This application is a non-provisional of “ASSEMBLY EQUIPMENT LINE AND METHOD FOR WINDOWS,” U.S. Ser. No. 61/716,871, filed Oct. 22, 2012, which is incorporated herein by reference in its entirety.
This application is related to the following U.S. patent applications: “TRIPLE PANE WINDOW SPACER, WINDOW ASSEMBLY AND METHODS FOR MANUFACTURING SAME”, U.S. 2012/0151857, filed Dec. 15, 2011, now U.S. Pat. No. 9,228,389; “SEALED UNIT AND SPACER”, U.S. 2009/0120035, filed Nov. 13, 2008, now U.S. Pat. No. 8,596,024; “BOX SPACER WITH SIDEWALLS”, U.S. 2009/0120036, filed Nov. 13, 2008, now U.S. Pat. No. 8,151,542; “REINFORCED WINDOW SPACER”, U.S. 2009/0120019, filed Nov. 13, 2008; “SEALED UNIT AND SPACER WITH STABILIZED ELONGATE STRIP”, U.S. 2009/0120018, filed Nov. 13, 2008; “MATERIAL WITH UNDULATING SHAPE” U.S. 2009/0123694, filed Nov. 13, 2008; and “STRETCHED STRIPS FOR SPACER AND SEALED UNIT”, U.S, 2011/0104512, filed Jul. 14, 2010, now U.S. Pat. No. 8,586,193; “WINDOW SPACER APPLICATOR”, U.S. 2011/0303349, filed Jun. 10, 2011, now U.S. Pat. No. 8,967,219; “WINDOW SPACER, WINDOW ASSEMBLY AND METHODS FOR MANUFACTURING SAME”, U.S. Provisional Patent Application Ser. No, 61/386,732, filed Sep. 27, 2010; “SPACER JOINT STRUCTURE”, US-2013-0042552-A1, filed on Oct. 22, 2012, now U.S. Pat. No. 9,187,949; “ROTATING SPACER APPLICATOR FOR WINDOW ASSEMBLY”, US 2013/0047404, filed on Oct. 22, 2012, now U.S. Pat. No. 9,309,714; “SPACER HAVING A DESICCANT”, U.S. 2014/0113098, filed on Oct. 21, 2013; “TRIPLE PANE WINDOW SPACER HAVING A SUNKEN INTERMEDIATE PANE”, U.S. 2014/0109499, filed on Oct. 21, 2013, now U.S. Pat. No. 9,260,907, which are all hereby incorporated by reference in their entirety.
The technology disclosed herein generally relates to assembly equipment. More particularly, the technology disclosed herein relates to assembly equipment for window units.
The technology disclosed herein generally relate to assembly equipment for window units. In one embodiment, a window unit assembly system is taught that has a frame component that is configured to support equipment for a window unit assembly line. A pane conveyor is supported by the frame component and is configured to move panes along the window unit assembly line. A spacer conveyor is supported by the same frame component as the pane conveyor and is configured to move spacer elements along the window unit assembly line.
In another embodiment taught herein, a window unit assembly has a frame component arranged in a window unit assembly line. A pane conveyor is supported by the frame component and is configured to move panes along the window unit assembly line in a first direction. A spacer conveyor is configured to move spacer elements along the window unit assembly line in a second direction, wherein the second direction is directly opposite to the first direction.
In yet another embodiment, the technology disclosed herein is related to a window unit assembly system that has a plurality of frame components configured to support equipment for a window unit assembly line. A plurality of pane conveyors, which are each supported by one of the frame components, are configured to move panes along the window unit assembly line. A plurality of spacer conveyors, which are each supported by one of the frame components, are configured to move spacer elements along the window unit assembly line. The plurality of frame components includes a first frame component and at least a second frame component. The first frame component supports both one of the plurality of pane conveyors and one of the plurality of spacer conveyors, and the second frame component support both another one of the plurality of pane conveyors and another one of the plurality of spacer conveyors.
Reference will now be made in detail to the exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like structure.
