The present invention relates generally to ceiling systems comprising ceiling panels, struts, mounting brackets, and saddle brackets.
Many suspended ceiling systems have been proposed and are used extensively in building construction to improve the overall appearance of the office space, to allow access to the area above the ceiling where mechanical equipment and piping is often located, and to improve the acoustics of the space.
The problem with the prior art structures is that the main thrust has been to provide a fairly simple inexpensive suspended ceiling system for use in a variety of applications. However, these systems although inexpensive are suffer from problems of alignment of the edges of the panels to provide straight lines in both the length and width of the ceiling system; control of the level of the individual panels beneath the grid work within a fairly narrow range as variation in the height of the panels is easily recognized from beneath due to light variations; and an adequate air seal between the support grid and the ceiling panels.
The present invention is designed to alleviate the above problems of concealed suspended ceiling systems.
The invention, in one aspect, is directed to a ceiling system comprising a grid support, a ceiling panel, and a plurality of connection assemblies. The ceiling panel is mounted to the grid support by the plurality of connection assemblies.
The grid support comprises a plurality of struts, each of the struts comprising a flange portion and a web portion. The web portion extends upward from the flange portion, and the flange portion having an upper surface and a lower surface.
Each of the connection assemblies comprises a mounting bracket assembly and a saddle bracket. The mounting bracket assembly comprises a mounting bracket and a resilient element. The mounting bracket is coupled to the ceiling panel and has a first upper surface portion and a second upper surface portion. The resilient element is coupled to the mounting bracket.
The saddle bracket comprises a saddle member and a support flange. The saddle member defines a web receiving cavity. The support flange extends from the saddle member, and comprises a first lower surface portion and a second lower surface portion.
The saddle bracket is coupled to one of the struts so that the saddle member straddles the web portion of the strut and the web portion of the strut is disposed in the web receiving cavity. The saddle bracket is further coupled to one of the struts so that the first lower surface portion overlies the upper surface of the flange portion of the strut. The saddle bracket is also coupled to one of the struts so that the second lower surface portion extends beyond an edge of the flange portion of the strut.
The resilient element is detachably coupled to the saddle bracket. The resilient element biases the mounting bracket, the flange portion of the strut, and the support flange of the saddle bracket together. Specifically, the resilient element bias causes the first upper surface portion of the mounting bracket to be in contact the lower surface of the flange portion of the strut. The resilient element bias further causes the first lower surface portion of the support flange of the saddle member to be in contact with the upper surface of the flange portion of the strut. The resilient element bias also causes the second upper surface portion of the mounting bracket to be in contact with the second lower surface portion of the support flange of the saddle member.
In another embodiment, the present invention is directed to a grid assembly for hanging a ceiling panel, the grid assembly comprising a grid support and a saddle bracket. The grid support comprises at least one strut comprising a flange portion and a web portion. The web portion extends upward from the flange portion, and the flange portion has an upper surface and a lower surface.
The saddle bracket comprises a saddle member and a support flange. The saddle member defines a web receiving cavity. The support flange extends from the saddle member. The support flange comprises a first lower surface portion and a second lower surface portion that is vertically offset from the first lower surface portion.
The saddle bracket is coupled to one of the struts so that the saddle member straddles the web portion of the strut and the web portion of the strut is disposed in the web receiving cavity. The saddle bracket is further coupled to one of the struts so that the first lower surface portion contacts the upper surface of the flange portion of the strut. The saddle bracket is also coupled to one of the struts so that the second lower surface portion extends beyond an edge of the flange portion of the strut and is substantially coplanar with the lower surface of the flange portion of the strut.
In another embodiment, the present invention is directed to a saddle bracket for a ceiling system, wherein the saddle bracket comprises a saddle member and a first support flange. The saddle member comprises a first wall plate, a second wall plate, and a bight portion. The bight portion connects the first and second wall plates. The bight portion, the first wall plate, and the second wall plate collectively define a web receiving cavity that extends along a central vertical plane.
The first support flange extends from the first wall plate. The first support flange comprises a stepped lower surface comprising a first lower surface portion and a second lower surface portion that is vertically offset from the first lower surface portion.
In another embodiment, the present invention is directed to a ceiling system comprising a grid support, a ceiling panel, and a plurality of connection assemblies. The ceiling panel is mounted to the grid support by the plurality of connection assemblies.
The grid support comprises a plurality of struts, each of the struts comprising a flange portion and a web portion. The web portion extends upward from the flange portion.
Each of the connection assemblies comprises a mounting bracket assembly and a saddle bracket. The mounting bracket assembly comprises a mounting bracket and a resilient element coupled to the mounting bracket. The saddle bracket comprises a saddle member defining a web receiving cavity and a stepped support flange extending from the saddle member. The saddle bracket is coupled to one of the struts so that the web portion of the strut is disposed in the web receiving cavity.
The resilient element is detachably coupled to the saddle bracket. The resilient element biases the mounting bracket, the flange portion of the strut, and the support flange of the saddle bracket together. Specifically, the resilient element bias causes the mounting bracket and the stepped support flange of the saddle bracket to be in contact with one another. The resilient element bias further causes the flange portion of the strut to be sandwiched between and in contact with each of the mounting bracket and the stepped support flange.
Another embodiment of the present invention includes a grid assembly for hanging a ceiling panel. The grid assembly comprises a grid support and a saddle bracket. The grid support comprises at least one strut. The strut comprises a flange portion and a web portion. The web portion extends upward from the flange portion. A bulb portion is located on the web portion, and the bulb portion comprises an undersurface. The saddle bracket comprises a horizontal locking feature, a vertical locking feature, a panel mounting feature, and a web receiving cavity.
The saddle bracket is mounted to the strut so that the web portion of the strut is disposed in the web receiving cavity. The saddle bracket is further mounted to the strut so that the vertical locking feature of the saddle bracket engages the undersurface of the bulb portion, thereby vertically locking the saddle bracket to the strut.
The horizontal locking feature of the saddle bracket is alterable between a first state and a second state. In the first state, the saddle bracket can slide horizontally along the strut while the saddle bracket remains vertically locked to the strut. In the second state, the horizontal locking element engages the web portion of the strut, thereby horizontally locking the saddle bracket to the strut.
In another embodiment, the present invention is directed to a ceiling system comprising a grid support, a ceiling panel, and a plurality of connection assemblies. The ceiling panel is mounted to the grid support by the plurality of connection assemblies.
The grid support comprises a plurality of struts, each of the struts comprising a flange portion, a web portion. The web portion extends upward from the flange portion. A bulb portion is on the web portion, wherein the bulb portion comprising an undersurface.
Each of the connection assemblies comprises a mounting bracket assembly and a saddle bracket. The mounting bracket assembly comprises a mounting bracket and a resilient element. The mounting bracket is coupled to the ceiling panel and the resilient element is coupled to the mounting bracket.
