This invention relates generally to an assembly including an actuator device useful for electrically connecting or disconnecting electrical conductive members, such as electrical lines, circuitry and wires, and electrical switches associated with electrical conductive members. More particularly, the invention relates to an assembly including a pyrotechnic-based actuator device, such as for appropriately electrically disconnecting or connecting electrical systems, such as, for example, automotive electrical systems, upon receiving an electrical signal in response to a predetermined condition, such as, for example, a short circuit or an automobile collision.
Dimple motors have been developed as “mini-actuators.” A dimple motor is a self-contained, pyrotechnic actuator having a stamped concave, or dimpled, canister. The dimple motor can be actuated by an electrical signal that activates a pyrotechnic material stored or housed within the dimpled canister. The actuated pyrotechnic material produces reaction products that cause the dimpled, concave end of the dimple canister to “pop” outward, resulting in a convex shaped dimple canister end. A dimple motor typically has a short, limited stroke, i.e., the distance the dimpled surface extends, or “pops,” upon actuation, and thus dimple motors have typically had only limited application. The stroke of a dimple motor is dependant on the size of the dimpled canister containing the pyrotechnic material. A stroke to storage ratio is the ratio of stroke length to the size of the dimple canister storing the pyrotechnic material. Dimple motors typically have a low stroke to storage ratio, generally less than one.
As will be appreciated, the undesired or unintended rupture or opening of the canister or chamber containing the pyrotechnic material and/or the reaction products formed therein can result in the device failing to perform in the intended manner as well as an unintended release of the pyrotechnic material or the products formed thereby.
Actuator devices having bellow-like features have been developed to produce a motion with a generally longer stroke than available with typical dimple motors. Upon receiving an electric signal, a pyrotechnic material reacts to produce gas and/or pressure to cause a portion of the device to extend. In practice, such an actuator device must be made of a material of sufficiently high strength and thickness in order to avoid rupture upon reaction of the pyrotechnic material therein contained. As will be appreciated, such requirements can detrimentally impact either or both the cost and/or weight of such a component.
In this regards, automobile manufacturers have generally sought to minimize the weight of component parts, without sacrificing quality and safety.
Thus, there is a need for a lightweight, relatively inexpensive and efficient actuator device for appropriately electrically disconnecting or connecting automobile electrical systems, upon receiving an electrical signal in response to a predetermined condition, such as, for example, a short circuit or an automobile collision. In particular, there is a need for an actuator device assembly that allows an actuator device to be made of thinner and/or lighter weight materials and yet avoids undesired or unintended rupture. Further, there is a need for an assembly including an actuator device that, upon an electrical signal, can disengage an electrical switch, or otherwise sever an electrical conductive member. More particularly, there is also a need for an assembly including an actuator device for use in combination with automotive electrical systems, that, upon a predetermined condition such as a short circuit or a collision, will receive an electrical signal from a sensor and disengage, or electrically disconnect, an emergency power disengagement switch.
A general object of the invention is to provide an improved pyrotechnic electrical disconnect assembly having a lightweight actuator device that provides maximal work performance of the actuator device and inhibits rupturing.
A more specific objective of the invention is to overcome one or more of the problems described above.
The general object of the invention can be attained, at least in part, through an assembly comprising an actuator device. The actuator device includes an extendable initiator cup at least in part defining a storage chamber containing a charge reactable to produce reaction products. The extendable initiator cup includes at least one non-random fold. The actuator device also includes at least one electrical connector in reaction initiating communication with the reactive charge. The extendable initiator cup has a first length prior to reaction initiation of the reactive charge and, upon reaction initiation of the reactive charge, the extendable initiator cup longitudinally extends to a second length. The second length is greater than the first length. The assembly additionally includes a support housing including a longitudinally extending bore. The extendable initiator cup is at least partially disposed within the bore. The support housing is effective to limit lateral expansion of the extendable initiator cup upon reaction initiation of the reactive charge.