A series of machines and arrangement of those machines is described herein that will allow window manufacturers to save valuable floor space while manufacturing window assemblies by combining the processing of both the panes of glazing materials, such as glass panes, and spacer materials on a single assembly line structure. In one embodiment, the panes are loaded and processed using pane conveyers while the spacer is loaded and processed using spacer conveyors, and the spacer conveyors are mounted on the same frame elements as the pane conveyors. As a result, a separate line for processing the spacer is not required and valuable floor space is conserved. Also, separate frame elements are not required, so the cost of the assembly equipment is reduced. In one embodiment, the spacer conveyors are mounted below the pane conveyors.
In one embodiment, the spacer conveyors move the spacer in a first direction along the assembly line during processing, while the pane conveyors move the panes in a second opposite direction along the assembly line during processing. In one embodiment, the second direction is 180 degrees from, or directly opposite to, the first direction. The panes and the spacer are transferred along the assembly line, in opposite directions, until they meet at a spacer application unit, which attaches a spacer to at least one pane.
The basic structure of a window assembly will now be described in more detail with reference to
Referring now to
Referring now to
The spacer 16 is disposed between the first and second panes 12, 14 to keep the first and second panes 12, 14 spaced apart from each other. The spacer 16 is shaped into a spacer frame. The spacer 16 is adapted to withstand compressive forces applied to the first and second panes 12, 14 and to maintain a desired space between the first and second panes 12, 14.
The spacer 16 is sealingly engaged to each of the first and second panes 12, 14 at an edge portion 26 of each of the first and second panes 12, 14. The edge portion 26 is adjacent to the outer perimeter of the panes. In the depicted embodiment, the spacer 16 is sealingly engaged to the second surface 20 of the first pane 12 and the second surface 24 of the second pane 14.
Referring now to
The spacer 16 includes a first strip 30 of material and a second strip 32 of material. The first and second strips 30, 32 are generally flexible in both bending and torsion. In some embodiments, bending flexibility allows the spacer 16 to be bent to form non-linear shapes (e.g., curves). Bending and torsional flexibility also allows for ease of window manufacturing. Such flexibility includes either elastic or plastic deformation such that the first and second strips 30, 32 do not fracture during installation into window assembly 10. Some embodiments of spacer 16 include strips that do not have substantial flexibility, but rather are substantially rigid. In some embodiments, the first and second strips 30, 32 are flexible, but the resulting spacer 16 is substantially rigid.
In one embodiment, the first and second strips 30, 32 are formed from a metal material or a plastic material. In the depicted embodiment, each of the first and second strips 30, 32 has a plurality of undulations 34. The first strip 30 includes a first side portion 36 and an oppositely disposed second side portion 38. The first strip 30 further includes a first surface 40 and an oppositely disposed second surface 42. The second strip 32 includes a first side portion 44 and an oppositely disposed second side portion 46. The second strip 32 further includes a first surface 48 and an oppositely disposed second surface 50.
The second strip 32 includes a plurality of passages 52 that extend through the first and second surfaces 48, 50 of the second strip 32. In the depicted embodiment, the passages 52 are generally aligned along a central longitudinal axis 54 of the second strip 32. Other embodiments include other arrangements of passages 52, such as multiple rows of passages 52. Passages can be openings or apertures of any shape including slits, circular apertures, or the like.
The spacer 16 includes a first sidewall 56 and a second sidewall 58. The first and second sidewalls 56, 58 extend between the first strip 30 and the second strip 32. In the depicted embodiment, the first sidewall 56 is engaged to the first side portion 36 on the first surface 40 of the first strip 30 and the first side portion 44 on the first surface 48 of the second strip 32. In one embodiment, the first and second sidewalls 56, 58 extend the length of the first and second strips 30, 32.
Each of the first and second elongate strips 30, 32 includes a first elongate edge and a second elongate edge. The first elongate edge is at the edge of the first side portion 36, 44 of each strip and the second elongate edge is at the edge of the second side portion 38, 46 of each strip. The first extruded sidewall 56 is closer to the first side portion 36, 44 of each strip 30, 32 than to the second side portion 38, 46 of each strip 30, 32. The first sidewall 56 is offset from the first edge of the first elongate strip 30 and from the first edge of the second elongate strip 32 by a first offset distance. The second extruded sidewall 58 is closer to the second side portion 38, 46 of each strip 30, 32 than to the first side portion 36, 44 of each strip 30, 32. The second sidewall 58 is offset from the second edge of the first elongate strip and from the second edge of the second elongate strip by a second offset distance that will be substantially similar to the first offset distance.
