This application relates generally to the drainage of fluid from the body during the wound healing process, e.g., following surgery, trauma, or placement of implants or surgical devices.
During surgery, or as a result of trauma, tissue volume can be removed or altered, and an open or dead space is created within the tissue that was previously attached to other tissue. The very small blood vessels that previously ran from the underlying tissue (i.e., muscle, connective tissue) to the overlying tissue (i.e., skin, muscle) can be cut or damaged. Although these vessels usually do not cause significant blood loss, they do allow escape of blood serum into the area. Human blood serum contains about ninety-three percent water and about seven percent protein (mostly albumin).
Following surgery or due to trauma, there can also be resulting tissue damage, regardless of how careful the surgeon is. This tissue damage results in cellular death, and the body's natural defense reaction is an inflammatory one. Because of the inflammation, cell death, and increased vascular permeability, fluid can also accumulate in the operative space. The larger the operative space, the greater is the potential for internal fluid collection.
The body can resolve the accumulation of fluid over time, if there is some form of natural drainage, and if there is not continued irritation to the area, and if circulation to the area is sufficient, and if the person is in good health or the volume of fluid collection is itself not too large.
If, for whatever reason, the body is unable to itself efficiently absorb the excess fluid, a seroma can occur. A seroma is defined as a sterile accumulation of blood serum in a circumscribed tissue location or operative space. A seroma is not by definition an “infection;” it does not necessarily involve the presence of white blood cells, bacteria, and the breakdown products of both. A seroma is fluid and blood serum that has accumulated in a dead space in the tissue. A seroma is the result of tissue insult and the product of tissue inflammation and the body's defense mechanisms.
Seromas commonly develop following drain removal or when fluid is produced at a greater rate than it is absorbed. Conventional wound management techniques are commonly applied when a seroma becomes a clinical concern. Placement of a seroma catheter or additional drain, as well as repeated or serial drainage of a seroma, may be required. A seroma or fluid collection is by far the most common complication in surgery today. Such complications result in a significant amount of lost income to patients, as well as expenses to insurers and physicians who have to care for these patients that require serial drainage. Such complications also delay wound healing, may entail additional surgical procedures, and ultimately delay the patient's return to work and routine functional activity. Seroma management can also be costly and, further, can place health care workers to additional needle exposure risks and related outcomes such as hepatitis, etc.
The aim of wound management in both chronic and acute situations is to assist the natural process and prevent further complications such as infection, slough, necrosis formation, and chronic seroma cavities. Maintenance of the optimum wound healing environment is essential, ensuring the wound is kept moist and warm. Wound care products strive to achieve these results and, in turn, help to promote rapid wound closure.
Fluid drainage can be as simple as creating an opening at the lowest edge of the seroma, and keeping this open and clean to allow continued drainage. A clinically accepted way to deal with a seroma that does not appear to be resolving on its own, is to install a continuous drain system, coupled with treatment with antibiotics to prevent infection while the continuous drain system is in use. There are currently numerous types of wound drains on the market, most of them utilizing some form of tubing to withdraw fluid from the wound until the body can resorb the fluid without assistance. A continuous drain system allows the fluid to continuously escape until the body can complete the healing process on its own.
A representative prior art continuous drain system can comprise an implanted device such as a piece of rubber tubing (Penrose drain) (as shown in
Another representative prior art continuous drain system, which is currently approved for external use only, can take the form of an externally applied device comprising a piece of foam with an open-cell structure, which coupled to one end of a drain tube (see
Current wound drain devices assemblies at times do not remove a substantial amount of fluid from within a wound and have other performance issues. For example, external VAC devices clear fluid directly around external wounds(as
Furthermore, the clinical use of external VAC devices may not make wound drainage more cost-effective, clinician-friendly, and patient-friendly.
