This disclosure relates generally to rotary engines for aircraft and, more particularly, to assemblies and methods for controlling lubrication of apex seals for a rotary engine.
A rotary engine for an aircraft may be configured, for example, as a Wankel engine. The rotary engine may include a rotor having a number of apex seals configured to contact a rotor housing as the rotor rotates within the rotor housing. The apex seals may be lubricated during operation of the rotary engine to minimize wear of the apex seals as well as the rotor housing. Various systems and methods are known in the art for lubrication apex seals of a rotary engine. While these known systems and methods have various advantages, there is still room in the art for improvement.
It should be understood that any or all of the features or embodiments described herein can be used or combined in any combination with each and every other feature or embodiment described herein unless expressly noted otherwise.
According to an aspect of the present disclosure, an assembly for controlling lubrication of a plurality of apex seals for a rotary engine includes a rotor housing, a first rotor, a lubrication system, a first vibration sensor, and an engine control system. The rotor housing forms a first rotor cavity. The first rotor is disposed within the first rotor cavity. The first rotor is configured for rotation within the first rotor cavity. The first rotor includes the plurality of apex seals. Each apex seal of the plurality of apex seals is configured to form a seal between the first rotor and the rotor housing as the first rotor rotates within the first rotor cavity. The lubrication system is in fluid communication with the first rotor cavity. The lubrication system is configured to supply a lubrication flow to the first rotor cavity for lubrication of the plurality of apex seals. The first vibration sensor is on the rotor housing. The first vibration sensor is configured to generate a vibration measurement signal. The engine control system is in communication with the lubrication system and the first vibration sensor. The engine control system includes a processor in communication with a non-transitory memory storing instructions, which instructions when executed by the processor, cause the processor to: identify that the vibration measurement signal exceeds a first vibration threshold, and control the lubrication system to increase a flow rate of the lubrication flow based on an identification of the vibration measurement signal exceeding the first vibration threshold.
In any of the aspects or embodiments described above and herein, the instructions, when executed by the processor, may further cause the processor to: identify that the vibration measurement signal decreases below a second vibration threshold, and control the lubrication system to decrease the flow rate of the lubrication flow based on an identification of the vibration measurement signal decreasing below the second vibration threshold.
In any of the aspects or embodiments described above and herein, the instructions, when executed by the processor, may further cause the processor to identify that the vibration measurement signal decreases below a second vibration threshold after identification of the vibration measurement signal exceeding the first vibration threshold.
In any of the aspects or embodiments described above and herein, the instructions, when executed by the processor, may further cause the processor to filter the vibration measurement signal based on a crank angle of the first rotor.
In any of the aspects or embodiments described above and herein, the instructions, when executed by the processor, may further cause the processor to filter the vibration measurement signal for portions the crank angle which are outside of one or more selected angle portions of a crank angle range.
In any of the aspects or embodiments described above and herein, the one or more selected angle portions combined may include less than 180 degrees of the crank angle range.
In any of the aspects or embodiments described above and herein, the assembly may further include a plurality of rotors. The plurality of rotors may include the first rotor. The rotor housing may form a plurality of rotor cavities. The plurality of rotor cavities may include the first rotor cavity. Each rotor of the plurality of rotors may be disposed within a respective rotor cavity of the plurality of rotor cavities.
In any of the aspects or embodiments described above and herein, the first vibration sensor may be a single vibration sensor for the assembly.
In any of the aspects or embodiments described above and herein, the plurality of rotors may be axially distributed along a rotational axis of the assembly. The first vibration sensor may be mounted to the rotor housing at an axial center of the rotor housing.
In any of the aspects or embodiments described above and herein, the lubrication system may be in fluid communication with each rotor cavity of the plurality of rotor cavities. The instructions, when executed by the processor, may further cause the processor to control the lubrication system to increase the flow rate of the lubrication flow to each rotor cavity of the plurality of rotor cavities based on the identification of the vibration measurement signal exceeding the first vibration threshold.
