The present invention relates to extruded, modular panel units for the construction of walls, ceilings, roofs, canopies and windows, particularly of light-transmitting wall sections. More particularly, the present invention relates to assemblies for constructing such walls, ceilings, roofs, canopies and windows from a plurality of units while allowing for thermal expansion of the panels.
EP 949 390 discloses two generally co-planar panels supported almost edge-to-edge by an intermediate beam. A coupling member is captive to the beam by inter-engaging longitudinal formations and provides an interlocking engagement for the edges of the panels. Opposite the coupling member the beam is proud of the panels and receives and retains a cap which seals against the panels. Downwardly directed wings in the cap engage upwardly directed channels in a base thereof and prevent side walls of the cap from splaying apart.
WO 2008/149344 in the name of the present Applicant discloses an assembly for securing to a structure two juxtaposed panels, each including a first surface, an opposing second surface and a joining flange located at, or adjacent to, respective juxtaposed edges thereof. The assembly is particularly configured to prevent splaying apart of the juxtaposed panels under load and employs a retaining member that is fixedly mounted to the support structure and to which there is attached a clamping member having two spaced-apart legs depending from a web, each leg being configured to engage a respective exposed surface of an adjacent joining flange. A fastening means is provided for fastening the retaining member to a construction element that inhibits angular displacement of the panels when force is applied to either the first or second surfaces thereof.
U.S. Pat. No. 6,164,024 discloses a light transmissive glazing panel system for overhead roof constructions where glazing panels are supported on a framework and include upstanding seam flanges for connecting adjacent panels together with a joining connector. FIGS. 4 and 13 show arrangements where panels having upwardly projecting flanges on their mating edges are juxtaposed on opposite sides of aluminum support brackets that are bolted to the roof structure and a clamping member is then disposed on the projecting flanges to secure and seal the structure.
The above publications are typical of prior art that discloses the mounting of extruded panels to a construction element. The linear coefficient of thermal expansion (α) of polycarbonate at 23° C. is 65-70×10−6/° C., which is approximately three times that of aluminum for which α at 20° C. is 23×10−6/° C. To the extent that some kind of retaining member is fixedly mounted to the construction element, it is to be understood that this is incapable of movement. But the polycarbonate panels mounted thereto do expand and contract, thus becoming subject to tensile and compressive forces. Specifically, adjacent panels that expand will push against each other laterally, thus subjecting their respective mounts to compressive forces. This gives rise to high frictional forces between the panels and the mounts, which militates against thermal expansion of the panels in the longitudinal direction, which can cause buckling or other distortion of the panels.
Normally the clamping members are formed of the same or similar material to the panels, e.g. polycarbonate, such that the clamping members tend to expand at the same rate as the panels. Therefore in structures such as shown in FIGS. 7, 8 and 11 of WO 2008/149344 where the clamping members are fixedly mounted to the support structure, and are thus restrained from expanding, the panels being tightly clamped by the clamping member are likewise unable to expand.
U.S. Pat. No. 6,536,175 discloses a panel assembly and joining elements having reciprocally engaged inclined surfaces facing inwards. FIG. 7 of this patent discloses a polycarbonate jointing element fastened to a metal plate in the form of a track for connection to load bearing structures. However, the arrangement is not directed to the need to allow for longitudinal thermal expansion. Moreover, in order to ensure a waterproof seal there is provided a pressing element having a conical shape at the tip, which is inserted between two downwardly projecting joining flanges of adjacent panels so as to urge the flanges apart and thus press them tightly against opposing internal walls of the polycarbonate jointing element. It is apparent from FIG. 7 of the patent that this also urges the walls of the jointing element against the metal track thereby increasing friction between the track and the jointing element and militating against sliding of the jointing element within the metal track.
EP 1 111 153 discloses a glazing system comprising a plurality of plastic glazing panels each having at least one edge region juxtaposed with the edge region of the other panel. The juxtaposed edges have an abutment extending transversely of the plane of each glazing panel. A support structure at least partially encloses the abutments to deter separation of the glazing panels from the support structure.