For example, the foam structures and adhesive membranes associated with conventional practices of external VAC need to be periodically removed and replaced. Currently, dressing changes are recommended every 48 hours for adults with non-infected wounds, and daily for infants and adolescents. Current techniques place the foam material in direct contact with granulating tissue. Removal of the foam structures in the presence of granulating tissue and the force of pressure on the wound bed that this removal can cause pain or discomfort. The sponge can also de-particulate and remain in the wound. Furthermore, the multiple steps of the conventional external VAC procedure—removing the adhesive membrane, then removing the old foam structures, then inserting the new foam structures, and then reapplying the adhesive member along the entire periphery of the wound—are exacting, tedious and time consuming. They only prolong pain or discomfort, and cause further disruption to the patient, and also demand dedicated nursing time and resources.
Furthermore, to function correctly, the adhesive membrane applied over the foam wound structures must form an airtight seal with the skin. Obtaining such a seal can be difficult, particularly in body regions where the surrounding skin is tortuous, and/or mucosal and/or moist.
Furthermore, prolonged wearing of wet dressings can cause further breakdown and maceration of the surrounding skin thereby increasing the wound size. This can cause further discomfort to the patient, and the exudate can often be offensive in odor and color causing further embarrassment to the patient. This may, in turn, require more numerous dressing changes and re-padding throughout the day, which is disruptive to the patient and costly both in terms of nursing time and resources.
Furthermore, since the membrane and the material of the foam structures are both in direct contact with tissue, tissue reactions can occur.
There remains a need for improved drains, systems, devices, methods that are cost-effective, patient-friendly, and clinician-friendly.
The invention provides assemblies, systems, and methods that are cost-effective, patient-friendly, and clinician-friendly. The assemblies, systems, and methods convey fluid from an internal wound site or body cavity by applying negative pressure from a source that is outside the internal wound site or body cavity through a wound drain assembly that is placed directly inside the internal wound site or body cavity. Unlike conventional VAC devices, the assemblies, systems, and methods that embody the technical features of the invention are not a treatment modality that is limited to placement on an exterior wound or operational site following trauma or surgery, providing drainage in a reactive and localized fashion. Instead, the assemblies, systems, and methods that embody the technical features of the invention make possible a treatment modality that is sized and configured for placement directly inside an internal wound site or body cavity at the time of surgery, to provide direct and immediate drainage of any entire wound site in a proactive fashion.
One aspect of the invention provides a wound drain assembly comprising a housing enclosing an open interior. The housing is sized and configured for placement directly within an interior wound site or body cavity. Perforations in the housing communicate with the open interior. A foam sponge material is carried within the open interior. The foam sponge material absorbs fluid residing in the interior wound site or body cavity. Tubing is coupled to the housing in communication with the open interior of the housing. The tubing extends from within the interior wound site to outside the interior wound site or body cavity. The tubing outside the interior wound site or body cavity is sized and configured to be coupled to a source of negative pressure outside the body cavity. The negative pressure conveys through the tubing fluid that is absorbed by the foam sponge material inside the internal wound site or body cavity.
Another aspect of the invention provides a wound drain system comprising a wound drain assembly as just described, which is coupled to a source of negative pressure outside the body cavity.
Other aspects of the invention provide methods that provide the wound drain assembly or system as above described and that operate the assembly or system to convey fluid from an interior wound site or body cavity.
The assembly, system, and/or method apply a vacuum of significant pressure internally and directly in a wound area or body cavity for enhanced wound healing benefits. By applying a vacuum of significant consistent pressure internally and directly in the wound area or body cavity, the assembly, system, and/or method reduce the “dead-space” or open area inside the wound or cavity, and thereby aid in decreasing tissue edema and swelling of the overlying and underlying tissue. The assembly, system, and/or method increase the nature and extent of wound drainage, promote tissue adherence and closure of wounds, and thus decrease seroma formation and promote primary wound healing. The assembly, system, and/or method thereby decrease the costly and increased patient morbidity caused by seroma formation and the resultant delay in primary wound healing or need for additional surgical procedures or drainage.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention that may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
The internal drain assembly 12 is coupled to drain tubing 14, which is desirable flexible. The drain tubing 14 extends outside the wound area W. The drain tubing 14 can extend through a percutaneous incision in the skin overlying any wound area W. Alternatively, the drain tubing 14 can extend through an opening in a skin flap bounding the wound area. The flexible drain tubing 14 includes a terminal end 22 that extends outside the body.