In any of the aspects or embodiments described above and herein, the lubrication system may be in fluid communication with each rotor cavity of the plurality of rotor cavities. The instructions, when executed by the processor, may further cause the processor to control the lubrication system to increase the flow rate of the lubrication flow to the first rotor cavity, relative to the other rotor cavities of the plurality of rotor cavities, based on the identification of the vibration measurement signal exceeding the first vibration threshold.
In any of the aspects or embodiments described above and herein, the assembly may further include a plurality of vibration sensors on the rotor housing. The plurality of vibration sensors may include the first vibration sensor.
According to another aspect of the present disclosure, a method for controlling lubrication of a plurality of apex seals for a rotary engine includes generating a vibration measurement signal with a vibration sensor for a rotor including the plurality of apex seals, monitoring the vibration measurement signal and identifying that the vibration measurement signal exceeds a first vibration threshold, and controlling lubrication of the plurality of apex seals by increasing a flow rate of a lubrication flow for the plurality of apex seals based on an identification of the vibration measurement signal exceeding the first vibration threshold.
In any of the aspects or embodiments described above and herein, the method may further include determining the first vibration threshold based on an engine power of the rotary engine.
In any of the aspects or embodiments described above and herein, monitoring the vibration measurement signal may further include filtering the vibration measurement signal based on a crank angle of the rotor.
In any of the aspects or embodiments described above and herein, filtering the vibration measurement signal may further include filtering the vibration measurement signal for portions the crank angle which are outside of one or more selected angle portions of a crank angle range.
In any of the aspects or embodiments described above and herein, filtering the vibration measurement signal may further include determining the one or more selected angle portions based on an operational state of the rotory engine.
According to another aspect of the present disclosure, an assembly for controlling lubrication of a plurality of apex seals for a rotary engine includes a rotor housing, a first rotor, a first vibration sensor, and an engine control system. The rotor housing forms a first rotor cavity. The first rotor is disposed within the first rotor cavity. The first rotor is configured for rotation within the first rotor cavity. The first rotor includes the plurality of apex seals. Each apex seal of the plurality of apex seals is configured to form a seal between the first rotor and the rotor housing as the first rotor rotates within the first rotor cavity. The first vibration sensor is on the rotor housing. The first vibration sensor is configured to generate a vibration measurement signal. The engine control system is in communication with the first vibration sensor. The engine control system includes a processor in communication with a non-transitory memory storing instructions, which instructions when executed by the processor, cause the processor to: filter the vibration measurement signal based on a crank angle of the first rotor, and compare that the filtered vibration measurement signal to a first vibration threshold to identify that a low lubricant flow condition is present or absent for at least one apex seal of the plurality of apex seals.
In any of the aspects or embodiments described above and herein, the instructions, when executed by the processor, may further cause the processor to filter the vibration measurement signal for portions the crank angle which are outside of one or more selected angle portions of a crank angle range.
In any of the aspects or embodiments described above and herein, the instructions, when executed by the processor, further cause the processor to generate a notification based on an identification of the filtered vibration measurement signal exceeding the first vibration threshold.
The present disclosure, and all its aspects, embodiments and advantages associated therewith will become more readily apparent in view of the detailed description provided below, including the accompanying drawings.
The engine 12 of
The rotor assemblies 24 are coupled to the engine shaft 26 and configured to drive the engine shaft 26 for rotation about a rotational axis 28. The engine shaft 26 is coupled to the rotational load 14 such that rotation of the engine shaft 26 by the rotor assemblies 28 drives rotation of the rotational load 14. The engine shaft 26 may be coupled to the rotational load 14 by a speed-reducing gear assembly 30 of the engine 12. The speed-reducing gear assembly 30 may be configured to effect rotation of the rotational load 14 at a reduced rotational speed relative to the engine shaft 26. The rotational load 14 of
The rotational assembly 20 of
The engine control system 22 of
The engine control system 22 may form or otherwise be part of an electronic engine controller (EEC) for the engine assembly 10. The EEC may control operating parameters of the engine assembly 10 including, but not limited to fuel flow so as to control an engine power and/or thrust of the engine assembly 10. In some embodiments, the EEC may be part of a full authority digital engine control (FADEC) system for the engine assembly 10.