US 2010/132293 discloses an internal structural mullion for a standing seam panel system. A two-piece assembly includes a main extrusion having one hooked portion and a secondary extrusion having an opposing hooked portion. A cavity is defined on the main extrusion, and the secondary extrusion includes a foot which upon insertion into the cavity forms a fulcrum about which the secondary extrusion can bend away from the main extrusion and be tightened or loosened by the tightening or loosing of a screw, as a result forming a clamp for engaging panels of the panel system with variable pressure.
US 2003/188500 discloses a panel clip assembly for use with skylight or roof panel systems and having allowance for reduced movement of panels both parallel and perpendicular to the seam formed by adjoining panels.
US 2005/102943 discloses a clip assembly for securing standing seam skylight or roofing panels to substrates and including a first clip member and a second clip member each having an upright member and an upper flange member and a lower flange member extending therefrom. A gap is formed between the upright member of the first clip member and the upright member of the second clip member and a base allows the assembly to slide.
DE 203 09 516 discloses a retainer comprising at least two polycarbonate plates forming chambers and a number of cross pieces with corresponding secure fixings.
It is therefore a broad object of the present invention to provide an assembly consisting of extruded, modular panel units and a matching joining member for constructing walls, roofs and the like, that is better adapted than hitherto-proposed arrangements for allowing thermal expansion and contraction of the panels.
In accordance with one aspect of the invention there is therefore provided an assembly having the features of claim 1 for securing a panel or two juxtaposed panels to a structure so as to allow unimpeded mutual sliding of the panel or panels relative to the structure.
In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
a is a cross-sectional view showing an alternative flange construction for use with any of the embodiments of
b shows a detail of an integral securing element and retaining member used in the embodiment of
In the following description of some embodiments, identical components that appear in more than one figure or that share similar functionality will be referenced by identical reference symbols. The invention may be realized using a number of different constructions and, therefore, the functionality of the invention will first be described with reference to
Typically the joining flanges 15 are extruded with the panels 11, 12, such that each flange is integrally formed along an edge 17 of the panel and is formed of the same material. The edge 17 corresponds to the axis of extrusion and defines a longitudinal axis 18 of the juxtaposed panels. Since the panels 11, 12 and the securing element 16 are formed of material having similar if not identical coefficients of thermal expansion it thus follows that the joining flanges 15 and the securing element 16 expand and contract at similar rates. As a result, frictional contact between the joining flanges 15 and the securing element 16 is maintained and mutual sliding along the axis of extrusion is impeded if not altogether prevented. In hitherto-proposed constructions, this gives rise to the problems identified above owing to the direct fixation of the panels to the support structure, which prevents the panels 11, 12 and the securing element 16 from moving together without inducing longitudinal and transverse distortion of the panels.
In order to allow longitudinal displacement of the joined panels relative to the support structure, the panels are not fixed directly to the support structure but are fixed via one or more support elements 20, each configured for slidably supporting the panels relative to the support element in a direction parallel to the longitudinal axis 18 of the panels. This requirement may be met in different ways, of which some examples will now be described.
Thus, as shown in
The respective flanges 15 of a pair of juxtaposed panels are retained by a generally I-shaped retaining member 30 having a base portion 31 supporting a central vertical column 32 and a planar top portion 33 that extends parallel to the base portion 31. The base portion 31 is dimensioned for sliding accommodation within the channel 24 of the support element 20, which supports the panels 11 and 12 on opposing support surfaces 35 and 36. The height, d, between the base portion 31 and the top portion 33, is slightly greater than the combined height of the panels, joining flanges and the material thickness of the support element 20 which are to be accommodated therebetween. This leaves an air gap 37 that allows for thermal expansion of the base portion 31 without obstructing the support element 20, thus maintaining the ability of the retaining member 30 to slide within the support element 20 regardless of climatic changes.