In one embodiment, the first and second sidewalls 56, 58 are manufactured from a plastic material. The plastic material can be extruded, rolled or molded to form the first and second sidewall 56, 58.
The first and second strips 30, 32 and the first and second sidewalls 56, 58 cooperatively define an interior region 60 of the spacer 16. In one embodiment, a filler material is added to the interior region 60. An exemplary filler material that may be added to the interior region 60 is and/or includes a desiccant material. In the event that moisture is present between the first and second panes 12, 14 (
The first side portion 36 of the first strip 30, the first sidewall 56 and the first side portion 44 of the second strip 32 cooperatively define a first side 62 of the spacer 16. The second side portion 38 of the first strip 30, the second sidewall 58 and the second side portion 46 of the second strip 32 cooperatively define a second side 64 of the spacer 16. The interior region 60 is disposed between the first and second sides 62, 64 of the spacer 16.
Many additional spacer embodiments can be used with the assembly system described herein, including spacers constructed of foam, for example. The spacer embodiment of
In some embodiments of the window assembly system, a reeled length of spacer is provided to the assembly system coiled on a storage spool. The reeled length of spacer on the spool is much longer than is needed for assembly of each individual window unit. In one embodiment, the reeled length of spacer is continuously wrapped about the storage spool. During the window assembly process, the reeled length of spacer is unreeled and cut into discrete spacer elements 202, such as shown in
In the depicted embodiment of
In one embodiment, the spacer conveyors 602 move the spacer in a first direction indicated by arrow 606 along the assembly line 600 during processing, while the pane conveyors 604 move the panes and window units in a second opposite direction indicated by arrow 608 during processing. In the embodiment of
The assembly system 600 has a first end 601 and a second end 603. In one embodiment, the panes are input at the first end 601 and the pane conveyors 604 are present at the first end 601 and continue in the second direction 608. In one embodiment, the spacers are input at the second end 603 and the spacer conveyors 606 are present at the second end 603 and continue in the first direction 606.
In the embodiment of
First, some examples of spacer processing equipment will be provided. One example of spacer processing equipment is an unwind station 630 to unwind a length of spacer from a longer reeled length of spacer on a spool 632 for incorporation into a window unit. The spacer processing equipment can also include a punching station 636 for punching corner notches into the length of spacer and for cutting the ends of the spacer length to separate the discrete spacer length from the reeled spacer. An extruder station 638 is used to extrude sealant onto the spacer, in some embodiments. For the spacer 16 shown in
In one embodiment, the spacer conveyors 602 are present from a second end 603 of the system line 600 to the spacer application station 620. In the embodiment of
Examples of window unit assembly equipment will now be provided, starting at one end of the assembly line and moving in the second direction indicated by arrow 608. The system 600 includes an edge coating removal station 650, where edge coatings can be removed from the panes, a loading station 656, where panes can be loaded onto a pane conveyor 604, and a vertical washer 658, where panes can be washed. Although only one is pictured in the schematic drawing of
The pane is delivered by pane conveyors 604 from the first end 601 of the system 600 to the spacer application station 620 where a pane is joined to a spacer frame, in one embodiment, forming a pane/spacer subassembly. The pane/spacer subassembly is moved in the second direction of arrow 608 to further processing machines. One example of such a machine is a muntin station 664, which applies muntin bars or other structures that will be located between the first and second panes to the pane/spacer subassembly, if appropriate for the window unit being assembled. The pane/spacer subassembly then moves to the assembly station 668 where the second pane is attached to the spacer to form a window unit. The window unit moves to the buffer conveyor station 660, which is held on the same frame element 622 as the sealant extruder station 638. Next the window unit moves to the gas filling station 670, which fills the space between the first and second panes with a selected gas or gas mixture. Next the window unit moves to the press station 672 where it is pressed to a specified thickness. The pressure provided at this step wets out the sealant connections within the window assembly. Then the window unit moves to the second seal station 674 where sealant is applied around the perimeter of the window unit adjacent to the spacer 16 (
In system 1000, the extruder station 638 is located at one end of a row of window unit assembly equipment machines that are used to process the panes, subassemblies and the window units. Like system 600, in system 1000 the spacer moves along spacer conveyor elements in a first direction indicated by arrow 606 while the panes, subassemblies and window units move in a second direction indicated by arrow 608. The spacer conveyors transport the spacer with sealant from the extruder station 638 to the spacer application station 620 where the spacer is shaped to form a spacer frame and applied to a pane. Like system 600, in system 1000 many of the spacer conveyors and pane conveyors are located on common frame elements 622.
Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative embodiments set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
32436 | Scofield | May 1861 | A |
367236 | Eeinhaedt | Jul 1887 | A |
423704 | Simpson | Mar 1890 | A |
1310206 | Mowat | Jul 1919 | A |
2235680 | Haven et al. | Mar 1941 | A |
2597097 | Haven | May 1952 | A |
2618819 | Goodwillie | Nov 1952 | A |
2708774 | Seelen | May 1955 | A |
3027608 | Ryan | Apr 1962 | A |
3045297 | Ljungdahl | Jul 1962 | A |
3143009 | Pfeiffer | Aug 1964 | A |
3645121 | Pfeiffer et al. | Feb 1972 | A |
3756060 | Bindernagel | Sep 1973 | A |
3796080 | Munchbach | Mar 1974 | A |
3839137 | Davis et al. | Oct 1974 | A |
3921359 | Brichard et al. | Nov 1975 | A |
3956998 | Bavetz | May 1976 | A |
3981111 | Berthagen | Sep 1976 | A |
4002048 | Pozsgay | Jan 1977 | A |
4027517 | Bodnar | Jun 1977 | A |
4057944 | Wyatt, Jr. et al. | Nov 1977 | A |
4057945 | Kessler | Nov 1977 | A |
4080482 | Lacombe | Mar 1978 | A |
4098722 | Cairns et al. | Jul 1978 | A |
4113905 | Kessler | Sep 1978 | A |
4114342 | Okawa | Sep 1978 | A |
4222213 | Kessler | Sep 1980 | A |
4226063 | Chenel | Oct 1980 | A |
4244203 | Pryor et al. | Jan 1981 | A |
4356614 | Kauferle | Nov 1982 | A |
4382375 | Yamamoto et al. | May 1983 | A |
4400338 | Rundo | Aug 1983 | A |
4408474 | Hutzenlaub et al. | Oct 1983 | A |
4431691 | Greenlee | Feb 1984 | A |
4499703 | Rundo | Feb 1985 | A |
4536424 | Laurent | Aug 1985 | A |
4551364 | Davies | Nov 1985 | A |
4561929 | Lenhardt | Dec 1985 | A |
4567710 | Reed | Feb 1986 | A |
4576841 | Lingemann | Mar 1986 | A |
4580428 | Brettbacher et al. | Apr 1986 | A |
4654057 | Rhodes | Mar 1987 | A |
4658553 | Shinagawa | Apr 1987 | A |
4719728 | Eriksson et al. | Jan 1988 | A |
4720950 | Bayer et al. | Jan 1988 | A |
4743336 | White | May 1988 | A |
4769105 | Lisec | Sep 1988 | A |
4780164 | Rueckheim et al. | Oct 1988 | A |
4791773 | Taylor | Dec 1988 | A |
4808452 | McShane | Feb 1989 | A |
4815245 | Gartner | Mar 1989 | A |
4831799 | Glover et al. | May 1989 | A |
4835130 | Box | May 1989 | A |
4835926 | King | Jun 1989 | A |
4850175 | Berdan | Jul 1989 | A |
4854022 | Lisec | Aug 1989 | A |
4866967 | Sporenberg et al. | Sep 1989 | A |
5052164 | Sandow | Oct 1991 | A |
5079054 | Davies | Jan 1992 | A |
5080146 | Arasteh | Jan 1992 | A |
5087489 | Lingemann | Feb 1992 | A |
5088258 | Schield et al. | Feb 1992 | A |
5113678 | Mannaka et al. | May 1992 | A |
5120584 | Ohlenforst et al. | Jun 1992 | A |
5167756 | Lenhardt | Dec 1992 | A |
5182931 | Noe et al. | Feb 1993 | A |
5209034 | Box et al. | May 1993 | A |
5254377 | Lingemann | Oct 1993 | A |
5280832 | Lisec | Jan 1994 | A |
5290611 | Taylor | Mar 1994 | A |
5295292 | Leopold | Mar 1994 | A |
5302425 | Taylor | Apr 1994 | A |
5313762 | Guillemet | May 1994 | A |
5361476 | Leopold | Nov 1994 | A |
5377473 | Narayan | Jan 1995 | A |
5391416 | Kunert | Feb 1995 | A |
5394671 | Taylor | Mar 1995 | A |
5394725 | Lisec | Mar 1995 | A |
5413156 | Lisec | May 1995 | A |
5439716 | Larsen | Aug 1995 | A |
