formation is necessary to understand the mechanisms underlying hydrosalpinx mediated tubal damage, chronic pelvic inflammatory disease, impaired IVF successes and is central to the discovery of novel diagnostic and treatment options. In this study, we have focused on proteomics abundant changes in fallopian tube lavage, to understand the host responses and/or possible mechanisms that are responsible for hydrosalpinx pathology. We have identified a total of 519 proteins in both the healthy lavage and hydrolapinx fluid combined using a label free shotgun proteomics platform. Of these proteins, we report changes in abundance for over 110 proteins in hydrosalpinx fluids compared to lavages of healthy fallopian tube.
Among over-abundant proteins in hydrosalpinx were mesothelin (MSLN) and binding partners MUC1, MUC5B, and MUC16. These proteins are intimately associated with inflammation and cancer pathophysiology with mesothelin levels highly correlated with mucin levels in several types of human cancers (30, 39, 40). MSLN expression and its distribution in normal human tissue is limited to the mesothelial cells lining of the pleura, peritoneum, and pericardium (41). However, it is highly expressed in many human cancers (30, 41) and actively shed from cell surface, generating an antigen pool in the circulation and the tumor interstitial space. Like in the tumor microenvironment, in the occluded fallopian tube filled with hydrosalpinx the expression level of MSLN both the bound,
Unlike mesothelin, the different isoforms of mucins are ubiquitous and they are produced by epithelial tissues. Mucins can form gels; therefore, they are key components in most gel-like secretions, serving functions from lubrication to cell signaling, to forming chemical barriers. In addition, expression of cell-surface and gel-forming mucins can be upregulated by inflammatory cytokines such as interleukins, interferons, tumor necrosis factor-, nitric-oxide (42-44). It has been shown that Neutrophils stimulate increases in production of both gel-forming and cell-surface mucins by mucosal epithelial cells (45-47). These reports and the results from this study may have provided link between mucins, innate mucosal immunity, and mucosal inflammatory responses.
The co-overexpression of MSLN along with several mucins in many adenocarcinomas has been implicated to have a role in cell adherence, cell survival/proliferation, tumor progression, and chemo-resistance (26, 48). Mice in which the mesothelin gene had been inactivated appeared perfectly normal (49), they bred normally, had normal blood counts, and grew to normal size (49). Even though MSLN role in cancer is still unclear and may be cancer type specific, it has several features mentioned above which make it potential target for cancer diagnosis and therapy (50). As a result, several pre-clinical and phase I/II clinical trials are currently evaluating antibodies against MSLN and mucins as therapeutic alternatives (51-54). Inventors have discovered herein an overabundance of MSLN and its binding partners MUC1, and MUC16 in hydrosalpinx compared to normal lavage. Overabundances of these set of proteins and their possible functions have not been reported previously with hydrosalpinx. In addition, the overlapping pathophysiology involving MSNL between cancer and hydrosalpinx is yet to be determined. However, this result demonstrate that hydrosalpinx shares a molecular target with tubal and/or ovarian cancer pathology. It is possible that mesothelin overexpression with hydrosalpinx precedes tubule and/or ovarian cancer. Mesothelin is related to the disease process of hydrosalpinx that may be unconnected to the development of cancer. In this case it would be the first instance of mesothelin overexpression in the context of a disease process unrelated to cancer. The identification of mesothelin in the context of disease independent of cancer has never been described and has implication that may lead to a greater understanding of this disease process and the repurposing of anticancer therapies for hydropsalpinx. The results from ELISA assay provided herein identifies plasma mesothelin as a biomarker for hydrosalpinx. This finding provides a useful diagnostic for hydrosalpinx, and for a test for tracking a response to therapy.
Analogues to ovarian cancer we also observed a significant increase of MSLN in plasma from patients with hydrosalpinx. Hydrosalpinx typically presents in sexually active woman at an average age of 25 years79. Ovarian cancer occurs predominately in woman middle age or older with a family history of cancer80. MSLN in the sera of patients with ovarian cancer and mesothelioma has been identified as diagnostic biomarker32, 81. It is possible that MSLN has utility as a non-invasive diagnostic biomarker for hydrosalpinx in younger woman with prior history of PID. However, it would not be able to distinguish hydrosalpinx in woman at risk for ovarian cancer. The other limitation worth noting, is that not all woman with higher concentrations of MSLN in tubal lavages exhibited greater amounts in their plasma (
Nearly two third of the up regulated proteins in hydrosalpinx are associated with inflammatory responses. Subsets of these proteins are mainly involved in biological process that activate neutrophils movement and infiltration, promote binding of professional phagocytic cells, and phagocytosis by macrophages. These bio-processes suggest persistent extravasation of lymphocytes from the circulation into the site of occluded fallopian tube filed with hydrosalpinx and thus promote inflammatory responses. The other subsets are mainly part of complement systems and this subset incorporates 10 out of 37 known complement systems along with complement regulators including CD55 and CD59 are over abundant in hydrosalpinx. The co-over expression of over 25% of the complement proteins, via enrichment analysis, predicts the significant activation of the complement system in the hydrosalpinx (ref
On the contrary, complement is also known to be pro-inflammatory and to cause necrotic cell death (59). The balance between clearance enhancing anti-inflammatory properties and necrosis-inducing pro-inflammatory actions of complement may be crucial in determining the consequences of apoptotic cell death in tissues. Whether the over-abundance of complement protein is protective or damaging in the context of hydrosalpinx pathology is yet to be determined. However, it is known that self-cells are normally protected from complement by membrane bound complement regulators including CD46, CD55 and CD59. Prior studies revealed loss of both cell bound CD46 and CD59 during neutrophil apoptosis in vitro, and this loss made the cells more susceptible to complement-mediated lysis (60). In the same study, the lost membrane bound CD46 and CD59 has shown being accumulated in the supernatant. Similarly, over-abundance of both CD55 and CD59 in the hydrosalpinx may have been accompanied with loss of membrane bound CD55 and CD59.
