Assembly for medical monitoring device with multiple physiological sensors

Information

  • Patent Grant
  • 11986289
  • Patent Number
    11,986,289
  • Date Filed
    Wednesday, November 27, 2019
    4 years ago
  • Date Issued
    Tuesday, May 21, 2024
    a month ago
Abstract
Systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from the same tissue site. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus. The multi-sensor apparatus can orient the plurality of non-invasive, physiological sensors such that each of the plurality of non-invasive, physiological sensors obtains physiological data from the same or a similar location.
Description
TECHNICAL FIELD

The present disclosure relates to physiological monitoring. More specifically, this disclosure relates to systems, methods, and apparatuses for measuring physiological parameters from overlapping or proximate regions of tissue using a plurality of non-invasive physiological sensors.


BACKGROUND

Monitoring of blood glucose (blood sugar) concentration levels has long been critical to the treatment of diabetes in humans. Current blood glucose monitors involve a chemical reaction between blood serum and a test strip, requiring an invasive extraction of blood via a lancet or pinprick. Small handheld monitors have been developed to enable a patient to perform this procedure anywhere, at any time. But the inconvenience of this procedure—specifically the blood extraction and the use and disposition of test strips—has led to a low level of compliance. Such low compliance can lead to serious medical complications. While a non-invasive method of measuring glucose has long been sought, attempts to create such a device have universally failed due to the difficult nature of detecting small concentrations of glucose in the blood.


SUMMARY

The present disclosure describes example systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from the same tissue site. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus and can be oriented such that each sensor obtains physiological data from the same or a similar location.


In some cases, a multi-sensor apparatus includes a plurality of non-invasive sensors and a sensor head. The plurality of non-invasive sensors can be configured to obtain physiological data associated with a patient. The sensor head can include a frame and a tissue interaction section. The frame can be configured to support some or all of the plurality of non-invasive sensors. The tissue interaction section can be configured to be positioned proximate a tissue site of the patient. Each of the plurality of non-invasive sensors can be configured to obtain physiological data associated with a patient at the tissue site.


The multi-sensor apparatus of any of the preceding paragraphs and/or any of the multi-sensor apparatuses disclosed herein may include any combination of the following features described in this paragraph, among other features described herein. The tissue interaction section can include a different sensing region for each of the plurality of non-invasive sensors. A particular non-invasive sensor can obtain the physiological data via the particular sensing region. A distance between each of the sensing regions can satisfy a distance threshold. At least two of the plurality of noninvasive sensors can be configured to simultaneously obtain the physiological data. At least two of the plurality of noninvasive sensors can be configured to obtain the physiological data at non-overlapping time intervals. Each of the plurality non-invasive physiological sensors can obtain physiological data from of the same tissue site. The plurality non-invasive physiological sensors can obtain the physiological data from a plurality of regions of the tissue site. Each of the plurality of regions of the tissue site can be proximate to one of the plurality of regions of the tissue site.


The multi-sensor apparatus of any of the preceding paragraphs and/or any of the multi-sensor apparatuses disclosed herein may include any combination of the following features described in this paragraph, among other features described herein. The plurality of non-invasive sensors can include at least two of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a near infrared (NIR) spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, or a pulse oximetry device. The plurality of non-invasive sensors can include an OCT device, a Raman spectroscopy device, a NIR spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, and/or a pulse oximetry device. The plurality of non-invasive sensors can include a Raman spectroscopy device, wherein the apparatus further comprises a Raman lens tube coupled to the sensor head. The tissue interaction region can be configured to contact the tissue site of the patient. The multi-sensor apparatus can include a processor. The processor can be configured to receive the physiological data from each of the plurality of noninvasive sensors; and determine a physiological parameter based at least in part on the physiological data. The physiological parameter can include a concentration of blood glucose.


In some cases, a system for measuring physiological parameters from a tissue site of a patient can include a multi-sensor apparatus and a processor. The multi-sensor apparatus can include a plurality of non-invasive sensors and a sensor head. The plurality of non-invasive sensors can be to obtain physiological data associated with a patient. The sensor head can include a frame and a tissue interaction section. The frame can be configured to support each of the plurality of non-invasive sensors. The tissue interaction section can be configured to be positioned proximate a tissue site of the patient. Each of the plurality of non-invasive sensors are configured to obtain physiological data from a same tissue site. The processor can be configured to receive the physiological data from each of the plurality of noninvasive sensors; and determine a physiological parameter based at least in part on the physiological data.


The system of any of the preceding paragraphs and/or any of the systems disclosed herein may include any combination of the following features described in this paragraph, among other features described herein. The tissue interaction section can include a plurality of sensing regions. Each of the plurality of sensing regions can correspond to one or more of the plurality of non-invasive sensors. A particular non-invasive sensor can obtain the physiological data via the particular sensing region. At least two of the plurality of noninvasive sensors can be configured to simultaneously obtain the physiological data. At least two of the plurality of noninvasive sensors can be configured to obtain the physiological data at non-overlapping time intervals. The plurality of non-invasive sensors can include at least two of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a NIR spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, or a pulse oximetry device. The plurality of non-invasive sensors can include an OCT device, a Raman spectroscopy device, a NIR spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, and/or a pulse oximetry device. The physiological parameter can include a concentration of blood glucose.


The present disclosure describes example systems, methods, apparatuses, and medical devices for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from the same or proximate regions of tissue of a patient. A multi-sensor apparatus can include a plurality of non-invasive, physiological sensors. The sensors can be integrated into or otherwise attached to multi-sensor apparatus and can be oriented and/or positioned on or within the multi-sensor apparatus such that each sensor is directed towards, or otherwise can obtain a measurement from, the same or a proximate measurement location corresponding to tissue of a patient.


The multi-sensor apparatus of any of the preceding paragraphs and/or any of the multi-sensor apparatuses disclosed herein may include any combination of the following features described in this paragraph, among other features described herein. The multi-sensor apparatus can include a frame configured to support at least a portion of each of the plurality of noninvasive sensors and can further include a sensor head having a surface for interacting with a tissue of the patient. The sensors can be oriented and/or positioned on or within the frame such that each of the sensors can obtain the physiological measurements from essentially the same, overlapping, or proximate regions of tissue of a patient. As a non-limiting example, in use, the sensor head can be placed in contact with patient's skin, and the sensors can obtain physiological measurements from tissue associated with the contact area, which can include an area defined by a perimeter of the surface of the sensor head. By enabling each of the plurality of sensors to obtain measurements from the overlapping or proximate tissue regions of tissue, the multi-sensor apparatus can advantageously facilitate the collection and/or correlation of sensor data received from the plurality of sensors. Furthermore, the multi-sensor apparatus can enable a determination, or a more accurate estimate, of one or more physiological parameters, such as those physiological parameters that are not readily determinable from sensor data from a single physiological sensor.


The multi-sensor apparatus of any of the preceding paragraphs and/or any of the multi-sensor apparatuses disclosed herein may include any combination of the following features described in this paragraph, among other features described herein. An example multi-sensor apparatus can include two or more of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a NIR spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, a tissue dielectric constant sensor, or a pulse oximetry device. The sensors can be oriented or positioned such that they can obtain physiological data from overlapping, intersecting, touching, or proximate measurement sites. A processor can combine, collect and/or correlating at least some of the physiological data from the various sensors to improve or confirm measurements or to determine or estimate a physiological parameter. For example, a processor can determine or estimate a blood glucose concentration.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features are discussed herein. It is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the invention and an artisan would recognize from the disclosure herein a myriad of combinations of such aspects, advantages or features.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings and the associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims.



FIG. 1 is a block diagram illustrating an example patient monitoring system.



FIGS. 2A and 2B illustrate a perspective side views view of an example multi-sensor apparatus.



FIG. 3A illustrates a scaled perspective view of the multi-sensor apparatus of FIGS. 2A and 2B with portions of the sensor head removed.



FIG. 3B illustrates scaled a perspective view of an example multi-sensor apparatus.



FIGS. 4A-4C are exploded view of various embodiments of a multi-sensor apparatus.



FIG. 5A is a cross-sectional view of an example multi-sensor apparatus.



FIG. 5B illustrates a scaled cross-sectional view of an example multi-sensor apparatus.



FIG. 5C illustrates a distribution channel of an example coupling agent of an example multi-sensor apparatus.



FIGS. 6A and 6B illustrate perspective and bottom views, respectively, of embodiments of a sensor head of a multi-sensor apparatus.





While the foregoing “Brief Description of the Drawings” references generally various embodiments of the disclosure, an artisan will recognize from the disclosure herein that such embodiments are not mutually exclusive. Rather, the artisan would recognize a myriad of combinations of some or all of such embodiments.


DETAILED DESCRIPTION

The present disclosure will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure. Furthermore, examples disclosed herein can include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the systems, devices, and methods disclosed herein.


Overview


Many non-invasive techniques for determining blood glucose have significant shortcomings, such as low accuracy (for example, less accuracy than invasive home monitors) and insufficient specificity of glucose concentration measurement. Accordingly, there is a need for an improved method to non-invasively monitor glucose. Systems and methods disclosed herein address various challenges related to non-invasively determining a patient's blood glucose level by combing and/or correlating data from multiple non-invasive sensors. Each of the non-invasive sensors can interrogate the same or a similar tissue site of a patient. In this way, physiological parameters or other variables identified using one or more sensors can be utilized to improve data from one or more other sensors. Using these data collecting and/or combining techniques, a glucose concentration measurement can be obtained.


