This application is a national stage application of International Application No. PCT/FR2011/053048 filed Dec. 19, 2011, which claims priority to French Patent Application No. 10/60785 filed Dec. 20, 2010, of which the disclosures are incorporated herein by reference and to which priority is claimed.
The invention relates to an assembly for a speed reducer of a rotary electrical machine, for example a starter of a thermal engine, in particular for a motor vehicle, and a starter for a thermal engine.
In order to start a thermal engine, which is also known as an internal combustion engine, in particular of a motor vehicle, it is known to use a rotary electrical machine in the form of a starter provided with a launcher which can transmit rotational energy of the starter to a crankshaft of the thermal engine by means of a drive ring.
This launcher is mounted on an output shaft of the electrical machine. According to one embodiment, a speed reducer is interposed between this output shaft, which constitutes the shaft of the launcher, and the shaft of the electric motor which the rotary electrical machine comprises. The interposition of the reducer has the advantage of using a faster electrical machine, and thus obtaining a greater starting torque, whilst reducing the dimensions and weight of the machine for a given power level. As described in document FR-2 631 094, this speed reducer can be formed by a toothed wheel in the form of a pinion which is secured at one end of the shaft of the electric motor of the electrical machine, and a toothed ring which is rendered integral in rotation by friction means of the shaft of the launcher, this ring having inner teeth which engage with the pinion. In this case, the shaft of the electric motor and the shaft of the launcher are offset relative to one another.
As a variant, as described in document WO2005/054664, the speed reducer is formed by an epicycloidal train comprising satellite opinions which are fitted such as to rotate around shafts which are supported by a satellite-holder comprising a transverse plate which is integral with the rear end of the shaft of the launcher. These satellite pinions engage with the pinion which is integral with the shaft of the electric motor, and with the inner teeth of the toothed ring which is immobile in rotation relative to the housing which the starter comprises. In this case, the shaft of the electric motor and the shaft of the launcher are coaxial.
In addition, the launcher comprises a pinion provided with teeth which are configured to engage with teeth of the drive ring, also known as the starter ring, which is integral in a rigid or resilient manner with the crankshaft of the thermal engine to be started. This launcher can be subjected to substantial mechanical impacts during the functioning of the starter, in particular during the launching of the thermal engine. For example, at the beginning of starting, when the rotation of the starter commences, the teeth of the pinion can slide against the teeth of the drive ring before engaging between the latter. The axial overlapping of the respective teeth of the pinion and of the ring can then be very slight, and the kinetic energy of rotation of the starter is transmitted abruptly to the ring. At this instant, the contact stresses are very high, which, together with the wear, can give rise to the destruction of teeth of the ring. This phenomenon is known by the term milling.
In addition, during the starting of the thermal engine, if the injection system of the vehicle has random malfunctioning, premature explosions can occur in the combustion cycle which are generally known as “backfire”, and can generate substantial impacts during the engagement of the pinion with the drive ring. Impacts can also occur during the stoppage of the thermal engine. These impacts create the risk of giving rise to breakage of teeth of the pinion or of the drive ring, resulting in a major incident. In general, the thermal engine can rotate in reverse in certain conditions, which means that the most fragile components need to be oversized.
In order to eliminate the above problems, application FR-2 631 094 describes a torque limiter designed for a speed reducer formed by the aforementioned ring and pinion assembly. The limiter comprises a hub with grooves for its connection in rotation to the output shaft of the starter which constitutes the shaft of the launcher. The toothed ring is fitted such as to be free in rotation via its flange on a support surface of the hub. The hub is provided with a body which is added by crimping onto the hub, or is integral with the latter. The body constitutes a friction disc for the limiter, which comprises resilient means with axial action in the form of a resilient washer with axial action, a friction lining and a support flange for the washer. The support flange is connected to the flange of the ring by means of braces through which screws pass.
This configuration is designed for a reducer without satellites. In addition, the resilient washer is supported at its inner periphery on the friction disc. An object of the invention is to create a torque limiter with a hub which can be used with a reducer with an epicycloidal train provided with resilient means with axial action which exert thrust on a larger diameter for better distribution of the forces on the friction disc.