In addition, the soluble form of CD59 from urine has shown to retain its specific complement binding activity, but exhibits greatly reduced ability to inhibit complement membrane attack (28). In the current study, the accumulation of soluble CD55 and CD59 coupled with an increase in complement-associated proteins and inflammatory cytokines suggests that complement mediated lytic processes may contribute to the striking mucosa fold loss and tissue damage observed in tubes affected with hydrosalpinx. Mucosa fold loss has been correlated with poor recovery of fallopian tube function and permanent loss of fertility (61). Importantly, a recent study also suggest that complement is not a strictly intravascular system; instead, local secretion of complement components by tissue and infiltrating cells, and potentially even intracellular complement turnover, contribute to the overall complement response in many circumstances (62, 63). In this regard, over-abundant complements in the hydrosalpinx may have been from local secretion. Taking together our results suggest that complement activation can be one of the mechanisms by which hydrosalpinx orchestrate chronic inflammatory process, the different degrees of tubal mucosa fold loss, and tubal tissue damage.
Among the dysregulated proteins in hydrosalpinx fluid relative to lavages from healthy controls were detoxification enzymes involved in the ROS defense mechanism. Their down-regulation is predicted to result in decreases in hydrogen peroxide metabolism and subsequently, increases in reactive oxidative species (ref
The expression and activity of detoxification enzymes within the Fallopian tube is critical for normal reproductive physiology. Intratubal expression of superoxide dismutase 1 (SOD1), glutathione S-transferase pi 1 (GSTP1), thioredoxin (TXN) and peroxiredoxin (PRX) are induced by the presence of gametes in the oviduct, highlighting the importance of oviductal regulation of ROS for successful fertilization, embryo cleavage and/or embryo transit (20, 67). Recognition of the beneficial effects of SOD upon sperm viability and motility has made its addition to sperm cryopreservation media routine (68, 69). Furthermore, the addition of antioxidant enzymes such as SOD and catalase (CAT) to oocyte in vitro maturation (IVM) media results in improved fertilization rates and embryonic cleavage rates (70) whereas the addition of ROS such as xanthine and xanthine oxidase decreases both fertilization and embryonic cleavage rate (70). Studies in the bovine oviduct revealed that antioxidant enzymes such as glutathione peroxidase (GPX1), catalase (CAT) and the major cellular antioxidant GSH normally increase over the course of the estrus cycle (71). Additionally, the level of SOD in the bovine oviduct epithelium and its activity in the oviductal fluid remain at a high level throughout the estrus cycle (71). Consistent with these preclinical observations, we noted increased expression of SOD1 in lavage fluid from healthy Fallopian tubes irrespective of menstrual cycle phase (
The co-dysregulation of these key detoxification enzymes in hydrosalpinx contributes to a microenvironment of increased oxidative stress detrimental to both gamete viability and early embryo development. These findings support increased inflammation and oxidative stress as the molecular basis for the observed embryotoxicity of hydrosalpingeal fluid likely underpinning the observed impairment of embryonic implantation in IVF.