In many instances, a single non-invasive sensor may lack the functionality to obtain sufficient physiological information for an accurate determination of an analyte concentration, such as a glucose concentration measurement. As a result, many physiological monitoring techniques include estimations, such as those based on common assumptions, to compensate for the lack of known data. However, due to the sensitivity of analyte measurements, these estimations can result in inaccurate or unreliable determinations.


For example, Beer's Law (also known as the Beer-Lambert Law) relates the attenuation of light to properties of a material. In particular, Beer's law states that absorbance of a material is proportional to the concentrations of the attenuating species in the material sample. The relationship between these parameters is expressed in Equation 1 below:

A=ε*b*c  (Equation 1)

where A is the absorbance of the material at a given wavelength of light, S is the molar absorptivity or extinction coefficient (L mol-1 cm-1), unique to each molecule and varying with wavelength, b is the length of the light path through the material (cm), and c is the concentration of an analyte of interest (mol L-1).


In many cases, the length of the light path through the material (sometimes referred to as the path length) is estimated. For example, a generic finger may be associated with a first estimated path length value, while a generic nose may be associated with a second path length value. However, every person has a unique tissue geometry, which can include, but is not limited to, unique skin structure or skin thickness. Furthermore, because tissue is not uniform throughout a person's body, even tissue sites that are close in proximity, such as two different measurements sites on a patient's finger, can have a different tissue geometry and/or optical profiles.


As noted above, a specific tissue geometry of a particular tissue site can affect the path length value, among other physiological parameters or variables. To this end, multiple noninvasive sensors can be configured to obtain physiological parameters from the same tissue site. It can be difficult for a caregiver to manually position multiple sensors to obtain data from the same tissue site. Thus, in some cases, a system or apparatus can include a frame or housing that supports each of the plurality of non-invasive sensors and orients the non-invasive sensors to obtain physiological data associated with the same tissue site. In some cases, two tissue sites are considered the same tissue site if one or more portions of the tissue sites overlap and/or one or more portions of the tissue sites are within a threshold distance of each other.


As another example, a non-invasive physiological sensor can be configured to obtain skin geometry data, which can be utilized to calculate a path length associated with a tissue site. In some such cases, the skin geometry data can be utilized to calibrate one or more sensors (for example, select a focal depth of a Raman spectrometer), which can result in more accurate analyte measurements, such as a blood glucose concentration measurement.


To aid in the correlation of data between the sensors, it can be desirable for each of the sensors to obtain data relating to the same tissue site. However, it can be difficult to position different sensors on the same tissue site without anything more than the caregiver's visual assessments. Similarly, it can be difficult to re-position the same sensor on the same tissue site after it has been removed from the patient. To solve these and other problems, tissue geometry information can be utilized to determine whether successive measurements have occurred in the same or a different location. Furthermore, in some cases, tissue geometry information can be utilized to guide the placement of one or more sensors to a particular tissue site.


An optical coherence tomography, or OCT, sensor can be utilized to obtain tissue geometry information. OCT is an optical imaging technique using light waves that produce high-resolution imagery of biological tissue. OCT creates its images by interferometrically scanning in depth a linear succession of spots, and measuring backscattered light at different depths in each successive spot. The OCT data can be processed to present an image of the linear cross section. OCT data can be processed to determine tissue geometry information, such as skin geometry. For example, the OCT data can provide data regarding a thickness of one or more skin layers, such as the epidermis, the dermo-epidermal junction, or the dermis.


In some cases, OCT data can be utilized to determine whether successive OCT measurements have occurred in the same or a different location (e.g., the same or a different tissue site). For example, each tissue site can relate to a specific optical profile and a particular tissue site can retain its specific optical profile over time. Furthermore, the specific optical profile of a particular tissue site can be different from the specific optical profile of some or all other tissue sites. In some cases, OCT data can be utilized to determine whether multiple OCT measurements have occurred in the same or a different location. In some cases, OCT data can be utilized to determine whether multiple non-OCT measurements have occurred in the same or a different location. For example, the position and/or orientation of an OCT sensor can be registered with the position and/or orientation of one or more other sensors, and successive OCT measurements can be utilized to determine whether a sensor has been placed in the same (or a different) location as a previously placed sensor.


A bio-impedance or tissue dielectric constant sensor can be utilized to obtain tissue geometry information. For example, bio-impedance or tissue dielectric constant data can provide information relating to one or more skin layers, a hydration of one or more skin layers, or a cellular structure of the tissue. In some cases, similar to as described above with respect to OCT data, bio-impedance or tissue dielectric constant data can be utilized to determine whether successive measurements have occurred in the same or a different location.


Raman spectroscopy has exhibited promise with respect to blood glucose detection, due to its capability to gain information about the molecular constitution non-invasively. For example, features such as peaks of the Raman spectra are considered the Raman “fingerprints” of analytes such as glucose. Accordingly, using an isolated or semi-isolated Raman signal, the system can identify physiological data, such as information regarding a patient's blood glucose level.


For various reasons, it has been challenging to isolate a pure Raman signal from a signal obtained from a Raman spectrometer. For example, emission of fluorescence in tissue often overwhelms any signal collected from the Raman spectrometer, thereby hiding Raman features. In addition, attenuation of the signal due to absorption can further affect prediction of analytes using the collected signal. Furthermore, varying tissue geometries at tissue sites increases the difficulty in selecting a focal depth of the Raman spectrometer that will optimize a resolution of the Raman signal. Systems, devices, and methods herein can include variety of noninvasive physiological sensors, such as any of those described in greater detail in International Pat. App. No. PCT/US2018/042148, filed Jul. 13, 2018, entitled “Medical Monitoring Device For Harmonizing Physiological Measurements,” which is hereby incorporated herein by reference in its entirety.


Systems and methods disclosed herein can address one or more of these or other challenges by providing a multi-sensor apparatus that can utilize multiple sensors to obtain physiological data from the same tissue site. For example, the present disclosure addresses various challenges related to positioning and/or orienting multiple sensors to obtain physiological data from the same tissue site. In some instances, physiological data associated with the same tissue site can facilitate calibration or harmonization between sensors, or improve the accuracy of one or more other sensors.


Patient Monitoring System



FIG. 1 illustrates a block diagram of an example patient monitoring system 100. The patient monitoring system 100 includes a patient monitor 130 and a plurality of sensors (individually or collectively referred to as sensor 104 or sensors 104). The patient monitor 130 can include a sensor interface 110 and a processor 120. In some cases, each of the sensors 104 can obtain physiological measurements relating to the same tissue site 102. It will be understood that the patient monitoring system 100 can include fewer or more components as desired. For example, the patient monitoring system 100 can include fewer or more sensors 104 than illustrated in FIG. 1.


The plurality of sensors 104 can each be the same type of sensors, or one or more of the sensors 104 can be of a different type. For example, the plurality of sensors 104 can include, but are not limited to, an OCT sensor, a Raman spectrometry device, a pulse oximetry device, a bioimpedance sensor, a temperature sensor, an acoustic sensor, or a combination thereof.


As described herein, a particular tissue site can retain its specific optical profile over time, and that optical profile can be different from the optical profile of another tissue site. Accordingly, to aid in harmonizing data between the sensors 104, it can be advantageous for the sensors 104 to interrogate the same tissue site. Accordingly, two or more of the sensors 104 can be configured to obtain physiological measurements from the same tissue site 102. In some cases, two tissue sites can be considered the same tissue site if one or more portions of the tissue sites overlap with one another. In some cases, two tissue sites can be considered the same tissue site if one or more portions of the tissue sites touch or connect. In some cases, two tissue sites can be considered the same tissue site if one or more portions of the respective tissue sites satisfy a distance threshold. The distance threshold can vary across embodiments. For example, in some cases, a distance threshold can be satisfied if a first tissue site (e.g., corresponding to a first sensor) is less than 4, 8, 12, or 16 mm (+/−a few mm) from a second tissue site (e.g., corresponding to a second sensor). As another example, the distance threshold can be satisfied if the distance between two tissue sites is less than or equal to 30, 50, 70, or 90 mm. the distance threshold can be satisfied if the distance between two tissue sites is less than or equal to 1, 2.5, or 4 cm. In some cases, For example, two tissue sites can be considered the same tissue site if they include the same region of the patient's body (e.g., the same finger, thumb, thenar space, hand, wrist, forearm, nose, limb, head, ear, neck, upper body, or lower body). In some cases, one or more of the sensors 104 can be configured to obtain physiological measurements from the different tissue sites.


In some cases, one or more of the sensors 104 can be integrated into or coupled to an apparatus. In some cases, the apparatus, such as apparatus 200 of FIG. 2, is wearable by a user. For example, the apparatus can include a glove that when worn by a user allows the sensor 104 to interrogate the tissue site 102. As another example, the apparatus can include a sock, a shirt, a sleeve, a cuff, a bracelet, a headband, or the like. As described herein, in some cases, the apparatus includes a frame configured to support each of the sensors 104. The frame can orient the sensors 104 such that each of the sensors 104 can obtain physiological data associated with the same tissue site 102.