The prior art generally fails to disclose an assembly that provides maximal work from an actuator device by limiting lateral expansion of a longitudinally expanding actuator device. The prior art also generally fails to disclose an assembly that controls the stroke length of a longitudinally expanding actuator device, thereby providing maximal performance without rupturing the extendable initiator cup.
The invention further comprehends an assembly comprising an actuator device. The actuator device includes an extendable initiator cup with a cup end wall at one end of a cup side wall. The extendable initiator cup at least in part defines a storage chamber containing a reactive charge reactable to produce reaction products. The cup side wall includes a fold whereby a first portion of the cup side wall and a second portion of the cup side wall overlap to form a pocket defined by the second portion of the cup side wall and the cup end wall. The actuator device also includes at least one electrical connector in reaction initiating communication with the reactive charge. The extendable initiator cup has a first length prior to reaction initiation of the reactive charge and, upon reaction initiation of the reactive charge, the extendable initiator cup longitudinally extends to a second length, where the second length is greater than the first length. The assembly also includes a moveable element that is at least partially disposed in the pocket prior to reaction initiation of the reactive charge and a support housing including a longitudinally extending bore. Each of the extendable initiator cup and the moveable element are at least partially disposed within the bore.
The invention still further comprehends an assembly comprising an actuator device including an extendable initiator cup with a cup end wall at one end of a cup side wall. The extendable initiator cup at least in part defines a storage chamber containing a reactive charge reactable to produce reaction products. The cup side wall includes a fold whereby a first portion of the cup side wall and a second portion of the cup side wall overlap, with both the first and the second portions of the cup side wall disposed parallel a longitudinal axis of the actuator device. The actuator device also includes at least one electrical connector in reaction initiating communication with the reactive charge. The extendable initiator cup has a first length prior to reaction initiation of the reactive charge and, upon reaction initiation of the reactive charge, the extendable initiator cup longitudinally extends to a second length, where the second length is greater than the first length. The assembly also comprises a moveable element including a first end disposed adjacent to the cup end wall, and a support housing including a longitudinally extending bore. Each of the extendable initiator cup and the moveable element are at least partially disposed within the bore. The support housing is effective to limit lateral expansion of the extendable initiator cup upon reaction initiation of the reactive charge.
The invention further comprehends an assembly for interrupting conduction of electricity through an electrical conductive member. The assembly comprises an actuator device including an extendable initiator cup having at least one non-random fold and at least in part defining a storage chamber containing a reactive charge reactable to produce reaction products. The actuator device also includes at least one electrical connector in reaction initiating communication with the reactive charge. The extendable initiator cup has a first length prior to reaction initiation of the reactive charge and wherein, upon reaction initiation of the reactive charge, the extendable initiator cup longitudinally extends to a second length The second length is greater than the first length. The assembly additionally includes a support housing including a longitudinally extending bore. The extendable initiator cup is at least partially disposed within the bore. A housing end stop is connected to the support housing. The housing end stop is adjacent a first end of the bore and effective to limit longitudinal extension of the extendable initiator cup upon reaction initiation of the reactive charge. An electrical conductive member is at least partially disposed between the extendable initiator cup and the housing end stop. The extendable initiator cup is disposed in interrupting communication with the electrical conductive member, and, upon reaction initiation of the reactive charge, the extendable initiator cup extends to the second length to interrupt conduction of electricity through the electrical conductive member.
As used herein, a “fold” in the extendable initiator cup is an overlap of two portions of the extendable initiator cup. The overlapping portions of the fold may have surfaces that face each other, herein referred to as “facing surfaces,” and that are in direct contact with each other, or the overlapping portion may have facing surfaces that are separated by a space or gap. A “non-random fold” refers to a fold having a definite pattern, such as a pattern designed to obtain a desired result.