The saddle bracket comprises a saddle member, a horizontal locking feature, a vertical locking feature, and a support flange. The saddle member defines a web receiving cavity. The support flange extends from the saddle member.
The saddle bracket mounted to one of the struts so that the saddle member straddles the web portion of the strut and the web portion of the strut is disposed in the web receiving cavity. The saddle bracket is further mounted to one of the struts so that the vertical locking feature of the saddle bracket engages an undersurface of the bulb portion, thereby vertically locking the saddle bracket to the strut.
The horizontal locking feature of the saddle bracket alterable between a first state and a second state. In the first state, the saddle bracket can slide horizontally along the strut while the saddle bracket remains vertically locked to the strut. In the second state, the horizontal locking element engages the web portion of the strut, thereby horizontally locking the saddle bracket to the strut. Additionally, the resilient element detachably coupled to the saddle bracket.
In another embodiment, the present invention includes a saddle bracket for a ceiling system. The saddle bracket comprises a first wall plate, a second wall plate, a bight portion, a first support flange, a second support flange, a vertical locking feature, and a horizontal locking feature.
The first wall plate extends from a first side edge to a second side edge, the first and second side edges of the first wall plate being free edges. The second wall plate extends from a first side edge to a second side edge, the first and second side edges of the second wall plate being free edges. The bight portion connects the first and second wall plates. The bight portion, the first wall plate, and the second wall plate collectively defining a web receiving cavity that extends along a central vertical plane. The first support flange extends from a lower end the first wall plate. The second support flange extends from a lower end of the second wall plate.
The vertical locking feature extends into the receiving cavity. The vertical locking feature is configured to engage an undersurface of a bulb portion of a strut to vertically lock the saddle bracket to the strut upon a web portion of the strut being inserted into the web receiving cavity.
The horizontal locking feature comprising a barb portion configured to penetrate the bulb portion of the strut upon. The horizontal locking feature alterable between a first position and a second position. In the first position, the barb portion does not extend into the web receiving cavity. In the second position, the barb portion is located within the web receiving cavity.
In another embodiment, the present invention is directed to a ceiling panel apparatus comprising a ceiling panel, a plurality of mounting bracket assemblies, and a multi-purpose fastener. The plurality of mounting bracket assemblies are coupled to the ceiling panel.
The mounting bracket assemblies comprise a mounting bracket and a torsion spring. The mounting bracket comprises a base plate, a hook member, and a receiving slot. The base plate comprises a multi-purpose aperture. The hook member is coupled to the based plate and comprises a free end. The receiving slot is formed between the free end of the hook member and an upper surface of the base plate.
The torsion spring comprises a ring portion, a first spring leg, and a second spring leg. The hook member of the mounting bracket extends through a central opening of the ring portion of the torsion spring to mount the torsion spring to the mounting bracket.
The multi-purpose fastener is alterable between a locked state and an unlocked state. In the locked state, the multi-purpose fastener extends through the multi-purpose aperture of the base plate and fastens the mounting bracket to the ceiling panel. In the locked state, the multi-purpose fastener also obstructs the receiving slot so as to prohibit the ring portion of the torsion spring from passing through the receiving slot, thereby locking the torsion spring to the mounting bracket. In the unlocked state, the multi-purpose fastener does not obstruct the receiving slot to allow the ring portion of the torsion spring to pass through the receiving slot.
The present invention includes another embodiment directed to a suspended ceiling system comprising a plurality of struts, a plurality of connection assemblies, and a ceiling panel. The ceiling panel mounted to the struts by the plurality of connection assemblies. The plurality of struts is arranged in a grid support plane.
Each of the struts comprising a web portion and a flange portion. Each of the connection assemblies comprises a mounting bracket, a torsion spring, a multi-purpose fastener, and a mounting slot.
The mounting bracket comprises a base plate, a hook member, and a hook member. The base plate comprises a multi-purpose aperture, a hook member, and a receiving slot. The hook member is coupled to the base plate and the hook member comprising a free end. The receiving slot is formed between the free end of the hook member and an upper surface of the base plate.
The torsion spring comprises a ring portion, a first spring leg, and a second spring leg. The hook member of the mounting bracket extends through a central opening of the ring portion of the torsion spring to mount the torsion spring to the mounting bracket.
The multi-purpose fastener alterable between a locked state and an unlocked state. In the locked state, the multi-purpose fastener extends through the multi-purpose aperture of the base plate and fastens the mounting bracket to the ceiling panel. In the locked state, the multi-purpose fastener also obstructs the receiving slot so as to prohibit the ring portion of the torsion spring from passing through the receiving slot, thereby locking the torsion spring to the mounting bracket. In the unlocked state, the multi-purpose fastener does not obstruct the receiving slot to allow the ring portion of the torsion spring to pass through the receiving slot.
The mounting slot is located in one of a flange portion of one of the struts or a saddle bracket that is coupled to one of the struts. The first and second spring legs of the torsion spring extending through the mounting slot.
Another embodiment of the present invention includes a mounting bracket assembly for supporting a ceiling panel. The mounting bracket assembly comprising a mounting bracket, a torsion spring, and a multi-purpose fastener.
The mounting bracket comprises a base plate, a hook member, and a receiving slot. The base plate comprises a multi-purpose aperture. The hook member is coupled to the base plate, and the hook member comprises a free end. The receiving slot is formed between the free end of the hook member and an upper surface of the base plate.
The torsion spring comprises a ring portion, a first spring leg, and a second spring leg. The hook member of the mounting bracket extends through a central opening of the ring portion of the torsion spring to mount the torsion spring to the mounting bracket.
The multi-purpose fastener alterable between a locked state and an unlocked state. In the locked state, the multi-purpose fastener extends through the multi-purpose aperture of the base plate. In the locked state, the multi-purpose fastener also obstructs the receiving slot so as to prohibit the ring portion of the torsion spring from passing through the receiving slot, thereby locking the torsion spring to the mounting bracket. In the unlocked state, the multi-purpose fastener does not obstruct the receiving slot to allow the ring portion of the torsion spring to pass through the receiving slot.
The present invention includes an additional embodiment directed to a ceiling system comprises a grid support, a ceiling panel, and a plurality of connection assemblies. The ceiling panel is mounted to the grid support by the plurality of connection assemblies.
The grid support comprising a plurality of struts. Each of the struts comprises a flange portion and a web portion extending upward from the flange portion. The flange portion has an upper surface and a lower surface.
Each of the connection assemblies comprises a mounting bracket assembly and a saddle bracket. The mounting bracket assembly comprises a mounting bracket and a resilient element. The mounting bracket is coupled to the ceiling panel. The mounting bracket comprising an upper surface and a wall surface. The resilient element is coupled to the mounting bracket.