The patient monitor 130 can be configured to communicate (non-limiting example: via sensor interface 110) with one or more of the plurality of sensors 104 to receive sensor data, control the sensors 104, or the like. The sensor data can be utilized by the patient monitor 130 (non-limiting example: the processor 120) to determine one or more physiological parameters, patient vitals, or concentrations of one or more analytes associated with a patient. For example, based at least in part on sensor data from one or more of the sensors 104, the patient monitor 130 can determine an amount of light absorbed, transmitted through, or reflected at a tissue site, path length (for example, a distance that light travels through the tissue), concentration of an analyte, bioimpedance, tissue dielectric constant, pulse rate (PR), pulse pressure variation (PPV), pleth variability index (PVI®), stroke volume (SV), stroke volume variation (SVV), peripheral capillary oxygen saturation (SpO2), mean arterial pressure (MAP), central venous pressure (CVP), pulse pressure (PP), perfusion index (PI), total hemoglobin (SpHb®), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), oxygen content (SpOC®), or acoustic respiration rate (RRa®), among other parameters. In some aspects, the patient monitor 130 can derive or use one or more relationships (for instance, a set of linear equations) from two or more of the determined parameters. The patient monitor 130 can utilize the one or more relationships to determine the patient's blood glucose concentration, systemic vascular resistance (SVR), CO, or arterial blood pressure (BP), among other parameters.


In some cases, data from a single sensor 104 may not provide enough reliable information to determine certain physiological parameters. For example, a number of factors can affect an accuracy of sensor data including, but not limited to, patient movement, sensor placement, interference, the type of sensor being used, the expansion and contraction of the patient's vascular system, assumptions made during calculations, skin temperature, pressure, or the like. In addition or alternatively, the determination of some physiological parameters (for example, glucose concentration) may require more information than a single sensor can provide. To solve this or other problems, the patient monitor 130 (or one or more of the sensors) can harmonize or compare data from two or more sensors 104, which can allow for a determination of more accurate or reliable data, or can allow for a determination of one or more additional physiological parameters, such as blood glucose concentration.


The patient monitor 130 can wirelessly, or using wires, receive a signal from one or more of the plurality of sensors 104. The received signal may take various forms, such as a voltage, a current, or charge. An operational amplifier (op-amp) of the patient monitor 130 can increase the amplitude, as well as transform the signal, such as from a current to a voltage. An anti-aliasing filter (AAF) of the patient monitor 130 can then process of the output signal from the op-amp to restrict a bandwidth of the output signal from the op-amp to approximately or completely satisfy the sampling theorem over a band of interest. An analog-to-digital convertor (ADC) of the patient monitor 130 can convert the output signal from the AAF from analog to digital. The output signal from the ADC can then be sampled by a processor 120 of the patient monitor 130 at a relatively high speed. The result of the sampling can next be down-sampled before waveform analysis may be performed.


Multi-Sensor Apparatus


A multi-sensor apparatus can include a plurality of non-invasive physiological sensors and can position and/or orient the sensors such that each of the sensors can obtain measurements from the same tissue site (sometimes referred to as a measurement site). In this way, each of the sensors obtain measurements corresponding to tissue having the same or similar properties, such as the same or similar optical profile, the same or similar tissue geometry, the same or similar analyte concentration, or the like. Sensor data from one or more of the sensors can be combined, correlated, or utilized to improve, calibrate, or corroborate data and/or calculations from or related to another sensor. Sensor data from one or more sensors can be combined and/or harmonized to determine or estimate a physiological parameter, such as blood glucose concentration.



FIGS. 2A and 2B illustrate perspective side views of an example multi-sensor apparatus 200. As illustrated, the multi-sensor apparatus 200 includes a sensor head 210 (sometimes referred to as a fusion head), an optical mirror support 202, and fiber bundle 222, and fibers 226. Further, the multi-sensor apparatus 200 includes a plurality of sensors. In the example of FIGS. 2A and 2B, the plurality of sensors includes an OCT sensor 240, a Raman sensor 224, a bioimpedance sensor 228, and a temperature sensor 250 (collectively or individually referred to as sensor 104 or sensors 104). It will be understood that the multi-sensor apparatus 200 can include fewer, additional, or different components. For example, in some cases, the sensors 104 can include a tissue dielectric constant sensor, a NIR spectroscopy device, or a pulse oximetry sensor.


The sensor head 210 can include a frame 220 (sometimes referred to as a housing) and a tissue interaction section 230. The frame 220 can support one or more of sensors 104. For example, the frame 220 can be configured to receive, couple to, or integrate with one or more of the sensors 104. In some cases, the frame 220 includes or defines one or more cavities of a size and shape capable of accepting one or more of the sensors 104. In some cases, some or all of the sensors 104 are positioned and/or oriented on or within the frame 220 such that the sensors 104 are positioned and/or oriented on or within the frame 220 such that the sensors 104 are positioned and/or oriented on or within the frame 220 such that the sensors 104 can, in use, obtain measurements from the same, or essentially the same, tissue site. For example, as illustrated, each of the sensors 104 can be oriented within the frame 220 such that the sensors 104 point or are directed towards the tissue site 102.


The tissue interaction section 230 can include one or more openings through which the sensors 104 can emit light, receive lights, obtain measurements, etc. As described in more detail herein, the openings in the tissue interaction section 230 through which the sensors 104 emit light, receive lights, obtain measurements, etc. can be referred to a sensing region. The size, number, and location of the sensing regions in the tissue interaction section 230 can vary across embodiments. For instance, in the illustrated example of in FIG. 2B, the tissue interaction section 230 includes four sensing regions for the bioimpedance sensor 228, two sensing regions for the temperature sensor 250, a sensing region for the fiber bundle 222 (e.g., a pulse oximetry sensor), six sensing regions for the fiber 226, a sensing region for the OCT sensor 240, and a sensing region for the Ramen sensor 224. It will be understood that the position, number, size and/or shape of a sensing region can vary across embodiments. For example, a sensing region for the Raman sensor 224 can be large enough to include the spot size of an excitation source that may be part of the Raman sensor 224. Additionally or alternatively, a sensing region for the OCT sensor 240 can be large enough to allow for the excitation source of the OCT sensor 240 to scan the tissue site or to account for movement of the excitation source during use or manufacture.


The tissue interaction section 230 can be a centralized location at which the sensors 104 obtain measurements. In some such cases, the tissue interaction section 230 can encompass or include each of the sensing regions of the sensors 104. In this way, the sensors 104 can be oriented to obtain measurements from the same tissue site. In some cases, tissue sites can be considered the same tissue site if one or more portions of the tissue sites overlap with one another, if one or more portions of the tissue sites touch or connect, or if the tissue sites reside on the same region of the patient's body. As another example, in some cases, tissue sites can be considered the same tissue site if a distance between the tissue sites satisfies a distance threshold. For example, a distance threshold between sensing regions of two sensors can be satisfied if the sensing regions are less 4, 8, 12, or 16 mm (+/−a few mm) away from each other. As another example, the distance threshold between sensing regions of two sensors can be satisfied if the sensing regions are less than 30, 50, 70, or 90 mm (+/−a few mm) away from each other. As another example, the distance threshold between sensing regions of two sensors can be satisfied if the sensing regions are less than 1, 2.5, or 4 cm (+/−a few cm) away from each other.


The shape of the lower surface 232 of the tissue interaction section 230 can vary across embodiments. For example, in some cases, the lower surface 232 can be relatively flat. As another example, in some cases, the lower surface 232 can include one or more curvatures or concavities. A curvature of the lower surface 232 can be of a similar curvature to that of the area of the measured tissue site. As an example, the tissue site may be a finger nail and the curvature of the lower surface 232 can follow the approximate curvature of the finger nail. In some examples, the curvature of the lower surface 232 can match a specific curvature of the tissue site of the user. For example, the lower surface 232 can be molded, formed, or otherwise shaped according to a shape of the tissue site. In some cases, the curvature or shape of the lower surface 232 can be generic to the approximate curvature of a tissue site of the user. For example, the lower surface 232 can be molded, formed, or otherwise shaped according to the approximate curvature of an adult human finger nail where the tissue site is a finger nail.


The shape of the tissue interaction section 230 and/or the bottom of the sensor head 210 can vary across embodiments. For example, as illustrated in FIG. 2B, the tissue interaction section 230 and/or the bottom of the sensor head can be relatively circular. Alternatively, the tissue interaction section 230 and/or the bottom of the sensor head can be relatively square, rectangular, oval, elliptical, triangular, or the like.


The size of the tissue interaction section 230 can vary across embodiments. In some cases, the tissue interaction section 230 can have a length, width, and/or diameter on the scale of a few millimeters, decimeters, or centimeters. For example, the tissue interaction section 230 can have a length, width, and/or diameter of between 5 mm and 30 mm or between 10 mm and 20 mm, such as about 12.7 mm (+/−a few mm). As another example, the tissue interaction section 230 can have a length, width, and/or diameter of between 0.5 cm and 5 cm or between 1 cm and 3 cm.


