The invention relates to an arrangement of a minimally-invasive implantable closing device as well as a minimally-invasive implantable tricuspid valve prosthesis in the superior or inferior vena cava of a human body.
A minimally-invasive implantable mitral or tricuspid valve prosthesis is known from the document EP 3 231 393 A1. For positioning and attaching, the valve prosthesis is securely connected to a self-expanding, broad-meshed stent, which is adapted in its shape to a three-dimensional measured geometry of a patient's left or right chamber and after implantation rests on the inside wall of the chamber.
The object of the invention is to indicate an arrangement of a minimally-invasive implantable closing device as well as a minimally-invasive implantable tricuspid valve prosthesis in the superior or inferior vena cava of a human body, which device and prosthesis can be securely located at the site of the implantation and ensure a secure opening and closing.
For a solution, an arrangement of a minimally-invasive implantable closing device in the superior or inferior vena cava of a human body is provided. The coordinate claim 15 relates to a minimally-invasive implantable tricuspid plate prosthesis. Additional configurations are the subject matter of dependent subclaims.
According to one aspect, an arrangement of a minimally-invasive implantable closing device in the superior or inferior vena cava of a human body is provided and has the following: a valve device, having closing elements, which extend flat over a respective joint surface, and in each case can be moved between a closed position, in which the closing elements together close a valve opening, and an open position, in which a flow is released through the valve opening, and a support structure, which is arranged in the area of the valve opening and is formed with support elements and at least one indentation. In the closed position, the closing elements rest at least partially on the support elements, and in the open position, they are separated at least partially from the support elements and thus release the indentation to allow flow. In addition, the arrangement has an anchoring device that is formed with an anchor and is set up to anchor the valve device in the area of the superior or inferior vena cava adjacent to the vein opening in the right chamber of the heart.
According to another aspect, a minimally-invasive implantable tricuspid valve prosthesis is provided with such an arrangement.
The proposed closing device can be securely attached at the implantation site by means of the anchoring device. The valve device with the closing elements ensures a reliable opening and closing in order to prevent or permit the flow.
In a possible configuration, the valve opening is designed as a round or circular valve opening.
The support structure can be designed to extend over a part of the surface of the valve opening or over its entire surface.
The closing elements can be designed as non-surface-rigid closing elements, which (optionally in addition) bend in order to swing open into the open position, so that the flow is released. In an alternative embodiment, one or more of the closing elements is/are essentially surface-rigid. In this configuration, the surface-rigid closing element pivots between the closed and the open positions, essentially maintaining the surface shape of the closing element that is present in the closed position. To ensure movability, in particular pivotability, for example, a hinge device can be provided.
The indentation can be designed with an indentation in the area of the center of the valve opening. In addition to the indentation, one or more other indentations can be provided in the support structure. In one or more of the indentations, a sieve insert can be provided, which insert is arranged to be detachably or non-detachably connected in the area of the assigned indentation on the support structure.
Adjacent closing elements can overlap in edge-side sections at least in the closed position, and the support elements can extend at least along the overlapping edge-side sections. The support elements can also optionally run outside of the overlapping areas in order to support the closing elements even outside of the overlapping areas.
The valve device can be designed as a one-way valve. This means that the valve device passes in a flow direction and blocks in the opposite direction, which is achieved by means of the closing elements resting on the support structure in the closed position, which elements can be at least partially raised from the support structure in the flow direction in order to release the flow.
The closing elements can in each case be formed to comprise the sector surface, wherein adjacent closing elements overlap along the radii laterally bounding the sector surface. Thus, the closing elements are comparably arranged in top view in the shape of a pie slice. In the area of a radial inside tip section, in which the radii laterally bounding the sector surface intersect, the sector surface can be rounded. Also, it can be provided that in the area of the tip, a radial inside end section of the sector surface is cut off. The radial inside tip sections of the sector surfaces of the closing elements can overlap in the area of the indentation. An overlapping area that is formed here can have a size (expansion) of approximately 1 mm to approximately 4 mm, alternatively approximately 1 mm to approximately 2 mm, in at least one direction.
The closing elements can in each case comprise a sector of at least approximately 90 degrees. In this embodiment, four closing elements can be provided in order to close together the valve opening in the closed position. This means that at least one or all closing elements comprise(s) a sector of somewhat more than 90 degrees in order to form overlapping areas running along the radii. The respective sectors can comprise an angle of at most approximately 120 degrees to approximately 130 degrees.