In document EP 1 094 246, the speed reducer comprises a hub which is integral with a flange extended on its outer periphery by a cylindrical portion in which the toothed ring of the reducer is engaged. This solution requires a complicated part, and is cumbersome.
Reference can then be made to a system of the type described in document FR-2 924 872 which is considered to be the closest prior art. In this system, the speed reducer comprises a base plate which is connected in rotation with the housing of the starter, as well as a toothed ring which is supported against the base plate, and can rotate relative to the base plate when the toothed ring is subjected to a torque higher than a predetermined torque. For this purpose, the toothed ring comprises a transverse wall with orifices with a frusto-conical form, the base plate which is provided with bosses with a complementary form being subjected to the action of a resilient washer with axial action.
The object of the invention is to improve this system, in particular by simplifying the production of the ring.
For this purpose, the invention implements an assembly for a speed reducer of a rotary electrical machine comprising:
a ring which is integral with a transverse wall;
a base plate which is designed to be mounted integrally in rotation relative to a housing of the machine;
resilient means with axial action, such as a resilient washer with axial action; and
an added-on hub with an axis of symmetry on which these elements are mounted, the base plate being positioned between the resilient means with axial action and the transverse wall of the ring;
this hub supporting at least one first shoulder for support of the resilient means with axial action; and
at least one second shoulder for support of the transverse wall of the ring.
This therefore creates a force loop according to which the resilient means with axial action, such as a resilient washer, which are supported on the first shoulder, exert an axial compression force in the direction of the transverse wall of the ring, whereas the second shoulder retains the wall of the ring in translation, such that the base plate is sandwiched between the washer and the transverse wall. The ring is thus immobile in rotation relative to the base plate, when normal forces are applied on the ring. On the other hand, when the forces become greater than normal, the transverse wall can rotate around the axis of the hub whilst rubbing against the base plate, if necessary by means of at least one lining, in order to limit the torque applied to the starter and protect the constituents of the electrical machine.
The solution according to the invention takes advantage of the hub, which carries out several functions, and makes it possible to simplify the speed reducer which uses simple parts, in particular a toothed ring which is integral with a transverse wall, contrary to that described in document EP 1 094 246. The solution according to the invention is more compact, in particular axially.
According to one embodiment, the resilient means with axial action are supported indirectly on the first shoulder by means of a closure washer which is supported on the first shoulder, and is positioned in a groove provided around the hub.
According to one embodiment, the assembly comprises mounting means of the bayonet type, which can ensure co-operation between the first shoulder and the closure washer.
According to one embodiment, the first shoulder is constituted by turning down material of the hub.
According to one embodiment, with the ring being made of a plastic material, this ring is over-moulded on the outer periphery of the transverse wall.
According to one embodiment, with the transverse wall comprising through openings, the ring comprises pins which pass through these openings, these pins opening onto an outer surface of the transverse wall, opposite an inner surface from which the teeth of the ring extend.
According to one embodiment, the base plate is supported directly on the pins of the ring.
According to one embodiment, the assembly comprises a friction lining which is interposed between the transverse wall of the ring and the base plate.
According to one embodiment, the assembly additionally comprises a friction lining which is positioned between the base plate and the resilient washer with axial action.
According to one embodiment, the friction lining(s) is/are connected in rotation with the hub.
According to one embodiment, the hub has at least one flattened part, and the friction lining(s) has/have an opening with at least one flattened part with a complementary form, for connection in rotation with the hub by co-operation of forms.
According to one embodiment, the hub comprises a section with four flattened parts which are parallel in pairs, connected to one another by means of cylindrical parts, the friction lining(s) having an opening with a complementary form.
According to one embodiment, the lining(s) is/are glued on lateral surfaces of the base plate.
According to one embodiment, the second shoulder is divided up into several parts belonging to the hub, and each having support surfaces.
According to one embodiment, the support surfaces of the parts are offset angularly relative to the flattened parts.
According to one embodiment, the cylindrical parts are each connected to a part belonging to the hub.
