The present application is the U.S. national phase of PCT Application No. PCT/CN2019/124054 filed on 2019 Dec. 9, which is incorporated herein by reference in its entirety and for all purposes.
The present application relates to an assembled unit, and more particularly, to an assembled unit having a locking mechanism. The fields of usage of the assembled unit of the present application include, but are not limited to, transportation (such as pallets), storage, construction (such as frames, supporting brackets), toys (such as assembled toys), and the like.
Assembled units are widely used in transportation, construction, toys, among other fields. Assembled units typically have the advantages of fast installation, convenient disassembly, and easy carrying and transportation, among others. For example, patent application number 2009101516204 discloses a pallet, comprising a plurality of assembling components, the main structure of the pallet being formed by assembling lateral guide rails, plate members and spine members together. Compared with conventional wooden pallets, the pallet has the advantages of being safe and convenient to use, easy to repair and low in cost.
However, in order to prevent the assembling components from falling apart during use, additional locking members such as bolts and screws are needed to further lock the assembled structure, which is inconvenient for the assembly and disassembly, repair, and management of the assembled unit.
The present application provides an assembled unit having a locking mechanism, which addresses the problem of inconvenience of assembly and disassembly of conventional assembled units.
The present application provides an assemblied unit, comprising:
a pair of lateral guide rails, each of the lateral guide rails being configured with a sliding groove along a direction of extension thereof, with openings of the respective sliding grooves of the pair of lateral guide rails facing each other;
a pair of class I plate members disposed between the pair of lateral guide rails, wherein both ends of each of the class I plate members can be inserted into the sliding groove of the corresponding lateral guide rail, both ends of each of the lateral guide rails are respectively configured with an engaging structure, which has an engaging position and a disengaging position, and both ends of each of the class I plate members are configured with a corresponding engaging portion, such that when the engaging portion is slid into the engaging position, the corresponding class I plate member is lockedly engaged with the corresponding lateral guide rail, and when the engaging portion is slid into the disengaging position, the corresponding class I plate member can be disengaged from the sliding groove of the corresponding lateral guide rail;
a spine member configured with a raised sliding block along its direction of extension, wherein on a surface of each of the type I plate members, a class I engaging slot is configured in a direction parallel to the lateral guide rail, the class I engaging slot opening at a side of the class I plate member and terminating at a termination position after it extends across part of a surface of the corresponding plate member, with openings of the class I engaging slots of the pair of class I plate members facing each other; the sliding block of the spine member can be slid in from the opening of the class I engaging slot, and an edge of the sliding block can slidably fit with the class I engaging slot, such that the spine member can be slid along the class I engaging slot but is locked in a direction perpendicular to the surface of the corresponding plate member; and an end of the spine member is configured with a detachment portion having a predetermined length, such that the spine member can be embedded into or detached from the class I engaging slot at the detachment portion in a direction perpendicular to the surface of the corresponding plate member;
at least one eccentric rotation member, wherein a raised rotary sliding block is configured at the bottom of the eccentric rotation member; the rotary sliding block can be slid in from the opening of the class I engaging slot and stay at the termination position of the class I engaging slot, and an edge of the rotary sliding block rotarily fits with the class I engaging slot such that the eccentric rotation member can rotate about a center of the rotary sliding bock but is locked in a direction perpendicular to the surface of the corresponding plate member; and with the rotary sliding block as a starting point, the eccentric rotation member has two arms extending in different directions, with a long arm having a length greater than that of a short arm;
wherein when the assembled unit is to be shifted to an unlocked state, the pair of class I plate members are in the engaging positions, the end of the spine member without the detachment portion is slid into the class I engaging slot having the eccentric rotation member disposed therein and abuts against the short arm of the eccentric rotation member, and the other end of the spine member configured with the detachment portion overlaps the other class I engaging slot, with a length of overlapping not greater than that of the detachment portion such that the spine member at the overlapping position can be directly embedded into the other class I engaging slot; and
when the assembled unit is to be shifted from an unlocked state into a locked state, the spine member is slid toward the end thereof configured with the detachment portion until it abuts against the termination position of the type I engaging slot accommodating the detachment portion, a length of the detachment portion is smaller than that of the type I engaging slot accommodating it such that at least part of a length of the type I engaging slot accommodating the detachment portion still fits with the gliding block of the spine member, and the eccentric rotation member is rotated such that its long arm abuts against the end of the spine member without the detachment portion.