The closing elements can be fastened at least in sections along an outside circumferential edge in such a way that a section of the closing element that is radially inside relative to the circumferential edge can swing open into the open position and can thus release the flow. The fastening of the closing elements along the outside circumferential edge can be done in a detachably-connected or non-detachably-connected manner. For non-detachable connection, for example, a joint connection can be provided, for example by means of gluing or welding. In one configuration, the closing elements can be molded in one piece onto the anchoring device and/or the support structure, for example by means of 2-component injection molding. In this case, the anchoring device and/or on the support structure can be made from a plastic hard component, and the closing elements can be made from a plastic soft component. The fastening of the closing elements along the outside circumferential edge can comprise a circular arc of approximately 60 degrees to approximately 110 degrees, alternatively a circular arc of approximately 90 degrees to 110 degrees, for example approximately 105 degrees. If the closing elements are formed as sectors, corner areas in which the outer circular arc pushes open the laterally bounding radii can be designed not to engage with the fastening.
The indentation of the support structure can have a flow nozzle. In this or other configurations, the indentation can be arranged essentially centered in the valve opening. A nozzle surface that runs crosswise to the stream or flow direction of the valve device can be arranged essentially parallel to the valve opening surface that runs crosswise to the stream or flow direction. The nozzle surface can lie essentially in the same plane as the valve opening surface. As an alternative, the nozzle surface in the flow direction is arranged offset relative to (separated from) the valve opening surface. The offset can be, for example, approximately 5 mm to approximately 12 mm, alternatively approximately 7 mm to approximately 10 mm, for example approximately 8 mm to approximately 9 mm. In this or other embodiments, the indentation can be formed with a diameter of approximately 2 mm to approximately 6 mm, alternatively with a diameter of approximately 4 mm to approximately 5 mm. The flow nozzle can be designed in a comparable way.
The support structure can have support elements that extend in a star shape, for example along circle radii of the valve opening. The support elements that extend in a star shape and that are designed, for example, as support carriers can run to an edge of the support structure starting from the indentation or the flow nozzle. The support elements that are arranged in a star shape can be arranged in a radially circumferential manner at essentially equal intervals, for example at a distance of approximately 90 degrees to approximately 120 degrees.
The support elements that are designed as, for example, carriers can have in cross-section a shape that tapers to form a support surface, wherein in the area of the support surface, the closing elements come to rest in the closed position.
In a top view looking down at the valve opening, the support elements can have a width of approximately 1 mm to approximately 5 mm, alternatively of approximately 1 mm to approximately 3 mm, for example approximately 1.5 mm to approximately 2.5 mm. If the support elements are designed as carriers, in this respect a carrier width is provided in a top view looking down at the valve opening.
The support structure can support the closing elements in the closed position in an essentially two-dimensional flat plane. In this embodiment, the opening surface of the indentation can lie crosswise to the flow or stream direction essentially in the plane of the valve opening surface. For the closing elements, a flat support surface is provided by means of the support structure.
The support structure can support the closing elements in the closed position in a curved three-dimensional plane. For the closing elements, a three-dimensional support surface is provided by means of the support structure. In this configuration, the support structure can be formed with a bell shape, so that a bell-shaped support surface is provided. It can be provided that the opening surface of the indentation or the flow nozzle in the flow or stream direction is arranged offset relative to the valve opening surface.
A more flexible packing collar can be provided. The flexible packing collar can be formed circumferentially around the valve device.
The anchoring device can have at least one of the following anchoring sections: a first anchoring section, which is covered with pericardium or a synthetic membranous plastic material, and a second anchoring section, which is free of pericardium and the synthetic membranous plastic material.
The anchor can be formed with a self-expanding anchor. The self-expanding anchor can have at least one anchor from the following group: self-expanding spiral element and self-expanding stent.
Some or all of the closing elements can consist of a biological material. Some of the closing elements can consist of a non-biological material. As an alternative, all closing elements can be made of a non-biological material.
Below, additional embodiments are explained in greater detail with reference to the figures of a drawing. In this case:
A section of a vena cava 3, a section of a hepatic vein 4, as well as a section of the right chamber of the heart 5 are shown.
The closing device 1 has a valve device 6, an anchoring device 7, as well as a flexible sealing ring 8, which is formed in a circumferential manner. In the embodiment that is shown, the anchoring device 7 is formed as a self-expanding anchor that has a spiral 9.
The support elements 11 of the support structure 12 extend in a star shape starting from a central area 14 and are arranged in a circumferential manner at equal intervals. The support structure has a circumferential edge 15 (cf. in particular
According to the exemplary embodiment in
In the embodiment that is shown, the closing elements 10 are designed as non-surface-rigid closing elements that bend upward in order to release the flow. To this end, the closing elements 10 consist of, for example, a plastic material.
The closing elements 10 can be arranged on the support structure 12 by means of a joint connection, for example by means of gluing or welding.
The features disclosed in the description above, the claims, as well as the drawing can be important both individually and in any combination for the implementation of the various embodiments.
Number | Date | Country | Kind |
---|---|---|---|
10 2020 113 585.8 | May 2020 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2021/100441 | 5/18/2021 | WO |