As used herein, the term “longitudinal” refers to an axis of an actuator device and/or an extendable initiator cup that is parallel to the desired and intended direction of extension of the extendable initiator cup. Thus, the extendable initiator cup of the actuator device of the invention extend in a longitudinal direction.
As used herein, references to “reaction initiating communication” are to be understood to refer to a relationship between an initiating component, such as an electrical connector, and a reactable material, such as a reactive charge, wherein the initiating component is able to actuate reaction of the reactable material.
Further, references herein to “interrupting communication” are to be understood to refer to a positioning of an actuator device of the invention relative an electrical conductive member wherein the actuator device will interrupt the flow of electricity through the electrical conductive member upon actuation of the actuator device.
References to “disengaging communication” are to be understood to refer to the positioning of an actuator device of the invention relative an electrical switch wherein the actuator device, upon actuation, will directly or indirectly disengage the electrical switch, and thus interrupt the flow of electricity through the electrical switch. Oppositely, references to “engaging communication” refer the positioning of an actuator device of the invention relative an electrical switch wherein the actuator device, upon actuation, will directly or indirectly engage the electrical switch, and thus allow the flow of electricity through the electrical switch.
As used herein, two components are “electrically connected” when electricity conducting through one component is able to pass to the other component. Oppositely, two components are “electrically disconnected” if electricity conducting through one component is not able to pass to the other component.
As used herein, the term “adjacent” does not require direct contact between the adjacent objects.
Other objects and advantages will be apparent to those skilled in the art from the following detailed description taken in conjunction with the appended claims and drawings.
FIGS. 6A-F are partial sectional views of actuator devices according to certain preferred embodiments of the invention.
FIGS. 7A-C are partial sectional views of an assembly including an actuator device, according to yet another embodiment of this invention, with
The present invention provides an assembly including an actuator device. As described in greater detail below, the assembly of the invention is particularly useful for activating or deactivating an electrical switch, or otherwise severing an electrical conductive member to interrupt the conduction of electricity.
The assembly of the present invention includes a support housing for an actuator device such that an extendable initiator cup of the actuator device can desirably be formed, constructed or manufactured of or from relatively thinner and/or lighter weight materials. Such support is an important factor for obtaining maximal work from the actuator device without resulting or producing an unintended or undesired rupture of the extendable cup. The assembly of the invention provides a close fit between a lateral support and the outer side surface of the extendable initiator cup and/or a rigid rear support for the actuator device that is located at an end of the actuator device opposite the direction of extension of the extendable initiator cup. In many uses of such actuator devices, if a longitudinally extendable cup of the actuator device is not radially supported, such as in an open-air, unsupported deployment, it is likely that a side wall of the extendable cup of a typical actuator device will rupture due to the pyrotechnic material load and the amount of work being performed. Lateral expansion of the longitudinally extending extendable initiator cup is generally undesired as it can reduce the energy available for the desired longitudinal extension and rupture the extendable initiator cup.
Controlling the stroke length is another important factor for obtaining maximal work from an actuator device without rupturing the extendable cup. In many uses of such actuator devices, the end of the extendable initiator cup is likely to rupture given the load of the pyrotechnic material and the amount of work being performed. Thus, as described above, materials that are stronger and/or have a greater thickness, and thus generally heavier materials, are generally needed for constructing extendable cups for unsupported, open-air firing actuator devices. In addition, the stronger materials for manufacturing and greater extendable initiator cup thicknesses are generally necessary to limit undesirable lateral expansion and provide only the desired longitudinally linear extension. Using thinner and/or lighter weight materials for an extendable initiator cup can also be advantageous in that a lesser amount of reactive charge can typically be used to extend the extendable initiator cup.
An actuator device according to one embodiment is shown in
Actuator devices in accordance with the invention generally include at least one electrical connector in reaction initiating communication with the reactive charge. As defined above, “reaction initiating communication” means the electrical connector(s) initiate reaction of the reactive charge upon receiving an electrical signal from an associated electrical terminal. The actuator device 20 includes a pair of electrical connectors, shown as electrical conductive pins 30 and 32, respectively, in reaction initiating communication with the reactive charge 26.