The present application has the following beneficial effects:
Due to the disposition of the eccentric rotation member, when the assembled unit is to be shifted to an unlocked state, the short arm of the eccentric rotation member is made to abut against the end of the spine member without the detachment portion, whereupon the end of the spine member configured with the detachment portion can be detached from the class I engaging slot of the class I plate member, such that components of the assembled unit can be dissembled from each other. When the assembled unit is to be shifted to a locked state, the long arm of the eccentric rotation member is made to abut against the end of the spine member without the deteachment portion, whereupon at least part of the length of the class I engaging slot accommodating the detachment portion still fits with the sliding block of the spine member, such that the end of the spine member configured with the detachment portion cannot be detached from the class I engaging slot, thus achieving locking of components of the assembled unit among each other. The eccentric rotation member realizes the locking among components of the assembled unit, without the need for additional locking members such as bolts and screws to lock the assembled unit, which solves the problem of inconvenience in assembly and disassembly associated with existing assembled units.
Reference numerals: 100, lateral guide rail; 110, sliding groove; 120, insertion hole; 130, open chamber; 200, spine member; 210, first through hole; 220, sliding block; 230, detachment portion; 300, eccentric rotation member; 310, rotation shaft; 320, long arm; 330, short arm; 340, second through hole; 400, class I plate member; 500, class II plate member; 600, class III plate member; 700, spacer; 800, class I engaging slot; 900, class II engaging slot; 1000, cavity; 1100, engaging portion; 1110, insertion slot; 1200, locking piece; 1210, third through hole.
The present application will be further described in detail below with reference to the accompanying drawings, in which like elements in different embodiments are indicated with like reference numerals. In the following embodiments, many details are described so that the present application will be better understood. However, those skilled in the art can readily recognize that some of the features may be omitted, or replaced by other elements, materials, or methods, depending on different situations. In some cases, some operations related to the present application are not shown or described in this specification, so as to avoid overwhelming the core part of the present application with excessive description. Detailed description of these relevant operations is not necessary for those skilled in the art, who can have a complete knowledge of the relevant operations in light of the description in the specification and the general technical knowledge in the art.
Additionally, the characteristics, operations or features described in the specification can be combined in any suitable manner to form various embodiments. Moreover, the steps or actions in the description of the method may also be switched or adjusted in sequence in a manner that is obvious to those skilled in the art. Therefore, the various sequences in the description and the drawings are merely for the purpose of clearly describing a particular embodiment and are not intended to be required, unless it is otherwise specified that a specific sequence must be followed.
The serial numbers per se, such as “first”, “second”, etc., designated herein for components, are only used for distinguishing the described objects and do not represent any sequence or have any technical meaning. As used herein, “connected” or “coupled” includes both direct and indirect connection (coupling), unless otherwise specified.
The present application provides an assembled unit having a locking mechanism.
With reference to
With reference to
With reference to
Specifically, the engaging portion 1100 is slid from the disengaging position to the engaging position along the sliding groove 110 in a direction towards the end of the lateral guide rail 100 proximal thereto, and conversely, the engaging portion 1100 is slid from the engaging position to the disengaging position along the sliding groove 110 in a direction towards the end of the lateral guid rail 100 distal thereto.
With reference to
With reference to
Specifically, the eccentric rotation member 300 defines a locked state and an unlocked state of the assembled unit by means of rotation.
When the assembled unit is to be shifted to an unlocked state, the pair of class I plate members 400 are in the engaging positions. The end of the spine member 200 without the detachment portion 230 is slid into the class I engaging slot 800 having the eccentric rotation member 300 disposed therein and abuts against the short arm 330 of the eccentric rotation member 300, and the other end of the spine member 200 configured with the detachment portion 230 overlaps the other class I engaging slot 800, with a length of overlapping not greater than that of the detachment portion 230 such that the spine member 200 at the overlapping position can be directly embedded into the other class I engaging slot 800.
When the assembled unit is to be shifted from an unlocked state into a locked state, the spine member 200 is slid toward the end thereof configured with the detachment portion 230 until it abuts against the termination position of the type I engaging slot 800 accommodating the detachment portion 230. The length of the detachment portion 230 is smaller than that of the type I engaging slot 800 accommodating it such that at least part of a length of the type I engaging slot 800 accommodating the detachment portion 230 still fits with the gliding block 220 of the spine member 200. The eccentric rotation member 300 is rotated such that its long arm 320 abuts against the end of the spine member 220 without the detachment portion 230.