The terminal end 22 desirably includes a quick release connector 24. The connector 24 is sized and configured to be connected to a conventional external negative pressure suction device 26 (such as a V.A.C.® device made by KCI International, or a conventional wall suction or other regulated vacuum device.).
In use, the drain tubing 14 is connected to the suction device 26, and the suction device 26 is operated to apply a requisite negative pressure through the internal drain assembly 12. Blood or serous fluid absorbed by and passing through the foam sponge component 16 are drawn by the negative pressure from the wound area W. The drain tubing 14 desirably includes an inline reservoir 30 to collect the withdrawn fluid for disposal.
As
As
The housing 18 can be formed. e.g., by extrusion, molding, or machining. As will be described in greater detail later, the housing 18 can be formed in various shapes and sizes, depending upon the requirements and morphology of the wound site and function and use of the drain. In the configuration shown in
The housing 18 is formed to include a hollow interior chamber 28, which is enclosed by the side and end walls of the housing 18. The housing 18 is also formed to include one or more through-slots, through-apertures, or through-perforations 20 in the side and/or end walls of the housing 18. The through-slots, through-holes, or through-perforations 20 open the hollow interior chamber 28 to communication with the wound site environment outside the housing 18.
An end of the flexible drain tubing 14 is coupled to the housing 18 and opens into the hollow interior chamber 28. The flexible drain tubing 14 is made of medical grade, inert material. e.g., silicone rubber, polyurethane, or other biocompatible plastics. The tubing 14 is desirably sized and configured to accommodate sufficient fluid flow with a relatively small and tolerable incision size (e.g., about 2-3″ in diameter).
A foam sponge component 16 is housed within the hollow interior chamber 28. The foam sponge component 16 is characterized in that it does not particulate in the presence of fluid and pressure. The foam sponge material can comprise, e.g., an open-cell porous structure (see
In use (as
The negative pressure can be, e.g., 125 to 200 mmHg, and is desirably about 125 mmHg, below ambient pressure. The amount of negative vacuum pressure can be regulated in a continuous, discontinuous, or otherwise variable manner, to maximize wound healing and closure and thereby reduce overlying soft tissue edema and swelling. In this way, the system 10 promotes primary wound healing while also decreasing or minimizing seroma formation.
As
The foam sponge component 16 is desirably compressible for easy insertion into and removal from the housing 18 for replacement. The configuration of the housing 18 can also provide a contour that facilitates sliding of the internal drain assembly 12, easing removal from the body.
The foam sponge component 16 may also be impregnated with components such as silver or antibacterials or other growth factors that may decrease infection and promote wound healing.
As
The wound drainage system 10 can be variously configured and assembled. For example, as shown in
As
It is believed that applying a vacuum of significant pressure internally and directly in a wound area or body cavity removes chronic edema and leads to increased localized blood flow. It is also believed that the applied forces applied internally and directly in a wound area result in the enhanced formation of tissue adherence. It is further believed that applying a vacuum of significant pressure internally and directly in a wound area or body cavity will accelerate healing by the application of a universal negative force to the entire wound volume, drawing the wound edges together, assisting closure, enhancing wound healing, and decreasing dead space and seroma. Presumed mechanisms responsible for achieving these objectives include: (i) changes in microvascular blood flow dynamic; (ii) changes in interstital fluid; (iii) removal of wound exudates; (iv) stimulation of growth factors and collagen formation; (iv) reduction in bacterial colonization; (v) mechanical closure of wound by “reverse tissue expansion;” (vi) increasing adherence of the soft tissue and internal wound healing; and (vii) decreasing dead space and seroma formation.