The rotor housing 46 includes a housing body 54. The housing body 54 includes an interior surface 56 and an exterior surface 58. The interior surface 56 forms and surrounds a rotor cavity 60 of the rotor assembly 24. The rotor cavity 60 may be formed with two lobes, which two lobes may collectively be configured with an epitrochoid shape. The housing body 54 forms an intake port 62, an exhaust port 64, one or more fuel system passages 66, and one or more lubrication system passages 82. The intake port 62 is in fluid communication with the rotor cavity 60. The intake port 62 is configured to direct compressed air to the rotor cavity 60, for example, from the compressor section 16 (see
The housing body 54 of the present disclosure may be understood to be formed by a plurality of discrete housing body 54 portions such as, but not limited to, one or more rotor body portions each forming a respective rotor cavity 60, one or more intermediate body portions separating adjacent rotor body portions, and/or one or more end body portions forming ends (e.g., axial ends) of the housing body 54. However, the present disclosure is not limited to any particular number or configuration of rotor housing 46 components for forming the housing body 54.
The rotor 48 of
The rotor 48 of
Each apex seal 76 is disposed at a respective apex portion 78. Each apex seal 76 extends outward (e.g., radially outward) from each respective apex portion 78 toward the rotor housing 46. The apex seals 76 may be configured as spring-loaded seals, which spring-loaded seals are biased in an outer radial position. Each apex seal 76 is configured to sealingly contact the interior surface 56, thereby forming three separate working chambers 94 of variable volume between the rotor 48 and the rotor housing 46.
In operation of the engine 12, the fuel system is configured to effect rotation of the rotor 48 by directing a fuel into the rotor cavity 60 and igniting the fuel in a defined sequence. During each orbital revolution of the rotor 48, each working chamber 94 varies in volume and moves about the rotor cavity 48 to undergo four phases of intake, compression, expansion, and exhaust.
The vibration sensor 50 is positioned on the rotor housing 46. For example, the vibration sensor 50 may be mounted on the exterior surface 58. The vibration sensor 50 is configured to measure a vibration of the rotor assembly 24 and generate a vibration measurement signal (e.g., a signal proportional to the measured vibration). The vibration sensor 50 may be configured, for example, as an accelerometer, a strain sensor, or any other suitable sensor for measuring vibration of the rotor assembly 24. The vibration sensor 50 is in communication (e.g., signal communication) with the engine control system 22 (see
The lubricant system 52 of
During operation of a rotary engine, such as the engine 12, the apex seals for the rotary engine may experience insufficient lubrication flow which may cause accelerated wear of the rotor housing and the apex seals. We have observed that insufficient apex seal lubrication flow and/or other abnormal tribological operating conditions of the apex seals may exhibit increased vibration of the rotor assembly, as measured at the rotor housing. Increased vibration of the rotor housing, relative to baseline vibration levels for a particular engine operating condition, may indicate that the apex seals of the rotor assembly are experiencing or are more likely to be experiencing insufficient lubrication flow and/or abnormal tribological operating conditions.