Key mediators in mitigating ROS mediated cell death were also decreased in the hydrosalpinx fluid compared to fluid from healthy Fallopian tubes. ROS alter most cellular molecules such as lipids, proteins and nucleic acids and if not resolved through both enzymatic and non-enzymatic antioxidation pathways, lead to cell death. Heat shock protein family members (HSPB1/HSPA1A/HSPA1B), aldolase (ALDOA), selenium binding protein 1 (SELENBP1) and protein/nucleic acid deglycase DJ-1 (PARK7) mediate protection against stress, cell death and tissue necrosis by attenuating cellular stress (73-75). HSPB1 prevents apoptosis via directly inhibiting caspases (CASP9 and CASP3) and dysregulation of HSPB1 results in cell death (76). In addition to its function in glycolysis, glyceraldehyde-3-phosphae dehydrogenase (GAPDH) has an important role in DNA repair and replication, post-transcriptional regulation, gene expression and cell death (77, 78). In hydrosalpinx fluid, a decreased expression of SELENBP1 (log 2FC −3.39; P<0.001), ALDOA (log 2FC −2.71; P<0.001), PARK7 (log 2FC −2.29; P<0.05), HSPB1 (log 2FC −1.73; P<0.01), HSPA2 (log 2FC −1.6; P<0.01) and GAPDH (log 2FC −1.9; P<0.05) was observed. The co-down regulation of proteins that are involved in removing ROS with proteins that are directly associated with prevention of cell death contribute to a cytotoxic environment in hydrosalpinx characterized by ROS mediated cell death, tissue necrosis and complement mediated tissue lysis.
One of the benefits of the system and method embodiments herein include the ability obtain tubal samples at the time of MTA for analysis of the tubal proteome. Hormonal confirmation as to menstrual cycle phase allows analysis of potential cycle related influences on the molecular signatures of tubal fluid specimens. In some embodiments, tubal lavages were performed with gentle infusion on a saline rinsed surgical field and only specimens with <1% blood contaminants were included in the study.
Expression analysis using a discovery shotgun proteomics spectral counting approach has allowed for the identification of statistically significant differential expression of 116 proteins. Significant up-regulation of mesothelin in hydrosalpinx is a novel finding that has diagnostic and therapeutic implications as described herein. The ELISA assay results in the plasma suggest particular benefits of plasma mesothelin level as a diagnostic biomarker. Currently, there are no diagnostic laboratory test for hydrosalpinx. The results enumerated herein demonstrate enrichment of the complement pathway which may mediate tubal mucosal fold damage associated with increased ectopic pregnancy risk in the setting of hydrosalpinx-affected Fallopian tubes. Down-regulation of detoxification proteins and proteins that mitigate ROS-mediated cell damage are likely to contribute to the embryotoxicity of hydrosalpingeal fluid that contributes to observed reductions in fertility in affected women. Differentially expressed proteins identified herein provide novel targets for diagnosis and treatment of hydrosalpinx.
aThe log fold change is expressed as log ration between the mean intensity of immunoblot for the hydrosalpinx and healthy controls after normalization to transferrin.
bProtein identified via IPA network analysis.
sapiens GN = LGALS3BP PE = 1 SV = 1 -
sapiens GN = LRG1 PE = 1 SV = 2 -
sapiens GN = SERPING1 PE = 1 SV = 2 -
sapiens GN = COL6A1 PE = 1 SV = 3 -
sapiens GN = ACE PE = 1 SV = 1 -
sapiens GN = OVGP1 PE = 2 SV = 1 -
sapiens GN = GSTP1 PE = 1 SV = 2 -
sapiens GN = C6 PE = 1 SV = 3 -
sapiens GN = SELENBP1 PE = 1 SV = 2 -
sapiens GN = AK1 PE = 1 SV = 3 -
sapiens GN = B4GALT1 PE = 1 SV = 5 -
sapiens GN = CRISP3 PE = 1 SV = 1 -
sapiens GN = SERPINA6 PE = 1 SV = 1 -
sapiens GN = PRDX5 PE = 1 SV = 4 -
sapiens GN = KRT8 PE = 1 SV = 7 -
sapiens GN = NPC2 PE = 1 SV = 1 -
sapiens GN = COL18A1 PE = 1 SV = 5 -
sapiens GN = TIMP1 PE = 1 SV = 1 -
sapiens GN = HSPB1 PE = 1 SV = 2 -
sapiens GN = PTGDS PE = 1 SV = 1 -
sapiens GN = GOLM1 PE = 1 SV = 1 -
sapiens GN = PLTP PE = 1 SV = 1 -
sapiens GN = TPI1 PE = 1 SV = 3 -
sapiens GN = HSPA1B PE = 1 SV = 1 -
sapiens GN = C1S PE = 1 SV = 1 -
sapiens GN = AHCY PE = 1 SV = 4 -
sapiens GN = HSP90AA1 PE = 1 SV = 5 -
sapiens GN = HMGB1 PE = 1 SV = 3 -
sapiens GN = PROS1 PE = 1 SV = 1 -
sapiens GN = ST13P4 PE = 5 SV = 1 -
sapiens GN = SOD1 PE = 1 SV = 2 -
sapiens GN = C1R PE = 1 SV = 2 -
sapiens GN = SERPINA5 PE = 1 SV = 3 -
This application claims priority to U.S. Provisional Application No. 62/642,378 filed Mar. 13, 2018 which is incorporated by reference in its entirety herein.
This invention was made with government support from the Madigan Army Medical Center, a subordinate organization of the United States Department of Army. The United States Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62642378 | Mar 2018 | US |