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/810,733, filed Jun. 2, 2006, and entitled “Foam Sponge Vacuum Assisted Internal Drainage System,” which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Mar 1953 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3556101 | Economou | Jan 1971 | A |
3568675 | Harvey | Mar 1971 | A |
3589368 | Jackson | Jun 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
3830238 | Kurtz et al. | Aug 1974 | A |
3957054 | McFarlane | May 1976 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4217904 | Zahorsky | Aug 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4250882 | Adair | Feb 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4257422 | Duncan | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4294240 | Thill | Oct 1981 | A |
4297995 | Golub | Nov 1981 | A |
4317452 | Russo et al. | Mar 1982 | A |
4333468 | Geist | Jun 1982 | A |
4346711 | Agdanowski et al. | Aug 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4398910 | Blake et al. | Aug 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4430084 | Deaton | Feb 1984 | A |
4432853 | Banks | Feb 1984 | A |
4445897 | Ekbladh et al. | May 1984 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4523920 | Russo | Jun 1985 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4579555 | Russo | Apr 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4633865 | Hengstberger et al. | Jan 1987 | A |
4640688 | Hauser | Feb 1987 | A |
D288962 | Blake | Mar 1987 | S |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4692153 | Berlin et al. | Sep 1987 | A |
4693153 | Berlin et al. | Sep 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4717379 | Elkholwe | Jan 1988 | A |
4728642 | Pawelchak et al. | Mar 1988 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4815468 | Annand | Mar 1989 | A |
4825866 | Pierce | May 1989 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4844072 | French et al. | Jul 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4899965 | Usui | Feb 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4908350 | Kramer et al. | Mar 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4925452 | Melinyshyn et al. | May 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5045075 | Ersek | Sep 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100395 | Rosenberg | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5116310 | Seder et al. | May 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5192266 | Wilk | Mar 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5360414 | Yarger | Nov 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5437683 | Neumann et al. | Aug 1995 | A |
5441481 | Mishra et al. | Aug 1995 | A |
5443848 | Kramer et al. | Aug 1995 | A |
5466231 | Cercone et al. | Nov 1995 | A |
5484399 | Diresta et al. | Jan 1996 | A |
5484428 | Drainvill et al. | Jan 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549579 | Batdorf et al. | Aug 1996 | A |
5549584 | Gross | Aug 1996 | A |
5554138 | Stanford et al. | Sep 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5637103 | Kerwin et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5662598 | Tobin | Sep 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5701917 | Khouri | Dec 1997 | A |
5792173 | Breen et al. | Aug 1998 | A |
5891111 | Ismael | Apr 1999 | A |
5893368 | Sugerman | Apr 1999 | A |
5902260 | Gilman et al. | May 1999 | A |
5911222 | Lawrence et al. | Jun 1999 | A |
5938626 | Sugerman | Aug 1999 | A |
5947953 | Ash et al. | Sep 1999 | A |
6042539 | Harper et al. | Mar 2000 | A |
6051747 | Lindqvist et al. | Apr 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6099513 | Spehalski | Aug 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6190349 | Ash et al. | Feb 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6264979 | Svedman | Jul 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6383162 | Sugarbaker | May 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6478789 | Spehalski et al. | Nov 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6537241 | Odland | Mar 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6605068 | Righetti | Aug 2003 | B2 |
