1. Field of the Invention
The present invention relates to an assembly for placing a prosthetic valve in a lumen of the body, especially a heart valve, and in particular an aortic valve.
2. Background Art
Documents WO 91/17720, WO 98/29057 and EP 1 057 460 each describe an assembly, including the prosthetic valve to be implanted; a radially expandable framework, called a stent, which is able, in the expanded state, to bear against the wall of the body duct to be fitted with the valve, this bearing making it possible to immobilize this stent with respect to this wall; and means for fixing the valve to the stent. The placement of the stent permits mounting of the valve in the body duct, eliminating the need for an external access route and, thus, a direct surgical intervention.
However, major drawbacks of this technique are that it entails a risk of the valve being damaged by the balloon used to expand the stent, and it limits the force of expansion that can be imparted to the stent. This limitation has repercussions on the anchoring of the stent, making a displacement of said assembly possible. This limitation also has repercussions on the leaktightness of the stent in the area of the valvular ring which is particularly affected when calcified zones give the valvular ring an irregular form and/or a certain rigidity.
Another drawback of the prior art technique is that of directly joining the commissures of the valvules to the stent. The result of this is that an expansion of the stent, and thus of the valve, different than that intended may cause poor coaptation of the valvules and, consequently, defective functioning of the valve. The stent therefore has to undergo a predetermined expansion, which prevents or complicates adaptation of this stent to the anatomical variations.
In the case of implantation of an aortic valve, the prior art technique also has drawbacks in that it necessitates very exact positioning of the stent in the aorta so that the valve is located opposite the natural valvular ring, and it entails a risk of blocking the apertures of the coronary arteries that open out at the coronary ostia.
The present invention aims to overcome these various drawbacks. The assembly of the present invention comprises a prosthetic valve to be implanted; a radially expandable framework, or stent, comprising at least one zone intended to be expanded to allow the stent, in the expanded state, to bear against the wall of the body duct to be fitted with the valve, this bearing making it possible to immobilize the stent with respect to this wall; and means for mounting the valve with respect to the stent, making it possible to connect the valve to the stent in such a way that the placement of the stent allows the valve to be mounted in the body duct, and expansion means such as a balloon catheter being provided to trigger expansion of the stent at the implantation site. According to the invention, the valve and the stent are designed in such a way that, at the moment when the stent is expanded, the valve is situated outside the zone or zones of the stent that are subjected to said expansion means. The invention thus consists in separating the valve and said zone or zones to be expanded, so that the expansion of the stent can be effected with an expansion force suitable for perfect anchoring of this stent in the wall of the body duct to be fitted with the valve, and without any risk of destruction or damage of the valve.
According to one possibility, the stent comprises a zone for mounting of the valve, which zone is distinct from the zone or zones of the stent to be expanded, and said mounting means connect the valve to this mounting zone. The expansion of the stent thus triggers the deployment of the valve.
According to another possibility, said mounting means are designed in such a way that the valve is axially movable with respect to the stent between a position of non-implantation, in which it is situated outside the zone or zones of the stent that are to be expanded, and a position of implantation, which it can reach after expansion of the stent in the body duct, in which it is immobilized axially with respect to the stent.
The valve can thus form a subassembly separate from the stent prior to placement of this stent in the body duct, and it can be placed in the stent once the latter has been implanted. Alternatively, the valve is connected to the stent before said stent is placed in the body duct to be treated, and consequently it is introduced into this duct with the stent; said mounting means then comprise means of displacement so that, once the stent has been expanded, the valve can be displaced between said position of non-implantation and said position of implantation.
Said mounting means can then comprise one or more of the following arrangements:
Preferably, the means for mounting the valve with respect to the stent are designed in such a way that, beyond a threshold of expansion of the stent, they permit a different expansion of the valve and of the stent, so that a variation in the degree of expansion of the stent has no effect on the degree of expansion of the valve.
The valve is thus not connected directly to the stent and in particular is not connected to the stent in the area of the commissures of its valvules; in the expanded position of the stent, it can have a predetermined diameter appropriate to it, independently of the diameter of the stent. After implantation, the valve thus has a configuration ensuring that it functions properly irrespective of the degree of expansion of the stent, and this expansion of the stent can be adapted to the anatomical variability encountered at the implantation site.
The stent and/or the valve can comprise one or more elements limiting the maximum diameter of expansion of the valve, in particular in the area of the commissure points of this valve. These elements can be longitudinal wires belonging to the stent, or a framework element belonging to the valve.
Preferably, the valve has a peripheral wall with a diameter not constant in the axial direction, in particular a frustoconical shape whose diameter decreases in the distal direction, and the zone of the stent intended to receive this peripheral wall of the valve has a shape corresponding to that of this peripheral wall. This peripheral wall and this zone of the stent thus define a determined position of mounting of the valve in the stent, and they ensure that the valve is held in position in the stent. The stent advantageously has a middle portion with a smaller diameter than its end portions. It can in particular have the general form of two inverted truncated cones or an hourglass shape.
In the case where the assembly according to the invention permits mounting of an aortic valve, the stent is thus at a distance from the wall of the body duct, in particular by means of a conical or hourglass shape, allowing body fluid to pass to the coronary vessels in the area of the coronary ostia. The valve has a shape corresponding to that zone of the stent in whose area it is intended to be mounted.
Advantageously, the valve has a peripheral wall; the stent has, in the distal continuation of that zone of the stent intended to receive the valve, a foldable portion; this foldable portion is movable between an extended position, in which it is situated in the distal continuation of said zone, and a folded position, in which it is placed against the inner face of the peripheral wall of the valve and traps this peripheral wall between it and said zone of the stent, and retaining means are provided for keeping this foldable portion in this folded position. The peripheral wall of the valve is thus pressed against the stent, which ensures leaktightness of the valve with respect to the stent.
According to a preferred embodiment of the invention in this case, said retaining means are formed by a wire made of a material that is rigid but has a degree of elastic flexibility, for example a metal material having an undulated form and extending over the entire circumference of said foldable portion. Preferably, the stent comprises a sheath made of an impermeable biocompatible material and at least partially covering it. This sheath forms a fixation base for the valve and at the same time a means of sealing between the stent and the wall of the body duct. The sheath can advantageously have lateral openings that can be positioned opposite the coronary ostia at the time of implantation and thus avoid any zone of stagnation or non-circulation of the blood.
Advantageously, in the case where the assembly according to the invention comprises said foldable portion, this foldable portion is formed by a continuation of said sheath, forming a sleeve beyond that zone of the stent intended to receive the valve. Perfect leaktightness is thus obtained between the valve and the stent. The stent preferably has, fixed on said sheath, at least one inflatable peripheral chamber that can be inflated in order to form a seal ensuring leaktightness between the stent and the wall of the body duct to be fitted with the valve. This leaktightness is thus guaranteed notwithstanding the possible presence of calcified portions that give a cardiac ring an irregular shape.