In use, the tissue interaction section 230 can be placed on or positioned proximate to a tissue site. For example, in some cases, the tissue interaction section 230 can be configured to contact the tissue site. As another example, in some cases, the tissue interaction section 230 can be configured to hover over the tissue site such that a gap exists between at least a portion of the tissue interaction section 230 and the tissue site.


The tissue interaction section 230 can be attached to the tissue site of a patient using a permanent or temporary adhesive, by permanent or temporary implantation, via a wearable device, or other suitable means of temporarily, semi-permanently, or permanently securing a component to a tissue site. In some examples, the tissue interaction section 230 may be secured to a tissue site of a patient via a semi-permanent adhesive capable of securing the attachment component for a day or more. For example, the tissue interaction section 230 may be secured to a tissue site with a medical adhesive, glue, tape, or other means of adhering components to a tissue site.


The size and/or shape of the multi-sensor apparatus 200 can vary across embodiments. For example, in some implementations, the multi-sensor apparatus 200 can be sized to fit in the palm of a user's hand or is otherwise a handheld apparatus. In some cases, it can be desired for the multi-sensor apparatus 200, or at least the sensor head 210, to be relatively small such that the measurement site is also relatively small, such as less than 5, 10, 15, or 20 millimeters in diameter. However, the size of the measurement site can vary across embodiments and can be based on a number of factors, including, but not limited to, a number of sensors integrated into the multi-sensor apparatus 200.


In some cases, the multi-sensor apparatus 200 can be compatible with different sensor heads. For example, the different sensors heads can include various shapes and/or sizes, and a particular sensor head can be configured for use with a particular tissue site. That is, in some cases, a particular sensor head may be configured for use with a finger, while another sensor head may be configured for use with a toe, an ear, a forearm, or the like.


The sensor head 210 can be made of plastic or other lightweight material so as to reduce weight and/or cost. In some examples, the sensor head 210 can include brackets for securing components, such as sensors 104, to the frame 220.


In some implementations, the multi-sensor apparatus 200 can optionally include a battery (not shown). The battery can include various types of batteries, such as AA or AAA batteries. The battery can be configured to provide power to multi-sensor apparatus 200, such as to one or more of the sensors 104.



FIG. 3A illustrates a scaled perspective view of the multi-sensor apparatus 200 of FIGS. 2A and 2B with portions of the sensor head 210 removed. Specifically, FIG. 3A illustrates the assembly of the bioimpedance sensors 228 removed from the multi-sensor apparatus 200 of FIGS. 2A and 2B, thereby showing various channels of the frame 220 through which the sensors 104 reside.



FIG. 3B illustrates scaled a perspective view of an example multi-sensor apparatus 200, which includes a different configuration of the tissue interaction section 230, as compared to FIGS. 2A and 2B. In the illustrated example of in FIG. 3B, the tissue interaction section 230 includes two sensing regions for the bioimpedance sensor 228, a sensing region for the fiber bundle 222, a sensing region for the OCT sensor 240, and a sensing region for the Raman sensor 224. It will be understood that the position and number of openings corresponding to each sensor can vary across embodiments.


Assembly of a Multi-Sensor Apparatus



FIGS. 4A-4C are exploded views of an example multi-sensor apparatus 200. As shown, the multi-sensor apparatus 200 can include a pulse oximetry device (for example, including a fiber bundle 222 or multi-LED fibers 226), a temperature sensor 250 (for example, a thermistor), a temperature sensor support 406, a bioimpedance sensor 228, an O ring 408, a Raman sensing device 224, an OCT device 240, a sensor head 210, or any combination thereof. The Raman sensing device can include a Raman lens tube 410, a glass window 412, or a cube adaptor 414. The OCT device can include an OCT light source 416, a mirror block 418, an OCT coupler 420, a mirror 422, and/or a baffle 424. Further, the multi-sensor apparatus 200 can include one or more components to couple the components of the multi-sensor apparatus 200, such as one or more screws 426, bolts, or slotted spring pins 428, among other things. It will be understood that fewer, more, or different components can be used to implement the multi-sensor apparatus 200 or any of the sensors, as desired.


Pulse Oximetry Device


The multi-sensor apparatus 200 can include one or more components for pulse oximetry, such as one or more light sources for emitting light of one or more of a variety of wavelengths and one or more detectors for detecting the light after attenuation by tissue of a patient. The detected signal(s) can be communicated to a patient monitor 130, where the patient monitor 130 can remove noise, preprocesses the signal(s), and/or determine one or more physiological parameters associated with the patient.


In the illustrated example exploded views of the multi-sensor apparatus 200 of FIGS. 4A-4C, the components for pulse oximetry can include one or more multi-LED fibers 226 or a fiber bundle 222. For example, the one or more multi-LED fibers 226 or a fiber bundle 222 can include a light source and/or a detector. The light source can output one or more of a variety of wavelengths, including, but not limited to, near infrared (NIR), infrared (IR), or red wavelengths. The one or more detectors can detect the light after attenuation by tissue of a patient.


In some cases, the multi-LED fibers 226 or a fiber bundle 222 can be coupled to the sensor head 210. The sensor head 210 can orient or position the multi-LED fibers 226 or the fiber bundle 222. In use, the surface 212 of the sensor head 210 can be positioned on or proximate to a desired measurement site (for example, a portion of the patient's skin) and the multi-LED fibers 226 or the fiber bundle 222 can be utilized to obtain measurements from the measurement site on which the surface 212 is placed. It is understood that fewer, additional, or different light sources with fewer, additional, or different wavelengths can be utilized.


Optical Coherence Tomography (OCT)


The multi-sensor apparatus 200 can include one or more components for OCT. OCT is an optical imaging technique using light waves that produce high-resolution imagery of tissue. OCT creates its images by focusing a beam of light into a medium and interferometrically scanning the depth of a linear succession of spots and measuring the absorption and/or the scattering of the light at different depths in each successive spot. In some cases, the data can be processed to present an image of the linear cross section of the medium scanned.


In the illustrated example exploded views of the multi-sensor apparatus 200 of FIGS. 4A-4C, the components for OCT can include a light source 416 (non-limiting example: an optical fiber), an OCT scanner (e.g., a mirror block 418 and a mirror 422), an OCT coupler 420. In some cases, the mirror block 418 can couple to the light source 416, the mirror 422, and the OCT coupler 420. In addition, the OCT coupler 420 can couple to the sensor head 210 via one or more screws 426. Furthermore, the components for OCT can include a baffle 164 configured to fit within a portion of the mirror block and located between the light source 416 and the mirror 422, a lens 430 located between the mirror 422 and the sensor head 210, and/or a glass window 412 located within the sensor head 210. It will be noted, however, that the multi-sensor apparatus 200 can include fewer, additional, or different components for OCT. Additionally, the OCT device can be incorporated for Time Domain OCT or Fourier Domain OCT techniques. The choice among the OCT techniques can be defined, for example, by the specificity of the interested data.


The light source 416 can output a beam of light having a broad spectrum of wavelengths. In some cases, the beam of light can be collimated and pass a beam splitter such that a portion of the beam of light is directed towards the tissue and a portion of the beam of light is directed toward a reference arm, such as mirror 422. The light can be either polarized or non-polarized. In some cases, a polarizer located on one edge of a beam splitter can polarize the light linearly, elliptically, or circularly, as desired. As a non-limiting example, the wavelength can be centered at, for example, 1310 nm with a 50 nm bandwidth. In other cases, the wavelength can be centered at 1060 nm with a 70 nm bandwidth. Still, in other cases, the light source can be selected to have a center wavelength anywhere between 400 nm and 1700 nm with a bandwidth of up to 150 nm. It is understood that different light sources with different bandwidths can be chosen to optimize penetration depth into the tissue and optimize the depth resolution of sensitivity to skin structures.


The mirror 422 can be translated or moved to raster scan a depth image of the tissue. In some cases, the mirror 422 can be translated or moved to fine-tune OCT measurements. In addition or alternatively, an angle of the mirror 422, relative to one or more axes, can be adjusted. For example, multi-sensor apparatus 200 can be configured to move or shift the mirror 422, such as by means of a stepper motor, a piezo-electric actuator, or the like.


The reflected light from the tissue can be collected using a converging lens, such as lens 430 (FIG. 4C), and be directed to a photodetector where it can be recombined with a portion of a reference arm beam to form an interference pattern. OCT can provide a non-invasive method for identifying one or more characteristics of a tissue's structure or geometry. For example, a processor can use the signals from the photodetector to render a three dimensional image of the tissue.


Bioelectrical Impedance


The multi-sensor apparatus 200 can include one or more components for bioelectrical impedance. Bioelectrical impedance can be characterized as the principle that tissues and/or fluids of a patient have different impedances, that is, opposition to the flow of the electric current, which in turn may be dependent on variables such as water and electrolyte content, to name a few. Analysis of bioelectrical impedance can be performed to examine electrical, capacitive, or resistive characteristics of tissue to provide information on a noninvasive basis, such as tissue geometry.


As illustrated in the example exploded views of the multi-sensor apparatus 200 of FIGS. 4A-4C, the components for bioelectrical impedance can include two bioimpedance sensors 228 coupled to the sensor head 210. It will be noted, however, that the multi-sensor apparatus 200 can include fewer, additional, or different bioimpedance sensors 228. In use, the bioimpedance sensors 228 can apply an electrical signal to tissue, such as the tissue associated with the region defined by the perimeter of the sensor head 210.