According to one embodiment, the transverse wall has a central opening, and is hollowed at the level of the central opening for formation of four rims for receipt of the parts.
According to one embodiment, the assembly comprises a washer for dissipation of the forces associated with the resilient means with axial action.
According to one embodiment, the resilient means with axial action consist of a resilient washer with axial action comprising a washer of the Belleville type.
The invention also relates to a starter for a motor vehicle characterised in that it comprises:
an electrical machine comprising an output shaft;
an epicycloidal train comprising a planet wheel which is connected in rotation with the output shaft of the electrical machine;
an assembly according to the invention: and
a satellite-holder which engages firstly with the planet wheel, and secondly with the ring of the assembly according to the invention, this satellite-holder being connected in rotation with an output shaft of the starter which supports a drive pinion designed to be engaged with the teeth of the drive ring of a thermal engine of the vehicle.
According to one embodiment, the hub has in its centre a transverse opening which permits the passage of the output shaft of the starter, the pinion belongs to a launcher comprising a drive unit, the transverse opening comprises two cylindrical parts which are separated by an inner annular part with a smaller inner diameter than the two other cylindrical parts, and the inner annular part constitutes a stop which is designed to co-operate with the rear surface of the drive unit.
Other advantages will become apparent from reading the following description and examining the figures which accompany it. These figures are provided purely by way of illustration but in no way limit the invention.
In the description, elements which are identical, similar or analogous retain the same reference from one figure to another, and hereinafter in the description use will be made of axial orientation going from the rear forwards, corresponding to the orientation from left to right according to
With reference to
In a known manner, in one embodiment, the stator 12 comprises a plurality of permanent inducing magnets which are supported by the inner periphery of the cylinder head 15. As a variant, as shown in the embodiment in
The rotor 13 comprises a set of plates provided with grooves for the mounting of electrical conductors 21 in the form of pins. These conductors 21 are connected to one another in order to form a rotor winding in association with conductive metal sheets 22 belonging to a collector 23 with an electrically insulating body which is integral with the shaft 24 of the electric motor 11. As a variant, the winding has a continuous wire.
Brushes 25 rub on the collecting metal sheets 22 of the collector 23 in order to supply the rotor winding. The brushes 25 belong to a brush-holder 26 equipped with cages for guiding and receipt of the brushes, which are thrust in the direction of the collecting metal sheets 22 by springs 27. The brush-holder 26 is integral with a rear metal bearing 28 which in the central part has a receptacle for mounting of a needle bearing 29. The bearing 28 is used for the mounting in rotation of the rear end of the shaft 24 of the electric motor 11. The axis of this shaft 24 is combined with the axis 14 of the rotor 13, and with the axis of the output shaft 43 of the starter, constituting the shaft of the launcher 30. The rear bearing 28 acts as a centring device at the rear end of the cylinder head 15, and is connected by tie rods 31 to the support 16 of the starter 10. Two threaded holes (with no reference) are provided in the support for screwing of the tie rods. The tie rods 31 are implanted on the exterior of the cylinder head 15. In this case, slight play exists between the tie rods and the outer periphery of the cylinder head 15 with a tubular form. The metal cylinder head 15 is interposed by being clamped between the metal support 16 and the rear metal bearing 28. The housing of the starter thus comprises the bearing 28, the cylinder head 15 and the support 16. This housing is designed to be connected to the earth of the motor vehicle via its support 16.
The starter 10 also comprises an electromagnetic contactor 32 which extends parallel to the electric motor 11, whilst being implanted radially above the latter. The contactor 32 has a metal vessel 33 which is supported by the support 16, and is equipped with an excitation winding B provided with at least one coil. The vessel 33 is closed at the rear by a cover 34 made of electrically insulating material. The cover 34 is secured by turning down material of the free end of the vessel 33. A shoulder of the vessel 33 makes it possible to ensure the axial wedging of a fixed hub 35, which is wedged axially in the other direction by the cover 34 which supports electrical supply terminals 36, 37.