Advantageously in this case, the stent has two inflatable peripheral chambers placed either side of that portion of the stent intended to bear against a cardiac valvular ring. The stent can have a cylindrical portion that can bear against a cardiac valvular ring, and a distal portion connected to this cylindrical portion. This distal portion at least partially forms said zone intended to receive the peripheral wall of the valve. The advantage is that said wall of impermeable biocompatible material is situated, in the area of this portion, at a distance from the wall of the body duct, that, in the case of implantation of an aortic valve, eliminates the risk of masking the coronary ostia.
The stent can also have a frustoconical or widened proximal portion whose diameter decreases in the distal direction and able, in the case of implantation of a heart valve, to bear against the wall of the ventricle or corresponding auricle of the heart. With this proximal portion it is possible to define the position of the stent, and thus subsequently of the valve, with respect to the zone of implantation. It also helps ensure complete immobilization of the stent. The stent can also have a supplementary bearing portion connected by filiform rods to said distal portion or to said cylindrical portion, these filiform rods having lengths such that this supplementary bearing portion is positioned beyond the coronary ostia. According to an additional characteristic, the stent has hooks that are movable between a retracted position, which they occupy before expansion of the stent, and a position of deployment into which they are brought upon deployment of the stent and in which they are inserted into a wall delimiting the body duct.
The stent can also have a portion near to the valvular ring, or situated opposite or on this valvular ring, and having a high radial force, that is to say a radial force able to erase the local anatomical irregularities, for example calcifications, with a view to reinforcing the leaktightness at the junction between the stent, the sheath and the wall of the treated duct. This portion can be deployed with the aid of an expansion system with a high radial force and low compliance, for example a balloon.
The above embodiments and methods of use are explained in more detail below.
In embodiments described herein, those elements or parts that are identical or similar and are found again from one embodiment to another are designated by the same reference numbers.
Referring to
This stent 2 is made of a metal, steel or alloy with shape memory. This shape-memory material can in particular be the one known by the brand name Nitinol.
The portions 10 through 12 and 14 are made up of a network of filaments forming juxtaposed meshes of diamond shape or, for portion 10, of triangle shape. The material from which the stent 2 is made is such that these meshes can pass from a contracted configuration, in which the filaments are near one another, giving the meshes an elongate shape, to an expanded configuration, shown in
In the contracted configuration, the assembly 1 can be introduced into the aorta 100 by means of a catheter, as far as the zone in which the prosthetic valve 4 is to be implanted; in the expanded configuration, the stent 2 bears against the aorta 100, the wall 102 of the ventricle and the natural valvular ring 103 in the manner shown in
Referring to
In the expanded state, the portion 11 has a diameter such that it is able to bear against the natural valvular ring 103 and a radial force such that it can push the natural valve (or its remnants after partial exeresis) against the ring 103 in order to ensure leaktightness at this site. This portion 11 has deployable hooks 15, shown more particularly in
As is shown in
The portion 12 is directly connected to the portion 11 and has a diameter decreasing in the distal direction. This portion 12 is intended to extend to the area of the coronary ostia 101 and to receive the valve 4. Its frustoconical shape means it is possible to keep the sheath 3 at a distance from the coronary ostia 101 and thus prevent any risk of covering the apertures 104 of the coronary vessels that open out in these.
The portion 12 additionally comprises a series of internal arms 25, shown more particularly in
The connection rods 13 connect the distal edge of the portion 12 to the proximal edge of the portion 14. They are arranged uniformly on the periphery of the stent 2 and, as is shown in
The portion 14 for its part has, in the expanded state, a slightly greater diameter than the internal diameter of the aorta 100, and it bears against the wall of the latter once the stent 2 has been put in place. This portion 14 can be equipped with hooks 15.
The sheath 3 is made of an impermeable biocompatible material, such as pericardial tissue, material known under the name Dacron, or a polymer such as polyurethane, and it has portions 35, 36 and 37. These portions 35, 36 and 37 can be connected, respectively, to the portions 10, 11 and 12 and can closely match these portions 10 through 12 when the latter are in the expanded state. The connection between the sheath 3 and the portions 10 through 12 is formed by seams when the assembly 1 is assembled. The connection can also be effected by molding of a polymer material.
At the proximal end, the sheath 3 has a flap 40 extending on the outer face of the portion 35. This flap 40 has, near its free edge, an inflatable peripheral chamber 41. This chamber 41 can be inflated so as to form a seal ensuring leaktightness between the sheath 3 and the wall of the ventricle 102, on the proximal side of the natural valvular ring 103.
At the distal end, the sheath 3 has a flap 42 extending on the outer face of the portion 12. Near its free edge, this flap 42 comprises an inflatable peripheral chamber 43, similar to the chamber 41 and able to be inflated in the same way as the latter. This chamber 43 ensures leaktightness between the sheath 3 and the ring 103, on the distal side of the latter.
It will be seen from
The valve 4 can be made of a biological material or of a synthetic material, or of a combination of these two types of materials. Its peripheral wall 30 has a frustoconical shape adapted to its tight engagement in the portion 12 when the arms 25 are folded back against this portion 12, which ensures complete immobilization of the valve 4 in the stent 2.
The assembly 1 is assembled by placing the sheath 3 on the stent 2 and placing the valve 4 on the arms 25, the stent 2 being in the contracted state. The assembly 1 is then placed in a catheter permitting its introduction into the patient's body, this catheter including one or more inflatable balloons able to deploy the portions 10, 11 and 14. This catheter is then brought into position in the aorta 100. The balloons are then inflated in order to deploy the portions 10, 11 and 14; the forced deployment of the portion 11 by the balloons ensures the deployment of the hooks 15 and triggers deployment of the portion 12, and consequently of the valve 4. The chambers 41, 43 are then inflated to ensure leaktightness of the sheath 3 with respect to the ring 103, and the sleeve 45 is folded back inside the portion 12 in order to clamp the peripheral wall 30 of the valve 4 against this portion 12.
As will be apparent from the above, the valve 4 and the stent 2 of the assembly 1 are designed in such a way that the valve 4 is situated outside the zone or zones 10, 11, 14 to be expanded. The stent 2 can be expanded with a force of expansion adapted for perfect anchoring of this stent 2 in the receiving walls 100, 102, 103, and without any risk to the valve 4. The hooks 15 ensure complete immobilization of the assembly 1 in the aorta 100, and the chambers 41, 43, and also the sleeve 45, ensure complete leaktightness of the assembly 1 with respect to the aorta 100.
In the second embodiment of the assembly 1, the valve 4 is not mounted in advance inside the stent 2 but is placed in it once the stent 2 has been expanded. As is shown in
Referring to
As is shown in
In the third embodiment of the assembly 1 shown in
The invention provides an assembly 1 for placing a valve 4 in a body duct 100, said assembly having the following advantages over similar assemblies in the prior art: elimination of the risk of damage to the valve 4 by the balloon or balloons used to expand the stent 2; possibility of applying a considerable force of expansion to the stent 2, that ensures the anchoring of the assembly 1; this considerable force of expansion additionally permits this anchoring by means of the deployable hooks 15; elimination of the risk of dilation of the valve 4 beyond a diameter no longer permitting its optimal functioning, in particular through loss of coaptation of the valvules; possibility of obtaining perfect leaktightness of the assembly 1 in the area of the valvular ring 103 and of the valve 4; elimination of the risk of blocking of the coronary ostia 101; and maintenance of a flow of body fluid all around said assembly 1 once the latter is implanted.