When assembled, the joining flanges 15 abut opposing surfaces of the vertical column 32 of the retaining member 30 and are secured to each other and to the retaining member 30 by the securing element 16, which is shown as a generally inverted C- or U-shaped clamping member defining an axial bore 41. Opposing side walls 42 of the securing element 16 are resiliently urged against the outer surfaces of the flanges, thereby securing the retaining member 30 and the flanges 15 within the axial bore 41. The outer surfaces of the joining flanges 15 may be tapered and provided with notches 43 e.g., saw-tooth or barb-shaped notches that engage complementary notches 44 (see
The dimensions of the retaining member 30 ensure that, when assembled, the panels 11, 12 are supported on the support element 20 and the tips of the flanges 15 abut inner surfaces of the top portion 33. The upper bar of the retaining member 30 retains the panels in contact with the support structure in the event of upward force, for example by strong winds, applied to the lower surfaces of the panels. In this embodiment, the retaining member 30 thus cooperates with the securing element 16 to retain the panels 11, 12 and form a panel sub-assembly whose components are substantially locked to each other and incapable of mutual thermal expansion or contraction, while permitting thermal expansion or contraction of the panel sub-assembly relative to the support structure owing to the sliding accommodation of the retaining member 30 within the support element 20.
Furthermore, in such an arrangement, the weight of the panels 11 and 12 is borne by the support surfaces 35 and 36 of the support element 20. As is well known, the frictional force F generated by a body acting on a surface is given by:
F=μN
where: μ is the coefficient of friction between the object and the surface, and
N is the vertical component of force of the object.
In known structures such as described in WO 2003/149344, in addition to the weight of the panels bearing on the construction element, the retaining member acts to increase the force applied on the panels against the support structure. This significantly increases the frictional force and militates against sliding of the panels relative to the support structure.
In contrast thereto, in the present invention the only vertical force applied by the panels on the support structure is their weight, there being no additional clamping force. The coefficient of friction of plastic against metal is fairly low such that the frictional force is not too high to prevent relative sliding of the panels on the support surfaces 35 and 36 of the support element 20.
In the embodiment shown in
Since in this embodiment, the support element retains the securing element but does not support the panels directly, the support element 20 may be simply a U-shaped bracket that is secured to the support structure and provides a channel for slidably accommodating the base portion 56 of the securing element 16. The support element 20 may be secured using screws or any other suitable fastener as described above. In the embodiment shown in
Also in this embodiment, the only vertical force applied by the panels on the support structure is their weight, there being no additional clamping force thus permitting relative sliding of the securing element 16 and attached panels within the support element 20.
In all of the arrangements so far described, the joining flanges are perpendicular to opposing major surfaces of the panels.
In the arrangement of
It should be noted that when the flanges 15 are mounted at the side of the panels 11, 12 as shown in
The panels 11, 12 are very typically used as roof structures and are therefore particularly vulnerable to water seepage, which obviously should be avoided. For this reason, the use of the securing element 16 of a type that forms a water impermeable barrier between the panels 11, 12 and the structure is preferable. Such a securing element 16 dictates that the flanges 15 protrude from one of the major surfaces 13, 14 of the panel rather than from a mating surface as shown in
a shows a structure 80 to which there are slidingly secured a pair of juxtaposed panels 11, 12 having tapered flanges 15 that are wider at their respective tips than at their bases. The tapered flanges 15 are secured within a securing element 16 that is formed of material having a similar coefficient of expansion to the joining flanges 15 and which has a longitudinal bore 57 of complementary shape to the joining flanges 15 so as to form a dovetail joint. The securing element 16 is provided with lateral slots 81 best seen in
Unlike the embodiments so far described where adjoining flanges of a pair of juxtaposed panels are commonly supported within a single securing element, in this embodiment a separate securing element is provided for each flange. Thus, each of the flanges 15 is secured within its respective securing element 16 that may be formed of material having a similar coefficient of expansion to the joining flange 15 and which has a longitudinal bore 57 of complementary shape to the joining flange 15. Each securing element 16 has a base supporting opposing ears 58 that are slidably mounted within corresponding channels 24 of a support element 20 secured to the structure 80 by means of screws 25. Thus, at its upper end the securing element 16 serves to secure the respective panel while at its base it also serves to retain the panel within support element 20.