The saddle bracket comprises a saddle member and a support flange. The saddle member defines a web receiving cavity. The support flange extends from the saddle member. The saddle bracket is coupled to one of the struts so that the saddle member straddles the web portion of the strut and the web portion of the strut is disposed in the web receiving cavity. The saddle bracket is also coupled to one of the struts so that the support flange is located above and spaced from the flange portion of the strut. The saddle bracket is further coupled to one of the struts so that a portion of the support flange extends beyond an edge of the flange portion of the strut.
The resilient element is detachably coupled to the saddle bracket. The resilient element biases the mounting bracket so that the upper surface of the mounting bracket contacts the portion of the support flange that extends beyond the edge of the flange portion of the strut to provide vertical registration between the ceiling panel and the grid support. The resilient element further biases the mounting bracket so that the wall surface of the mounting bracket is located adjacent the edge of the flange portion of the strut to provide horizontal registration between the ceiling panel and the grid support.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating some embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The features of the exemplified embodiments will be described with reference to the following drawings in which like elements are labeled similarly. The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of some embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “left,” “right,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” “mounted” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
As shown in
As shown in
As shown in
As shown in
The web portion 102 extends upward from the flange portion 101. The bulb portion 103 is on the web portion 102 as the upward most portion of the strut 100. The bulb portion 103 comprises an undersurface 104, first and second side surface 113, 114, and a top surface 115. The undersurface 104 has a first undersurface portion 104a and a second undersurface portion 104b. The first undersurface portion 104a is located on the first side 110 of the web portion 102 and the second undersurface portion 104b is located on the second side 112 of the web portion 102. The undersurface 104 of the bulb portion 103 faces the upper surface 105 of the flange portion 101. The edge 107 of the support flange 101 extends outwardly in a horizontal direction from the web portion 102 further than the first and second side surfaces 113, 114 of the bulb portion 103.
The first side surface 113 of the bulb portion 103 extends from the first undersurface 104a and the second side surface 114 of the bulb portion 103 extends from the second undersurface 104b. The first and second side surfaces 113, 114 face outward in an opposite direction from each other. The upper surface 115 extends from the first and second side surfaces 113, 114 and encloses the bulb portion 103. The top surface comprises a first sloped portion 115a and a second sloped portion 115b that converge at an apex 115c. The first sloped portion 115a extends from the first side surface 113 of the bulb portion 103 and the second sloped portion 115b extends from the second side surface 114. The apex 115c of the bulb portion 103 is the transitional point from the first side 110 of the web portion 102 to the second side 112 of the web portion 102 of the strut 100.
Each of the struts 100 comprises a first height measured from the lower surface 106 of the flange portion 101 to an upper most surface 115c (apex of the bulb portion 103) of the web portion 102 of the strut.
As shown in
As shown in
The base plate 21 has a length that extends parallel to the longitudinal base plate axis A-A. The base plate 21 length is measured from the first transverse edge 21e to the second transverse edge 21f of the base plate 21. The base plate 21 has a width that extends parallel to the transverse base plate axis B-B. The base plate 21 width is measured from the first longitudinal edge 21c to the second longitudinal edge 21d of the base plate 21. The base plate 21 has a thickness that is measured from the upper surface 21a to the lower surface 21b of the base plate 21.
The base plate 21 further comprises a multi-purpose aperture 22 and one or a plurality of coupling apertures 27 that extend from the upper surface 21a to the lower surface 21b of the base plate 21. In some embodiments, the multi-purpose aperture 22 and the coupling apertures 27 circular or polygonal perimeters.
As shown in
The first portion 32 of the hook member 23 extends a length that spans from the upper surface 21a of the base plate 21 to the second portion 33. The second portion 33 of the hook member 23 extends a length that spans from the first section 32 to the third section 33. As shown in
As shown in
As shown in
Each wall plate 35 comprises the rear surface 39 and a notch 36, wherein the hook member 23 extends upward from the base plate 21 into the notch 36. The notch 36 separates the wall plate 35 into a first wall plate section 37 and a second wall plate section 38. The notch 36 is located between the first and second wall plate sections 37, 38. The first and second wall plate sections 37, 38 are located opposite each other across the transverse axis B-B.
As shown in
A width of the first plate section 37 extends from the first edge 37a to the second edge 37b of the first wall plate section 37 in a direction that is parallel to the longitudinal base plate axis A-A. A width of the second plate section 38 extends from the first edge 38a to the second edge 38b of the second wall plate section 38 in a direction that is parallel to the longitudinal base plate axis A-A.
For each of the mounting brackets 20, the upper plate 40 extends from the wall plate 35 and above the upper surface 21a of the base plate 21. The upper plate 40 is substantially parallel to the base plate 21. The upper plate 40 is substantially perpendicular to the wall plate 35. The upper plate 40 comprises an upper surface 40a and a lower surface 40b, wherein a space is formed between the lower surface 40a of the upper plate 40 and the upper surface 21a of the base plate 21.
The widths of the first and second plate sections 37, 38 may each, independently, be constant or varying. If one or both of the first and second plate sections 37, 38 have varying widths, each width may decrease in size as measured from the upper surface 21a of the base plate 21 to the lower surface 40b of the upper plate 40.
As shown in
In some embodiments, the length of the first upper surface portion 40c is greater than the length of the second upper surface portion 40d. In some embodiments, the length of the first upper surface portion 40c is less than the length of the second upper surface portion 40d. In some embodiments the length of the first upper surface portion 40c is equal to than the length of the second upper surface portion 40d.
In some embodiments, the length of the first upper surface portion 40c is less than the length of the second portion 33 of the hook member 23. In some embodiments, the length of the first upper surface portion 40c is greater than the length of the second portion 33 of the hook member 23. In some embodiments, the length of the first upper surface portion 40c is equal to the length of the second portion 33 of the hook member 23. In some embodiments, the combined length of the first upper surface portion 40c and the second upper surface 40d is greater than the length of the second portion 33 of the hook member 23. In some embodiments, the combined length of the first upper surface portion 40c and the second upper surface 40d is equal to the length of the second portion 33 of the hook member 23.
As shown in
As shown in
A width of the first upper plate section 41 is measured from the first inner edge 43a to the first outer edge 43b in a direction that is parallel to the longitudinal base plate axis A-A. A width of the second upper plate section 42 is measured from the first inner edge 45a to the first outer edge 45b in a direction that is parallel to the longitudinal base plate axis A-A. In some embodiments the width of the first upper plate section 41 is equal to the width of the first plate section 37. In some embodiments the width of the first upper plate section 41 is less than the width of the first plate section 37. In some embodiments the width of the second upper plate section 42 is equal to the width of the second plate section 38. In some embodiments the width of the second upper plate section 42 is less than the width of the second plate section 38.