It goes without saying that the invention is not limited to the embodiment described above by way of example, and that instead it encompasses all alternative embodiments thereof coming within the scope of protection defined by the attached claims.
It is to be appreciated that the Detailed Description section, and not the Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventor(s), and thus, are not intended to limit the present invention and the appended claims in any way.
The present invention has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
The claims in the instant application are different than those of the parent application or other related applications. The Applicant therefore rescinds any disclaimer of claim scope made in the parent application or any predecessor application in relation to the instant application. The Examiner is therefore advised that any such previous disclaimer and the cited references that it was made to avoid, may need to be revisited. Further, the Examiner is also reminded that any disclaimer made in the instant application should not be read into or against the parent application.
Number | Date | Country | Kind |
---|---|---|---|
01 08898 | Jul 2001 | FR | national |
This application is a continuation of U.S. application Ser. No. 12/578,818, filed Oct. 14, 2009, which is a continuation of U.S. application Ser. No. 11/829,682, filed Jul. 27, 2007, now U.S. Pat. No. 7,780,726, which is a continuation of U.S. application Ser. No. 10/482,270, filed Jul. 6, 2004, now U.S. Pat. No. 7,252,682, which is the U.S. national phase under §371 of International Application No. PCT/FR02/02352, filed Jul. 4, 2002, which was published in a language other than English and which claimed priority from French Application No. 01/08898, filed on Jul. 4, 2001, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3334629 | Cohn | Aug 1967 | A |
3409013 | Berry | Nov 1968 | A |
3540431 | Mobin-Uddin | Nov 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3628535 | Ostrowsky et al. | Dec 1971 | A |
3642004 | Osthagen et al. | Feb 1972 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3755823 | Hancock | Sep 1973 | A |
3795246 | Sturgeon | Mar 1974 | A |
3839741 | Haller | Oct 1974 | A |
3868956 | Alfidi et al. | Mar 1975 | A |
3874388 | King et al. | Apr 1975 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4183102 | Guiset | Jan 1980 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4233690 | Akins | Nov 1980 | A |
4265694 | Boretos | May 1981 | A |
4291420 | Reul | Sep 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4350492 | Wright et al. | Sep 1982 | A |
4425908 | Simon | Jan 1984 | A |
4470157 | Love | Sep 1984 | A |
4501030 | Lane | Feb 1985 | A |
4574803 | Storz | Mar 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4610688 | Silvestrini et al. | Sep 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4647283 | Carpentier et al. | Mar 1987 | A |
4648881 | Carpentier et al. | Mar 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4662885 | DiPisa, Jr. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4681908 | Broderick et al. | Jul 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4797901 | Goerne et al. | Jan 1989 | A |
4819751 | Shimada et al. | Apr 1989 | A |
4834755 | Silvestrini et al. | May 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4872874 | Taheri | Oct 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4909252 | Goldberger | Mar 1990 | A |
4917102 | Miller et al. | Apr 1990 | A |
4922905 | Strecker | May 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5002559 | Tower | Mar 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5061273 | Yock | Oct 1991 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5161547 | Tower | Nov 1992 | A |
5163897 | Persky | Nov 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5217483 | Tower | Jun 1993 | A |
5232445 | Bonzel | Aug 1993 | A |
5272909 | Nguyen et al. | Dec 1993 | A |
5295958 | Shturman | Mar 1994 | A |
5327774 | Nguyen et al. | Jul 1994 | A |
5332402 | Teitelbaum et al. | Jul 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5370691 | Samson | Dec 1994 | A |
5389106 | Tower | Feb 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5415633 | Lazarus et al. | May 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5443499 | Schmitt | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5489294 | McVenes et al. | Feb 1996 | A |
5489297 | Duran | Feb 1996 | A |
5496346 | Horzewski et al. | Mar 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5507767 | Maeda et al. | Apr 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545211 | An et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5580922 | Park et al. | Dec 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5667523 | Bynon et al. | Sep 1997 | A |
5674277 | Freitag | Oct 1997 | A |
5695498 | Tower | Dec 1997 | A |
5702368 | Stevens et al. | Dec 1997 | A |
5713953 | Vallana et al. | Feb 1998 | A |
5716417 | Girard et al. | Feb 1998 | A |
5746709 | Rom et al. | May 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5782809 | Umeno et al. | Jul 1998 | A |
5800456 | Maeda et al. | Sep 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5817126 | Imran | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5824043 | Cottone, Jr. | Oct 1998 | A |
5824053 | Khosravi et al. | Oct 1998 | A |
5824056 | Rosenberg | Oct 1998 | A |
5824061 | Quijano et al. | Oct 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843158 | Lenker et al. | Dec 1998 | A |
5851232 | Lois | Dec 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5860966 | Tower | Jan 1999 | A |
5861028 | Angell | Jan 1999 | A |
5868783 | Tower | Feb 1999 | A |
5871537 | Holman et al. | Feb 1999 | A |
5876448 | Thompson et al. | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5891191 | Stinson | Apr 1999 | A |
5906619 | Olson et al. | May 1999 | A |
5907893 | Zadno-Azizi et al. | Jun 1999 | A |
5913842 | Boyd et al. | Jun 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5980570 | Simpson | Nov 1999 | A |
5984957 | Laptewicz, Jr. et al. | Nov 1999 | A |
5997573 | Quijano et al. | Dec 1999 | A |
6022370 | Tower | Feb 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6042589 | Marianne | Mar 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6042607 | Williamson, IV | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6059809 | Amor et al. | May 2000 | A |
6090139 | Lemelson | Jul 2000 | A |
6110201 | Quijano et al. | Aug 2000 | A |
6146366 | Schachar | Nov 2000 | A |
6159239 | Greenhalgh | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6162245 | Jayaraman | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6196996 | Teirstein | Mar 2001 | B1 |
