Wellbores drilled through the Earth's subsurface may be oriented in various directions and as such, may be vertical, deviated or horizontal wellbores. A multilateral well may have a parent wellbore and one or more lateral wellbore branches, which extend from the parent wellbore into the surrounding formation. The parent wellbore may be cased by a casing string that lines and supports the parent wellbore. Liners may line and support the lateral wellbores that extend from the parent wellbore. The casing and possibly the liners may be cemented in place in the well.
A lateral wellbore of a multilateral well may be completed after the main parent wellbore has been drilled and cased. In this manner, the lateral wellbore may be formed by running a drill string into the parent wellbore; extending the drill string through a milled or preformed opening called a “casing window” of the parent casing string; and drilling the surrounding formation. For such purposes as deflecting mills into the parent casing wall to form the casing window and guiding a drill string in the appropriate direction to form the lateral wellbore, a tool called a “whipstock” may be deployed in the parent wellbore. In this regard, the whipstock may be anchored in place in the parent wellbore below the location of the casing window so that an inclined surface of the whipstock may be used for purposes of guiding the mills and the drill string.
The summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In an example implementation, a technique includes running an assembly that includes a whipstock and a lateral deflector as a unit into a first wellbore of a well. The whipstock is used to guide at least a drill string to form a second wellbore. The technique includes running a liner into the second wellbore, where the running includes guiding the liner using the lateral deflector.
In another example implementation, an apparatus that is usable with a well includes an assembly, which includes a whipstock and a lateral deflector that are adapted to be run downhole into a first wellbore of the well as a unit. The whipstock is adapted to guide at least a drilling string to form a second wellbore, and the lateral deflector is adapted to guide a liner during installation of the liner into the second wellbore.
In another example implementation, an apparatus usable with a well includes a casing and a string that includes an assembly, which includes a whipstock and a lateral deflector that are adapted to be run downhole on the string. The assembly is adapted to be disengaged from the string downhole in the well and remain in the well in response to retrieval of a portion of the string uphole of the assembly, and the lateral deflector is adapted to be nested inside the whipstock when the assembly is run downhole. The whipstock includes a first surface to guide at least a milling tool to form a window in the casing, and the lateral deflector includes a second surface, which is adapted to guide installation of a liner into a lateral wellbore of the well.
In yet another example implementation, an apparatus that is usable with a well includes an assembly that is adapted to be run into the well. The assembly includes a whipstock, which includes an interior space and a lateral deflector that is disposed at least partially in the interior space. The lateral deflector includes a deflecting surface that is adapted to guide a trajectory of a liner in response to the liner being run into the well, and the lateral deflector is adapted to be releasably secured to the whipstock at least when the assembly is being run into the well. The whipstock is adapted to be released from the lateral deflector downhole in the well to allow the whipstock to be retrieved from the well and the lateral deflector to remain in the well. The lateral deflector includes at least one opening, which is preexisting before the assembly is run downhole to communicate fluid such that when the whipstock is released from the lateral deflector, the lateral deflector is adapted to communicate fluid through the at least one opening.
Advantages and other features will become apparent from the following drawings, description and claims.
In the following description, numerous details are set forth to provide an understanding of features of various embodiments. However, it will be understood by those skilled in the art that the subject matter that is set forth in the claims may be practiced without these details and that numerous variations or modifications from the described embodiments are possible.
As used herein, terms, such as “up” and “down”; “upper” and “lower”; “upwardly” and downwardly”; “upstream” and “downstream”; “above” and “below”; and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments. However, when applied to equipment and methods for use in environments that are deviated or horizontal, such terms may refer to a left to right, right to left, or other relationship as appropriate.
In general, systems and techniques are disclosed herein to form and complete a deviated, or lateral wellbore branch of a multilateral completion. The “completion” of the lateral wellbore includes one or more of the following: milling a casing window of a parent wellbore; drilling the lateral wellbore; installing a liner in the lateral wellbore; and breaching any well fluid communication barriers in the parent wellbore, which may otherwise exist due to the assemblies/techniques that are employed to complete the lateral wellbore.
More specifically, as disclosed in more detail below, systems and techniques are disclosed herein to form a multilateral completion in a process that includes using a deflection assembly inside a parent wellbore to guide the trajectory of the drilling assembly for purposes of drilling a lateral wellbore; using the deflection assembly to further aid in the installation of a liner by guiding the trajectory of the liner into the lateral wellbore; and after the liner is installed, perforating the deflection assembly to permit fluid communication between regions above and below the deflection assembly. It is noted that without loss of generality, the multilateral completion may be, as examples, a Technology Advancement of Multilaterals (TAML) level three (L3) or level four (L4) completion.