In some embodiments the first outer edge 43b of the first upper plate section 41 is longitudinally offset from the first edge 37a of the first plate section 37 by a first offset distance, thereby exposing a top surface 37c of the first wall plate 37. In some embodiments the second outer edge 45b of the second upper plate section 42 is longitudinally offset from the second edge 38a of the second plate section 38 by a second offset distance, thereby exposing a top surface 38c of the second wall plate 38.
In some embodiments, the combined length of the first offset distance and the width of the first upper plate section 41 is equal to the width of the first wall plate 37. In some embodiments, the combined length of the first offset distance and the width of the first upper plate section 41 is less than the width of the first wall plate 37. In some embodiments, the combined length of the second offset distance and the width of the second upper plate section 42 is less than the width of the second wall plate 38. In some embodiments, the combined length of the second offset distance and the width of the second upper plate section 42 is equal to the width of the second wall plate 38.
The mounting bracket 12 is coupled to the upper surface 13 of the ceiling panel 11 by fastening elements via the coupling apertures 27. The mounting bracket 12 may also be coupled to the ceiling panel 11 by the multi-purpose fastener 50 via the multi-purpose aperture 22, as discussed herein. The multi-purpose fastener 50 has an outer edge 52 that is located above the upper surface 21a of the base plate 21.
As shown in
The torsion spring 70 may be an offset torsion spring having two 30° to 60° bends in each of the first and second spring legs 72, 73, thereby creating a portion of each of the first and second spring legs 72, 73 that is substantially parallel to the ceiling panel 11 after the ceiling system 1 is installed.
To mount the torsion spring 70 to the mounting bracket 20, the hook member 23 of the mounting bracket 20 extends through the central opening 74 of the ring portion 71 of the torsion spring 70. The first and second spring legs 71, 72 may be located between the first and second upper plate sections 41, 42 and extend upward beyond the first and second upper plate sections 41, 42. The first and second spring legs 71, 72 are biased outward by the ring portion 71, thereby causing the first and second spring legs 71, 72 to rest in the first and second spring leg nesting grooves 46 when the ring portion 71 of the torsion spring 70 is attached to the hook member 23 of the mounting bracket 20. The torsion spring 70 also biases the ceiling panel 11 into a fully-installed state, as discussed herein.
As can be seen in
In some embodiments, the torsion spring 70 and the mounting bracket 20 are each independent, integrally formed singular components; thus by way of the multi-purpose fastener 50 locking the ring portion 71 to the hook member 23, the multi-purpose fastener 50 also locks the torsion spring 70 to the mounting bracket 20.
As shown in
By passing the ring portion 71 of the torsion spring 70 from the hook member 23 and through receiving slot 26, the torsion spring 70 is detached from the mounting bracket 20. Similarly by passing the ring portion 71 through the receiving slot 26 and onto the hook member 23, the torsion spring 70 is attached to the mounting bracket 20.
For each of the mounting bracket assemblies 12, when the multi-purpose fastener 50 is in the unlocked state 55, the multi-purpose fastener 50 will no longer extend through the multi-purpose aperture 11 of the base plate 21. Furthermore, for each of the mounting bracket assemblies 12, when the multi-purpose fastener 50 is in the unlocked state 55, the multi-purpose fastener 50 no longer fastens the mounting bracket 20 to the ceiling panel 11. However, mounting bracket 20 can still be independently fastened to the ceiling panel 11 by a plurality of fasteners (not pictured) that extend through the plurality of coupling apertures 27 and into the ceiling panel 11 in a manner similar to how the multi-purpose fastener 50 extends through the multi-purpose aperture 22 of the base plate 21.
As shown in
As shown in
The saddle member 202 comprises a first wall plate 218, a second wall plate 219, and a bight portion 220. The bight portion 220 connects the first and second wall plates 218, 219, and the first wall plate 218, second wall plate 219, and bight portion 220 collectively define the web receiving cavity 205 that extends along a central vertical plane D-D.
As shown in
As shown in
As shown in
The vertical locking feature 204 comprises a resilient element 230 that can be altered between a locking state and an access state. The resilient element 230 is biased into the locking state. The resilient element 230 including a first resilient element 230a and a second resilient element 230b. The first resilient element 230a is located on the first wall plate 218 of the saddle bracket 200 and the second resilient element 230b is located on the second wall plate 219 of the saddle bracket 200.
The vertical position of the resilient element 230 along the first wall plate 218 and the second wall plate 219 defines boundaries of the entry section 240 and the bulb nesting section 241. Specifically, the entry section 240 extends from the open lower end 228 of the saddle member 202 to the resilient member 230. The bulb nesting section 241 extends from the resilient element 230 to the closed top end 227 of the saddle member 202. As a result, the entry section 240 is located below the resilient element 230 and the bulb nesting section 241 is located above the resilient element 230. The bulb nesting section 241 has a height that is equal to or greater than the height of the bulb section 103 of the strut 100.
The first resilient element 230a comprises a first tab 231 that is formed into the first side edge 233a of the first wall plate 218. The first resilient element 230a protrudes from the inner surface 218a of the first wall plate 218 into the web receiving cavity 205. The second resilient element 230b comprises a second tab 232 that is formed into the second side edge 234b of the second wall plate 219. The second resilient element 230b protrudes from the inner surface 219a of the second wall plate 219 into the web receiving cavity 205.
The first tab 231 is an integrally formed portion of the first wall plate 218 and the second tab 232 is an integrally formed portion of the second wall plate 219. The first tab 231 is created by making a substantially perpendicular cut into the first wall plate 218 from the first side edge 233a. A portion of first wall plate 218 below the perpendicular cut is then bent out of plane with a main body portion 247 of the first wall plate 218 in a direction inward toward the web receiving cavity 205. The second tab 232 is created by making a substantially perpendicular cut into the second wall plate 219 from the second side edge 234b. A portion of second wall plate 219 below the perpendicular cut is then bent out of plane with a main body portion 248 of the second wall plate 219 in a direction inward toward the web receiving cavity 205.
The resulting first tab 231 is a triangular element having a free upper edge 231a, a free lateral edge 231b, and a bend 231c. The bend 231c integrally connects the first tab 231 to the main body portion 247 of the first wall plate 218. The free lateral edge 231b of the first tab 231 is a portion of the first side edge 233a of the first wall plate 218. The resulting second tab 232 is a triangular element having a free upper edge 232a, a free lateral edge 232b, and a bend 232c. The bend 232c integrally connects the second tab 232 to the main body portion 248 of the second wall plate 219. The free lateral edge 232b of the second tab 232 is a portion of the second side edge 234b of the second wall plate 219. The resulting vertical locking feature extends into the web receiving cavity 205. Specifically, the
The support flange 201 of the present invention may comprise a first support flange 221. The first support flange 221 extends from a lower end 242 of the first wall plate 218 of the saddle member 202 in a first direction that is substantially orthogonal to the central vertical plane D-D. The support flange 201 also comprises a second support flange 222. The second support flange 222 extends from a lower end 243 of the second wall plate 219 of the saddle member 202 in a second direction that is substantially orthogonal to the central vertical plane D-D. The first and second directions are opposite of each other.