Due to the disposition of the eccentric rotation member 300, when the assembled unit is to be shifted to an unlocked state, the short arm 330 of the eccentric rotation member 300 is made to abut against the end of the spine member 200 without the detachment portion 230, whereupon the end of the spine member 200 configured with the detachment portion 230 can be detached from the class I engaging slot 800 of the class I plate member 400, such that components of the assembled unit can be dissembled from each other. When the assembled unit is to be shifted to a locked state, the long arm 320 of the eccentric rotation member 300 is made to abut against the end of the spine member 200 without the deteachment portion 230, whereupon at least part of the length of the class I engaging slot 800 accommodating the detachment portion 230 still fits with the sliding block 220 of the spine member 200, such that the end of the spine member 220 configured with the detachment portion 230 cannot be detached from the class I engaging slot 800, thus achieving locking of components of the assembled unit among each other. The eccentric rotation member 300 realizes the locking among components of the assembled unit, without the need for additional locking members such as bolts and screws to lock the assembled unit, which solves the problem of inconvenience in assembly and disassembly associated with existing assembled units.
In one embodiment, the eccentric rotation member 300 is configured with a guide face at a peripheral surface facing the spine member 200 during rotation, so as to guide switching between the long arm 320 and the short arm 330. The guide face helps to guide the rotation of the eccentric rotating member 300, such that the eccentric rotating member 300 can also be rotated smoothly when it abuts against the spine member 200.
With reference to
With reference to
In other embodiments, the class I engaging slot 800 may also be a T-shaped slot, an L-shaped slot, an arc-shaped slot with a central angle greater than 180°, and the like, as long as it can prevent the sliding block 220 of the spine member 200 from detaching from the class I engaging slot 800 along a direction perpendicular to the class I plate member 400. The shape of the sliding block 220 of the spine member 200 matches that of the class I engaging slot 800.
With reference to
In another embodiment, the eccentric rotation member 300 is provided in a number of two, and the two eccentric rotation members 300 are disposed in the respective class I engaging slots 800 of the pair of class I plate members 400.
With reference to
With reference to
With reference to
The locking piece 1200 further restricts the rotation of the eccentric rotation member 300. Specifically, a part of the locking piece 1200 is located in the cavity 1000 of the spine member 200, and the other part is located in the cavity 1000 of the eccentric rotation member 300. The included angle between the locking piece 1200 and a side wall of the cavity 1000 may be 30°, 45°, or 60°, etc., as long as the locking piece 1200 does not press close to any inner side wall of the cavity 1000.
With reference to
With reference to
In one embodiment, the assembled unit further comprises a chip, which is attached on the locking piece 1200. The chip stores first authentication information, and a surface in a middle portion of the tying band records second authentication information which matches the first authentication information, so that by comparing the first authentication information and the second authentication information, matching between the chip and the tying band can be confirmed. By comparing the first authentication information and the second authentication information, it can be known whether the tying band and the chip match each other, which is convenient for information management and quality control. As the locking piece 1200 is disposed at a certain inclination angle with respect to an inner side wall of the cavity 1000, the chip is positioned at a certain inclination angle with respect to the inner wall of the cavity 1000, which helps to enhance the effect of the chip in receiving and sending signals.
In an embodiment, a surface of an end of the tying band further records third authentication information, the third authentication information matching the first authentication information and the second authentication information. When the tying band is used, the end of the tying band having the recorded third authentication information is cut off to be saved as a stub. By comparing the third authentication information on the stub with the first authentication information and the second authentication information, it can be known whether the tying band or the locking piece 1200 is original.
In one embodiment, the chip also stores material list information of the assembled unit, the material list information including the name, quantity, and records of loss and replacement of components of the assembled unit. The material list information of the assembled unit can be conveniently and quickly stored and retrieved, which is beneficial for optimizing the information management of the assembled unit.
With reference to
The tightening point of the tying band is located inside the cavity 1000, so that a user cannot untie the tying band without destroying the structure of the tying band. In other words, if someone else were to disassemble the assembled unit without permission, the tying band must be untied, and the structure of the tying band would necessarily be destroyed, such as by cutting the tying band, which is an irreversible operation that would definitely leave evidence that the assembled unit has been disassembled. At the same time, because the original tying band is associated to the chip and the stub through the authentication information, it is impossible for others to conceal the record of disassembly by substituting a new tying band.