6626891 | Ohmstede | Sep 2003 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Line et al. | Feb 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6866657 | Shchervinsky | Mar 2005 | B2 |
6913589 | Dextradeur et al. | Jul 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7105001 | Mandelbaum | Sep 2006 | B2 |
7182758 | McGraw | Feb 2007 | B2 |
7195624 | Lockwood et al. | Mar 2007 | B2 |
7276051 | Henley et al. | Oct 2007 | B1 |
7322971 | Shehada | Jan 2008 | B2 |
7338482 | Lockwood et al. | Mar 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7476205 | Erdmann | Jan 2009 | B2 |
7658735 | Spehalski | Feb 2010 | B2 |
7717871 | Odland | May 2010 | B2 |
7918817 | Schon et al. | Apr 2011 | B2 |
20020062097 | Simpson | May 2002 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020115956 | Ross | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020161317 | Risk et al. | Oct 2002 | A1 |
20030109855 | Solem et al. | Jun 2003 | A1 |
20030208149 | Coffey | Nov 2003 | A1 |
20040167482 | Watson | Aug 2004 | A1 |
20040260230 | Randolph | Dec 2004 | A1 |
20050004536 | Opie et al. | Jan 2005 | A1 |
20050085795 | Lockwood | Apr 2005 | A1 |
20050101922 | Anderson et al. | May 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050273066 | Wittmann | Dec 2005 | A1 |
20060015087 | Risk et al. | Jan 2006 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20060079852 | Bubb | Apr 2006 | A1 |
20060189910 | Johnson et al. | Aug 2006 | A1 |
20070027414 | Hoffman et al. | Feb 2007 | A1 |
20080058684 | Ugander et al. | Mar 2008 | A1 |
20080167593 | Fleischmann | Jul 2008 | A1 |
20090099519 | Kaplan | Apr 2009 | A1 |
20100030132 | Niezgoda et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
550575 | Aug 1982 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
2 303 085 | Mar 1999 | CA |
26 40 413 | Mar 1978 | DE |
2754775 | Jun 1979 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
20115990 | Dec 2001 | DE |
69806842 | Jan 2003 | DE |
60118546 | Aug 2006 | DE |
102006032870 | Jan 2008 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
271491 | Jun 1988 | EP |
0358302 | Mar 1990 | EP |
0506992 | Oct 1992 | EP |
0555293 | Aug 1993 | EP |
0777504 | Jun 1997 | EP |
0 853 950 | Oct 2002 | EP |
1284777 | Feb 2003 | EP |
1 088 569 | Aug 2003 | EP |
1018967 | Aug 2004 | EP |
0 688 189 | Jun 2005 | EP |
0 620 720 | Nov 2006 | EP |
692578 | Jun 1953 | GB |
2058227 | Apr 1981 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2329127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
2342584 | Apr 2000 | GB |
2 329 127 | Aug 2000 | GB |
2365350 | Feb 2002 | GB |
3056429 | May 1991 | JP |
H3-56429 | May 1991 | JP |
4129536 | Apr 1992 | JP |
71559 | Apr 2002 | SG |
WO 8002182 | Oct 1980 | WO |
WO 8701027 | Feb 1987 | WO |
WO 8704626 | Aug 1987 | WO |
WO 9010424 | Sep 1990 | WO |
WO 9207519 | May 1992 | WO |
WO 9309727 | May 1993 | WO |
WO 9420041 | Sep 1994 | WO |
WO 9605873 | Feb 1996 | WO |
WO 9634636 | Nov 1996 | WO |
WO 9718007 | May 1997 | WO |
WO-9901173 | Jan 1999 | WO |
WO 9913793 | Mar 1999 | WO |
WO 0007653 | Feb 2000 | WO |
WO 0007653 | Feb 2000 | WO |
WO 0042958 | Jul 2000 | WO |
WO 0057794 | Oct 2000 | WO |
WO 0059418 | Oct 2000 | WO |
WO 0059424 | Oct 2000 | WO |
WO 0134223 | May 2001 | WO |
WO 0171231 | Sep 2001 | WO |
WO 0185248 | Nov 2001 | WO |
WO 0189431 | Nov 2001 | WO |
WO 03057307 | Jul 2003 | WO |
WO 03086232 | Oct 2003 | WO |
WO2004041346 | May 2004 | WO |
WO 2006048246 | May 2006 | WO |
WO 2007031762 | Mar 2007 | WO |
WO 2007041642 | Apr 2007 | WO |
WO 2007109209 | Sep 2007 | WO |
WO 2007133618 | Nov 2007 | WO |
WO 2008014358 | Jan 2008 | WO |
WO 2008040020 | Apr 2008 | WO |
WO 2008041926 | Apr 2008 | WO |
WO 2008103625 | Aug 2008 | WO |
WO 2012080783 | Jun 2012 | WO |
Entry |
---|
US 6,216,701, 04/2001, Heaton (withdrawn) |
Product Brochure “Closed Systems for Management of Wound Drainage” Sterion Incorporated (Undated). |
Product Brochure “BLUNT Seroma Cath © Wound Drainage System” Greer Medical, Inc (Undated). |
