The present invention relates to an assembling structure, and more particularly, to an assembling structure for electronic module.
With the increasing demands for IT products, the related technologies and products are developed on large scale. For examples, computer products and multimedia equipments are developed with rapid growth and progress. However, the peripheral device, such as an optical disk drive, hard disk drive or floppy disk drive, is usually installed in immoveable shelves in a metal housing. Besides, other related device, such as a power supply, disposed on the housing, also occupies some space. Thus, the space in the housing is very crowded.
Additionally, the housing and the shelves are made of metal materials and have keen edges and corners. Users' fingers may be slashed if the users stretched hands into the housing for assembly and repair. So it is very inconvenient and dangerous. Furthermore, the peripheral devices are upgraded and eliminated through competitions rapidly. In this situation, it is more and more frequent that users disassemble and assemble those devices by themselves. Consequently the assembling structure with immoveable shelves and crowded inner space in the housing is really inconvenient to users.
U.S. Pat. No. 6,757,164 B2 published on Jun. 29, 2004, titled “Positioning Unit for a Computer Housing-and-Peripheral Device Assembly”. The positioning unit of the invention includes a positioning member disposed between the peripheral device and the computer housing, including a thin plate that is stamped to form a bent spring arm having a first section which extends toward the casing, and a second section which bends from the first section and which extends toward the computer housing. Conventionally, the peripheral device, such as an optical disk drive, a floppy disk drive or a hard disk drive, is mounted in the computer housing via screw means. As such, it is relatively inconvenient to mount or dismount the peripheral devices in the computer housing through tightening or loosening of the screw means. Although the invention is provided for mounting the peripheral devices in the computer housing without screw means, the inconvenience resulting from the space restriction and immoveable shelves is not overcame yet, and the problem is still exists.
According to the above drawbacks, the present invention provides an assembling structure for electronic module to improve the assembly inconvenience due to the space restriction.
The primary objective of the present invention is to provide an assembling structure for electronic module comprising a case and a side frame. The characteristic of the present invention is the case fixed on the base frame of the assembling structure by two front pivots and the case is pivoted thereon, the side frame is adjacent to the case. Furthermore, the case and the side frame include a plurality of locking holes respectively, wherein the locking holes of the case are corresponding to the locking holes of the side frame. Additionally, the side frame further includes a locking controller with a first latch and a second latch, each corresponding to locking holes of the case and side frame, thereby locking the case at a horizontal and oblique position. By this way, it is more convenient to assemble electronic modules without space restrictions of prior art.
To achieve the objectives of the present invention, the assembling structure for electronic module is provided, wherein the case further includes a receiving space to contain the electronic module, and the case having a front opening and a rear opening, wherein the front opening is adapted to put in the electronic module therethrough, while the rear opening is utilized to insert the electric lines of the electronic module. In addition, the case further includes a guide track disposed on the side wall adjacent to the side frame, and the side frame further includes a pivot installed through the guide track. By the association of the pivot and track, the case can be rotated between the horizontal position and oblique position.
Furthermore, the case further includes a plurality of auxiliary positioning convex disposed on the side wall adjacent to the side frame, and the side frame also includes a plurality of auxiliary positioning concave set correspondingly to the auxiliary positioning convexs. By means of the convexs and concaves, the case is assisted to be positioned multistagely between the horizontal and oblique position. Therefore, the auxiliary positioning function is provided to keep the case away from rotating randomly and clapping suddenly to avoid dangers. Moreover, the auxiliary positioning convexs and concaves are on the sites that are corresponding and exchangeable mutually, that is to say, the auxiliary positioning convexs could be set on the case and the auxiliary positioning concaves could be set on the side frame, alternatively, the auxiliary positioning convexs could be set on the side frame and the auxiliary positioning concaves could be set on the case. In brief, the auxiliary positioning convexs and concaves are matched mutually to provide the auxiliary positioning function to prevent dangers no matter which form is adopted.
Moreover, the locking controller of the present invention includes a first latch and a second latch, wherein the second latch is a metal material with ductility and elasticity, and the second latch further including an elastic fixing piece mounted on the outer side of the side frame to have the front end of the second latch disposed at the inner side of the first latch and contacted with the rear end of the first latch. Additionally, the first latch further includes a locking means disposed on the front end, and the second latch further includes a locking means on the rear end, respectively, to lodge in the corresponding locking holes. Besides, the locking controller further includes a spring disposed between the first latch and the side frame.
As above, locking means of the first latch and the second latch are respectively corresponding to their locking holes to lock the case at a horizontal and oblique position. In addition, the locking holes of the case are the first, second and third locking hole, disposed on the side wall of the case adjacent to the side frame. Besides, the locking holes of the side frame are the fourth and fifth locking hole. Accordingly, the fourth locking hole is corresponding to the first and second locking hole, while the fifth locking hole corresponding to the third locking hole. To have the case locked at the horizontal position, the locking means of the first latch is lodged in the first and fourth locking holes, and the locking means of the second latch is lodged in the third and fifth locking holes. Alternatively, to have the case locked at the oblique position, the locking means of the first latch is needed to be lodged in the second and fourth locking holes only.