As a more specific example,
The next phase in the multilateral completion for this example involves forming an opening, called a “casing window,” in the casing string 20 at a location where a deviated, or lateral, wellbore is to extend from the parent wellbore 12. The precise location of the lateral wellbore may be derived considering a number of different factors, including measurements acquired by logging operations (operations that involve the use of acoustic, resistive, nuclear magnetic resonance (NMR) tools, and so forth) in the parent wellbore 12, geologic surveys (vibroseis seismic surveys, wellbore surveys, as examples) of the surrounding formations, and so forth.
Referring to
The packer 54 is set downhole to anchor, or secure, the deflection assembly 70 to the casing string 20. The deflecting assembly 70 guides, or directs, the mills 56, 58 and 60 into the wall of the casing string 20 for purposes of milling a window in the casing string 20 to form the opening, or entrance, in the parent wellbore 12 for the lateral wellbore. As further described herein, the deflecting assembly 70, in accordance with example implementations that are disclosed herein, further guides, or directs, the trajectory of a drilling string through the milled casing window to form the lateral wellbore and further guides, or directs, the trajectory of a lateral liner as the liner is being deployed into the lateral wellbore.
Turning now to the more specific details, the milling assembly 50 is run downhole via the tubing string 52 through the central passageway of the casing string 20 until a deflecting face of the deflecting assembly 70 is at the appropriate position (below, for example) to deflect the mills 56, 58 and 60 into the parent casing string 20 at the location where the casing window is to be milled. The downhole position of the milling assembly 50 may be determined by monitoring the length of the deployed string for the Earth surface E, using casing collar locators, using sensors, and so forth.
When the deflecting assembly 70 at the appropriate downhole position, the packer 54 is set. In its set state, the packer 54 expands its radial sealing element(s) 55 to form an annular fluid seal between the exterior of the tubing string 52 and the interior of the casing string 20. The packer 54 also mechanically secures the deflecting string 52 in position via slips, or dogs (not shown), which extend from the packer 54 into the parent casing string 20. In accordance with exemplary implementations disclosed herein, fluid communication through the central bore 56 of the packer 54 is at least initially closed off uphole of the packer 54 due to the deflecting assembly 50, as further discussed below. The packer 54 may be one of many different types of packers, depending on the particular implementation, such as a weight-set packer, hydraulically-set packer, mechanically-set packer, and so forth.
In general the mills 56, 58 and 60 contain abrasive cutting elements that are disposed on lands of the mills 56, 58 and 60, as well as fluid communication channels, for purposes of milling out the casing string 20 to form the casing window. The mills 56, 58 and 60 may be driven, or rotated, via one of numerous techniques/mechanisms, as can be appreciated by the skilled artisan, such as techniques that include pumping fluid through the central passageway of the tubing string 52 to drive downhole fluid motors, for example. After the mills 56, 58 and 60 are released from their secure run-in-hole positions, downhole travel of the tubing string 52 causes the mills 56, 58 and 60 to engage a hardened, deflecting face 94 of the deflecting assembly 70, and this engagement, in turn, causes the mills 56, 58 and 60 to deviate away from the longitudinal axis of the casing string 20 and toward the casing string wall for purposes of milling out the casing window.
As depicted in
In further implementations, the deflecting assembly 70 and the packer 54 may be run downhole as an assembly on the tubing string 52 (or other conveyance device) without any mills. For example, in accordance with some implementations, a casing window may be milled in the parent casing string 20 using a milling tool assembly that is run downhole in a separate trip before the deflecting assembly 70 and the packer 54 are run downhole. As another example, in some implementations, the parent casing string 20 may be installed with a casing window that is already preformed in the appropriate section of the casing string 20, thereby obviating the casing window milling process altogether. Thus, many variations are contemplated, which are within the scope of the appended claims.
Regardless of how the casing window is formed, the next phase in the multilateral completion disclosed herein is the drilling of the lateral wellbore. Referring to
More specifically, in accordance with some implementations, the drill string 100 includes a bottom hole assembly (BHA), which contains, in turn, a drill bit assembly 134 for purposes of drilling the lateral wellbore 130. In general, the drill bit assembly 134 is guided, or directed, into the casing window 150 via a deflecting surface, such as the depicted inclined deflecting face 94, of the whipstock 80.