As shown in
Extendable initiator cups of the invention are generally extendable from a first length to a second length upon reaction initiation of the reactive charge. The reactive charge, upon reaction initiation, produces reaction products which cause the extendable initiator cup to extend from a first length to a second length. In other words, the extendable initiator cup has a first length prior to reaction initiation of the reactive charge and, upon reaction initiation of the reactive charge, the extendable initiator cup extends to a second length, and the second length is greater than the first length.
Upon initiation, the reactive charge 28 reacts to produce reaction products that can extend the extendable initiator cup from the first length to the second length. As will be appreciated by those skilled in the art, the reactive charge 28 can include one or more known reactive charge materials, such as a pyrotechnic, which can be actuated by an electrical current introduced through conductive pins 30 and 32. The reactive charge 28 can include a fuel slurry and an oxidizer slurry mixed together and positioned in the storage chamber 26. Examples of reactive charges known in the art and useful in the actuator device of this invention include mixtures including zirconium and potassium perchlorate (ZPP). In one embodiment of this invention, the reactive charge 28 is a powder, and at least a portion of the powder reactive charge 28 is packed around the bridgewire 38 to maintain the reactive charge 28 in sufficient actuating contact with the bridgewire 38. In one embodiment of this invention, the reaction products desirably include a gas.
The extendable initiator cup 22 is desirably attached to the header body 24 to form a sealed storage chamber 26 so that the reaction products do not escape from the storage chamber 26 and extend the extendable initiator cup 22. Desirably, the reactive charge 28 is present in an amount effective upon reaction initiation to extend the extendable initiator cup 22. The extendable initiator cup 22 is desirably formed of a lightweight and/or thin material. In one embodiment of the invention, the extendable initiator cup 22 is formed of a metal, such as, for example, stainless steel. As will be appreciated, the size, shape, configuration and materials used in manufacturing of the actuator device and the extendable initiator cup can vary depending on the desired application. Likewise, the amount of reactive charge contained in the storage chamber is at least dependent on the type of reactive charge used and the size of the storage chamber, as well as the stroke, construction and materials of the extendable initiator cup.
The extendable initiator cup of this invention includes at least one non-random fold. The at least one non-random fold provides the initiator cup with extendibility. In one embodiment of this invention, as shown in
The difference between the first length L1 and the second length L2, or the length the extendable initiator cup 122 extends, is the stroke of the actuator device 120. The stroke of the actuator device 120 shown in
The assembly of the present invention can include any of the actuator devices described herein and is particularly useful in combination with an electrical conductive member, such as an electrical line or wire. In one embodiment of the invention, the assembly includes a support housing that provides lateral support for an actuator device. The actuator device, upon receiving an electrical signal, can act or serve to interrupt the conduction of electricity through an electrical conductive member. In one embodiment of the invention, upon receiving an electrical signal through the electrical connector(s) to initiate reaction of the reactive charge to produce reaction products, the extendable initiator cup extends from a first length to a second length to interrupt the conduction of electricity through the electrical conductive member. The lateral support provided by the support housing of the assembly allows for use of an actuator device including a thinner and/or lighter weight extendable initiator cup.
In one embodiment of the invention, the extendable initiator cup can act to interrupt the conduction of electricity through an electrical conductive member by severing the electrical conductive member.