The terminals 36, 37 are designed such as each to form a fixed contact 38 inside the cover 34. One of the terminals 36 is designed to be connected to the positive terminal of the battery, and the other terminal 37 is connected by means of a cable 39 to the input of the inducing winding 17 of the stator and to the brushes 25 with positive polarity. In a known manner, during the excitation of the winding B, a mobile core 40 is drawn by magnetic attraction in the direction of the fixed core 35, in order firstly to act after elimination of play on a rod (with no reference) which bears a mobile contact (with no reference), so as to give rise to the closure of the contacts of the contactor 32 and to supply the electric motor of the starter, and, secondly, to activate a lever 41 to control the launcher 30.
The output shaft 43 is fitted such as to rotate in a front bearing 42 of the support 16. This bearing 42 is constituted for example by a needle bearing, or as a variant by a smooth bearing. This shaft 43 bears at the front a stop 53 adjacent to the bearing 42, in order to limit the displacement of the launcher 30. As can be seen in
The launcher 30 is mounted such as to slide on the output shaft 43, and comprises a drive pinion 50, a drive unit 51 which is configured to be activated by the pivoting control lever 41, and a free wheel 52 with rollers, which is interposed axially between the drive unit 51 and the pinion 50. In a known manner, the teeth of the pinion 50 belong to a sleeve which is extended at the rear in order to form the cylindrical outer track of the free wheel 52 with rollers. The drive unit 51 is extended axially at the front by a bush which is configured on the interior so as to form the profiled outer track of the free wheel 52 with rollers, and to accommodate the springs which act in a known manner on the rollers. More specifically, the drive unit 51 comprises a sleeve which is integral at the front with a flange with orientation which is transverse relative to the axis of the shaft 43. This flange is integral on its outer periphery with the bush with orientation which is axial relative to the axis of the shaft 43, in order to form a cage for receipt of rollers which is closed at the front by washers. The drive unit 51 bears a washer (with no reference), thus defining with the flange of the drive unit 51 a groove for receipt of the fingers of the inner end of the lever 41 in the form of a fork, as can be seen better in
In a known manner, the sleeve of the drive unit 51 is provided in its interior with a helical channels (with no reference) which are engaged in a complementary manner with outer helical toothing with the reference 43.1 in
It is clear that the device 52 with a free wheel can be replaced by a connection device with conical engagement, of the type described in document FR-A 2 772 433, or a clutch with several discs. It is also clear that, as a variant, the launcher 30 is implanted partly on the exterior of the support 16, at the front of the latter. More specifically, instead of being implanted in the support (
The control lever 41 is coupled in this case resiliently, or as a variant rigidly, in the aforementioned manner, by its upper end, with the mobile core 40 of the contactor 32, and comprises in its median part a pivoting shaft 54, which, according to one characteristic, is distinct from the toothed ring 46 of the speed reducer 45 with the gears, on the basis of the structure of the assembly 57 described below. The lever 41 is a moulded part, preferably made of rigid thermoplastic material in order to reduce noise, which is preferably reinforced by fibres. The mounting of the pivoting shaft 54 is carried out for example by means of a support part, such as in documents DE 28 22 165 and FR 2 787 833, or in the support 16 provided with projections for this purpose, the shaft 54 being distinct from, or integrated with the lever 41. In the embodiment in
As shown in
According to one characteristic, the elements 58, 60, 61, 62, 64, 65 and 67 are mounted on an added-on hub 68, thus assuring their centring. This hub 68 supports at least one first shoulder 71 for support in a direct or indirect manner of the resilient washer 64, and at least one second shoulder 72, in
More specifically, as can be seen in
According to one characteristic, the third section 68.3 comprises at least one flattened part, whereas, according to one embodiment, the wall 58, the disc 65 and the washers 61, 62 have a central opening respectively 58.3, 65.3, 61.3, provided with at least one complementary flattened part, in order to co-operate by co-operation of forms with the flattened part of the section 68.3, for blocking in rotation of these parts 58, 65, 61, 62, with the possibility of axial movement, depending in particular on the wear of the linings 61, 62. According to one embodiment, the shoulder 72 is continuous, and the rear surface 58.2 of the wall 58 is in contact with the front surface of this shoulder 72 with an annular form. In the embodiment in