5441779 | Lafond | Aug 1995 | A |
5443871 | Lafond | Aug 1995 | A |
5461840 | Taylor | Oct 1995 | A |
5485709 | Guillemet | Jan 1996 | A |
5512341 | Newby et al. | Apr 1996 | A |
5514428 | Kunert | May 1996 | A |
5531047 | Leopold et al. | Jul 1996 | A |
5553440 | Bulger et al. | Sep 1996 | A |
5564631 | Leopold | Oct 1996 | A |
5567258 | Lee et al. | Oct 1996 | A |
5568714 | Peterson | Oct 1996 | A |
5573618 | Rueckheim | Nov 1996 | A |
5581971 | Peterson | Dec 1996 | A |
5601677 | Leopold | Feb 1997 | A |
5617699 | Thompson | Apr 1997 | A |
5630306 | Wylie | May 1997 | A |
5644894 | Hudson | Jul 1997 | A |
5655282 | Hodek et al. | Aug 1997 | A |
5658645 | Lafond | Aug 1997 | A |
5675944 | Kerr et al. | Oct 1997 | A |
5679419 | Larsen | Oct 1997 | A |
5705010 | Larsen | Jan 1998 | A |
5714214 | Larsen | Feb 1998 | A |
5759665 | Lafond | Jun 1998 | A |
5773135 | Lafond | Jun 1998 | A |
5775393 | Kovacik | Jul 1998 | A |
5813191 | Gallagher | Sep 1998 | A |
5851609 | Baratuci et al. | Dec 1998 | A |
5855132 | Cozzi | Jan 1999 | A |
5873256 | Denniston | Feb 1999 | A |
5879764 | Chu et al. | Mar 1999 | A |
5888341 | Lafond | Mar 1999 | A |
5890289 | Guillemet | Apr 1999 | A |
6035602 | Lafond | Mar 2000 | A |
6079242 | Allegro et al. | Jun 2000 | A |
6092375 | Denniston | Jul 2000 | A |
6109084 | Hutzenlaub et al. | Aug 2000 | A |
6115989 | Boone et al. | Sep 2000 | A |
6131364 | Peterson | Oct 2000 | A |
6148890 | LaFond | Nov 2000 | A |
6158483 | Trpkovski | Dec 2000 | A |
6183879 | Deeley | Feb 2001 | B1 |
6197129 | Zhu et al. | Mar 2001 | B1 |
6223414 | Hodek et al. | May 2001 | B1 |
6250026 | Thompson, Jr. | Jun 2001 | B1 |
6266940 | Reichert | Jul 2001 | B1 |
6289641 | McCandless | Sep 2001 | B1 |
6295788 | Reichert | Oct 2001 | B2 |
6345485 | Boone et al. | Feb 2002 | B1 |
6351923 | Peterson | Mar 2002 | B1 |
6355328 | Baratuci et al. | Mar 2002 | B1 |
6370838 | Evason et al. | Apr 2002 | B1 |
6415561 | Thompson, Jr. | Jul 2002 | B2 |
6477812 | Boone et al. | Nov 2002 | B2 |
6481222 | Denniston | Nov 2002 | B1 |
6488996 | Ino et al. | Dec 2002 | B1 |
6497130 | Nilsson | Dec 2002 | B2 |
6500516 | Bourlier | Dec 2002 | B2 |
6528131 | Lafond | Mar 2003 | B1 |
6581341 | Baratuci | Jun 2003 | B1 |
6622456 | Almasy | Sep 2003 | B2 |
6686002 | Auerbach | Feb 2004 | B2 |
6715244 | Boone et al. | Apr 2004 | B2 |
6796102 | Virnelson et al. | Sep 2004 | B2 |
6823644 | Peterson | Nov 2004 | B1 |
6877292 | Baratuci et al. | Apr 2005 | B2 |
6887292 | Thorwesten | May 2005 | B2 |
7008492 | Lisec | Mar 2006 | B2 |
7107729 | Baratuci et al. | Sep 2006 | B2 |
7132151 | Rasmussen | Nov 2006 | B2 |
7275570 | McGlinchy | Oct 2007 | B2 |
7347909 | Reichert | Mar 2008 | B2 |
7445682 | James et al. | Nov 2008 | B2 |
7448246 | Briese et al. | Nov 2008 | B2 |
7827761 | Buchanan et al. | Nov 2010 | B2 |
7856791 | Rosskamp et al. | Dec 2010 | B2 |
7866033 | James | Jan 2011 | B2 |
7901526 | James | Mar 2011 | B2 |
8381382 | Wunnicke et al. | Feb 2013 | B2 |
8397780 | Vianello | Mar 2013 | B2 |