As depicted in
The deflecting faces 94 and 102 may have numerous profiles or shapes, depending on the particular implementation. For example, in accordance with some implementations, the face 94, 102 may be a “spoon-type” face that is curved and inclined relative to the longitudinal axis of the deflecting assembly 70. Regardless of its shape, the deflecting face 94, 102 is oriented to guide the mills, drill string and/or lateral liners toward the location of the depicted casing window 150. The whipstock 80 and the lateral liner 90 are used in different phases of the completion, as the whipstock 80 is first used and then removed from the well 10, leaving the lateral deflector 90 exposed for its function, as further disclosed herein.
Still referring to
Due to this arrangement, when the retrievable tool engages the whipstock 80 to cause its release from the lateral deflector 90 and retrieves the whipstock 80 from the well 10, the lateral deflector 90 remains in the well 10, still secured to the packer 54. Referring to
As depicted in
As an example, the orientation device 210 may be an index casing coupler (ICC), which is available from Schlumberger®. Other orientation devices may be used, in accordance with other implementations. Moreover, the orientation device may be run into the liner 200 after the liner 200 is installed, in accordance with further implementations. Additionally, in accordance with alternative implementations, a perforating gun may be run into the liner 200 and an orientation mechanism, other than an orientation device that is fixed to the liner 200 may be used for purposes of orienting the perforating gun's charges. For example, in accordance with some implementations, a weighted, gravity-based orienting mechanism of the perforating gun may be used to align the perforating charges to direct the perforating jets in the appropriate direction.
For implementations in which the orientation device 210 is used,
Other implementations are contemplated, which are within the scope of the appended claims. For example, in accordance with further implementations, the lateral deflector may be “pre-perforated,” in that one or more communication paths may already be present in the deflecting face 116 when the lateral deflector 90 is run downhole with the whipstock 80. Thus, for these implementations, the perforating operation is not employed. As another variation, in accordance with some implementations, a jetting operation that uses abrasive fluid may be used for purposes of establishing communication through the deflecting face 116 of the lateral deflector 90. In this regard, a jetting tool may be run downhole inside the lateral liner and oriented via an orientation device, similar to the manner in which the perforating gun is oriented. Thus, many implementations are contemplated, and are within the scope of the appended claims.
To summarize, for purposes of forming a multilateral completion (a TAML level 3 or level 4 multilateral completion, as examples), a technique 25 that is depicted in
The mills of the milling assembly are then detached (block 32) and used in conjunction with the whipstock to mill a casing window in the parent wellbore. The portion of the milling assembly, which corresponds to the mills is then retrieved from the well, pursuant to block 34.
Referring to
Thus, the lateral deflector and the packer remain in the well, pursuant to block 40. A lateral liner that includes an orientation device may then be run into the lateral wellbore using the lateral deflector to guide the installation of the liner, pursuant to block 42. Subsequently, a perforating gun may be run into the lateral liner such that the orientation device may be used to orient the perforating charges toward the deflecting face of the lateral deflector, pursuant to block 44. The perforating charges of the perforating gun may then be fired, pursuant to block 46, to breach the deflecting face of the lateral deflector; and then, the perforating gun string may be retrieved from the well, pursuant to block 48.
While a limited number of examples have been disclosed herein, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations
Number | Name | Date | Kind |
---|---|---|---|
5474126 | Lynde et al. | Dec 1995 | A |
6019173 | Saurer et al. | Feb 2000 | A |
6220355 | French | Apr 2001 | B1 |
6241021 | Bowling | Jun 2001 | B1 |
6695056 | Haugen et al. | Feb 2004 | B2 |
6923274 | Rodgers et al. | Aug 2005 | B2 |
7159661 | Restarick et al. | Jan 2007 | B2 |
20030192717 | Smith et al. | Oct 2003 | A1 |
20060027359 | Carter et al. | Feb 2006 | A1 |
20090151588 | Burleson et al. | Jun 2009 | A1 |
20090288833 | Graham et al. | Nov 2009 | A1 |
20090288879 | Arena | Nov 2009 | A1 |
Entry |
---|
International Search Report and Written Opinion mailed on Aug. 27, 2013 for International Patent Application No. PCT/US2013/043207, filed on May 30, 2013, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20130319693 A1 | Dec 2013 | US |