6200336 | Pavcnik et al. | Mar 2001 | B1 |
6203550 | Olson | Mar 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6218662 | Tchakarov et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6241757 | An et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6248116 | Chevillon | Jun 2001 | B1 |
6258114 | Konya et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6309382 | Garrison et al. | Oct 2001 | B1 |
6309417 | Spence et al. | Oct 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6338735 | Stevens | Jan 2002 | B1 |
6348063 | Yassour et al. | Feb 2002 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6379383 | Palmaz et al. | Apr 2002 | B1 |
6380457 | Yurek et al. | Apr 2002 | B1 |
6398807 | Chouinard et al. | Jun 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468303 | Amplatz et al. | Oct 2002 | B1 |
6475239 | Campbell et al. | Nov 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6494909 | Greenhalgh | Dec 2002 | B2 |
6503272 | Duerig et al. | Jan 2003 | B2 |
6508833 | Pavcnik et al. | Jan 2003 | B2 |
6527800 | McGuckin, Jr. et al. | Mar 2003 | B1 |
6530949 | Konya et al. | Mar 2003 | B2 |
6530952 | Vesely | Mar 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6562058 | Seguin et al. | May 2003 | B2 |
6569196 | Vesely | May 2003 | B1 |
6585758 | Chouinard et al. | Jul 2003 | B1 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6605112 | Moll et al. | Aug 2003 | B1 |
6613077 | Gilligan et al. | Sep 2003 | B2 |
6622604 | Chouinard et al. | Sep 2003 | B1 |
6629987 | Gambale et al. | Oct 2003 | B1 |
6632243 | Zadno-Azizi et al. | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6652571 | White et al. | Nov 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6656213 | Solem | Dec 2003 | B2 |
6663663 | Kim et al. | Dec 2003 | B2 |
6669724 | Park et al. | Dec 2003 | B2 |
6673089 | Yassour et al. | Jan 2004 | B1 |
6673109 | Cox | Jan 2004 | B2 |
6676698 | McGuckin, Jr. et al. | Jan 2004 | B2 |
6682558 | Tu et al. | Jan 2004 | B2 |
6682559 | Myers et al. | Jan 2004 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6689144 | Gerberding | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6692512 | Jang | Feb 2004 | B2 |
6692513 | Streeter et al. | Feb 2004 | B2 |
6695878 | McGuckin, Jr. et al. | Feb 2004 | B2 |
6702851 | Chinn et al. | Mar 2004 | B1 |
6719789 | Cox | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6730377 | Wang | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6736846 | Cox | May 2004 | B2 |
6752828 | Thornton | Jun 2004 | B2 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6769434 | Liddicoat et al. | Aug 2004 | B2 |
6786925 | Schoon | Sep 2004 | B1 |
6790229 | Berreklouw | Sep 2004 | B1 |
6792979 | Konya et al. | Sep 2004 | B2 |
6797002 | Spence | Sep 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6830575 | Stenzel et al. | Dec 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6830585 | Artof | Dec 2004 | B1 |
6846325 | Liddicoat | Jan 2005 | B2 |
6866650 | Stevens | Mar 2005 | B2 |
6872223 | Roberts | Mar 2005 | B2 |
6875212 | Shaolian et al. | Apr 2005 | B2 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6883522 | Spence et al. | Apr 2005 | B2 |
6887266 | Williams et al. | May 2005 | B2 |
6890330 | Streeter et al. | May 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6908481 | Cribier | Jun 2005 | B2 |
6913600 | Valley et al. | Jul 2005 | B2 |
6929653 | Streeter | Aug 2005 | B2 |
6936057 | Nobles | Aug 2005 | B1 |
6936066 | Palmaz et al. | Aug 2005 | B2 |
6939365 | Fogarty et al. | Sep 2005 | B1 |
6951571 | Srivastava | Oct 2005 | B1 |
6986742 | Hart et al. | Jan 2006 | B2 |
6989027 | Allen et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6991649 | Sievers | Jan 2006 | B2 |
7018401 | Hyodoh et al. | Mar 2006 | B1 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7041128 | McGuckin, Jr. et al. | May 2006 | B2 |
7044966 | Svanidze et al. | May 2006 | B2 |
7048014 | Hyodoh et al. | May 2006 | B2 |
7097659 | Woolfson et al. | Aug 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7105016 | Shiu et al. | Sep 2006 | B2 |
7115141 | Menz et al. | Oct 2006 | B2 |
7147663 | Berg et al. | Dec 2006 | B1 |
7153324 | Case et al. | Dec 2006 | B2 |
7160319 | Chouinard et al. | Jan 2007 | B2 |
7175656 | Khairkhahan | Feb 2007 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201761 | Woolfson et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7300457 | Palmaz | Nov 2007 | B2 |
7300463 | Liddicoat | Nov 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7320704 | Lashinski et al. | Jan 2008 | B2 |
7329278 | Seguin | Feb 2008 | B2 |
7335218 | Wilson et al. | Feb 2008 | B2 |
7338520 | Bailey et al. | Mar 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7384411 | Condado | Jun 2008 | B1 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445630 | Lashinski et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7470284 | Lambrecht et al. | Dec 2008 | B2 |
7481838 | Carpentier et al. | Jan 2009 | B2 |
7534259 | Lashinski et al. | May 2009 | B2 |
7544206 | Cohn et al. | Jun 2009 | B2 |
7556645 | Lashinski et al. | Jul 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
7682390 | Seguin | Mar 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7806919 | Bloom et al. | Oct 2010 | B2 |
8002826 | Seguin | Aug 2011 | B2 |
20010001314 | Davison et al. | May 2001 | A1 |
20010002445 | Vesely | May 2001 | A1 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010010017 | Letac et al. | Jul 2001 | A1 |
20010011189 | Drasler et al. | Aug 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010025196 | Chinn et al. | Sep 2001 | A1 |
20010032013 | Marton | Oct 2001 | A1 |
20010039450 | Pavcnik et al. | Nov 2001 | A1 |
20010041928 | Pavcnik et al. | Nov 2001 | A1 |
20010044647 | Pinchuk et al. | Nov 2001 | A1 |
20020010508 | Chobotov | Jan 2002 | A1 |
20020029014 | Jayaraman | Mar 2002 | A1 |
20020032480 | Spence et al. | Mar 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020035396 | Heath | Mar 2002 | A1 |
20020042650 | Vardi et al. | Apr 2002 | A1 |
20020052651 | Myers et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020072789 | Hackett et al. | Jun 2002 | A1 |
20020077696 | Zadno-Azizi et al. | Jun 2002 | A1 |
20020095209 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020099439 | Schwartz et al. | Jul 2002 | A1 |
20020103533 | Langberg et al. | Aug 2002 | A1 |
20020107565 | Greenhalgh | Aug 2002 | A1 |
20020111674 | Chouinard et al. | Aug 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020133183 | Lentz et al. | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020161394 | Macoviak et al. | Oct 2002 | A1 |