Referring to
In Step 502, one or more vibration thresholds may be determined or otherwise identified or obtained for the rotor assembly 24. A first vibration threshold may be determined, which first vibration threshold may be indicative of a high-vibration condition for the rotor assembly 24. The first vibration threshold may be selected to identify a low lubrication condition and/or an abnormal tribological condition for the apex seals 76. A second vibration threshold may additionally be determined, which second vibration threshold may be indicative of a high lubrication condition or an acceptable lubrication condition for the apex seals 76. A value of the second vibration threshold may be lower than a value of the first vibration threshold. Values of the first vibration threshold and/or the second vibration threshold may be predetermined values which may be, for example, experimentally and/or theoretically (e.g., by computer-implemented modeling) determined for the particular engine assembly 10 (e.g., a particular engine assembly 10 configuration, engine model, etc.). Alternatively, values of the first vibration threshold and/or the second vibration threshold may be dynamically determined, for example, by the engine control system 22 based on collected vibration data (e.g., measured by the vibration sensor 50). Values of the first vibration threshold and/or the second vibration threshold may be determined based on a condition or operational state of the engine 12 (see
In Step 504, vibration of the rotor assembly 24 is monitored. For example, the engine control system 22 may monitor the vibration measurement signal generated by the vibration sensor 50. The engine control system 22 may monitor (e.g., continuously monitor) the vibration measurement signal generated by the vibration sensor 50 and compare the vibration measurement signal to the one or more vibration thresholds. The engine control system 22 may compare the vibration measurement signal to the first vibration threshold to identify that a low lubricant flow condition and/or an abnormal tribological condition is present or absent for the apex seals 76. The first vibration threshold may include a time component such that the engine control system 22 may identify that a low lubricant flow condition and/or an abnormal tribological condition exists for the rotor assembly 24 if the measured vibration is equal to or greater than a value of the first vibration threshold for an amount of time (e.g., a predetermined or dynamically determined time value). Upon identifying that a low lubricant flow condition and/or an abnormal tribological condition exists for the rotor assembly 24, the engine control system 22 may generate a notification (e.g., a warning light, an audible alarm, etc.) to alert a pilot and/or crew of an aircraft, associated with the engine assembly 10, of the abnormal condition.
The engine control system 22 may compare the vibration measurement signal to the second vibration threshold to identify that a normal or acceptable lubricant flow condition and/or tribological condition is present for the apex seals 76. For example, if the measured vibration exceeds the first vibration threshold, the engine control system 22 may compare the vibration measurement signal to the second vibration threshold to identify that the lubricant flow condition and/or tribological condition of the apex seals 76 has returned to normal or to an acceptable state. Like the first vibration threshold, the second vibration threshold may include a time component. Upon identifying that the lubricant flow condition and/or tribological condition of the apex seals 76 has returned to normal or to an acceptable state, the engine control system 22 may remove or otherwise dismiss a notification (e.g., a warning light, an audible alarm, etc.) which may have been generated to alert a pilot and/or crew of an aircraft associated with the engine assembly 10 of an abnormal condition. The pilot and/or crew may take one or more actions such as, but not limited to, increasing a lubrication flow to the apex seals 76 (e.g., by controlling the lubrication system 52) (see Step 506), reducing an engine power of the engine assembly 10, or one or more other actions for addressing a low lubricant flow condition and/or an abnormal tribological condition exists for the apex seals 76 of the rotor assembly 24.
Step 504 may include filtering the vibration measurement signal from the vibration sensor 50 based on a crank angle of the rotor 48.
We have observed that measured vibration of a rotor assembly (e.g., the rotor assembly 24) may be greater for a rotor (e.g., the rotor 48) in some portions of a crank angle range for the rotor, relative to other portions of the crank angle range for the rotor. Accordingly, vibration of the rotor assembly 24 may be monitored for portions of the crank angle range (e.g., the selected angle portions 92) which may exhibit greater vibration relative to other portions of the crank angle range. The engine control system 22 may filter the vibration measurement signal measured by the vibration sensor 50 such that the filtered vibration measurement signal does not include portions of the vibration measurement signal with the rotor 48 outside of the selected angle portions 92 and/or such that the engine control system 22 does not evaluate portions of the vibration measurement signal with the rotor 48 outside of the selected angle portions 92. Filtering the vibration measurement signal occurring with the rotor 48 outside of the selected angle portions 92 may improve the accuracy of the engine control system 22 for identifying normal and abnormal lubrication flow and tribological conditions for the apex seals 76 and may reduce the likelihood of incorrectly identifying that a low lubricant flow condition and/or an abnormal tribological condition is present (e.g., a false positive indication) for the apex seals 76. For example, filtering the vibration measurement signal measured by the vibration sensor 50 may facilitate differentiation of vibration associated with low lubricant flow condition and/or an abnormal tribological conditions from vibration associated with other engine conditions or operations (e.g., abnormal combustion vibration).