The support housing 260 includes a longitudinally extending bore 262. The actuator device 220 is disposed in the longitudinally extending bore 261 such that the support housing maintains the actuator device 220 in position relative to the electrical conductive member 250. A retainer element 264 secures the actuator device 220 within the bore 262. The support housing 260 is effective to limit lateral expansion of the extendable initiator cup 222 upon reaction initiation of the reactive charge. In one embodiment of the invention, the inner diameter across the bore is sized relative to the outer diameter of the extendable initiator cup 222, such that the support housing 260 is effective to limit lateral expansion of the extendable initiator cup 222. By limiting or eliminating lateral expansion of the extendable initiator cup 222, the support housing focuses the extension of the extendable initiator cup 222 in the desired longitudinal direction, toward the electrical conductive member 250. In addition, the support housing 260 limits, and desirably eliminates rupture of the extendable initiator cup, thereby allowing the extendable initiator cup 222 to be formed of thinner and/or lighter weight materials than possible with a laterally unsupported, or open-air, actuator device. Furthermore, an extendable initiator cup formed of thinner and/or lighter weight materials can typically be extended using lesser amounts of the reactive charge.
The extendable initiator cup 222 of the actuator device 220 is disposed in interrupting communication with the electrical conductive member 250. Positioning the extendable initiator cup 222 in “interrupting communication” means the extendable initiator cup is positioned relative to the electrical conductive member 250 such that, upon reaction initiation of the reactive charge within the actuator device 220, the extendable initiator cup 222 longitudinally extends in the bore 262 from a first length to a second length and interrupts conduction of electricity through the electrical conductive member.
The support housing 260 includes a housing end stop 266 adjacent a first end 268 of the bore 262. The housing end stop 266 is positioned relative to the extendable initiator cup 222 to be effective to limit longitudinal extension of the extendable initiator cup 222 upon reaction initiation of the reactive charge. The housing end stop 266 stops the extension of the extendable initiator cup 222 at a desired, predetermined distance that is less than the full, uninhibited extension of the extendable initiator cup 222. The housing end stop 266 can thus be used to control the stroke length of the extendable initiator cup 222. Controlling the stroke length is an important factor for obtaining maximal work from the extendable initiator cup 22 and the actuator device 220.
As shown in
In one embodiment of the invention, the support housing and the housing end stop are integrally formed as one piece. In another embodiment of the invention, the housing end stop is formed as a separate component that is connected to the support housing. As will be appreciated by one skilled in the art following the teachings herein provided, various sizes, shapes and configurations of the support housing and housing end stops are available for particular embodiments of the assembly of the invention.
The housing end stop 266 shown in
In another embodiment of the invention, the electrical conductive member includes an electrical switch and the extendable initiator cup of the actuator device is disposed in disengaging communication with the electrical switch. The actuator device is in “disengaging communication” with the electrical switch when the extendable initiator cup is positioned relative the electrical switch such that, upon the extension of the extendable initiator cup from the first length to the second length, the extendable initiator cup disengages, or interrupts conduction of electricity through, the electrical switch.
The assembly 300 also includes a support housing 360 including a longitudinally extending bore 362. The actuator device 320 is disposed in the longitudinally extending bore 361 such that the support housing maintains the actuator device 320 in position relative to the electrical switch 352. A retainer element 364 secures the actuator device 320 within the bore 362. The support housing 360 is effective to limit lateral expansion of the extendable initiator cup 322 upon reaction initiation of the reactive charge. The inner diameter across the bore 362 is sized relative to the outer diameter of the extendable initiator cup 322, and desirably sized just slightly larger than the outer diameter of the extendable initiator cup 322, such that the support housing 360 is effective to limit lateral expansion of the extendable initiator cup 322. By limiting or eliminating lateral expansion of the extendable initiator cup 322, the support housing focuses the extension of the extendable initiator cup 322 in the desired longitudinal direction, toward the electrical switch 352. In addition, the support housing 360 limits, and desirably eliminates, rupture of the extendable initiator cup 322, thereby allowing the extendable initiator cup 322 to be formed of thinner and/or lighter weight materials than possible with a laterally unsupported, or open-air, actuator device.
As discussed above, the extendable initiator cup 322 of the actuator device 320 is disposed in disengaging communication with the electrical switch 252.