20020193871 | Beyersdorf et al. | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030028247 | Cali | Feb 2003 | A1 |
20030036791 | Philipp et al. | Feb 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030055492 | Shaolian et al. | Mar 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030065386 | Weadock | Apr 2003 | A1 |
20030069492 | Abrams et al. | Apr 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030125793 | Vesely | Jul 2003 | A1 |
20030125795 | Pavcnik et al. | Jul 2003 | A1 |
20030130726 | Thorpe et al. | Jul 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030139804 | Hankh et al. | Jul 2003 | A1 |
20030149475 | Hyodoh et al. | Aug 2003 | A1 |
20030149476 | Damm et al. | Aug 2003 | A1 |
20030149478 | Figulla et al. | Aug 2003 | A1 |
20030153974 | Spenser et al. | Aug 2003 | A1 |
20030181850 | Diamond et al. | Sep 2003 | A1 |
20030191519 | Lombardi et al. | Oct 2003 | A1 |
20030199913 | Dubrul et al. | Oct 2003 | A1 |
20030199963 | Tower et al. | Oct 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030199972 | Zadno-Azizi et al. | Oct 2003 | A1 |
20030212410 | Stenzel et al. | Nov 2003 | A1 |
20030212452 | Zadno-Azizi et al. | Nov 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20030220684 | Holman et al. | Nov 2003 | A1 |
20030225445 | Derus et al. | Dec 2003 | A1 |
20030236568 | Hojeibane et al. | Dec 2003 | A1 |
20040019374 | Hojeibane et al. | Jan 2004 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040049224 | Buehlmann et al. | Mar 2004 | A1 |
20040049262 | Obermiller et al. | Mar 2004 | A1 |
20040049266 | Anduiza et al. | Mar 2004 | A1 |
20040082904 | Houde et al. | Apr 2004 | A1 |
20040088045 | Cox | May 2004 | A1 |
20040093005 | Durcan | May 2004 | A1 |
20040093060 | Seguin et al. | May 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040098112 | DiMatteo et al. | May 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040106990 | Spence et al. | Jun 2004 | A1 |
20040111096 | Tu et al. | Jun 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20040117004 | Osborne et al. | Jun 2004 | A1 |
20040122468 | Yodfat et al. | Jun 2004 | A1 |
20040122516 | Fogarty | Jun 2004 | A1 |
20040127979 | Wilson | Jul 2004 | A1 |
20040138742 | Myers et al. | Jul 2004 | A1 |
20040138743 | Myers et al. | Jul 2004 | A1 |
20040153146 | Lashinski et al. | Aug 2004 | A1 |
20040167573 | Williamson | Aug 2004 | A1 |
20040167620 | Ortiz | Aug 2004 | A1 |
20040186563 | Iobbi | Sep 2004 | A1 |
20040193261 | Berreklouw | Sep 2004 | A1 |
20040210240 | Saint | Oct 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210306 | Quijano et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040215333 | Duran et al. | Oct 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040225353 | McGuckin et al. | Nov 2004 | A1 |
20040225354 | Allen | Nov 2004 | A1 |
20040254636 | Flagle et al. | Dec 2004 | A1 |
20040260322 | Rudko et al. | Dec 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20040260390 | Sarac et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20040267357 | Allen et al. | Dec 2004 | A1 |
20050010246 | Streeter | Jan 2005 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050010287 | Macoviak | Jan 2005 | A1 |
20050015112 | Cohn et al. | Jan 2005 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050049692 | Numamoto | Mar 2005 | A1 |
20050049696 | Siess | Mar 2005 | A1 |
20050055088 | Liddicoat et al. | Mar 2005 | A1 |
20050060029 | Le | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075712 | Biancucci | Apr 2005 | A1 |
20050075717 | Nguyen | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075724 | Svanidze | Apr 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050075730 | Myers | Apr 2005 | A1 |
20050075731 | Artof | Apr 2005 | A1 |
20050085841 | Eversull et al. | Apr 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050085890 | Rasmussen et al. | Apr 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050090846 | Pedersen et al. | Apr 2005 | A1 |
20050096568 | Kato | May 2005 | A1 |
20050096692 | Linder et al. | May 2005 | A1 |
20050096724 | Stenzel et al. | May 2005 | A1 |
20050096734 | Majercak et al. | May 2005 | A1 |
20050096735 | Hojeibane et al. | May 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050113910 | Paniagua | May 2005 | A1 |
20050119688 | Bergheim | Jun 2005 | A1 |
20050131438 | Cohn | Jun 2005 | A1 |
20050137686 | Salahieh | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug | Jun 2005 | A1 |
20050137695 | Salahieh | Jun 2005 | A1 |
20050137701 | Salahieh | Jun 2005 | A1 |
20050143809 | Salahieh | Jun 2005 | A1 |
20050148997 | Valley et al. | Jul 2005 | A1 |
20050149181 | Eberhardt | Jul 2005 | A1 |
20050165477 | Anduiza et al. | Jul 2005 | A1 |
20050187616 | Realyvasquez | Aug 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203605 | Dolan | Sep 2005 | A1 |
20050203614 | Forster | Sep 2005 | A1 |
20050203618 | Sharkawy | Sep 2005 | A1 |
20050222674 | Paine | Oct 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050234546 | Nugent | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050240263 | Fogarty et al. | Oct 2005 | A1 |
20050261759 | Lambrecht et al. | Nov 2005 | A1 |
20050273160 | Lashinski et al. | Dec 2005 | A1 |
20050283962 | Boudjemline | Dec 2005 | A1 |
20060004439 | Spenser et al. | Jan 2006 | A1 |
20060004469 | Sokel | Jan 2006 | A1 |
20060009841 | McGuckin et al. | Jan 2006 | A1 |
20060025855 | Lashinski et al. | Feb 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058775 | Stevens et al. | Mar 2006 | A1 |
20060064058 | Coyle | Mar 2006 | A1 |
20060089711 | Dolan | Apr 2006 | A1 |
20060100685 | Seguin et al. | May 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060129051 | Rowe et al. | Jun 2006 | A1 |
20060135964 | Vesely | Jun 2006 | A1 |
20060142848 | Gabbay | Jun 2006 | A1 |
20060167474 | Bloom et al. | Jul 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060206192 | Tower et al. | Sep 2006 | A1 |
20060206202 | Bonhoeffer et al. | Sep 2006 | A1 |
20060247763 | Slater | Nov 2006 | A1 |
20060259134 | Schwammenthal et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060271166 | Thill et al. | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20070005129 | Damm et al. | Jan 2007 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070005133 | Lashinski et al. | Jan 2007 | A1 |
20070010878 | Rafiee et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070027518 | Case et al. | Feb 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070073392 | Heyninck-Jantz | Mar 2007 | A1 |
20070078509 | Lotfy et al. | Apr 2007 | A1 |