Raman Spectroscopy


The multi-sensor apparatus 200 can include one or more components for Raman spectroscopy. As illustrated in the example exploded views of the multi-sensor apparatus 200 of FIGS. 4A-4C, the components for Raman spectroscopy can include a cube adaptor 414 and a Raman lens tube 410 and a dichroic mirror can be installed within the cube to guide the excitation and collection light beams 404. In addition, the Raman lens tube 410 can couple to (for example, screw together with) the sensor head 210. Furthermore, the components for Raman spectroscopy can include a Raman free space cone within the sensor head 210, a glass window 412, and/or a light source.


The components for Raman spectroscopy can include a light source. In some cases, the light source includes or produces a light, such as a laser beam. The characteristics of the light can vary across embodiments. For example, the light can have a tight bandwidth and/or stable spectrum. As another example, in some cases, the light can be centered between 600 nanometers and 900 nanometers, between 750 nanometers and 850 nanometers, centered at 785 nanometers, centered at 830 nanometers, or the like. Furthermore, the wavelength of the light can vary across embodiments. For example, in some cases, the light can have any wavelength(s) of a range of wavelengths varying from visible to NIR spectrum. In some cases, the light can be directed to the tissue by means of a dichroic mirror, focusing lens, and/or an optical window contacting the patient tissue. In some cases, the components for Raman spectroscopy are selected to avoid issues such as, but not limited to, reflections, fluorescence or scattering. In some cases, an optical window can be manufactured from quartz glass, coated with anti-reflecting material. It will be noted, however, that the multi-sensor apparatus 200 can include fewer, additional, or different components for Raman spectroscopy.


The Raman effect is a light-scattering phenomenon that can provide insight as to one or more characteristics of an analyte in a sample. When light irradiates a tissue, a fraction of the light is scattered, meaning it emerges in directions other than that of the incident (incoming) beam. Most of this scattered light (generally referred to as Rayleigh scattering) emerges at the original frequency (f0) and wavelength of the incident beam. A small portion of the scattered light, however, emerges at some shifted frequency (fs) that is different from, and usually lower than, the original frequency (f0) and has wavelengths different from that of the incident light. Stokes shifted Raman can be at relatively longer wavelengths, and anti-stokes Raman can be at relatively shorter wavelengths. The process leading to this small portion of the scattered light is termed the Raman effect or Raman scattering.


Raman scattering can occur with a change in vibrational or rotational energy of a molecule. Accordingly, the Raman spectra can contain information about the specific chemical substance in the irradiated tissue. For example, Raman scattering yields a set of characteristic peaks in a spectrum, which is a “fingerprint” of a specific chemical substance. Raman spectroscopy has exhibited promise with respect to blood glucose detection, as well as the determination of other physiological data. Furthermore, Raman spectroscopy can by utilized with one or more other sensors to enhance or improve physiological data measurements or determinations. For example, data acquired from one or more sensors can be utilized to remove or reduce an effect of the fluorescence, or tissue absorption, refraction, scattering, and/or reflection.


Multi-Sensor Apparatus


As described herein, each of the sensors 104 of a multi-sensor apparatus 200 can be oriented or positioned to obtain measurements associated with a sensing region location with the perimeter of the sensor head 210.



FIG. 5A is a cross-sectional view of an example multi-sensor apparatus 200, and FIG. 5B illustrates a scaled cross-sectional view of an example multi-sensor apparatus 200, and provides an illustrative example of some of the cavities of the multi-sensor apparatus 200. As illustrated, the fiber bundle 222, Raman sensor 224, an OCT sensor 240, and a coupling agent port 622 are each oriented such that a sensing region of each the sensors is located within the region defined by the perimeter of the sensor head 210. That is, the frame of the multi-sensor apparatus 200 advantageously orients the sensors such that, in use, the sensors can obtain measurements from essentially the same, overlapping, or proximate regions of tissue. By orienting and/or positioning the sensors to interrogate or analyze essentially the same, overlapping, or proximate regions of tissue, the multi-sensor apparatus 200 can ensure that each of the sensors obtain measurements corresponding to tissue having the same or similar properties (non-limiting examples: the same or similar optical profile, the same or similar tissue geometry, the same or similar analyte concentration, or the like). As a result, in some cases, data from the one or more sensors can be utilized to improve, calibrate, or confirm data and/or calculations related to another sensor, thereby improving a determination or an accuracy of one or more physiological parameters. It will be understood that fewer, additional, or different sensors can be included in the multi-sensor apparatus 200.


Coupling Agent



FIG. 5C illustrates a distribution channel of an example coupling agent port 622 of an example multi-sensor apparatus 200. In some cases, the multi-sensor apparatus 200 can be configured to apply a coupling agent to the tissue, for example, by introducing the coupling agent to the tissue via the coupling agent port 622. Among other things, a coupling agent can reduce variations in surface reflection of the sample tissue, thereby improving accuracy of the non-invasive measurement of the sample tissue. In addition, optical properties and/or temperature of the sample tissue can be stabilized by application of the coupling agent. By way of non-limiting example, the coupling agent can include a perfluorinated liquid. One such perfluorinated liquid is known by the brand name Fluorinert™ FC-70 or FC-40, manufactured by 3M Company, of St. Paul, Minnesota. In some embodiments the coupling agent can also be suppressed, for example if the optical properties of the tissue are acceptable.


Sensor Head



FIGS. 6A and 6B illustrate perspective and bottom views, respectively, of embodiments of a sensor head 210 of a multi-sensor apparatus 200. As described herein, each of the sensors of a multi-sensor apparatus 200 can include a sensing region on the sensor head 210 such that the sensors are each oriented or positioned to obtain measurements associated with the same tissue site.


The sensor head 210 can include a lower surface 232 for interacting with tissue of a patient. For example, in use, the lower surface 232 of the sensor head 210 can be positioned to contact or hover over the patient's skin. As illustrated in FIGS. 6A-6B, the lower surface 232 of the sensor head 210 can be relatively flat. Alternatively, the lower surface 232 of the sensor head 210 can include one or more contours. For example, the lower surface 232 of the sensor head 210 can be contoured or curved to align with a contour or curvature of the patient's tissue, such as the patient forearm, toe, or finger.


The sensor head 210 can be various shapes depending on the embodiment. For example, as illustrated in FIGS. 6A and 6B, the sensor head 210 can have a generally circular shape. In addition or alternatively, the sensor head 210 can have a generally square, rectangular, triangular, or elliptical shape or a combination thereof.


Portions of the lower surface 232 of the sensor head 210 can be partitioned into sensing areas of the plurality of non-invasive physiological sensors. For example, at least one of the sensing areas 610 can correspond to a sensing area for the bio-impedance sensors 228, a Raman sensing area 612 can correspond to a sensing area for a Raman sensor 224 of a Raman spectrometry device, an OCT sensing area 614 can correspond to a sensing area for an OCT sensor 240 of an OCT device, a fiber bundle sensing area 616 can correspond to a sensing area of fiber bundle 222, a multi-LED fiber sensing area 618 can correspond to a sensing area of multi-LED fibers 226, a temperature sensing area 620 can correspond to a sensing area of the temperature sensor 250, and/or a coupling agent sensing area 622 can correspond to coupling agent port 622.


The sensor head 210 and/or the lower surface 232 of the sensor head 210 can be sized to fit the sensing areas (non-limiting examples: sensing areas 610, 612, 614, 616, 618, 620, or 622) corresponding to each of the non-invasive physiological sensors. Accordingly, the size of the sensor head 210 can vary, for example, depending on the number of physiological sensors, the size or orientation of the sensing areas 610, 612, 614, 616, 618, 620, or 622, the distance between sensing areas 610, 612, 614, 616, 618, 620, or 622, or a combination thereof. In general, the sensor head 210 is sized such that each of the physiological sensors of the multi-sensor apparatus 200 can obtain measurements associated with essentially the same, overlapping, or proximate regions of tissue.


To aid in ensuring that the sensors obtain measurements associated with essentially the same, overlapping, or proximate regions of tissue, the sensor head 210 can have a length, width, and/or diameter on the scale of a few millimeters, decimeters, or centimeters. For example, the sensor head 210 can have a length, width, and/or diameter of between 5 mm and 30 mm or between 10 mm and 20 mm, such as about 12.7 mm (+/−a few mm). As another example, the sensor head 210 can have a length, width, and/or diameter of between 0.5 cm and 5 cm or between 1 cm and 3 cm.