The support housing 360 includes a housing end stop 366 adjacent, and disposed over, a first end 368 of the bore 362. The housing end stop 366 is positioned relative to the extendable initiator cup 322 to allow longitudinal extension to a second length and to be effective to limit longitudinal extension to less than the full extension achievable by the extendable initiator cup 322 upon reaction initiation of the reactive charge. As shown in
As discussed above, the support housing bore provides lateral support for the extendable initiator cup, and generally eliminates lateral expansion and rupture. However, as will be appreciated by one skilled in the art following the teachings herein provided, in the broader practice of the invention the extendable initiator cup, upon reaction initiation of the reactive charge, can partially extend beyond an end of the support housing bore. Such an embodiment is shown in
As will be appreciated by one skilled in the art following the teachings herein provided, the assembly in accordance with the invention is useful in many applications where an electrical conductive member would need to be severed or otherwise disconnected under a predetermined set of conditions. The actuator device of the assembly of the invention can be connected to a sensor device, such as one or more various sensors known in the art and such as used to detect various conditions. When such a sensor detects a specific condition, an electrical signal is emitted through an electrical terminal attached to the electrical connector(s), e.g., the conductive pins, of the actuator device. The actuator device is actuated and the extendable initiator cup extends to disengage an electrical switch, such as to sever the electrical conductive member or otherwise interrupt the flow of electricity through the electrical conductive member. For example, in one embodiment of the invention, the electrical switch is an emergency power disengage switch including first and second electrical contacts. The emergency power disengage switch can be incorporated into automotive applications, and upon a set of conditions, such as a short circuit or a collision, an electrical signal is received by the actuator device and the extendable initiator cup extends from a first length to a second length to electrically disconnect the first and second electrical contacts of the electrical switch, thereby avoiding a possibility of fire.
While the invention has been generally described above making reference to embodiments wherein an assembly in accordance with the invention is employed to disengage or interrupt electric communication to a particular system component, those skilled in the art and guided by the teachings herein provided will appreciate that the broader practice of the invention is not necessarily so limited. For example, and in accordance with another preferred embodiment of the invention, an assembly in accordance with the invention can, if desired, be used in combination with an electrical switch such that the extendable initiator cup of the actuator device is disposed in engaging communication with the electrical switch. For example,
As shown in
The actuator device 420 receives an electrical signal from an electrical terminal (not shown) through the conductive pins 430 and 432, and the reactive charge within the storage chamber reacts to produce reaction products which cause the longitudinal extension of the extendable initiator cup 422 from a first length, as shown in
As will be appreciated by one skilled in the art following the teachings herein provided, many various configurations of non-random folds are available for use in the extendable initiator cup of the invention. FIGS. 6A-F, for example, show configurations of extendable initiator cups including at least one non-random fold in accordance with various alternative embodiments of the invention. As will also be appreciated by one skilled in the art following the teachings herein provided, additional configurations for the support housing, and the longitudinal extending bore therein, of the assembly of this invention may be required and/or desired for particular embodiments of the actuator device.