8474400 | McGlinchy et al. | Jul 2013 | B2 |
8586193 | Rapp et al. | Nov 2013 | B2 |
20010015037 | Thompson | Aug 2001 | A1 |
20010032436 | Riegelman | Oct 2001 | A1 |
20030041557 | Trpkovski et al. | Mar 2003 | A1 |
20030074859 | Reichert et al. | Apr 2003 | A1 |
20030097818 | Almasy | May 2003 | A1 |
20030101664 | Trpkovski | Jun 2003 | A1 |
20030178127 | Lisec | Sep 2003 | A1 |
20030230045 | Krause et al. | Dec 2003 | A1 |
20050055901 | Valentz et al. | Mar 2005 | A1 |
20050074566 | Rouanet et al. | Apr 2005 | A1 |
20050166546 | Reichert | Aug 2005 | A1 |
20050167028 | Reichert | Aug 2005 | A1 |
20050178078 | Valentz et al. | Aug 2005 | A1 |
20050227025 | Baratuci et al. | Oct 2005 | A1 |
20060065345 | James et al. | Mar 2006 | A1 |
20060101739 | Baratuci et al. | May 2006 | A1 |
20060105158 | Fritz et al. | May 2006 | A1 |
20060130427 | Hodek et al. | Jun 2006 | A1 |
20060201606 | Lisec | Sep 2006 | A1 |
20070077376 | Mamiya et al. | Apr 2007 | A1 |
20070087140 | Dierks | Apr 2007 | A1 |
20070116907 | Landon et al. | May 2007 | A1 |
20070131338 | Lisec | Jun 2007 | A1 |
20070160781 | Landon et al. | Jul 2007 | A1 |
20070178256 | Landon | Aug 2007 | A1 |
20070178257 | Landon | Aug 2007 | A1 |
20090120018 | Trpkovski | May 2009 | A1 |
20090120019 | Trpkovski | May 2009 | A1 |
20090120035 | Trpkovski | May 2009 | A1 |
20090120036 | Trpkovski | May 2009 | A1 |
20090123694 | Trpkovski | May 2009 | A1 |
20090223150 | Baratuci et al. | Sep 2009 | A1 |
20090301637 | Reichert | Dec 2009 | A1 |
20100065580 | McGlinchy | Mar 2010 | A1 |
20100200164 | Lisec | Aug 2010 | A1 |
20100255224 | Gubbels et al. | Oct 2010 | A1 |
20110104512 | Rapp et al. | May 2011 | A1 |
20120011722 | Briese | Jan 2012 | A1 |
20120151857 | Heikkila et al. | Jun 2012 | A1 |
20120177827 | Trpkovski | Jul 2012 | A1 |
20120266455 | Schuler et al. | Oct 2012 | A1 |
20130042552 | Trpkovski | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
1290624 | Oct 1991 | CA |
6903785 | Jan 1969 | DE |
1904907 | Jun 1971 | DE |
2352835 | May 1975 | DE |
3529434 | Feb 1986 | DE |
102009048642 | Mar 2011 | DE |
0054251 | Jun 1982 | EP |
0056762 | Jul 1982 | EP |
0 268 886 | Jun 1988 | EP |
0 403 058 | Dec 1990 | EP |
2177703 | Apr 2010 | EP |
2525314 | Oct 1983 | FR |
1508778 | Apr 1978 | GB |
1579726 | Nov 1980 | GB |
2 181 773 | Apr 1987 | GB |
2389138 | Dec 2003 | GB |
WO-2004009944 | Jan 2004 | WO |
WO-2009064905 | May 2009 | WO |
WO-2009064909 | May 2009 | WO |
WO-2009064915 | May 2009 | WO |
WO-2009064919 | May 2009 | WO |
WO-2009064921 | May 2009 | WO |
WO-2011008860 | Jan 2011 | WO |
Entry |
---|
“Edgetech I.G., Super Spacer® Cushion Edge™, Decorative Glass, Foam Space . . . ”, http://www.edgetechig.com/SuperSpacer/CushionEdge.aspx May 23, 2011, 1 page. |
International Search Report and Written Opinion mailed Jan. 22, 2009, International Application No. PCT/US2010/083441, corresponding to U.S. Appl. No. 12/270,289 (10 pages). |
International Search Report and Written Opinion mailed Jan. 22, 2009, International Application No. PCT/US2008/083449, corresponding to U.S. Appl. No. 12/270,362 (8 pages). |