The third section 68.3 receives the wall 58, the washers 61, 62 and the disc 65, which are designed to be connected in rotation with the hub 68 via this third section 68.3 having in the embodiment in
In addition, the hub 68 has in its centre a through opening 68.4 which permits the passage of the shaft 43 of the launcher. This opening 68.4 comprises two coaxial cylindrical parts 81, 82 with a different diameter, which are separated from one another by an inner annular part 83 (see
In addition, the ring 46, which has a hollow form and is supported by the transverse wall 58, has an annular skirt 46.1 which is toothed on the interior in order to engage with the satellites 47.1. The skirt 46.1 has an orientation which is axial relative to the axis of the shaft 43, and thus has a cylindrical form. The teeth 46.4 of the skirt 46.1 have an axial orientation. The ring 46 is preferably made of a plastic material, preferably reinforced by fibres, in order to limit the noise of the gear reducer as far as possible. The skirt 46.1 is prolonged at its front end by an inner rim 46.3 with orientation which is transverse relative to the axis X and to the axis of the shaft 43. This rim 46.3 projects radially towards the interior relative to the teeth 46.4 of the skirt 46.1, and is designed to be supported by its front surface against the rear surface 58.4 of the wall 58. The transverse wall 58 is made of a metal material, and is configured to act as a friction surface via its front surface, for the friction washer 61. The ring 46—wall 58 assembly is thus made of two materials in this embodiment. The ring 46 is over-moulded on the outer periphery of the transverse wall 58. As shown in
As can be seen in
The base plate 60, which has transverse orientation and two, respectively front and rear end surfaces 60.1, 60.2, has at least one lug 60.34 for example with a rounded form, which is designed to co-operate with a groove 88 with axial orientation of the support 16 with a complementary form (
The linings 61, 62 positioned on both sides of the plate 60 have a first, respectively front and rear surface 61.1, 62.1, in contact respectively with the rear surface 60.2 and the front surface 60.1 of the plate 60, and a second surface 61.2, 62.2 opposite the first surface 61.1, 62.1. The second surface 61.2 of the lining 61, which constitutes the rear surface of the latter, is in contact with the front outer surface which belongs to the front surface 58.2 of the transverse wall 58, whereas the second surface 62.2 of the lining 62, which constitutes the front surface of the latter, is in contact with the rear surface 64.2 of the washer 65 for dissipation of the forces. These linings 61, 62 are connected in rotation to the hub 68 by co-operation of forms. For this purpose, in the aforementioned manner, the linings 61, 62 each have a central opening 61.3, 62.3 with a form complementary to that of the third section 68.3. This opening 61.3, 62.3 has a substantially square form, the sides of the square being designed to be supported against the flattened parts 79.1 of the hub. These sides are connected to one another by circular edges. The friction linings 61, 62 are of the organic type, obtained for example from a bonding agent comprising heat-setting resins, fillers such as graphite, silica, talc, metal powders, and fibres such as aramid fibres, for example Kevlar®, or of the sintered type comprising metal powder, such as bronze, copper and iron sintered at a high temperature and pressure, or metal such as copper alloy (for example bronze or brass) or the like. In the embodiments in the figures, the surfaces of the linings 61, 62 are smooth, or as a variant they are grooved. The plate 60 and the wall 58 which are configured to form friction tracks for the linings 61, 62, are for example made of steel, stainless steel, bronze or cast iron, according to the nature of the linings 61, 62.
The disc 65 for dissipation of the forces is in this case is made of metal, and makes it possible to apply homogenously and over a large diameter the axial force generated by the resilient washer 64. For this purpose, the disc 65 has a front surface 65.1 which faces towards the washer 64, and a rear surface 65.2 which faces towards the front surface 62.2 of the lining 62. The disc 65 is also connected in rotation to the hub 68 by co-operation of form, and has a central opening 65.3 with a form complementary to that of the third section 68.3. Like the openings 61.3, 62.3 in the linings, this opening 65.3 has a substantially square form. The sides of the square which are designed to come into contact with the flattened parts 79.1 are connected to one another by circular edges.