Additionally, the locking means of the first latch, the first, second and fourth locking holes are oval-shaped, while the locking means of the second latch, the third and fifth locking holes are semicircle-shaped, wherein the locking means of the second latch is a semicircle sphere with unidirectional lodging function. Consequently, the locking means can be lodged in the locking holes to lock the case by means of the shape coincidences.
The foregoing aspects, as well as many of the attendant advantages and features of this invention will become more apparent by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
a and 4b illustrate the motions of locking controller of the present invention; and
a and 5b illustrate the horizontal and oblique positions of the case of the present invention.
Referring to
Moreover, the side frame 12 is parallel with the case 11 while the case 11 is at the horizontal position. Besides, the locking controller 13 of the present invention includes the first latch 131 and the second latch 132, wherein the second latch 132 is a metal material with ductility and elasticity, and further including an elastic fixing piece 1322 mounted on the outer side of the side frame 12, to have the front end of the second latch 132 disposed at the inner side of the first latch 131, and the front end of second latch 132 is contacted with the rear end of the first latch 131. Therefore, the second latch 132 is acted after the first latch 131 is pressed.
Subsequently, with reference to
However, it is possible to hurt fingers due to the case 11 clapping suddenly if the case 11 is rotated randomly without any resistance. Therefore, the present invention provides the auxiliary positioning function to have the case 11 positioned multistagely between the horizontal and oblique positions when rotated. The case 11 further includes a plurality of auxiliary positioning convex (detents) 112 which are disposed on the side wall adjacent to the side frame 12. Furthermore, the side frame 12 further includes a plurality of auxiliary positioning concave (protrusions) 122 corresponding to the auxiliary positioning convexs 112. The distribution of the auxiliary positioning convexs 112 and auxiliary positioning concaves 122 is parallel with the guide track 111, in other words, the distribution of the auxiliary positioning convexs 112 and auxiliary positioning concaves 122 is in accordance with the pathway that is followed by the case 11 while the case 11 rotated. Thus, the auxiliary positioning convexs 112 are lodged in the auxiliary positioning concaves 122 orderly when the case 11 is rotated between the horizontal and oblique positions. By means of the auxiliary positioning convexs and concaves, the case 11 is assisted to be positioned multistagely between the horizontal and oblique positions. Therefore, the auxiliary positioning function is provided to keep the case 11 away from rotating randomly and clapping suddenly to avoid dangers.
Moreover, the auxiliary positioning convexs 112 and concaves 122 are on the sites that are corresponding and exchangeable mutually, that is to say, the auxiliary positioning convexs 112 could be set on the case 11 and the auxiliary positioning concaves 122 could be set on the side frame 12, alternatively, the auxiliary positioning convexs 112 could be set on the side frame 12 and the auxiliary positioning concaves 122 could be set on the case 11. In brief, the auxiliary positioning convexs 112 and concaves 122 are matched mutually to provide the auxiliary positioning function to prevent dangers no matter which form is adopted. In the preferred embodiment, the auxiliary positioning convexs 112 are set on the case 11 and the auxiliary positioning concaves 122 are set on the side frame 12.
With reference to
Furthermore, referring to
Please refer to
Subsequently, please refer to
As illustrated in
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, these are, of course, merely examples to help clarify the invention and are not intended to limit the invention. It will be understood by those skilled in the art that various changes, modifications, and alterations in form and details may be made therein without departing from the spirit and scope of the invention, as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5745342 | Jeffries et al. | Apr 1998 | A |
5995364 | McAnally et al. | Nov 1999 | A |
6215664 | Hernandez et al. | Apr 2001 | B1 |
6299266 | Justice et al. | Oct 2001 | B1 |
6318823 | Liao | Nov 2001 | B1 |
6473313 | Chen et al. | Oct 2002 | B1 |
6529373 | Liao et al. | Mar 2003 | B1 |
6728109 | Wu | Apr 2004 | B1 |
6754071 | Lin et al. | Jun 2004 | B2 |
6757164 | Lin et al. | Jun 2004 | B2 |
6879484 | Chou | Apr 2005 | B2 |
6882527 | Wang et al. | Apr 2005 | B2 |
6935604 | Chen | Aug 2005 | B2 |
6956737 | Chen et al. | Oct 2005 | B2 |
7031149 | Dean et al. | Apr 2006 | B2 |
7038907 | Chen | May 2006 | B2 |
7046517 | Long et al. | May 2006 | B2 |
7092249 | Wang | Aug 2006 | B2 |
7180734 | Jing | Feb 2007 | B2 |
7254018 | Zhang et al. | Aug 2007 | B2 |
7257827 | Lee | Aug 2007 | B2 |
7262960 | Huang | Aug 2007 | B2 |
7433183 | Huang | Oct 2008 | B2 |
7469978 | Liang | Dec 2008 | B2 |
7502224 | Motoe | Mar 2009 | B2 |
20050068720 | Lambert et al. | Mar 2005 | A1 |
20060061956 | Chen et al. | Mar 2006 | A1 |
20060171109 | Chang | Aug 2006 | A1 |
20090147391 | Kobayashi et al. | Jun 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090016007 A1 | Jan 2009 | US |