Each of the first and second support flanges 221, 222 comprise a stepped profile and that include a first plate portion 213 and a second plate portion 214. The first plate portion 213 extending from the lower end 242 of the first wall plate 218 and includes a first upper surface portion 224 and a first lower surface portion 206. The second plate portion 214 extends from the first plate portion 213 and includes a second upper surface portion 225 and a second lower surface portion 207.
The first and second lower surface portions 206, 207 of the support flange 201 are vertically offset from each other. The first and second upper surface portions 224, 225 of the support flange 201 are vertically offset from each other. The first lower surface portion 206 of the first support flange 221 and the first lower surface 206 of the second support flange 222 are substantially coplanar with one another. The second lower surface portion 207 of the first support flange 221 and the second lower surface 207 of the second support flange 222 are substantially coplanar with one another.
The first plate portion 213 extends from the lower end 242 of the first wall plate 218 in a first direction that is substantially orthogonal to the central vertical plane D-D. The second plate portion 214 extends from the first plate portion 213 in the first direction that is orthogonal to the central vertical plane D-D. The second upper surface portions 224, 225 of the support flange 201 are vertically offset from each other.
As shown in
In the first access state, the resilient members 230 deflect outward relative to the first and second plate walls 218, 219. The deflection accommodates for the volume being occupied by the bulb portion 103 as the bulb portion 103 vertically passes the resilient members 230 and moves the bulb portion 103 from the entry section 240 to the bulb nesting section 241. In the first access state, the first wall plate 218 and the second wall plate 219 remain parallel to each other as well as the central vertical plane D-D of the web receiving cavity 205.
In the second access state, the resilient members 230 do not deflect relative to the first and second wall plates 218, 219. Rather, the entire vertical locking feature 204 deflects outward, causing portions of the first and second wall plates 218, 219 to deflect outward to accommodate for the volume being occupied by the bulb portion 103 as the bulb portion 103 vertically passes the resilient members 230 and moves the bulb portion 103 from the entry section 240 to the bulb nesting section 241. In the second access state, at least portions of the first wall plate 218 and the second wall plate 219 for an oblique angle with the central vertical plane D-D of the web receiving cavity 205.
In the third access state, the saddle bracket 200 undergoes a combination of two distortions. First, the resilient members 230 deflect outward relative to the first and second wall plates 218, 219 in a direction away from the central vertical plane D-D of the web receiving cavity 205. Second, the second and first wall plates 218, 219 deflect outward relative to central vertical plane D-D of the web receiving cavity 205. In the third access state, the entire vertical locking feature 204 deflects outward, causing portions of the first and second wall plates 218, 219 to deflect outward to accommodate for the volume being occupied by the bulb portion 103 as the bulb portion 103 vertically passes the resilient members 230 and moves the bulb portion 103 from the entry section 240 to the bulb nesting section 241. In the third access state, at least portions of the first wall plate 218 and the second wall plate 219 form an oblique angle with the central vertical plane D-D of the web receiving cavity 205 that is smaller than the oblique angle formed between the first and second wall plates 218, 219 with the central vertical plane D-D of the web receiving cavity 205 in the second access state.
In the first, second, and third access state, the resilient elements 230, 230a, 230b are located at a first mounting distance from the central vertical plane D-D of the web receiving cavity 205.
As shown in
As shown in
As shown in
As shown in
The saddle bracket 200 may comprises mounting slots 208 on the second plate portion 213 of the first and second support flanges 221, 222. Each mounting slot 208 comprises edges 250. The second plate portion 213 of the first and second support flanges 221, 222 further comprises the insertion slot 209, wherein the insertion slot 209 extends from the edge 250 of each of the first and second support flanges 221, 222 to the mounting slot 208. The mounting slot 208 has a length LM and the insertion slot 209 has a length LI, wherein the length LM of the mounting slot 208 is greater than the length LI of the insertion slot 209.
Once the saddle bracket 200 is mounted to one of the struts 100—thereby creating the grid assembly 4 in the locking state, a number of element configurations and surface engagements are created.
First, the saddle member 202 straddles the web portion 102 of the strut 100 and the web portion 102 is disposed in the web receiving cavity 205. Second, the first lower surface portion 206 of the support flange 202 overlies the upper surface 105 of the flange portion 101 of the strut 100. Third, the second lower surface portion 207 extends beyond the edge 107 of the flange portion 101 of the strut 100 and is substantially coplanar with the lower surface 106 of the flange portion 101 of the strut 100. Fourth, the support flange 201 comprises a portion 223 that engages the edge 107 of the flange portion 101 of the strut 100.
When the resilient elements 230 of the vertical locking feature 204 engage the undersurface 104, 104a, 104b of the bulb portion 103 of the strut 100, the saddle bracket 200 is vertically locked to the strut 100. Specifically, the first resilient element 230a of the vertical locking feature 204 engages the first undersurface 104a of the bulb portion 101 and the second resilient element 230b engaged the second undersurface 104b of the bulb portion 101.
The engagement between the resilient elements 230, 230a, 230b, and the undersurface 104, 104a, 104b of the bulb portion 103 further maintains contact between the support flange 201 of the saddle bracket 200 and the flange portion 101 of the strut 100—thereby vertically locking the saddle bracket 200 to the strut 100. Specifically, the first lower surface 206 of the first plate portion 213 of the support flange 201 contacts the bead 108 of the upper surface 105 of the flange portion 101 of the strut 100 and the edge 107 of the flange portion 101 of the strut 100 contacts the portion 223 of the support flange 201.
Additionally, when the height of the bulb nesting section 241 and the height of the bulb section 103 are substantially equal (not shown), the engagement between the resilient element 230 and the undersurface 104, 104a, 104b of the bulb portion 103 causes the apex 115c of the upper surface 115 of the bulb portion 103 to contact the closed top end 227 of the web receiving cavity 205—thereby further preventing vertical movement between the saddle bracket 200 and the strut 100.
When the height of the bulb nesting section 241 is greater than the height of the bulb section 103 of the strut 100—as shown in
As shown in
In the second state, represented in
After the saddle bracket 200 has been mounted to the struts 100 of the grid support, the ceiling apparatus 8 or mounting bracket assembly 12 can be attached, thereby forming the connection assemblies 3. It should be noted that the ceiling apparatus 8 or the mounting bracket assembly 12 can be attached to the saddle bracket 200 before or after the horizontal locking feature 203 has been placed in the second position. Placing the horizontal locking feature 203 in the second position after the ceiling apparatus 8 has been attached to the saddle bracket 200 allows the user to adjust the horizontal placement of the ceiling panel 11 within the ceiling system 1, thereby allowing for more accurate positioning of the ceiling panel 11.