Product Brochure “Seroma Cath © Wound DrainageSystem” Greer Medical, Aug. 2002. |
Product Brochure, V.A.C.®Therapy™ Dressings, Canisters and Accessories, KCI 2005. |
Product Brochure, “An Insight into V.A.C.® Dressings”, KCI 2005. |
Saxena et al., “Vacuum-Assisted Closure: Microdeformations of Wounds and Cell Proliferation”, Plastic and Reconstructive Surgery,Jvol. 115, No. 5, pp. 1086-1096, Oct. 2004. |
Cholmondeley Williams, et. al.,“The Effect of Hematoma on the Thickness of Pseudosheaths Around Silicone Implants”, presented at the Am Soc of Plastic and Reconstructive Surgeons, Houston, TX, Oct. 30, 1974. |
Shermak, Michele A. et al., “Seroma Development Following Body Contouring Surgery for Massive Weight Loss: Patient Risk Factors and Treatment Strategies”, Division Plagtic Surgery and the Department of Surgery, the Johns Hopkins Medical Institutions, pp. 280-288; Jul. 12, 2007. |
Product description Endo Sponge, www.bbraun.com, Jun. 18, 2008. |
Mees, et al., “Endo-vacuum assisted Closure Treatment for Rectal Anastomotic Insufficiency” Diseases of Colon and Rectum, vol. 51: 404-410, 2008. |
White (PhD), “Modern Exudate Management: A Review of Wound Treatments” (www.worldwidewounds.com/2006/September); pp. 2-3. |
Bickham, Operative Surgery (1924); pp. 248-260. |
Wound Drain Home Care Instructions (Jackson Pratt Drain or Hemovac Drain); Jan. 2006. |
Response filed Oct. 4, 2010 for U.S. Appl. No. 12/466,973. |
Advisory Action date mailed Oct. 12, 2010 for U.S. Appl. No, 12/466,973. |
RCE/Response filed Nov. 2, 2010 for U.S. Appl. No, 12/466,973. |
N.A. Bagautdinov, “Variant of External . . . ”, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (copy and certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound . . . ”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al., “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable . . . ”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/British Assocn of Plastic Surgeons, UK. |
S.E. Greer, et al, “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of . . . ”, British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al.; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells . . . ”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al. “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opionion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report; PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip, P., Jr., et al., “Medical Textiles: Application of an . . . ”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al., “Vacuum Treatment in the Surgical Managment of . . . ”, Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al., “Vacuum Therapy in the Treatment of Purulent Lactation . . . ”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov, Yu, N. et al., “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A. et al., “Bacteriological and Cytological Assessment of Vacuum Therapy for . . . ”; Vestnik Knirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A. et al, Concepts for the Clinical-Biologioal Management of the Wound . . . ; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E. M.D., et al., “Effective Management of Incisional and Cutaneous Fistulae with Closed Suction . . . ”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, “Instruction Book”, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor, “Addition to the Users Manual Concerning Overflow Protection—Concerns All Egnell Pumps”, Feb. 3, 1983, pp. 2. |
Svedman, P., “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al., “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 4, No. 1, 1985, pp. 76-81. |
Arnljots, Bjorn et al., “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable . . . ”, Scand J. Plastic Reconstr. Surgery, No. 19, 1985, pp. 211-213. |