Each of the sensing areas 610, 612, 614, 616, 618, 620, or 622 can have various shapes or sizes. As an example, the bio-impedance sensing areas 610 can each have a length, width, and/or diameter of between 5 mm and 30 mm (+/−a few mm) or between 10 mm and 20 mm (+/−a few mm). As another example, the Raman sensing area 612 can have a length, width, and/or diameter of between 1 mm and 10 mm (+/−a few mm) or between 2 mm and 4 mm (+/−a few mm), such as 2.25 mm. As another example, the OCT sensing area 614 can have a length, width, and/or diameter of between 1 mm and 10 mm (+/−a few mm) or between 2 mm and 4 mm (+/−a few mm), such as 2.5 mm. As another example, the sensing area 616 can have a length, width, and/or diameter of between 1 mm and 10 mm (+/−a few mm) or between 2 mm and 4 mm (+/−a few mm). As another example, the temperature sensing areas 620 can have a length, width, and/or diameter of between 1 mm and 5 mm (+/−a few mm) or between 3 mm and 4 mm (+/−a few mm). In some cases, the temperature sensing areas 620 are 3.5 mm by 0.4 mm (+/−a few 0.1 mm). As another example, the sensing areas 618 can have a length, width, and/or diameter of between 0.2 mm and 10 mm (+/−a few mm) or between 1 mm and 4 mm (+/−a few mm). As described above, the multi-LED fibers 226 can include one or more visible or NIR emitters and one or more detectors. In some cases, the emitters can be 1, 2, 3, 4, or 5 mm (+/−a few mm) from a detector. As another example, the coupling agent sensing areas 622 can have a length, width, and/or diameter of between 5 mm and 30 mm (+/−a few mm) or between 10 mm and 20 mm (+/−a few mm).


By enabling each of the plurality of sensors to obtain measurements from essentially the same, overlapping, or proximate regions of tissue, the multi-sensor apparatus 200 can advantageously facilitate the integration, correlation, and/or harmonization of sensor data received from the plurality of sensors. Furthermore, the multi-sensor apparatus 200 can enable a determination, or a more accurate estimate, of one or more physiological parameters, such as those physiological parameters that are not readily determinable from sensor data from a single physiological sensor.


EXAMPLES

Various example features can be found in the following clauses, which can be implemented together with any combination of the features described above:


Clause 1. A multi-sensor apparatus measuring physiological parameters from a tissue site of a patient, the apparatus comprising:

    • a plurality of non-invasive sensors configured to obtain physiological data associated with a patient; and
    • a sensor head comprising:
    • a frame configured to support each of the plurality of non-invasive sensors, and
    • a tissue interaction section configured to be proximate a tissue site of the patient, wherein each of the plurality of non-invasive sensors are configured to obtain physiological data associated with a patient at the tissue site.


Clause 2. The apparatus of Clause 1, wherein the tissue interaction section comprises a different sensing region for each of the plurality of non-invasive sensors, wherein a particular non-invasive sensor obtains the physiological data via the particular sensing region.


Clause 3. The apparatus of Clause 2, wherein a distance between each of the sensing regions satisfies a distance threshold.


Clause 4. The apparatus of any of the previous clauses, wherein at least two of the plurality of noninvasive sensors are configured to simultaneously obtain the physiological data.


Clause 5. The apparatus of any of the previous clauses, wherein at least two of the plurality of noninvasive sensors are configured to obtain the physiological data at non-overlapping time intervals.


Clause 6. The apparatus of any of the previous clauses, wherein each of the plurality non-invasive physiological sensors obtains physiological data from of the same tissue site.


Clause 7. The apparatus of any of the previous clauses, wherein the plurality non-invasive physiological sensors obtain the physiological data from a plurality of regions of the tissue site, wherein each of the plurality of regions of the tissue site is proximate to one of the plurality of regions of the tissue site.


Clause 8. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises at least two of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, or a pulse oximetry device.


Clause 9. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises an OCT device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, and a pulse oximetry device.


Clause 10. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises a Raman spectroscopy device, wherein the apparatus further comprises a Raman lens tube coupled to the sensor head.


Clause 11. The apparatus of any of the previous clauses, wherein the tissue interaction region is configured to contact the tissue site of the patient.


Clause 12. The apparatus of any of the previous clauses, further comprising a processor configured to:

    • receive the physiological data from each of the plurality of noninvasive sensors; and
    • determine a physiological parameter based at least in part on the physiological data.


Clause 13. The apparatus of Clause 12, wherein the physiological parameter comprises a concentration of blood glucose.


Clause 14. A system for measuring physiological parameters from a tissue site of a patient, the system comprising:

    • a multi-sensor apparatus, the multi-sensor apparatus comprising:
    • a plurality of non-invasive sensors configured to obtain physiological data associated with a patient; and
    • a sensor head comprising:
    • a frame configured to support each of the plurality of non-invasive sensors, and
    • a tissue interaction section configured to be proximate a tissue site of the patient, wherein each of the plurality of non-invasive sensors are configured to obtain physiological data from a same tissue site; and
      • one or more processors in communication with the multi-sensor apparatus, the one or more processors configured to:
    • receive the physiological data from each of the plurality of noninvasive sensors; and
    • determine a physiological parameter based at least in part on the physiological data.


Clause 15. The system of Clause 14, wherein the tissue interaction section comprises a plurality of sensing regions, wherein each of the plurality of sensing regions corresponds to one or more of the plurality of non-invasive sensors, wherein a particular non-invasive sensor obtains the physiological data via the particular sensing region.


Clause 16. The system of any of Clauses 14 or 15, wherein at least two of the plurality of noninvasive sensors are configured to simultaneously obtain the physiological data.


Clause 17. The system of any of Clauses 14 to 16, wherein at least two of the plurality of noninvasive sensors are configured to obtain the physiological data at non-overlapping time intervals.


Clause 18. The system of any of Clauses 14 to 17, wherein the plurality of non-invasive sensors comprises at least two of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, or a pulse oximetry device.


Clause 19. The system of any of Clauses 14 to 18, wherein the plurality of non-invasive sensors comprises an OCT device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, and a pulse oximetry device.


Clause 20. The system of any of Clauses 14 to 19, wherein the physiological parameter comprises a concentration of blood glucose.


Various example features can be found in the following clauses, which can be implemented together with any combination of the features described above:


Clause 1. An apparatus comprising:

    • a plurality of non-invasive sensors configured to obtain physiological data associated with a patient; and
    • a sensor head comprising:
    • a surface configured to contact a region of tissue of the patient, and
    • a frame configured to support at least a portion of each of the plurality of noninvasive sensors, wherein the plurality of noninvasive sensors are oriented and/or positioned on or within the frame such that each of the plurality of noninvasive sensors obtain the physiological data from tissue associated with the region of tissue in contact with the surface of the sensor head.


Clause 2. The apparatus of Clause 1, wherein the surface of the sensor head is less than 15 millimeters in diameter.


Clause 3. The apparatus of any of the previous clauses, wherein at least two of the plurality of noninvasive sensors are configured to simultaneously obtain the physiological data.


Clause 4. The apparatus of any of the previous clauses, wherein at least two of the

    • plurality of noninvasive sensors are configured to obtain the physiological data at non-overlapping time intervals.


Clause 5. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises at least two of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, a NIR spectrometer device or a pulse oximetry device.


Clause 6. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises a Raman spectroscopy device, wherein the apparatus further comprises a Raman lens tube coupled to the sensor head.


Clause 7. The apparatus of Clause 6, wherein a sensing region of the Raman spectroscopy device is less than 3 millimeters in diameter.


Clause 8. The apparatus of Clause 6, wherein a sensing region of the Raman spectroscopy device is between 2 and 5 millimeters in diameter.


Clause 9. The apparatus of Clause 6, wherein a sensing region of the Raman spectroscopy device is between 3 and 15 millimeters in diameter.


Clause 10. The apparatus of Clause 6, wherein a sensing region of the Raman spectroscopy device is between 10 and 25 millimeters in diameter.


Clause 11. The apparatus of Clause 6, wherein a sensing region of the Raman spectroscopy device is greater than 15 millimeters in diameter.


Clause 12. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises a NIR spectroscopy device, wherein the apparatus further comprises a NIR fiber bundle coupled to the sensor head.


Clause 13. The apparatus of Clause 12, wherein a sensing region of the NIR spectroscopy device is less than 3 millimeters in diameter.


Clause 14. The apparatus of Clause 12, wherein a sensing region of the NIR spectroscopy device is between 2 and 5 millimeters in diameter.


Clause 15. The apparatus of Clause 12, wherein a sensing region of the NIR spectroscopy device is between 3 and 15 millimeters in diameter.


Clause 16. The apparatus of Clause 12, wherein a sensing region of the NIR spectroscopy device is between 10 and 25 millimeters in diameter.


Clause 17. The apparatus of Clause 12, wherein a sensing region of the NIR spectroscopy device is greater than 15 millimeters in diameter.


Clause 18. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises a pulse oximetry device, wherein the apparatus further comprises a fiber bundle.


Clause 19. The apparatus of Clause 18, wherein a sensing region of the pulse oximetry device is less than or equal to 3 millimeters in diameter.


Clause 20. The apparatus of Clause 18, wherein a sensing region of the pulse oximetry device is between 2 and 5 millimeters in diameter.


Clause 21. The apparatus of Clause 18, wherein a sensing region of the pulse oximetry device is between 3 and 15 millimeters in diameter.


Clause 22. The apparatus of Clause 18, wherein a sensing region of the pulse oximetry device is between 10 and 25 millimeters in diameter.


Clause 23. The apparatus of Clause 18, wherein a sensing region of the pulse oximetry device is greater than 15 millimeters in diameter.


Clause 24. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises a pulse oximetry device, wherein the apparatus further comprises a plurality of optical fibers.