The resilient washer 64 with axial action is in this case is made of metal, and has a front surface 64.1 which faces towards the closure washer 67, for support at its inner periphery on this washer 67, and a rear surface 64.2 which faces towards the dissipation disc 65, for support on its outer periphery on the front surface 64.1 of this disc. The resilient washer 64 is for example a washer of the Belleville type, which as a variant has a collar or shelving on its outer periphery for support on the front surface 64.1 of this disc 65. Thus, the length L, which can be seen in
The closure washer 67 is in this case is made of metal, and enters into co-operation with the groove 74 provided around the first section 68.1. The washer 67 has a rear surface 67.1 which faces towards the resilient washer 64, and a front surface 67.2 which faces towards the front axial end 69 of the hub 68 and towards the shoulder 71 for contact with the latter. In one example, the closure washer 67 is in the form of a washer provided with ribs 67.5 which face towards the shoulder 71 and holes 67.6. The central opening 67.3 in the washer 67 comprises four flattened parts 67.9 which are connected in pairs by circular edges 67.8. The shoulder 71 has a form complementary to that of the opening 67.3 in the washer 67, and has four flattened parts 71.7 which are connected in pairs by circular parts 71.8. The shoulder 71 is in the image of the third section 68.3 transversely with a larger size, such that the flattened parts 71.7 are in the extension of the flattened parts 79.1, and the circular parts 71.8 are in the extension of the circular parts 80.1. It will be noted that each circular part 71.8 is notched centrally at 71.9 for accommodation of the inner periphery of a rib 67.5. This notch 71.9 also affects the rear flank of the groove 74, as can be seen in
The functioning is as follows, in normal operation, the resilient washer 64 is supported indirectly on the shoulder 71 via the washer 67 and on the disc 65, in order to compress the elements 58, 60, 61, 62 axially between the disc 65 which forms a pressure disc and the support surfaces 77.1 of the shoulder 72 which forms a reaction shoulder. The elements 58, 60, 61, 62, 65 act as if they form only a single part which is immobile in rotation relative to the support 16 via the plate 60.
On the other hand, if forces greater than normal arise, for example if the resistant torque applied is greater than the torque of the electric motor of the starter, the wall 58 and the disc 65 slide and are displaced in rotation relative to the base plate 60, which is fixed in rotation by means of the friction linings 61, 62, thus making it possible to limit the torque applied to the starter. This therefore avoids giving rise to overheating of the electric motor 11, or to deterioration of the mechanical elements of the starter.
In order to make the mounting of the assembly 57 easy to handle and transport, via the front axial end 69 of the hub 68, the transverse wall 58 of the ring 46 is introduced axially onto the third section 68.3, such that the rims 58.5 which it has on its inner periphery come into contact with the support surfaces 77.1 of the hub 68. The first friction lining 61 is then fitted via its opening 61.3 onto the third section 68.3, such that its rear dorsal surface 61.2 is in contact with the front outer surface 58.2 of the wall 58. The base plate 60 is then introduced via its opening 60.3 onto the third section 68.3, such that its rear surface 60.2 is in contact with the front frontal surface 61.1 of the lining 61. The second friction lining 62 is then introduced via its opening 62.3 onto the third section 68.3, such that its rear dorsal surface 62.1 comes into contact with the other front surface 60.1 of the base plate 60.
The disc 65 for dissipation of the forces is then positioned via its opening 65.3 on the third section 68.3, against the dorsal surface 62.2 of the lining 62. The resilient washer 64 is then fitted on the second section 68.2, then the closure washer 67 is mounted, by carrying out the bayonet mounting of the washer 67 on the shoulder 71. More specifically, the flattened parts 67.5 of the washer 67 are brought facing the flattened parts 71.7 of the shoulder 71. An axial force F (
As a variant, as represented in
As a variant, at least one of the two friction linings 61, 62 is eliminated. For example the lining 61 is eliminated, the base plate 60 then being directly in contact with the pins 46.2 of the ring 46. As a variant, the lining 62 is also eliminated, with the plate 60 rubbing against the disc 65. As a variant, a single friction lining 61, 62 is retained. As a variant, the disc 65 is eliminated, with the washer 64 rubbing directly on the plate 60.