In a non-limiting embodiment, the ceiling apparatus 8 is formed by attaching the resilient element 70 to the mounting bracket 20 by inserting the hook member 23 through the central opening 74 of the ring portion 71 via the receiving slot 26. To attach the torsion spring 70 to the hook member 23, the multi-purpose fastener 50 cannot be inserted into the multi-purpose aperture 22 of the mounting bracket 20. However, at the time the torsion spring 70 is attached to the spring member 23 via the receiving slot 26, the mounting bracket 20 may already be coupled to the ceiling panel 11 by one or more fasteners (identical or substantially similar to the multi-purpose fastener 50).
One or more fasteners can be inserted through one or more coupling apertures 27, thereby passing from the upper surface 21a of the base plate 21 of the mounting bracket 20, thorough the coupling apertures 27 and into the ceiling panel 11 via the upper surface 13. Once the torsion spring 70 is attached to the hook member 23 of the mounting bracket 20, the multi-purpose fastener 50 is inserted into the multi-purpose aperture 22. Together, the ceiling panel 11, mounting bracket 20, and multi-purpose fastener 50 create the ceiling apparatus 8 and inserting the multi-purpose fastener 50 into the multi-purpose aperture 22 converts the ceiling apparatus 8 from the unlocked state 55 to the locked state 55. Each ceiling panel 11 may be coupled to at least two mounting assemblies 12.
In some embodiments, each ceiling panel 11 is attached to two mounting assemblies 12, and correspondingly coupled to the grid support 2 by two connection assemblies 3, the two mounting assemblies 12 being positioned on opposite sides of the ceiling panel 11 in a parallel configuration, as shown in
In either embodiment, the mounting brackets 12 are positioned along parallel edges of the ceiling panel 11, thereby allowing the connection assemblies 3 to slide along the struts 100 before the horizontal locking feature 203 has been converted into the second position, thereby horizontally locking the saddle 200 to the strut 100. The mounting brackets 12 coupled to a single ceiling panel 11 are not oriented in a perpendicular manner as that would prevent the connection assemblies 3 from being able to slide horizontally along the strut 100.
The ceiling apparatus 8 (or mounting bracket assembly 12 if the ceiling panel 11 is not yet attached to the mounting bracket 12) is coupled to the saddle bracket 200 of the grid assembly 4 by the following non-limiting embodiments. The resilient element 70 (torsion spring 70) is detachably coupled to the saddle bracket 200 by the first and second spring legs 72, 73 extending through the mounting slot 208 of the saddle bracket 200. Stated otherwise, the mounting slot 208 on the saddle bracket 200 receives the torsion spring 70 of the ceiling apparatus 8.
Specifically, a user can grasp or use a tool to apply pressure to the first and second spring legs 72, 73, thereby causing the first and second spring legs 72, 73 to pivot about the ring portion 71 toward each other. As the first and second spring legs 72, 73 move toward each other, the first and second ends 75, 76 of the first and second legs 72, 73 become closer. Eventually with enough pressure, the first and second ends 75, 76 of the first and second legs 72, 73 become close enough that at least a portion of the first and second spring legs 72, 73 are separated by a distorted distance that is smaller than the length LI of the insertion slot 209 of the support flange 201. At the distorted distance, at least a portion of the first and second spring legs 72, 73 can be inserted past the distal edges 244 that define the insertion slot 209.
The first and second legs 72, 73 enter and pass through the insertion slot 209, followed by the first and second legs 72, 73 entering the mounting slot 208. After entering the mounting slot 208, the user may remove the pressure applied to the torsion spring 70. Without the applied pressure, the spring bias causes the first and second legs 72, 73 pivot outward toward their original position and the first and second ends 75, 76 of the first and second legs 72, 73 spread apart. The first and second legs 72, 73 will continue to pivot outward until making contact with the edges 250 of the mounting slot 208. The biased torsion spring 70 will exert an outward pressure on the edges 250 of the mounting slot 208, thereby holding the ceiling apparatus 8 (or the mounting bracket 12 if the ceiling panel 11 is not yet attached) in vertical and horizontal place relative to the saddle bracket 200. Together, the mounting bracket 20, torsion spring 70 and saddle bracket 200 create the connection assembly 3. The connection assembly 3 is used to couple the ceiling panel 11 to the grid support 2 of the ceiling system 1. This process is repeated until all torsion springs 70 are coupled to the corresponding saddle brackets 200.
Once the ceiling panels 11 have been attached to the connection assemblies 3, the corresponding ceiling system 1 may be converted between two ceiling states. The first state (“raised state”) is shown in
As shown in
Specifically, the first upper surface portion 40c of the upper plate 40 of the mounting bracket 20 contacts the lower surface 106 of the flange portion 101 of the strut 100. The first lower surface portion 206 of the first plate portion 213 of the support flange 201 contacts the upper surface 105 of the flange portion 101 of the strut 100. The second upper surface portion 40d of the mounting bracket 20 contacts the second lower surface portion 207 of the support flange 201 of the saddle member. The edge 107 of the flange 101 contacts the portion 223 of the support flange 201, wherein the portion 223 being the transition between the first plate portion 213 and the second plate portion 214 of the support flange 201 of the saddle bracket 200.
In the raised state, the ceiling system 1 will further include at least one of the following configurations. The first and second upper surface portions 40c, 40d of the mounting bracket 20 are substantially parallel to the upper surface 13 of the ceiling panel 11. The first and second lower surface portions 206, 207 of the support flange 201 of the saddle bracket 200 are substantially parallel to the upper surface 13 of the ceiling panel 11. The lower surface of the flange portion 106 of the strut 100 is substantially parallel to the upper surface 13 of the ceiling panel 11. The first and second upper surface portions 40c, 40d of the upper plate 40 of the mounting bracket 20 are substantially parallel to the upper surface 13 of the ceiling panel. The first and second lower surface portions 206, 207 of the support flange 201 of the saddle bracket 200 are substantially parallel to the lower surface 106 of the flange portion 101 of the strut 100.
In the raised state, the second lower surface portion 207 of the support flange 201 of the saddle bracket 200 is substantially flush with the lower surface 106 of the flange portion 101 of the strut 100. In the raised state, the second lower surface portion 207 of the support flange 201 of the saddle bracket 200 and the lower surface 106 of the flange portion 101 of the strut 100 are substantially coplanar. In the raised state, the first and second lower surface portions 206, 207 of the support flange 201 are substantially parallel. In the raised state, the first and second upper surface portions 224, 225 of the support flange 201 are substantially parallel.