20070078510 | Ryan | Apr 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070100439 | Cangialosi | May 2007 | A1 |
20070100440 | Figulla | May 2007 | A1 |
20070100449 | O'Neil et al. | May 2007 | A1 |
20070112415 | Bartlett | May 2007 | A1 |
20070162102 | Ryan et al. | Jul 2007 | A1 |
20070162113 | Sharkawy et al. | Jul 2007 | A1 |
20070185513 | Woolfson et al. | Aug 2007 | A1 |
20070203391 | Bloom et al. | Aug 2007 | A1 |
20070225681 | House | Sep 2007 | A1 |
20070232898 | Huynh et al. | Oct 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070233237 | Krivoruchko | Oct 2007 | A1 |
20070233238 | Huynh et al. | Oct 2007 | A1 |
20070238979 | Huynh et al. | Oct 2007 | A1 |
20070239254 | Marchand et al. | Oct 2007 | A1 |
20070239265 | Birdsall | Oct 2007 | A1 |
20070239266 | Birdsall | Oct 2007 | A1 |
20070239269 | Dolan et al. | Oct 2007 | A1 |
20070239271 | Nguyen | Oct 2007 | A1 |
20070239273 | Allen | Oct 2007 | A1 |
20070244544 | Birdsall et al. | Oct 2007 | A1 |
20070244545 | Birdsall et al. | Oct 2007 | A1 |
20070244546 | Francis | Oct 2007 | A1 |
20070244553 | Rafiee et al. | Oct 2007 | A1 |
20070244554 | Rafiee et al. | Oct 2007 | A1 |
20070244555 | Rafiee et al. | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070244557 | Rafiee et al. | Oct 2007 | A1 |
20070250160 | Rafiee | Oct 2007 | A1 |
20070255394 | Ryan | Nov 2007 | A1 |
20070255396 | Douk et al. | Nov 2007 | A1 |
20070288000 | Bonan | Dec 2007 | A1 |
20080004696 | Vesely | Jan 2008 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080015671 | Bonhoeffer | Jan 2008 | A1 |
20080015687 | Lashinski et al. | Jan 2008 | A1 |
20080021552 | Gabbay | Jan 2008 | A1 |
20080048656 | Tan | Feb 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080065206 | Liddicoat | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071362 | Tuval et al. | Mar 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080071368 | Tuval et al. | Mar 2008 | A1 |
20080077234 | Styrc | Mar 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080109073 | Lashinski et al. | May 2008 | A1 |
20080133003 | Seguin et al. | Jun 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147105 | Wilson et al. | Jun 2008 | A1 |
20080147180 | Ghione et al. | Jun 2008 | A1 |
20080147181 | Ghione et al. | Jun 2008 | A1 |
20080147182 | Righini et al. | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080161910 | Revuelta et al. | Jul 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080200898 | Lashinski et al. | Aug 2008 | A1 |
20080200980 | Robin et al. | Aug 2008 | A1 |
20080215143 | Seguin et al. | Sep 2008 | A1 |
20080215144 | Ryan et al. | Sep 2008 | A1 |
20080228254 | Ryan | Sep 2008 | A1 |
20080228263 | Ryan | Sep 2008 | A1 |
20080234797 | Styrc | Sep 2008 | A1 |
20080243246 | Ryan et al. | Oct 2008 | A1 |
20080255651 | Dwork | Oct 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080255661 | Straubinger et al. | Oct 2008 | A1 |
20080262593 | Ryan et al. | Oct 2008 | A1 |
20080269878 | Iobbi | Oct 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090012600 | Styrc et al. | Jan 2009 | A1 |
20090048656 | Wen | Feb 2009 | A1 |
20090054976 | Tuval et al. | Feb 2009 | A1 |
20090069886 | Suri et al. | Mar 2009 | A1 |
20090069887 | Righini et al. | Mar 2009 | A1 |
20090069889 | Suri et al. | Mar 2009 | A1 |
20090082857 | Lashinski et al. | Mar 2009 | A1 |
20090088836 | Bishop et al. | Apr 2009 | A1 |
20090099653 | Suri et al. | Apr 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090164004 | Cohn | Jun 2009 | A1 |
20090164006 | Seguin et al. | Jun 2009 | A1 |
20090171447 | VonSegesser et al. | Jul 2009 | A1 |
20090192585 | Bloom et al. | Jul 2009 | A1 |
20090192586 | Tabor et al. | Jul 2009 | A1 |
20090192591 | Ryan et al. | Jul 2009 | A1 |
20090198316 | Laske et al. | Aug 2009 | A1 |
20090216310 | Straubinger et al. | Aug 2009 | A1 |
20090216312 | Straubinger et al. | Aug 2009 | A1 |
20090216313 | Straubinger et al. | Aug 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240264 | Tuval | Sep 2009 | A1 |
20090240320 | Tuval | Sep 2009 | A1 |
20090287296 | Manasse | Nov 2009 | A1 |
20100004740 | Seguin et al. | Jan 2010 | A1 |
20100030328 | Seguin et al. | Feb 2010 | A1 |
20100036485 | Seguin | Feb 2010 | A1 |
20100069852 | Kelley | Mar 2010 | A1 |
20100094411 | Tuval | Apr 2010 | A1 |
20100100167 | Bortlein et al. | Apr 2010 | A1 |
20100131054 | Tuval et al. | May 2010 | A1 |
20100137979 | Tuval et al. | Jun 2010 | A1 |
20100145439 | Seguin et al. | Jun 2010 | A1 |
20100152840 | Seguin et al. | Jun 2010 | A1 |
20100161045 | Righini | Jun 2010 | A1 |
20100198346 | Keogh et al. | Aug 2010 | A1 |
20100234940 | Dolan | Sep 2010 | A1 |
20100256723 | Murray | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
2007-100074433 | Aug 2007 | CN |
36 40 745 | Jun 1987 | DE |
195 32 846 | Mar 1997 | DE |
195 46 692 | Jun 1997 | DE |
195 46 692 | Jun 1997 | DE |
198 57 887 | Jul 2000 | DE |
199 07 646 | Aug 2000 | DE |
100 48 814 | Sep 2000 | DE |
10010074 | Oct 2001 | DE |
100 49 812 | Apr 2002 | DE |
100 49 813 | Apr 2002 | DE |
100 49 815 | Apr 2002 | DE |
0103546 | Mar 1984 | EP |
0144167 | Jun 1985 | EP |
0597967 | Dec 1994 | EP |
0850607 | Jul 1998 | EP |
1057459 | Jun 2000 | EP |
1057460 | Jun 2000 | EP |
1088529 | Apr 2001 | EP |
1255510 | Nov 2002 | EP |
0937439 | Sep 2003 | EP |
1340473 | Sep 2003 | EP |
1356793 | Oct 2003 | EP |
0819013 | Jun 2004 | EP |
1472996 | Nov 2004 | EP |
1229864 | Apr 2005 | EP |
2788217 | Dec 1999 | FR |
2815844 | Dec 1999 | FR |
2056023 | Mar 1981 | GB |
2433700 | Dec 2007 | GB |
1271508 | Nov 1986 | SU |
9117720 | Nov 1991 | WO |
9217118 | Oct 1992 | WO |
9301768 | Feb 1993 | WO |
9315693 | Aug 1993 | WO |
9504556 | Feb 1995 | WO |
9529640 | Nov 1995 | WO |
9614032 | May 1996 | WO |
9814137 | Apr 1998 | WO |
9829057 | Jul 1998 | WO |
9836790 | Aug 1998 | WO |
9912483 | Mar 1999 | WO |
9933414 | Jul 1999 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
0009059 | Feb 2000 | WO |
0041652 | Jul 2000 | WO |
0044308 | Aug 2000 | WO |
0044313 | Aug 2000 | WO |
0047136 | Aug 2000 | WO |
0047139 | Aug 2000 | WO |
0067661 | Nov 2000 | WO |
0105331 | Jan 2001 | WO |
0135870 | May 2001 | WO |
0149213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
0162189 | Aug 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0197715 | Dec 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0241789 | May 2002 | WO |
0243620 | Jun 2002 | WO |
0247575 | Jun 2002 | WO |
0249540 | Jun 2002 | WO |
02060352 | Aug 2002 | WO |
02100297 | Dec 2002 | WO |
03003943 | Jan 2003 | WO |
03003949 | Jan 2003 | WO |
03011195 | Feb 2003 | WO |
03015851 | Feb 2003 | WO |
03028592 | Apr 2003 | WO |
03030776 | Apr 2003 | WO |
03037227 | May 2003 | WO |