The extendable initiator cup 522c also includes a non-random second fold 550c. The second fold 550c includes the second portion 544c of the extendable initiator cup 522b and a third portion 552c of the extendable initiator cup 522c. A second bend 556c in the extendable initiator cup 522c forms the overlap of the second portion 544c and the third portion 552c. The second bend 556c causes the third portion 552c to overlap an inner surface 558c of the second portion 544c. In the second fold 550c shown in
The extendable initiator cup 522d also includes a non-random second fold 550d. The second fold 550d includes the second portion 544d of the extendable initiator cup 522d and a third portion 552d of the extendable initiator cup 522d. A second bend 556d in the extendable initiator cup 522d forms the overlap of the second portion 544d and the third portion 552d. The second bend 556d causes the third portion 552d to overlap an outer surface 559d of the second portion 544d. In the second fold 550d shown in
The extendable initiator cup 522d also includes a non-random third fold 560d. The third fold 560d includes the third portion 552d of the extendable initiator cup 522d and a fourth portion 554d of the extendable initiator cup 522d. A third bend 566d in the extendable initiator cup 522d causes the overlap of the third portion 552d and the fourth portion 554d. The third bend 566d causes the fourth portion 554d to overlap an inner surface 568d of the third portion 552d. In the third fold 560d shown in
The extendable initiator cup 522e also includes a non-random second fold 550e. The second fold 550e includes the second portion 544e of the extendable initiator cup 522e and a third portion 552e of the extendable initiator cup 522e. A second bend 556e in the extendable initiator cup 522e forms the overlap of the second portion 544e and the third portion 552e. The second bend 556e causes the third portion 552e to overlap an outer surface 559e of the second portion 544e. A space 580e separates the overlapping second portion 544e and third portion 552e. In the second fold 550e shown in
The extendable initiator cup 522f also includes a non-random second fold 550f. The second fold 550f includes the second portion 544f of the extendable initiator cup 522f and a third portion 552f of the extendable initiator cup 522f. A second bend 556f in the extendable initiator cup 522f causes the overlap of the second portion 544f and the third portion 552f. A space 580f separates the facing surfaces of the overlapping second portion 544f and third portion 552f. Upon reaction initiation of a reactive charge (not shown) within the actuator device 520f, the pressure from the resulting reaction products causes the first fold 540f and the second fold 550f to unfold, at least partially, thereby extending the extendable initiator cup 522f from a first length to a second length that is greater than a first length.
In view of the above, those skilled in the art and guided by the teachings herein provided will appreciate that the broader practice of the invention is not necessarily limited to extendable initiator cups which include or incorporate specific or particular non-random fold(s) or patterns of fold(s). Further, extendable initiator cups which include or incorporate other specific non-random fold(s) will be apparent to those skilled in the art and guided by the teachings herein provided.
FIGS. 7A-C show an assembly 600 according to another embodiment of the invention. The assembly 600 includes an actuator device 620 in combination with a moveable element 648 and a support housing 660.
The actuator device 620 includes an extendable initiator cup 622 having a cup end wall 624 at an end 626 of a cup side wall 628. The extendable initiator cup 622 is attached to a header body 630 at an opposing end 629 to define and enclose a hermetically sealed storage chamber 632. A reactive charge 634 that is reactable to produce reaction products, desirably a pyrotechnic, is contained within the storage chamber 632. The actuator device 620 includes an electrical connector 636 in reaction initiating communication with the reactive charge 634.
The extendable initiator cup 622 is redrawn, i.e., rolled back inside itself, to form a pocket 640, such as shown in
The support housing 660 includes a longitudinally extending bore 662. The actuator device 620 is disposed at one end of the longitudinally extending bore 662. The inner diameter across the bore 662 is sized relative to the outer diameter of the extendable initiator cup 622, and desirably sized just slightly larger than the outer diameter of the extendable initiator cup 622, such that the support housing 660 is effective to limit lateral expansion of the extendable initiator cup 622 upon reaction initiation of the reactive charge 634. As discussed previously, by limiting or eliminating lateral expansion of the extendable initiator cup 622, the support housing 660 focuses the extension of the extendable initiator cup 622 in the desired longitudinal direction. In addition, the support housing 660 limits, and desirably eliminates, rupture of the extendable initiator cup 622, thereby allowing the extendable initiator cup 622 to be formed of thinner and/or lighter weight materials than possible with a laterally unsupported, or open-air, actuator device.