In one embodiment, an end of the tying band has a length margin after tightening up, and the length margin extends toward the cavity 1000 of the spine member 200. By making the length margin extended into the cavity 1000 of the spine member 200, it is more difficult for others to get access to the tightening point of the tying band.
With reference to
With reference to
On a surface of each class II plate member 500, a class II engaging slot 900 is disposed in a direction parallel to the lateral guide rail 100. The class II engaging slot 900 extends across a whole surface of the corresponding plate member and matches the position of the engaging slot on an adjacent plate member. The sliding block 220 of the spine member 200 can slidably fit with the class II engaging slot 900, such that the spine member 200 can be slid along the class II engaging slot 900 but is locked in a direction perpendicular to the surface of the corresponding plate member.
With reference to
The structural strength of the assembled unit is enhanced by the class II plate member 500 and the class Ill plate member 600. The class II plate member 500 can fit with the insertion hole 120 of the lateral guide rail 100 to achieve positioning, and the class Ill plate member 600 can be slid freely along the sliding groove 110 of the lateral guide rail 100.
With reference to
With reference to 1 and 2, in one embodiment, the lateral guide rail 100 has a double-layer structure. The first and second layers of the lateral guide rail 100 are configured with sliding grooves 110 parallel to each other. Plate members can be installed on the first and second layers of the lateral guide rail 100. The engaging slot of the plate member on the first layer is disposed opposite to the engaging slot of the plate member on the second layer. Sliding blocks 220 are configured on opposite sides of the spine member 200. The gliding blocks 220 on both sides of the spine member 200 respectively fit with the engaging slot of the plate member on the first layer and the engaging slot of the plate member on the second layer. When the detachment portion 230 of the spine member 200 is made to detach from the class I engaging slot 800, the class I plate member 400 can be deformed slightly, such that the spine member 200 can be disengaged from the class I engaging slot 800 in a direction perpendicular to the corresponding class I plate member 400. Use of the double-layer structure is beneficial for enhancing the structural strength of the assembled unit.
The present disclosure invention has been described above with reference to specific examples, which are merely intended to aid the understanding of the present disclosure and are not intended to limit the present disclosure n thereto. Several simple derivations, variations or substitutions can be made by a person skilled in the art to which the present disclosure pertains in light of the concept of the present disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/124054 | 12/9/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/114033 | 6/17/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2126278 | Quayle | Aug 1938 | A |
3118400 | Kemp, Jr. | Jan 1964 | A |
3149586 | Kemp, Jr. | Sep 1964 | A |
5178075 | Kanazawa | Jan 1993 | A |
5367960 | Schleicher | Nov 1994 | A |
5809902 | Zetterberg | Sep 1998 | A |
5941179 | Herring | Aug 1999 | A |
6766749 | Lacabanne | Jul 2004 | B2 |
7987798 | Kim | Aug 2011 | B2 |
8291837 | Kirkpatrick | Oct 2012 | B2 |
8424468 | Aden | Apr 2013 | B2 |
8671848 | Randall | Mar 2014 | B2 |
20030005862 | Halavais | Jan 2003 | A1 |
20050076816 | Nakano | Apr 2005 | A1 |
20060254474 | Roth | Nov 2006 | A1 |
20070245932 | Nielsen | Oct 2007 | A1 |
20130298806 | Johnson | Nov 2013 | A1 |
20140102338 | Stevens | Apr 2014 | A1 |
20160068302 | Clark | Mar 2016 | A1 |
20190092522 | Robinson | Mar 2019 | A1 |
20200002053 | Zhang | Jan 2020 | A1 |
20200239185 | Park | Jul 2020 | A1 |
20200407111 | Kim | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
2692053 | Apr 2005 | CN |
103068688 | Apr 2013 | CN |
101613009 | Jun 2013 | CN |
204527964 | Aug 2015 | CN |
108058883 | May 2018 | CN |
2004067206 | Mar 2004 | JP |
2011006539 | Jan 2011 | WO |
2021114033 | Jun 2021 | WO |
Entry |
---|
International Application Serial No. PCT/CN2019/124054, Preliminary Report on Patentability dated Jun. 23, 2022, 11 pages. |
International Application Serial No. PCT/CN2019/124054, Search Report dated Aug. 26, 2020, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20230071977 A1 | Mar 2023 | US |