We have also observed that measured vibration of a rotor assembly (e.g., the rotor assembly 24), which is attributable to a low lubricant flow condition and/or an abnormal tribological condition for apex seals, may exhibit a relatively high frequency signature (e.g., >10 kHz) compared to measured vibration which is attributable to other engine components and operational conditions. Vibration measurement signals for the rotor assembly 24 may additionally or alternatively be filtered based on a vibration frequency of the of the vibration measurement signals. For example, the engine control system 22 may filter the vibration measurement signal measured by the vibration sensor 50 such that the filtered vibration measurement signal does not include portions of the vibration measurement signal which are outside of one or more selected vibration frequency ranges. Filtering the vibration measurement signals occurring with the rotor 48 outside of the selected frequency range may improve the accuracy of the engine control system 22 for identifying normal and abnormal lubrication flow and tribological conditions for the apex seals 76 and may reduce the likelihood of incorrectly identifying that a low lubricant flow condition and/or an abnormal tribological condition is present (e.g., a false positive indication) for the apex seals 76.
Values of the selected angle portions 92 may be predetermined values which may be, for example, experimentally and/or theoretically (e.g., by computer-implemented modeling) determined for the particular engine assembly 10 (e.g., a particular engine assembly 10 configuration, engine model, etc.). Alternatively, values of the selected angle portions 92 may be dynamically determined, for example, by the engine control system 22 based on collected vibration data (e.g., measured by the vibration sensor 50) to determine portions of the crank angle range 90 which exhibit relatively higher (e.g., greater than average) vibration measurement signals. Values of the selected angle portions 92 may additionally be determined based on a condition or operational state of the engine 12 (see
In Step 506, the lubrication flow supplied to the rotor cavity 60 is controlled based on the measured vibrations of the rotor assembly 24. The lubrication flow supplied to the rotor cavity 60 may have a baseline (e.g., default) flow rate controlled by the engine control system 22, which baseline flow rate may be based on an engine power of the engine 12 (e.g., based on a rotation speed of the engine shaft 26) (see
For rotor assemblies having a plurality of rotors, such as the rotor assembly 24 of
The engine control system 22 may control the lubricant system 52 to increase the flow rate of the lubrication flow for those affected one or more rotors 48. For example, the engine control system 22 may control the lubrication system 52 to increase the flow rate of the lubrication flow to a first rotor cavity 60 relative to the other rotor cavities 60 of the plurality of rotor cavities 60. In some cases, identification of the particular one or more rotors 48 exhibiting the low lubricant flow condition and/or the abnormal tribological condition may not be immediately performed using the vibration measurement signal from the vibration sensor 50. For example, where the vibration sensor 50 is a single (e.g., only) vibration sensor for the rotor assembly 24, identification of the particular one or more rotors 48 exhibiting the low lubricant flow condition and/or the abnormal tribological condition may not be immediately performed. Accordingly, the engine control system 52 may control the lubricant system 52 to increase the flow rate of the lubrication flow for all of the rotors 48 of the rotor assembly 24.
It is noted that various connections are set forth between elements in the preceding description and in the drawings. It is noted that these connections are general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect. A coupling between two or more entities may refer to a direct connection or an indirect connection. An indirect connection may incorporate one or more intervening entities. It is further noted that various method or process steps for embodiments of the present disclosure are described in the following description and drawings. The description may present the method and/or process steps as a particular sequence. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the description should not be construed as a limitation.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
While various aspects of the present disclosure have been disclosed, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the present disclosure. For example, the present disclosure as described herein includes several aspects and embodiments that include particular features. Although these particular features may be described individually, it is within the scope of the present disclosure that some or all of these features may be combined with any one of the aspects and remain within the scope of the present disclosure. References to “various embodiments,” “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. Accordingly, the present disclosure is not to be restricted except in light of the attached claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4660517 | Fujimoto | Apr 1987 | A |
10823097 | Lanktree | Nov 2020 | B2 |
Number | Date | Country |
---|---|---|
S6229603 | Jun 1987 | JP |
62248803 | Oct 1987 | JP |
H04241752 | Aug 1992 | JP |
H04246202 | Sep 1992 | JP |
2009138653 | Jun 2009 | JP |