The moveable member 648 is also disposed in the bore 662. The moveable element 648 is partially disposed in the pocket 640 prior to reaction initiation of the reactive charge. In the embodiment shown in
As shown in
Disposing or nesting a portion of the moveable element end 664 in the redrawn pocket 646 of the extendable initiator cup 622 provides several advantages. The extendable initiator cup 622 is supported within the pocket 640 by the moveable element 648 and laterally by the support housing 660. The support provided by the housing 660 directs the extension of the extendable initiator cup 622 toward the end 668 of the bore 662. The pocket support provided by the moveable element 648 desirably maintains the general configuration or shape of the pocket 640 while the fold 642 unfolds, resulting in or promoting the unrolling of the fold 642 in the direction toward the end 668 of the bore 662. The nested moveable element 648 reduces or eliminates the undesirable collapse of the pocket 640 during longitudinal extension of the extendable initiator cup 622. The support provided by the nested moveable element 648 and/or the support housing 660 also desirably allows higher internal pressures to be utilized, while reducing or eliminating rupturing of the extending initiator cup 622. Higher internal pressure can desirably provide higher actuating or working forces and/or increased rate of extension. Furthermore the effective stroke distance of the extendable initiator cup 622 and/or the moveable element 648 is increased by nesting the moveable element 648, as compared, for example, to disposing the moveable element adjacent the extendable initiator cup 622 but not in the pocket 640.
The support housing 660 includes a housing end stop 666 adjacent a first end 668 of the bore 662. The end stop 666 shown in the embodiment in FIGS. 7A-C is a separate end stop 666 attached to the support housing 660. The separate end stop 666 allows the actuator device 620 and the moveable element 648 to be inserted within the bore 662 during assembly. In another embodiment of this invention, the end stop 666 can also be integrally formed with the support housing 660, such as, for example, the end stop 266 shown in
As shown in FIGS. 7A-C, the moveable element 648 includes a radially extending protrusion 670 that desirably extends from a side of the moveable member 648. As used herein, the term “radially extending” refers to the outward extension of the protrusion from the lateral side of the moveable element, regardless of the shape of the moveable element and/or the protrusion. Alternative sizes, shapes and configurations are available for the protrusion 670. Desirably, the protrusion 670 circumferentially extends around the outer surface of the moveable element 648, although two or more aligned protrusions that are disposed on opposing sides and/or partially extend around the moveable element 648 can also be used. As shown in
The assembly 600 can be used in an application such as or similar to the applications described above for assemblies 200, 300 and 400. In one embodiment of this invention, the assembly 600 can include a cavity, such as, for example, shown in FIGS. 3A-B, 4A-B and 5A-B, disposed between the extendable initiator cup 622 and the housing end stop 666 prior to reaction initiation. A severable member can be disposed through the support housing 660 and the cavity such that upon the extension of the extendable initiator cup 622 from the first length to the second length, the moveable element 648 severs the severable member. In one embodiment of the invention, the severable member includes an electrical conductive member, such as the electrical conductive members 250, 350 and 450, discussed above. When used to sever an electrical conductive member, the moveable element desirably is made from a non-conductive material. The moveable element can also desirably be or include a sharpened cutter to facilitate severing the severable member.
Thus, the invention provides an assembly suitable for use in combination with an electrical conductive member and/or an electrical switch. The assembly provides lateral support for an actuator device and can limit longitudinal extension of an actuator device, thereby providing maximal work performance of extendable initiator cups, limiting rupturing and allowing use of lighter weight and/or thinner materials for manufacturing the extendable initiator cup and lesser amounts of reactive charge.
The invention illustratively disclosed herein suitably may be practiced in the absence of any element, part, step, component, or ingredient which is not specifically disclosed herein.
While in the foregoing detailed description this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein can be varied considerably without departing from the basic principles of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 10/729,702, filed on 5 Dec. 2003, which is a continuation-in-part of U.S. application Ser. No. 10/193,414, filed on 11 Jul. 2002. The co-pending parent application is hereby incorporated by reference herein in its entirety and is made a part hereof, including but not limited to those portions which specifically appear hereinafter.
Number | Date | Country | |
---|---|---|---|
Parent | 10729702 | Dec 2003 | US |
Child | 11154194 | Jun 2005 | US |
Parent | 10193414 | Jul 2002 | US |
Child | 10729702 | Dec 2003 | US |