Each of the support elements 20 is supported by a respective mounting bracket 91 that is fixed to the structure 80 by corresponding screws 25. In order to ensure proper abutment of the adjoining edges of the juxtaposed panels, the joining panels 15 are mounted inward of the adjoining edges so as to leave sufficient overhang 93 that allows for sufficient clearance between the two support members. In
In
It is also reiterated that in all embodiments, self-tapping screws 25 may be used since this simplifies assembly. But any other suitable form of attachment may be employed, such as regular screws, bolts, rivets, welding and so on. Likewise, in all embodiments the support element may be integral with the structure or constituted by the structure itself.
While the drawings show constructional panels having two major surfaces defining the height of the panel, and covering sub-spaces formed therein, as known per se, it is emphasized that the present invention is also applicable to other types of similar panels, such as panels without inner sub-spaces, or panels in which the connecting flanges are within the height of the panel, etc.
It should also be emphasized that while a large number of variations of joints and support elements have been shown, it is not intended that each variation be confined to the specific embodiment in connection with which it is illustrated and described. Thus, different variations may be combined as required and all such permutations are to be embraced by the appended claims as though they were separated illustrated and described.
While in the embodiments described, the panels and adjoining flanges and the securing element are formed of polycarbonate or other plastic materials having similar temperature coefficients of expansion, the securing element 16 may be formed of metal such as aluminum having a significantly smaller coefficient of expansion than the joining flanges. This does not matter because buckling of the panels owing to longitudinal expansion is prevented by virtue of the free sliding of the panels relative to the support structure.
Likewise, it is to be understood that while the flanges are shown as tapered, this is not essential. What is important is that the flanges be secured by the securing element in a manner that ensures they both expand and contract together at similar rates of thermal expansion. Likewise, in those embodiments having a retaining member, this also should be formed of material having a similar coefficient of thermal expansion to the panels and securing element so that when the retaining member moves within the channel of the support element, the panels and securing element move with the retaining member. It is this property that ensures that the panels are able to slide freely relative to the support structure and avoids buckling or other distortion of the panels.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiments and that the present invention may be embodied in other specific forms without departing from the scope of the claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
213693 | Jun 2011 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2012/050215 | 6/21/2012 | WO | 00 | 12/17/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/176207 | 12/27/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6164024 | Konstantin | Dec 2000 | A |
6536175 | Conterno | Mar 2003 | B2 |
7562504 | Herbst et al. | Jul 2009 | B2 |
8056289 | Konstantin | Nov 2011 | B1 |
8316009 | Fraser et al. | Nov 2012 | B2 |
20030188500 | Voegele | Oct 2003 | A1 |
20050102943 | Voegele, Jr. | May 2005 | A1 |
20070033893 | Voegele, Jr. | Feb 2007 | A1 |
20080053026 | Voegele, Jr. | Mar 2008 | A1 |
20090049770 | Konstantin | Feb 2009 | A1 |
20100126099 | Ben-Zvi | May 2010 | A1 |
20100132293 | Voegele, Jr. et al. | Jun 2010 | A1 |
20100242397 | Givoni et al. | Sep 2010 | A1 |
20110225926 | Conterno | Sep 2011 | A1 |
20120151867 | Smith et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
203 09 516 | Sep 2003 | DE |
949390 | Jan 1999 | EP |
1 111 153 | Jun 2001 | EP |
2008-149344 | Dec 2008 | WO |
Entry |
---|
International Preliminary Report on Patentability mailed Sep. 20, 2013 in PCT/IL2012/050215. |
Number | Date | Country | |
---|---|---|---|
20140112698 A1 | Apr 2014 | US |