Svedman, P., “A Dressing Allowing Continuous Treatment . . . ”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al., “A Dressing System Providing Fluid Supply and Suction Drainage Used for . . . ”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing . . . ”, Chronic Wound Care, edited by D. Krasner (Health Managrnent Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. Zivadinovic, V. Dukic, Z. Maksimovic, D. Radak, and P. Peska, “Vacuum Therapy in the . . . ”, Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain”, Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract . . . , (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Tlechnique’ in the Management of the Open Abdomen”, British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, “An improved Sump Drain-Irrigation Device of Simple Construction”, Archives of Surgery 105 (1972). pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method . . . ”, Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C. E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremeties . . . ”, Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden), Bier's Hyperemic Treatment in . . . , (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
The V.A.C.™ Vacuum Assisted Closure, Assisting in Wound Closure, Brochure, Jan. 1996, 5 pages, 1-A-042, KCI ®, San Antonio, Texas. |
Argenta et al., “The V.A.C.™, Case Study #4”, Case Study, Mar. 1995, 1 page, 35-D-004, KCI®, San Antonio, Texas. |
Argenta et al., “The V.A.C.™, Case Study #3”, Case Study, Mar. 1995, 1 page, 35-D-003, KCI®, San Antonio, Texas. |
“The V.A.C. ® Operations Summary, the V.A.C.® Wound Closure System Applications”, Brochure, Mar. 1997, 4 pages, 1-A-060, KCI®, San Antonio, Texas. |
“The V.A.C.® Operations Summary, The V.A.C.® Wound Closure System Applications”, Brochure, Mar. 1999, 2 pages, 1-A-060, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #3”, Case Study, Apr. 1998, 1 page, 35-D-003, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #1”, Case Study, Apr. 1998, 1 page, 35-D-001, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #8”, Case Study, Jun. 1996, 2 pages, 35-D-008, KCI® , San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #7”, Case Study, Jun. 1996, 2 pages, 35-0-007, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #6”, Case Study, Jun. 1996, 2 pages, 35-D-006, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #9”, Case Study, Jun. 1996, 2 pages, 35-D-009, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #5”, Case Study, Aug. 1994, 2 pages, 35-D-005, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #4”, Case Study, Aug. 1994, 2 pages, 35-D-004, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #3”, Case Study, Aug. 1994, 2 pages, 35-D-003, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #2”, Case Study, Aug. 1994, 2 pages, 35-D-002, KCI®, San Antonio, Texas. |
Argenta et al., “V.A.C.® Wound Closure Device Case Study #1”, Case Study, Aug. 1994, 2 pages, 35-D-001, KCI®, San Antonio, Texas. |
Ex parte Quayle Office Action dated Feb. 7, 2005 for U.S. Appl. No. 10/275,671. |
Amendment filed Apr. 8, 2005 to Office Action dated Feb. 7, 2005 for U.S. Appl. No. 10/275,671. |
Non-Final Office Action dated Jun. 27, 2005 for U.S. Appl. No. 10/275,671. |
Response filed Oct. 19, 2005 to Non-Final Office Action dated Jun. 27, 2005 for U.S. Appl. No. 10/275,671. |
Non-Final Office Action dated Jan. 10, 2006 for U.S. Appl. No. 10/275,671. |
Response filed Jul. 10, 2006 to Non-Final Office Action dated Jan. 10, 2006 for U.S. Appl. No. 10/275,671. |
Supplemental Amendment filed Aug. 10, 2006 for U.S. Appl. No. 10/275,671. |
Final Office Action dated Apr. 17, 2007 for U.S. Appl. No. 10/275,671. |
Response filed Jun. 12, 2007 to Final Office Action dated Apr. 17, 2007 for U.S. Appl. No, 10/275,671. |
Advisory Action dated Jul. 11, 2007 for U.S. Appl. No. 10/275,671. |
Response filed Aug. 17, 2007 to Advisory Action dated Jul. 11, 2007 for U.S. Appl. No. 10/275,671. |
Non-Finai Office Action dated Sep. 5, 2007 for U.S. Appl. No. 10/275,671. |
Response filed Sep. 5, 2007 to Non-Final Office Action dated Sep. 5, 2007 for U.S. Appl. No. 10/275,671. |
Notice of Allowance and Fee(s) Due dated Feb. 4, 2008 for U.S. Appl. No. 10/275,671. |
V.A. Solovev et al., “Guidelines, The Method . . . ”, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovey Guidelines”. |