As a variant, for connection in rotation of the hub 68, the linings 61, 62, the transverse wall 58 and the disc 65 for dissipation of the forces, the latter 58, 61, 62, 65 comprise channels in their inner periphery which enter into co-operation with complimentary channels provided in the outer periphery of the third section 68.3 of the hub 68. As a variant, the flattened parts are thus replaced by channels.
As a variant, the linings 61, 62 are glued on both sides of the base plate 60 by means of their surface 61.1, 62.1.
The terms “front” and “rear” are understood relative to the direction of transfer of the torque of the machine to the drive pinion, with the “front” side thus being on the drive pinion 50 side, whereas the “rear” side is on the electric motor side of the electrical machine.
It will be appreciated that the assembly 57 for a speed reducer according to the invention is also designed for use with a speed reducer without satellite-holders, and comprising only a ring 46 and an offset wheel which engages directly with the inner toothing of the ring 46, as described in document FR-2 631 094.
The starter 10 according to the invention is particularly well suited for vehicles of the “start stop” type, comprising a thermal engine which is stopped for example at a red light, or in traffic jams, and is restarted by means of the starter according to the invention.
It will be appreciated that, as a variant, the thermal engine is fixed, and is used for example to drive a power take-off.
In general, the number of flattened parts 79.1 depends on the torque to be transmitted, and the solution according to the invention does not modify the starter profoundly. It is apparent from the description and the figures that the modification of the shaft 43 is simple and economical. It consists of a change of diameter between the cylindrical section 43.3 and the cylindrical rear end 43.2. In addition, the blocking in rotation of the plate 60 is carried out simply by means of at least one cavity 88 with axial orientation. The number of cavities 88 and lugs 60.34 depends on the applications. The toothed ring 46 is simplified, since it is not configured to co-operate with the outer periphery of the bearing, and is not configured to act as a support for a resilient washer with axial action. In addition, the forces are absorbed by the hub 68 and the wall 58, such that the ring 46 is conserved. As a variant, the wall 58 is in a single piece with the ring 46. The invention can be applied in the aforementioned manner to solutions wherein the lever 41 is mounted in an articulated manner, differently from the ring 46. The electric motor 11 of the starter is unchanged, such that, as a variant, the collector is flat. As a variant, the pinion 50 of the launcher 30 is mounted in the aforementioned manner on the exterior of the housing. According to one embodiment, this pinion engages with a toothed wheel which is designed to be engaged with the drive ring.
It is possible to invert the structures such that, as a variant, the blocking in rotation of the plate 60 is carried out by means of at least one axial projection of the support 16, such as a rib with a semi-circular cross-section, engaged in a complementary opening provided in the outer periphery of the plate 60. As a variant, the support 16 bears at least one pin which is engaged in a sliding manner in a complementary opening in the plate 90.
Number | Date | Country | Kind |
---|---|---|---|
10 60785 | Dec 2010 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2011/053048 | 12/19/2011 | WO | 00 | 8/30/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/085424 | 6/28/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020069711 | Hosoya | Jun 2002 | A1 |
20070215089 | Grand | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
28 22 165 | Nov 1979 | DE |
3912432 | Nov 1989 | DE |
0 749 194 | Dec 1996 | EP |
1 094 246 | Apr 2001 | EP |
2 048 356 | Apr 2009 | EP |
2 067 984 | Jun 2009 | EP |
2 611 096 | Aug 1988 | FR |
2 631 094 | Nov 1989 | FR |
2 772 433 | Jun 1999 | FR |
2 787 833 | Jun 2000 | FR |
2 924 872 | Jun 2009 | FR |
2 091 949 | Aug 1982 | GB |
WO 2005054664 | Jun 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20140007834 A1 | Jan 2014 | US |