International Search Report and Written Opinion mailed Jan. 22, 2009, International Application No. PCT/US2008/083435, corresponding to U.S. Appl. No. 12/270,393 (7 pages). |
“Replacement Window Spacers: The Swiggle Spacer System”, http://www.replacement-windows.com/spacers-swiggle-system.php (downloaded from web site Oct. 10, 2011) 2 pages. |
“File History”, for co-owned U.S. Appl. No. 12/270,362, entitled “Sealed Unit and Spacer with Stabilized Elongate Strip”, filed Nov. 13, 2008 (190 pages). |
“File History” for co-owned U.S. Appl. No. 12/270,393, Entitled “Material with Undulating Shape,” filed Nov. 13, 2008 (203 pages). |
“File History” for co-owned U.S. Appl. No. 12/270,289, Entitled “Reinforced Window Spacer,” filed Nov. 13, 2008 (300 pages). |
“Intercept® Spacer Technologies: Your Best Answer to Energy Star® and EN-1279, GED Integrated Solutions,”, http://www.gedusa.com/intercept.php (Jun. 28, 2011 9:08:36 AM), 2 pages. |
“International Search Report and Written Opinion”, in co-pending Application PCT/US2011/039994, dated Nov. 17, 2011, (15 pages). |
“PCT Notification Concerning Transmittal of International Preliminary Report on Patentability”, from International Application No. PCT/US2008/083435, corresponding to U.S. Appl. No. 12/270,393, issued May 18, 2010, pp. 1-6. |
“PCT Notification Concerning Transmittal of International Preliminary Report on Patentability”, from International Application No. PCT/US2008/083441, corresponding to U.S. Appl. No. 12/270,289, issued May 18, 2010, pp. 1-8. |
“PCT Notification Concerning Transmittal of International Preliminary Report on Patentability”, from International Application No. PCT/US2008/083449, corresponding to U.S. Appl. No. 12/270,362, issued May 18, 2010, pp. 1-7. |
“PCT Notification Concerning Transmittal of International Preliminary Report on Patentability”, from International Application No. PCT|US2011/039994, corresponding to, mailed Dec. 20, 2012, pp. 1-10. |
Response to Communication pursuant to RUle 161(1) and Rule 162 EPC dated Feb. 19, 2013, from co-owned, co-pending EP Patent Application 11727084.3 filed on Jun. 7, 2013 (15 pages). |
Figures from AT379860 (1 page). |
Figures from DE1259823 (2 pages). |
Translated Abstract and Figures for CH630993A5 (2 pages). |
Translated Abstract and Figures for DE19642669 (4 pages). |
Translated Abstract and Figures for DE20200349 (2 pages). |
Translated Abstract and Figures for DE4101277 (13 pages). |
Translated Abstract and Figures for EP0139262 (3 pages). |
Translated Abstract and Figures for EP0500483 (3 pages). |
Translated Abstract and Figures for FR2744165 (3 pages). |
Translated Abstract and Figures for WO03074830 (5 pages). |
PCT International Search Report and Written Opinion dated Jan. 29, 2014 for PCT International Application No. PCT/US2013/066167 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20140109370 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61716871 | Oct 2012 | US |