As shown in
In the lowered state, there is no contact between the mounting bracket 20 and the flange portion 101 of the strut 100. Additionally, in the lowered state, there is no contact between the mounting bracket 20 and the support flange 201 of the saddle bracket 200. The lowered state provides the user with access space to the crawl space 5. When installing the ceiling system 1, the lowered state may also be used to properly align the ceiling panels 11 relative to the grid support 2. Once the user has determined the appropriate horizontal position of the ceiling panel 11, the horizontal locking feature 203 can be converted to the second position using the access space create by the lowered state, and then the ceiling panel 11 can be raised from the lowered state into the raised state.
As shown in
The torsion springs 70 are decoupled by grasping or using a tool to apply pressure to the first and second spring legs 72, 73, thereby causing the first and second spring legs 72, 73 to pivot about the ring portion 71 toward each other. As the first and second spring legs 72, 73 move toward each other, the first and second ends 75, 76 of the first and second legs 72, 73 become closer. Eventually with enough pressure, the first and second ends 75, 76 of the first and second legs 72, 73 become close enough that at least a portion of the first and second spring legs 72, 73 are separated by a distorted distance that is smaller than the length LI of the insertion slot 209 of the support flange 201. At the distorted distance, at least a portion of the first and second spring legs 72, 73 can be pulled out from the mounting slot 208, past the distal edges 244 of the insertion slot 209 and free from the saddle bracket 208. This process is repeated until all relevant torsion springs 70 are decoupled to the corresponding saddle brackets 200.
Once the torsions springs 70 along the single edge of the ceiling panel 11 are decoupled from the grid assembly 4, the ceiling panel 11 is free to swing downward toward the active room environment 6. Specifically, as shown in
As shown in
The second saddle bracket 300 is an integrally formed singular component comprising a support flange 301, a saddle member 302, a horizontal locking feature 303, and a vertical locking feature 304. The saddle member 302 defines a web receiving cavity 305 for receiving the web portion 102 of the struts 100, wherein the web receiving cavity 305 has a closed top end 327 and an open lower end 328. The support flange 301 extends from the saddle member 303
As shown in
The first wall plate 318 comprises first and second edges 333a, 333b. The second wall plate 319 comprises first and second edges 334a, 334b. The first and second edges 333a, 333b, 334a, 334b of the first and second wall plates 318, 319 are each free edges. The first side edge 333a of the first wall plate 318 and the second side edge 334b of the second wall plate 319 are located on opposite sides of the saddle bracket 300.
The first wall plate 318 comprises an inner surface 318a that faces the web receiving cavity 305. The second wall plate 319 comprises an inner surface 319a that faces the web receiving cavity 305. The inner surfaces 318a, 319a of the first and second wall plates 318, 319 face the central vertical plane E-E as well as face each other. The first wall plate 318 and the second wall plate 319 are substantially parallel with the central vertical plane E-E.
The horizontal locking feature 303 comprises a barb portion 335 and an arm portion 336, wherein the barb portion 335 is located at the distal end of the arm portion 336. The barb portion 335 comprises a lower edge 337 and an upper edge 338 that converge at an apex 339.
The vertical locking feature 304 comprises a resilient element 330 that can be altered between a locking state and an access state. The resilient element 330 is biased into the locking state. The resilient element 330 including a first resilient element 330a and a second resilient element 330b. The first resilient element 330a is located on the first wall plate 318 of the saddle bracket 300 and the second resilient element 330b is located on the second wall plate 319 of the saddle bracket 300.
The vertical position of the resilient element 330 along the first wall plate 318 and the second wall plate 319 defines vertical position of the bulb nesting section 341. Specifically, the bulb nesting section 341 extends from the resilient element 330 to the closed top end 327 of the saddle member 302.
The first resilient element 330a comprises a first tab 331 that is formed into the first side edge 333a of the first wall plate 318. The first resilient element 330a protrudes from the inner surface 318a of the first wall plate 318. The second resilient element 330b comprises a second tab 332 that is formed into the second side edge 334b of the second wall plate 319. The second resilient element 330b protrudes from the inner surface 319a of the second wall plate 319.
The first tab 331 is an integrally formed portion of the first wall plate 318 and the second tab 332 is an integrally formed portion of the second wall plate 319. The first tab 331 is created by making a substantially perpendicular cut into the first wall plate 318 from the first side edge 333a. A portion of first wall plate 318 below the perpendicular cut is then bent out of plane with a main body portion 347 of the first wall plate 318 in a direction inward toward the web receiving cavity 305. The second tab 332 is created by making a substantially perpendicular cut into the second wall plate 319 from the second side edge 334b. A portion of second wall plate 319 below the perpendicular cut is then bent out of plane with a main body portion 348 of the second wall plate 319 in a direction inward toward the web receiving cavity 305.
The resulting first tab 331 is a triangular element having a free upper edge 331a, a free lateral edge 331b, and a bend 331c. The bend 331c integrally connects the first tab 331 to the main body portion 347 of the first wall plate 318. The free lateral edge 331b of the first tab 331 is a portion of the first side edge 333a of the first wall plate 318. The resulting second tab 332 is a triangular element having a free upper edge 332a, a free lateral edge 332b, and a bend 332c. The bend 232c integrally connects the second tab 332 to the main body portion 348 of the second wall plate 319. The free lateral edge 332b of the first tab 332 is a portion of the second side edge 334b of the second wall plate 319. The resulting vertical locking feature extends into the web receiving cavity 305.
The support flange 301 of the present invention may comprise a first support flange 321 and a second support flange 322. The first support flange 321 extends from a lower end 342 of the first wall plate 318 of the saddle member 302 in a first direction that is substantially orthogonal to the central vertical plane E-E. The second support flange 322 extends from a lower end 343 of the second wall plate 319 of the saddle member 302 in a second direction that is substantially orthogonal to the central vertical plane E-E. The first and second directions are opposite of each other. Both the first and second support flanges 321, 322 of the support flange 301 comprise an upper surface 313 and a lower surface 306.
Each of the first and second support flanges 321, 322 comprises a mounting slot 308 (also referred to as a ceiling panel mounting feature), an insertion slot 309, a flat portion 310, and first and second raised portions 311, 312. The mounting slot 308 is formed in the flat portion 310. The insertion slot 309 extends from an edge 350 of the support flange 308 to the mounting slot 308. The mounting slot 308 has a length LM and the insertion slot 309 has a length LI, wherein the length LM of the mounting slot 308 is greater than the length LI of the insertion slot 309. The raised portions 311, 312 extend upward from the flat portion 310 in an inclined manner and terminate in distal edges 344 that define the insertion slot 309.
The mounting slot 308 is configured to receive the first and second spring legs 72, 73 of the torsion spring 70. The insertion slot 309 extends from an edge 317 of each of the first and second support flanges 321, 322 to the mounting slot 308. The mounting slot 308 has a length 315 and the insertion slot 309 has a length 316, wherein the length 315 of the mounting slot 308 is greater than the length 316 of the insertion slot 309.