V.A., Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption . . . ”, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures . . . , (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
Notice of Allowance date mailed Feb. 4, 2008 for U.S. Appl. No. 10/275,671. |
Translation of the Nullity Action of Sep. 10, 2010 (submitted by applicant). |
Meyer et al., “A New Abdominai Drain for Overflowing Lavage in instances of Severe Pancreatitis with Persistent . . . ”, Surg. Gynecol. Obstet. Sep. 1987: 165 (3): 271-3. |
Poritz, “Percutaneous Drainage and Ileocolectomy for Spontaneous Intraabdominal Abscess in Chrohns Disease . . . ”, J. Gastrointest. Surg. Feb. 2007: 11 (2):204-8. |
Khurrum et al., “Percutaneous Postoperative Intra-abdominal Abscess Drainage After Elective Colorectal Surgery . . . ”, Tech. Coloprotocl. Dec. 2002: 6(3): 159-64. |
Reckard et al., “Management of Intraabdominal . . . ”, Journal of Vascual Interventional Journal of Vascual Interventional Radiology, vol. 16, Issue 7, pp. 1019-1021. |
Latenser et al., “A Pilot Study Comparing Percutaneous Decompression with Decompressive Laparotomy for Acute . . . ”, J Burn Care & Rehav, 23(3): 190-195. |
Kubiak et al., “Reduced Intra-Peritoneal Inflammation . . . ”, Critical Care I, vol. 207, No. 3S, Sep. 2008, S34-35. |
Kaplan, “Managing the Open Abdomen”; Ostomy Wound Management, Jan. 2004; 50 1A supply; C2; 1-8. |
Kaplan et al., “Guidelines for the Management of the Open Abdomen”, Wounds Oct. 2005; 17 (Suppl 1); S1S24. |
Garner et al., “Vacuum-assisted Wound Closure Provides Early Fascial Reapproximation . . . ”, The American Journal of Surgery, Dec. 2001; 182 (6); 630-8. |
Barker et al., “Vacuum Pack of Technique of Temporary Abdominal Closure: A 7-year Experience with 112 Patients . . . ”, J Trauma Feb. 1, 2000; 48 (2): 201-6. |
Brock et al., “Temporary Closure of Open Abdominal Wounds: The Vacuum Pack”, Am Surg. Jan. 1995, 61 (1): 30-5. |
Sherck et al., “Covering the ‘Open Abdomen’: A Better Technique”, Am Surg. Sep. 1998; 64(9): 854-7. |
Dubick et al., “Issues of Concern Regarding the Use of Hypertonic/Hyperoncotic Fluid Resuscitation of Hemorrhagic Hypotension . . . ”, Apr. 2006; 25 (4); 321-8. |
Burdette, “Systemic Inflammatory Response Syndrome”, http://emedicine.medscape.com/article/168943-print, Apr. 2007. |
Beamis Hydrophobic Rigid Canisters—http://www.bemishealthcare.com/docs/Canister Hydrophobic.pdf (date unknown). |
Fink et al., “Textbook of Critical Care”, 5th ed. (Philadelphia: Elsevier, 2005), 1933-1943. |
International Search Report and Written Opinion date mailed Nov. 5, 2009 for PCT/US2009/044264 [VAC.0867PCT]. |
International Search Report and Written Opinion date mailed Nov. 18, 2009 for PCT/US2009/044230 [VAC.0868PCT]. |
International Search Report and Written Opinion date mailed Sep. 17, 2009 for PCT/US2009/044240 [VAC.0893PCT]. |
International Search Report and Written Opinion date mailed Nov. 5, 2009 for PCT/US2009/044268 [VAC.0894PCT]. |
International Search Report and Written Opinion date mailed Oct. 6, 2009 for PCT/US2009/044226 [VAC.0895PCT]. |
International Search Report and Written Opinion date mailed Oct. 15, 2009 for PCT/US2009/044244 [VAC.0911PCT]. |
International Search Report and Written Opinion date mailed Oct. 6, 2009 for PCT/US2009/044266 [VAC.0919PCT]. |
International Search Report and Written Opinion date mailed Nov. 5, 2009 for PCT/US2009/044245 [VAC.0920PCT]. |
International Search Report and Written Opinion date mailed Oct. 23, 2009 for PCT/US2009/044235 [VAC.0921PCT]. |
Restriction Requirement date mailed Jan. 4, 2010 for U.S. Appl. No. 12/466,973. |
Response filed Jan. 21, 2010 for U.S. Appl. No. 12/466,973. |
Non-Final Office Action date mailed Mar. 5, 2010 for U.S. Appl. No. 12/466,973. |
Response filed May 20, 2010 for U.S. Appl. No. 12/466,973. |
Examiner Interview Summary date mailed May 25, 2010 for U.S. Appl. No. 12/466,973. |
Final Office Action date mailed Aug. 12, 2010 for U.S. Appl. No. 12/466,973. |
Number | Date | Country | |
---|---|---|---|
20070282309 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60810733 | Jun 2006 | US |