03094793 | Nov 2003 | WO |
2004019811 | Mar 2004 | WO |
2004019825 | Mar 2004 | WO |
2004023980 | Mar 2004 | WO |
2004041126 | May 2004 | WO |
2004047681 | Jun 2004 | WO |
2004058106 | Jul 2004 | WO |
2004089250 | Oct 2004 | WO |
2004089253 | Oct 2004 | WO |
2004093728 | Nov 2004 | WO |
2004105651 | Dec 2004 | WO |
2005002466 | Jan 2005 | WO |
2005004753 | Jan 2005 | WO |
2005009285 | Feb 2005 | WO |
2005011534 | Feb 2005 | WO |
2005011535 | Feb 2005 | WO |
2005023155 | Mar 2005 | WO |
2005027790 | Mar 2005 | WO |
2005046528 | May 2005 | WO |
2006026371 | Mar 2006 | WO |
2008047354 | Apr 2008 | WO |
2008100599 | Aug 2008 | WO |
2008138584 | Nov 2008 | WO |
2008150529 | Dec 2008 | WO |
2009002548 | Dec 2008 | WO |
2009029199 | Mar 2009 | WO |
2009042196 | Apr 2009 | WO |
2009045388 | Apr 2009 | WO |
2009061389 | May 2009 | WO |
2009091509 | Jul 2009 | WO |
2009111241 | Sep 2009 | WO |
Entry |
---|
Andersen, H.R. et al, “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” Euro. Heart J. (1992) 13:704-708. |
Babaliaros, et al., “State of the Art Percutaneous Intervention for the Treatment of Valvular Heart Disease: A Review of the Current Technologies and Ongoing Research in the Field of Percutaneous Heart Valve Replacement and Repair,” Cardiology 2007; 107:87-96. |
Bailey, “Percutaneous Expandable Prosthetic Valves,” In: Topol EJ, ed. Textbook of Interventional Cardiology. vol. II. Second edition. WB Saunders, Philadelphia, 1994:1268-1276. |
Block, et al., “Percutaneous Approaches to Valvular Heart Disease,” Current Cardiology Reports, vol. 7 (2005) pp. 108-113. |
Bonhoeffer, et al, “Percutaneous Insertion of the Pulmonary Valve,” Journal of the American College of Cardiology (United States), May 15, 2002, pp. 1664-1669. |
Bonhoeffer, et al, “Percutaneous Mitral Valve Dilatation with the Multi-Track System,” Catheterization and Cardiovascular Interventions—Official Journal of the Society for Cardiac Angiography & Interventions (United States), Oct. 1999, pp. 178-183. |
Bonhoeffer, et al, “Percutaneous Replacement of Pulmonary Valve in a Right Ventricle to Pulmonary-Artery Prosthetic Conduit with Valve Dysfunction,” Lancet (England), Oct. 21, 2000, pp. 1403-1405. |
Bonhoeffer, et al, “Technique and Results of Percutaneous Mitral Valvuloplasty With the Multi-Track System,” Journal of Interventional Cardiology (United States), 200, pp. 263-268. |
Bonhoeffer, et al, “Transcatheter Implantation of a Bovine Valve in Pulmonary Position: A Lamb Study,” Circulation (United States), Aug. 15, 2000, pp. 813-816. |
Boudjemline, et al, “Images in Cardiovascular Medicine. Percutaneous Aortic Valve Replacement in Animals,” Circulation (United States), Mar. 16, 2004, 109, p. e161. |
Boudjemline, et al, “Is Percutaneous Implantation of a Bovine Venous Valve in the Inferior Vena Cava a Reliable Technique to Treat Chronic Venous Insufficiency Syndrome?” Medical Science Monitor—International Medical Journal of Experimental and Clinical Research (Poland), Mar. 2004, pp. BR61-BR66. |
Boudjemline, et al, “Off-pump Replacement of the Pulmonary Valve in Large Right Ventricular Outflow Tracts: A Hybrid Approach,” Journal of Thoracic and Cardiovascular Surgery (United States), Apr. 2005, pp. 831-837. |
Boudjemline, et al, “Percutaneous Aortic Valve Replacement: Will We Get There?” Heart (British Cardiac Society (Eirgdand) , Dec. 2001, pp. 705-706. |
Boudjemline, et al, “Percutaneous Closure of a Paravalvular Mitral Regurgitation with Amplatzer and Coil Prostheses,” Archives des Maladies du Coeur Et Des Vaisseaux (France), May 2002, pp. 483-486. |
Boudjemline, et al, “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—A Sheep Study,” Medical Science Monitor—International Medical Journal of Experimental and Clinical Research (Poland), Apr. 2002, pp. BR113-BR116. |
Boudjemline, et al, “Percutaneous Implantation of a Biological Valve in Aortic Position: Preliminary Results in a Sheep Study,” European Heart Journal 22, Sep. 2001, p. 630. |
Boudjemline, et al, “Percutaneous Implantation of a Valve in the Descending Aorta in Lambs,” European Heart Journal (England), Jul. 2002, pp. 1045-1049. |
Boudjemline, et al, “Percutaneous Pulmonary Valve Replacement h a Large Right Ventricular Outflow Tract: An Experimental Study,” Journal of the American College of Cardiology (United States), Mar. 17, 2004, pp. 1082-1087. |
Boudjemline, et al, “Percutaneous Valve Insertion: A New Approach,” Journal of Thoracic and Cardiovascular Surgery (United States), Mar. 2003, pp. 741-742. |
Boudjemline, et al, “Stent Implantation Combined with a Valve Replacement to Treat Degenerated Right Ventricle to Pulmonary Artery Prosthetic Conduits,” European Heart Journal 22, Sep. 2001, p. 355. |
Boudjemline, et al, “Steps Toward Percutaneous Aortic Valve Replacement,” Circulation (United States), Feb. 2002, pp. 775-778. |
Boudjemline, et al, “The Percutaneous Implantable Heart Valve,” Progress in Pediatric Cardiology (Ireland), 2001, pp. 89-93. |
Boudjemline, et al, “Transcatheter Reconstruction of the Right Heart,” Cardiology in the Young (England), Jun. 2003, pp. 308-311. |
Coats, et al, “The Potential Impact of Percutaneous Pulmonary Valve Stent Implantation on Right Ventricular Outflow Tract Re-Intervention,” European Journal of Cardio-Thoracic Surgery (England), Apr. 2005, pp. 536-543. |
Cribier, A. et al, “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description,” Circulation (2002) 3006-3008. |
Davidson et al., “Percutaneous therapies for valvular heart disease,” Cardiovascular Pathology 15 (2006) 123-129. |
Hanzel, et al., “Complications of percutaneous aortic valve replacement: experience with the Criber-Edwards™ percutaneous heart valve,” EuroIntervention Supplements (2006), 1 (Supplement A) A3-A8. |
Huber, et al., “Do Valved Stents Compromise Coronary Flow?” Eur. J. Cardiothorac.Surg. 2004;25:754-759. |
Khambadkone, “Nonsurgical Pulmonary Valve Replacement: Why, When, and How?” Catheterization and Cardiovascular Interventions—Offical Journal of the Society for Cardiac Angiography & Interventions (United States), Jul. 2004, pp. 401-408. |
Khambadkone, et al, “Percutaneous Implantation of Pulmonary Valves,” Expert Review of Cardiovascular Therapy (England), Nov. 2003, pp. 541-548. |
Khambadkone, et al, “Percutaneous Pulmonary Valve Implantation: Early and Medium Term Results,” Circulation 108 (17 Supplement), Oct. 28, 2003, p. IV-375. |
Khambadkone, et al, “Percutaneous Pulmonary Valve Implantation: Impact of Morphology on Case Selection,” Circulation 108 (17 Supplement), Oct. 28, 2003, p. IV-642-IV-643. |