As shown in
Once the bulb portion 103 has fully entered the bulb nesting portion 341 the undersurface 104, 104a, 104b of the bulb portion 103 will be positioned above the resilient members 330, 330a, 330b. With the bulb portion 103 being located entirely within the bulb nesting section 341, the undersurface 104 of the bulb section 103 engages the resilient members 330. Specifically, the first undersurface portion 104a of the bulb portion 103 on the first side 110 of the web portion 103 engages the free upper edge 331a of the first tab 331 of the first resilient member 330a. The second undersurface portion 104b of the bulb portion 103 on the second side 112 of the web portion 102 engages the free upper edge 332b of the second tab 332 of the second resilient member 330b.
The engagement between the vertical locking feature 304, specifically the resilient element 330, with the undersurface 104, 104a, 104b of the bulb portion 103 further maintains that the support flange 201 of the saddle bracket 300 is in contact with the flange portion 101 of the strut 100.
As shown in
In the second state, represented in
After the saddle bracket 300 has been mounted to the struts 100 of the grid support, the ceiling apparatus 8 or mounting bracket assembly 12 can be attached, thereby forming the connection assemblies 7. It should be noted that the ceiling apparatus 8 or the mounting bracket assembly 12 can be attached to the saddle bracket 300 before or after the horizontal locking feature 303 has been placed in the second position. Placing the horizontal locking feature 303 in the second position after the ceiling apparatus 8 has been attached to the saddle bracket 300 allows the user to adjust the horizontal placement of the ceiling panel 11 within the ceiling system 17, thereby allowing for more accurate positioning of the ceiling panel 11.
In some embodiments, each ceiling panel 11 is attached to two mounting assemblies 12 that are positioned on opposite sides of the ceiling panel 11 in a parallel configuration, as shown in
In another non-limiting embodiment the plurality of connection assemblies 7 include a first one of the connection assemblies 7 located adjacent a first edge of the ceiling panel 11 and a second one of the connection assemblies 7 located adjacent a second edge of the ceiling panel 11, wherein the first edge of the ceiling panel is opposite the second edge of the ceiling panel. The first edge of the ceiling panel 11 extends parallel to the second edge of the ceiling panel 11. For each connection assembly 7, there is substantially no force exerted on the ceiling panel 11 that urges separation of the mounting bracket 20 from the ceiling panel 11.
In either embodiment, the mounting brackets 12 are positioned along parallel edges of the ceiling panel 11, thereby allowing the connection assemblies 7 to slide along the struts 100 before the horizontal locking feature 303 has been converted into the second position, thereby horizontally locking the saddle 300 to the strut 100. The mounting brackets 12 coupled to a single ceiling panel 11 are not oriented in a perpendicular manner as that would prevent the connection assemblies 7 from being able to slide horizontally along the strut 100.
When the saddle bracket 300 mounted to the strut 100—thereby forming the grid assembly 7—the saddle member 302 straddles the web portion 102 of the strut 100. Additionally, the web portion 102 of the strut 100 is disposed in the web receiving cavity 305 of the saddle bracket 300. The support flange 301 is located above and space from the flange portion 100 of the strut 100. The grid assembly 7 further comprises a portion 380 of the support flange 301 that extends beyond the edge 107 portion of the strut 100. The mounting slot 308 is located on the portion 380 of the support flange 301 that extends beyond the edge 107 of the flange portion 101 of the strut. The portion 380 of the support flange 301 that extends beyond the edge 107 of the flange portion 101 of the strut 100 further comprises the insertion slot 309. The i
With the saddle bracket 300 mounted to the strut 100—thereby forming the grid assembly 7, the ceiling apparatus 8 (or mounting bracket assembly 12 if the ceiling panel 11 is not yet attached to the mounting bracket 12) is coupled to the saddle bracket 300 by the following non-limiting embodiments. The resilient element 70 (torsion spring 70) is detachably coupled to the saddle bracket 300 by the first and second spring legs 72, 73 extending through the mounting slot 308 of the saddle bracket 300. Stated otherwise, the mounting slot 208 on the saddle bracket 200 receives the torsion spring 70 of the ceiling apparatus 8. The torsion springs 70 may be detachably coupled to the saddle bracket 300 according to the same methodology previously discussed with respect to detachably coupling the torsion spring 70 to the saddle bracket 200 of the first embodiment. The differences being that the mounting slot 208, insertion slot 209, and edge 250 of the saddle bracket 200 of the first embodiment correspond to the mounting slot 308, insertion slot 309, and edge 350 of the saddle bracket 300 of the second embodiment, respectively.
Once the ceiling panels 11 have been attached to the connection assemblies 7, the corresponding ceiling system 17 may be converted between three ceiling states. The first state (“raised state”) is shown in
As shown in
As shown in
The resilient element/torsion spring 70 biases the upper surface 13 of the ceiling panel 11 into contact with the lower surface 106 of the flange portion 101 of the strut 100. The upper surface 40a of the upper plate 40 of the mounting bracket 20 contacts the lower surface 306 of the support flange 301 of the saddle bracket 300. The torsion spring 70 is detachably coupled to the saddle bracket 300 by the first and second spring legs 72, 73 extending through the mounting slot 308 of the saddle bracket 300 to operably engage the portion 380 of the support flange 301 that extends beyond the edge 107 of the flange portion 101 of the strut.
For each of the connection assemblies 7, the lower surface 306 of the support flange 301 and the upper surface 40a of the upper plate 40 of the mounting bracket 20 are substantially parallel to the upper surface 13 of the ceiling panel 11. The lower surface 106 of the flange portion 101 of the strut 100 is substantially parallel to the upper surface 40a of the upper plate 40 of the mounting bracket 20. The lower surface 106 of the flange portion 101 of the strut 100 is substantially parallel to the upper surface 13 of the ceiling panel 11.
The mount bracket 20 has a second height measured from the lower surface 21c of the base plate 21 of the mounting bracket 20 that is in contact with the upper surface 13 of the ceiling panel 11 and the upper surface 40a of the upper plate 40 of the mounting bracket 20. The saddle bracket 300 comprises a third height measured from the lower surface 306 of the support flange 301 to a lower surface 327 of the bight portion 320 of the saddle member 300 that contacts the web portion 102 of the strut 100. The first height of the strut 100 is substantially equal to the sum of the second and third heights.
Once the torsions springs 70 along the single edge of the ceiling panel 11 are decoupled from the grid assembly 4, the ceiling panel 11 is free to swing downward toward the active room environment 6. Specifically, as shown in
While the foregoing description and drawings represent the exemplary embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope of the present invention as defined in the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims, and not limited to the foregoing description or embodiments.