Clause 25. The apparatus of Clause 18, wherein the plurality of optical fibers comprises an emitter having an emitter sensing region and a detector having a detector sensing region, wherein the emitter sensing region and the detector sensing region are spaced between 0.5 millimeters to 5 millimeters apart.


Clause 26. The apparatus of any of the previous clauses, wherein the plurality of non-invasive sensors comprises an OCT device, wherein the apparatus further comprises an optical fiber, an optical window and a mirror.


Clause 27. The apparatus of any of the previous clauses, wherein a processor is in communication with each of the plurality of noninvasive sensors, wherein the processor is configured to:

    • receive the physiological data from each of the plurality of noninvasive sensors; and
    • determine a physiological parameter based at least in part on the physiological data.


Clause 28. The apparatus of Clause 27, wherein the physiological parameter comprises a concentration of blood glucose.


Clause 29. The apparatus of any of the previous clauses, wherein each of the plurality non-invasive physiological sensors interrogate an overlapping portion of tissue.


Clause 30. The apparatus of any of the previous clauses, wherein each of the plurality non-invasive physiological sensors interrogate a portion of tissue within an area defined by the perimeter of the surface of the sensor head.


Clause 31. The apparatus of any of the previous clauses, wherein each of the plurality of noninvasive sensors obtain the physiological data from an identical tissue site.


Clause 32. The apparatus of any of the previous clauses, wherein each of the plurality of noninvasive sensors obtain the physiological data from a same tissue site.


Clause 33. The apparatus of Clause 32, wherein the same tissue site is a region less than 15 millimeters in diameter.


Clause 34. The apparatus of any of Clauses 32 or 33, wherein the same tissue site is a region between 8 millimeters and 13 millimeters in diameter.


Clause 35. The apparatus of Clause 32, wherein the same tissue site comprises a region greater than 15 millimeters in diameter.


Clause 36. The apparatus of any of the previous clauses, wherein each of the plurality of noninvasive sensors obtain the physiological data from proximate tissue sites.


Clause 37. The apparatus of any of the previous clauses, wherein proximate tissue sites comprises tissue sites within 5 millimeters of each other.


Clause 38. The apparatus of any of Clauses 32 or 33, wherein each of the plurality of noninvasive sensors obtain the physiological data from at least partially overlapping tissue sites.


Various example features can be found in the following clauses, which can be implemented together with any combination of the features described above:


Clause 1. A method comprising:

    • receiving a first data signal from a first noninvasive sensor, wherein the first data signal is associated with first physiological data obtained from a first tissue region of a patient by the first noninvasive sensor;
    • receiving a second data signal from a second noninvasive sensor, wherein the second data signal is associated with second physiological data obtained from a second tissue region of a patient by the second noninvasive sensor, wherein the first and second tissue regions are at least proximate to each other; and
    • determining a physiological parameter based at least in part on the first and second data signals.


Clause 2. The method of Clause 1, wherein the first and second noninvasive sensors are oriented and/or positioned on or within a frame of a sensor head.


Clause 3. The method of any of the previous clauses, wherein the sensor head comprises:

    • a surface configured to contact a third region tissue of the patient, and a frame configured to support at least a portion of each of the first and second noninvasive sensors, wherein the third region of tissue comprises at least a portion of the first and second regions of tissue.


Clause 4. The method of Clause 3, wherein the surface of the sensor head is between 5 and 15 millimeters in diameter.


Clause 5. The method of any of Clauses 3 or 4, wherein the surface of the sensor head is less than 15 millimeters in diameter.


Clause 6. The method of any of Clauses 3 to 5, wherein the surface of the sensor head is less than 30 millimeters in diameter.


Clause 7. The method of any of the previous clauses, further comprising.

    • receiving a third data signal from a third noninvasive sensor, wherein the third data signal is associated with third physiological data obtained from a third tissue region of a patient by the third noninvasive sensor, wherein the first, second, and third tissue regions are at least proximate to each other.


Clause 8. The method of any of the previous clauses, wherein the first and second noninvasive sensors are configured to simultaneously obtain the first and second physiological data.


Clause 9. The method of any of the previous clauses, the first and second noninvasive sensors are configured to obtain the physiological data at non-overlapping time intervals.


Clause 10. The method of any of the previous clauses, wherein the first non-invasive sensor comprises at least one of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, a NIR spectrometer device or a pulse oximetry device, wherein the second non-invasive sensor comprises a different one of the optical coherence tomography (OCT) device, the Raman spectroscopy device, the bio-impedance-sensing device, the temperature-sensing device, the NIR spectrometer device or the pulse oximetry device.


Clause 11. The method of any of the previous clauses, wherein the first non-invasive sensor comprises a Raman spectroscopy device, wherein the Raman spectroscopy device comprises a Raman lens tube coupled to the sensor head.


Clause 12. The method of Clause 11, wherein a sensing region of the Raman spectroscopy device is less than 3 millimeters in diameter.


Clause 13. The method of Clause 11, wherein a sensing region of the Raman spectroscopy device is between 2 and 5 millimeters in diameter.


Clause 14. The method of Clause 11, wherein a sensing region of the Raman spectroscopy device is between 3 and 15 millimeters in diameter.


Clause 15. The method of Clause 11, wherein a sensing region of the Raman spectroscopy device is between 10 and 25 millimeters in diameter.


Clause 16. The method of Clause 11, wherein a sensing region of the Raman spectroscopy device is greater than 15 millimeters in diameter.


Clause 17. The method of any of the previous clauses, wherein the first non-invasive sensor comprises a pulse oximetry device, wherein the pulse oximetry device comprises a fiber bundle.


Clause 18. The method of Clause 17, wherein a sensing region of the pulse oximetry device is less than or equal to 3 millimeters in diameter.


Clause 19. The method of Clause 17, wherein a sensing region of the pulse oximetry device is between 2 and 5 millimeters in diameter.


Clause 20. The method of Clause 17, wherein a sensing region of the pulse oximetry device is between 3 and 15 millimeters in diameter.


Clause 21. The method of Clause 17, wherein a sensing region of the pulse oximetry device is between 10 and 25 millimeters in diameter.


Clause 22. The method of Clause 17, wherein a sensing region of the pulse oximetry device is greater than 15 millimeters in diameter.


Clause 23. The method of any of the previous clauses, wherein the first non-invasive sensor comprises a pulse oximetry device, wherein the pulse oximetry device comprises a plurality of optical fibers.


Clause 24. The method of Clause 23, wherein the plurality of optical fibers comprises an emitter having an emitter sensing region and a detector having a detector sensing region.


Clause 25. The method of Clause 24, wherein the emitter sensing region and the detector sensing region are spaced 3 millimeters apart.


Clause 26. The method of Clause 24, wherein the emitter sensing region and the detector sensing region are spaced between 1.5 millimeters and 5 millimeters apart.


Clause 27. The method of any of the previous clauses, wherein the first non-invasive sensor comprises an OCT device, wherein the OCT device comprises an optical fiber and a mirror.


Clause 28. The method of any of the previous clauses, wherein the physiological parameter comprises a concentration of blood glucose.


Clause 29. The method of any of the previous clauses, the first and second regions of tissue are at least partially overlapping regions of tissue.


Clause 30. The method of any of the previous clauses, the first and second regions of tissue are within an area defined by a perimeter of the surface of the sensor head.


Clause 31. The method of any of the previous clauses, the first and second regions of tissue are identical tissue regions.


Clause 32. The method of any of the previous clauses, the first and second regions of tissue are a same tissue region.


Clause 33. The method of Clause 32, wherein the same tissue region is an area less than 15 millimeters in diameter.


Clause 34. The method of Clause 32, wherein the same tissue region is an area between 8 millimeters and 13 millimeters in diameter.


Clause 35. The method of Clause 32, wherein the same tissue region is an area greater than 15 millimeters in diameter.


Clause 36. The method of any of the previous clauses, wherein proximate tissue sites comprise tissue sites within 5 millimeters of each other.


TERMINOLOGY

The term “and/or” herein has its broadest least limiting meaning which is the disclosure includes A alone, B alone, both A and B together, or A or B alternatively, but does not require both A and B or require one of A or one of B. As used herein, the phrase “at least one of” A, B, “and” C should be construed to mean a logical A or B or C, using a non-exclusive logical or.


The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For example, the actual steps or order of steps taken in the disclosed processes may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For instance, the various components illustrated in the figures may be implemented as software or firmware on a processor, controller, ASIC, FPGA, or dedicated hardware. Hardware components, such as processors, ASICs, FPGAs, and the like, can include logic circuitry. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.


User interface screens illustrated and described herein can include additional or alternative components. These components can include menus, lists, buttons, text boxes, labels, radio buttons, scroll bars, sliders, checkboxes, combo boxes, status bars, dialog boxes, windows, and the like. User interface screens can include additional or alternative information. Components can be arranged, grouped, displayed in any suitable order.


Although the present disclosure includes certain embodiments, examples and applications, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments or uses and obvious modifications and equivalents thereof, including embodiments which do not provide all of the features and advantages set forth herein. Accordingly, the scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments herein, and may be defined by claims as presented herein or as presented in the future.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, or steps. Thus, such conditional language is not generally intended to imply that features, elements, or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, or 0.1 degree.