Lutter, et al, “Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation,” The Journal of Thoracic and Cardiovascular Surgery, Apr. 2002, pp. 768-776. |
Lutter, et al, “Percutaneous Valve Replacement: Current State and Future Prospects,” Annals of Thoracic Surgery (Netherlands), Dec. 2004, pp. 2199-21206. |
Medtech Insight, “New Frontiers in Heart Valve Disease,” vol. 7, No. 8 (2005). |
Palacios, “Percutaneous Valve Replacement and Repair, Fiction or Reality?” Journal of American College of Cardiology, vol. 44, No. 8 (2004) pp. 1662-1663. |
Pelton et al., “Medical Uses of Nitonol,” materials Science Forum vols. 327-328, pp. 63-70 (2000). |
Ruiz, “Transcathether Aortic Valve Implantation and Mitral Valve Repair: State of the Art,” Pediatric Cardiology, vol. 26, No. 3 (2005). |
Saliba, et al, “Treatment of Obstructions of Prosthetic Conduits by Percutaneous Implantation of Stents,” Archives des Maldies du Coeur et des Vaisseaux (France), 1999, pp. 591-596. |
Webb, et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation (2006), 113;842-850. |
Yonga, et al, “Effect of Percutaneous Balloon Mitral Valvotomy on Pulmonary Venous Flow in Severe Mitral Stenosis,” East African Medical Journal (Kenya), Jan. 1999, pp. 28-30. |
Yonga, et al, “Percutaneous Balloon Mitral Valvotomy: Initial Experience in Nairobi Using a New Multi-Track Catheter System,” East African Medical Journal (Kenya), Feb. 1999, pp. 28-30. |
Yonga, et al, “Percutaneous Transluminal Balloon Valvuloplasty for Pulmonary Valve Stenosis: Report on Six Cases,” East African Medical Journal (Kenya), Apr. 1994, pp. 232-235. |
Yonga, et al, “Percutaneous Transvenous Mitral Commissurotomy in Juvenile Mitral Stenosis,” East African Medical Journal (Kenya), Apr. 2003, pp. 172-174. |
Commeau et al, “Percutaneous balloon dilatation of calcific aortic valve stenosis: anatomical and haemodynamic evaluation,” 1988, British Heart Journal, 59:227-238. |
Stassano et al., “Mid-term results of the valve-on-valve technique for bioprosthetic failure,” Eur. J. Cardiothorac. Surg. 2000; 18:453-457. |
Expert report of Dr. Nigel Buller, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Expert report of Dr. Nigel Buller, non-confidential annex—infringement, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Expert report of Dr. Rodolfo Quijano, dated Jan. 9, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
First Expert report of Prof. David Williams, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
First Expert report of Prof. Martin Rothman, dated Jan. 12, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Fourth Expert report of Prof. Martin Rothman, dated Apr. 22, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Second Expert report of Dr. Nigel Buller, dated Feb. 25, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Second Expert report of Dr. Rodolfo Quijano, dated Feb. 26, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Second Expert report of Prof. David Williams, dated Feb. 5, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Second Expert report of Prof. Martin Rothman, dated Feb. 5, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Third Expert report of Dr. Nigel Buller, dated Apr. 21, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Third Expert report of Dr. Rudolfo Quijano, dated Apr. 27, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Third Expert report of Prof. David Williams, dated Apr. 22, 2009, Edwards' United Kingdom action for invalidity, Claim No. HC 08CO0934. |
Pavenik et al., “Aortic and venous valve for percutaneous insertion,” Min. Invas. Ther. & Allied Techol. 2000, vol. 9, pp. 287-292. |
First Expert report of Dr. Nigel Person Buller (30 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justince—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
Second Expert report of Dr. Nigel Person Buller (5 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
Drawing by Dr. Buller (Edward Expert) of his interpretation of the “higher stent” referred to at column 8, lines 13-222 of Andersen EP 592410B1 (1 page), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. C-07-C01243. |
Drawing by Dr. Buller (Edwards Expert) of “higher stent” on the schematic representaticn of the aortic valve area set out in Figure 2 of Rothman's first expert report (1 page),Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
First Expert report of Professor John R. Pepper (20 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
Second Expert report of Professor John R. Pepper (3 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
First Expert report of Dr. Anthony C. Lunn (7 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
First Witness statement of Stanton Rowe (9 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
Second Witness statement of Stanton Rowe (3 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kindgom, Case No. HC-07-C01243. |
PVT slides naming Alain Cribier, Martin Leon, Stan Rabinovich and Stanton Rowe 16 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
First Expert Report of Professor Martin Terry Rothman (75 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243, dated Apr. 28, 2008. |
Reply Expert report of Professor Martin Terry Rothman (9 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243, dated May 27, 2008. |
First Expert report of Richard A. Hillstead (41 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
Reply Expert report of Richard A. Hillstead (9 pages), Corevalve, Inc. v. Edwards Lifesciences AG and Edwards Lifesciences PVT, Inc., High Court of Justice—Chancery Division Patents Court, United Kingdom, Case No. HC-07-C01243. |
Expert Rebuttal Report of Prof. Martin T. Rothman (32 pages) redacted, Edwards v. Core Valve, U.S. District court, District of Delaware, Case No. 08-091, dated Jul, 29, 2009. |
Expert Report of Prof. Martin T. Rothman (74 pages) redacted, Edwards v. CoreValve, U.S. District court, District of Delaware, Case No. 08-091, dated Jun. 29, 2009. |
Expired U.S. Appl. No. 61/192,199, filed Sep. 15, 2008. |
Expired U.S. Appl. No. 60/907,907, filed Apr. 20, 2007. |
Expired U.S. Appl. No. 61/129,170, filed Jun. 9, 2008. |
Trial Transcripts, Edwards Lifesciences Ag v. Medtronic CoreValve LLC, D.Del., Civ. No. 1:08-CV-00091-GMSM, Mar. 23, 2010-Apr. 1, 2010. |
Slide Deck for Plaintiff's Closing Arguments inEdwards Lifesciences AG v. Medtronic CoreValve LLC,D.Del., Civ. 1:08-CV-0091-GMS, Apr. 1, 2010 (107). |
Number | Date | Country | |
---|---|---|---|
20110301692 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12578818 | Oct 2009 | US |
Child | 13212227 | US | |
Parent | 11829682 | Jul 2007 | US |
Child | 12578818 | US | |
Parent | 10482270 | US | |
Child | 11829682 | US |