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. A multi-sensor apparatus measuring physiological parameters from a tissue site of a patient, the apparatus comprising: a plurality of non-invasive sensors configured to obtain physiological data from an overlapping area of the tissue site of a patient; anda sensor head comprising: a frame comprising a plurality of angled cavities, each of the plurality of angled cavities fixedly orienting one of the plurality of non-invasive sensors relative to the frame, each of the plurality of non-invasive sensors configured to emit light along a light path towards the overlapping area of the tissue site, wherein at least one of the plurality of cavities is non-parallel to another one of the plurality of cavities such that, when the multi-sensor apparatus is in use, the light paths of each of the plurality of non-invasive sensors converge on the overlapping area of the tissue site; anda tissue interaction section configured to be proximate the tissue site of the patient, wherein each of the plurality of non-invasive sensors are configured to obtain the physiological data associated with the patient at the tissue site.
  • 2. The apparatus of claim 1, wherein the tissue interaction section comprises a different sensing region for each of the plurality of non-invasive sensors, wherein a particular non-invasive sensor obtains the physiological data via a particular sensing region.
  • 3. The apparatus of claim 2, wherein a distance between each of the sensing regions satisfies a distance threshold.
  • 4. The apparatus of claim 1, wherein at least two of the plurality of non-invasive sensors are configured to simultaneously obtain the physiological data.
  • 5. The apparatus of claim 1, wherein at least two of the plurality of non-invasive sensors are configured to obtain the physiological data at non-overlapping time intervals.
  • 6. The apparatus of claim 1, wherein each of the plurality of non-invasive sensors obtains the physiological data from the tissue site.
  • 7. The apparatus of claim 1, wherein the plurality of non-invasive sensors obtain the physiological data from a plurality of regions of the tissue site, wherein each of the plurality of regions of the tissue site is proximate to one of the plurality of regions of the tissue site.
  • 8. The apparatus of claim 1, wherein the plurality of non-invasive sensors comprises at least two of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, or a pulse oximetry device.
  • 9. The apparatus of claim 1, wherein the plurality of non-invasive sensors comprises an OCT device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, and a pulse oximetry device.
  • 10. The apparatus of claim 1, wherein the plurality of non-invasive sensors comprises a Raman spectroscopy device, wherein the apparatus further comprises a Raman lens tube coupled to the sensor head.
  • 11. The apparatus of claim 1, wherein the tissue interaction section is configured to contact the tissue site of the patient.
  • 12. The apparatus of claim 1, further comprising a processor configured to: receive the physiological data from each of the plurality of non-invasive sensors; anddetermine a physiological parameter based at least in part on the physiological data.
  • 13. A system for measuring physiological parameters from a tissue site of a patient, the system comprising: a multi-sensor apparatus, the multi-sensor apparatus comprising: a plurality of non-invasive sensors configured to obtain physiological data from an overlapping area of the tissue site of a patient; anda sensor head comprising: a frame comprising a plurality of angled cavities, each of the plurality of angled cavities fixedly orienting one of the plurality of non-invasive sensors relative to the frame, each of the plurality of non-invasive sensors configured to emit light along a light path towards the overlapping area of the tissue site, wherein at least one of the plurality of cavities is non-parallel to another one of the plurality of cavities such that, when the multi-sensor apparatus is in use, light paths of each of the plurality of non-invasive sensors converge on the overlapping area of the tissue site, anda tissue interaction section configured to be proximate the tissue site of the patient, wherein each of the plurality of non-invasive sensors are configured to obtain the physiological data from the tissue site; andone or more processors in communication with the multi-sensor apparatus, the one or more processors configured to: receive the physiological data from each of the plurality of non-invasive sensors; anddetermine a physiological parameter based at least in part on the physiological data.
  • 14. The system of claim 13, wherein the tissue interaction section comprises a plurality of sensing regions, wherein each of the plurality of sensing regions corresponds to one or more of the plurality of non-invasive sensors, wherein a particular non-invasive sensor obtains the physiological data via a particular sensing region.
  • 15. The system of claim 13, wherein at least two of the plurality of non-invasive sensors are configured to simultaneously obtain the physiological data.
  • 16. The system of claim 13, wherein at least two of the plurality of non-invasive sensors are configured to obtain the physiological data at non-overlapping time intervals.
  • 17. The system of claim 13, wherein the plurality of non-invasive sensors comprises at least two of an optical coherence tomography (OCT) device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, or a pulse oximetry device.
  • 18. The system of claim 13, wherein the plurality of non-invasive sensors comprises an OCT device, a Raman spectroscopy device, a bio-impedance-sensing device, a temperature-sensing device, and a pulse oximetry device.
  • 19. The system of claim 13, wherein the tissue interaction section comprises a lower surface, the lower surface having a diameter or width of between 5 mm and 30 mm.
  • 20. The apparatus of claim 1, wherein the tissue interaction section comprises a lower surface, the lower surface having a diameter or width of between 5 mm and 30 mm.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority benefit to U.S. Provisional Application No. 62/771,818, entitled “Assembly For Medical Monitoring Device For Harmonizing Physiological Measurements,” filed Nov. 28, 2018, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (1273)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6070093 Oosta May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6868285 Muller-Dethlefs Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Ai-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Ai-Ai May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254430 Cho Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Ai-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Ai-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Al-Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellot et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Ai-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9759714 Bordelon et al. Sep 2017 B2
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Al-Ali et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Ali-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Triman et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
10405804 Al-Ali Sep 2019 B2
10413666 Al-Ali et al. Sep 2019 B2
10420493 Al-Ali et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10433776 Al-Ali Oct 2019 B2
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10835130 Cho Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
10959651 McKinney Mar 2021 B1
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11382567 O'Brien et al. Jul 2022 B2
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
11627919 Kiani et al. Apr 2023 B2
11637437 Al-Ali et al. Apr 2023 B2
D985498 Al-Ali et al. May 2023 S
11653862 Dalvi et al. May 2023 B2
D989112 Muhsin et al. Jun 2023 S
D989327 Al-Ali et al. Jun 2023 S
11678829 Al-Ali et al. Jun 2023 B2
11679579 Al-Ali Jun 2023 B2
11684296 Vo et al. Jun 2023 B2
11692934 Normand et al. Jul 2023 B2
11701043 Al-Ali et al. Jul 2023 B2
D997365 Hwang Aug 2023 S
11721105 Ranasinghe et al. Aug 2023 B2
11730379 Ahmed et al. Aug 2023 B2
D998625 Indorf et al. Sep 2023 S
D998630 Indorf et al. Sep 2023 S
D998631 Indorf et al. Sep 2023 S
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060211926 Yu et al. Sep 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110230733 Al-Ali Sep 2011 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120188538 Patil et al. Jul 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130090537 Schemmann et al. Apr 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150057530 Roggeveen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150165312 Kiani Jun 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366507 Blank Dec 2015 A1
20160029932 Al-Ali Feb 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160354015 Zhang et al. Dec 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014056 Newberry Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170100064 Van Dorpe et al. Apr 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188864 Drury Jul 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170224220 Tunnell Aug 2017 A1
20170224262 Ai-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani et al. Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180042513 Connor Feb 2018 A1
20180042557 Park Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180078155 Baek et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180216370 Ishiguro et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190038143 Al-Ali Feb 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Ai-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
20190104973 Poeze et al. Apr 2019 A1
20190110719 Poeze et al. Apr 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117140 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Ai-Ali Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150800 Poeze et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216319 Poeze et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190261857 Al-Ali Aug 2019 A1
20190269370 Al-Ali et al. Sep 2019 A1
20190274606 Kiani et al. Sep 2019 A1
20190274627 Al-Ali et al. Sep 2019 A1
20190274635 Al-Ali et al. Sep 2019 A1
20190290136 Dalvi et al. Sep 2019 A1
20190298270 Al-Ali et al. Oct 2019 A1
20190304601 Sampath et al. Oct 2019 A1
20190304605 Al-Ali Oct 2019 A1
20190307377 Perea et al. Oct 2019 A1
20190320906 Olsen Oct 2019 A1
20190320959 Al-Ali Oct 2019 A1
20190320988 Ahmed et al. Oct 2019 A1
20190325722 Kiani et al. Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200021930 Iswanto et al. Jan 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
20230135297 Kiani et al. May 2023 A1
20230138098 Telfort et al. May 2023 A1
20230145155 Krishnamani et al. May 2023 A1
20230147750 Barker et al. May 2023 A1
20230210417 Al-Ali et al. Jul 2023 A1
20230222805 Muhsin et al. Jul 2023 A1
20230222887 Muhsin et al. Jul 2023 A1
20230226331 Kiani et al. Jul 2023 A1
20230284916 Telfort Sep 2023 A1
Foreign Referenced Citations (2)
Number Date Country
3 056 141 Aug 2016 EP
WO 2019014629 Jan 2019 WO
Non-Patent Literature Citations (2)
Entry
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn)
International Search Report and Written Opinion received in PCT Application No. PCT/US2018/042148, dated Nov. 19, 2018.
Related Publications (1)
Number Date Country
20200163597 A1 May 2020 US
Provisional Applications (1)
Number Date Country
62771818 Nov 2018 US